
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

GIAC Enterprises Security:
A Low Cost Solution

By: Greg Leisner
February 15, 2003

Firewalls, Perimeter Protection, and VPNs
GCFW Practical Assignment

Version 1.8

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

INTRODUCTION ..5

1.0 SECURITY ARCHITECTURE...6

1.1 Overview ..6

1.2 Rational for the architecture ...7

1.3 Universal Software Platform architecture..8

1.4 Network Access Communities...8

1.5 Network Graphic...13

1.6 Filtering Border Router w/NAT ..14

1.7 Exterior Subnets Router..15

1.8 VPN ..15

1.9 Subnet Security Management Stations (SSMS) ...16

1.10 Network addressing ...16

1.11 Security Domains...17

1.12 Interior Routers ...17

1.13 Non-VPN Remote Access...18

1.14 Intrusion Detection Systems..18

2.0 SECURITY POLICY AND TUTORIAL..19

2.1 Overview ..19

2.2 Rulesets ..19

2.3 Security Tutorial for the Border Router .. 21
2.3.1 Platform preparation ...21
2.3.2 Create the initial NetFilter script ...21
2.3.3 Script rules construction..21
2.3.4 Script testing ...22
2.3.5 Script acceptance ..22

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

3.0 VERIFY THE FIREWALL POLICY ...24

3.1 Overview ..24

3.2 The Plan ...24

3.3 The Tests ...25

3.4 The Setup ...26

3.5 The Audit Results ..31

4.0 DESIGN UNDER FIRE ...33

4.1 Overview ..33

4.2 Attacking the firewall...35
4.2.1 Research ...35
4.2.2 Designing the attack..36
The Results ..37
4.2.4 Defensive measures ..38

4.3 Denial of Service Attack ..38
4.3.1 The Design..38
4.3.2 Defensive Measures ...40

4.4 Targeting a Particular Host ..40
4.4.1 Selection of the Victim..41
4.4.2 How to Design an Attack ..41
4.4.3 Defensive measures ..42

5.0 REFERENCES ...44

APPENDIX A..45

APPENDIX B ..47

APPENDIX C ..58

APPENDIX D ..64

APPENDIX E ..70

APPENDIX F ..75

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

APPENDIX G..80

APPENDIX H ..82

APPENDIX I..85

APPENDIX J...86

APPENDIX K ..87

APPENDIX L ..97

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

Introduction

This is the Practical Assignment for GIAC’s Certified Firewall Analyst (GCFW)
certification. While trying to meet all the requirements of the assignment, this
paper, like most GIAC assignments that are submitted, has an organizing theme.
The theme of this paper is “minimize total cost of ownership”. The reason for this
theme is the current cost pressure most organizations find themselves under.

The methods used to minimize total cost of ownership are:

1) Use software with no purchase cost.
2) Minimize the tools used to both reduce training costs and increase

proficiency.
3) Architect a system that reduces false positives as much as possible thus

reducing wasted staff time.

Of course, false negatives are the real danger. But to sustain any policy, it must
have management support. And a firewall architecture that is complex and
generates many false positives could collapse under cost cutting that reduces
available licenses and staffing below design requirements.

Thus, this solution drives down the required person hours to maintain the system.
It also minimizes costs to scale up the security system by only using software
that has no purchase cost.

With this aggressive cost posture, the system ought to perform as designed,
even under extreme funding restrictions combined with a growing workload.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

1.0 Security Architecture

1.1 Overview

GIAC Enterprises, Inc (GIAC) is an e-business that engages in the online sales
of bulk fortune cookie sayings. The company employs 45 people in production
activities and 40 in other, support, activities. The inherent value added to a
Business-to-Business distribution system, like GIAC operates, is directly
proportional to the difficulty in delivering the product to market. However,
sending text files across the Internet is a free activity (at the margin) and the
capital investment required is minimal. GIAC is operating in an environment
where the barriers to entry are extremely low and competition ought to drive
profits to near zero. Yet GIAC dominates the industry and has been, by far, the
most profitable firm in the business according to Wall Street industry analysts.

Automation of the business activity is a fundamental requirement to compete.
The success of GIAC is based on that, it’s supplier and partner relationships, and
it’s mass customization of the fortune cookie distribution process. The
relationships are handled by the firms founding partners and are outside the area
of this study. The ordering and production process, however, significantly impact
the security architecture.

Rather than offer a standard set of bulk cookie fortunes to the marketplace, GIAC
builds each set of delivered cookie fortunes based on the customers’
requirements. The ordering parameters are:

1) Number of fortunes required
2) Minimum characters per fortune
3) Maximum characters per fortune
4) Language
5) Topic (humor, love, career, lottery #’s, etc)
6) Gender of reader
7) Ethnic sensitivities to include or exclude
8) Serialized poems/stories
9) Allow/disallow repeats with past orders

A scandal recently hit GIAC and has negatively impacted business. Somehow,
interspaced with the fortunes delivered to a customer, were messages of an
offensive nature. Because the fortunes are delivered in bulk, the customers
never closely read the fortunes, thus allowing the offensive messages to be
discovered by consumers; it made the papers and lawsuits have been filed. After
investigating the event, it is clear that the offensive messages did not come from
GIAC’s fortune data bank. However, it is not clear if the offensive messages
were placed in the customer’s order:

1) by an insider,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

2) during warehousing at GIAC,
3) during transit over the Internet, or
4) after delivery to the customer.

This security review is managements’ response to the incident. Because of the
damage done by the publicity surrounding the incident, management wants to go
public with as much of the security steps taken as possible as a confidence
building PR measure.

Due to the (hopefully temporary) downturn in business, some support staff have
already been let go. There is no money for added security staff and existing
personnel must absorb all new tasks. A previously planned shift to a Linux only
network has been accelerated. The security personnel let go were the Windows
and Mac support staff.

Also, management is accelerating plans for expanding the firm into three new,
but related, lines of business:

1) Personalized horoscopes (cookie fortunes for one)
2) A regionalized horoscope for newspapers (cookie fortunes for the masses)
3) An e-Almanac (cookie fortunes on a time line)

These new lines of business will be expected to use the existing infrastructure of
the cookie fortune database, distribution facilities and computing resources.
There will be more production employees if the new products take-off, but
management is determined that support staff will not expand as the promotional
expenses are expected to be quite large and margins narrow in the beginning.

From the security architecture point of view, outside of management’s
enthusiastic backing for making serious changes for security reasons, there is no
real empowerment. Financial constraints mean no big pot of money for people,
software or hardware. Due to the PR requirements, there can be little or no
expectation of ‘security through obscurity’. Lastly, the drive into new markets
means that the solution has to be highly scaleable. The scalability issue is quite
severe since the new businesses, by their nature, will have vastly more orders
per revenue dollar than the existing bulk business.

1.2 Rational for the architecture

1) Low up front cost.
This requires reusing as much hardware, software and software skills as
possible. Minimal special purpose hardware and software reduces the
purchase, training and replacement costs.

2) Low maintenance cost.
There will not be many personnel hours available for monitoring the

network.
3) Transparency.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

The PR effort to overcome the previous security breach will include a
media walk through of the changes made. Management wants positive
Computer World, Wall Street Journal, etc stories to counter the existing
bad stories. This means that any attacker could have as detailed
understanding of GIAC’s architecture as an insider could.

4) Scalability.
If the new business takes off, it will swamp the transactional volume of the
old business by a wide margin. Thus the new architecture must have lots
of spare capacity. On the hardware side, i t must be modular and
expandable. On the Computer Operations side, the existing personnel
(just enough to do the job now) ought to be sufficient for the new
endeavors; personnel additions are discouraged, but not impossible if
justified.

The fundamental design decision was to leverage security skills. A limited staff
cannot be expected to be efficient and effective if required to use many platforms
and tools from many vendors. Thus the security staff was going to use a small
number of tools and learn to use them well. Since the existing firewall consisted
of Linux and NetFilter, and the staff was experienced and comfortable with both,
it was decided to make them the foundation of the new security architecture.

Every server and workstation on the internal network will be built from the same
set of binaries. Some hosts will have more software, and there will be different
configurations due to use and subnet location, but the platform software will be
from a unitary and minimalist set. This will decrease the patch management
effort, decrease the patch compatibility testing time and ease remote and
scripted management. It does increase risk because of the lack of diversity.
Management believes that there is net benefit in the trade off selected.

1.3 Universal Software Platform architecture

GIAC has standardized on Redhat Linux 8.0. A single copy of Redhat Linux 8.0
Personal Edition ($39.95) suffices for the entire organization. There are no
license issues to manage. The corporate base platform (common to all hosts) is
listed in Appendix H. Specific hosts have additional packages added as required
by their intended function within the organization. All hardware is x86
compatible.

Redhat 8.0 shipped with kernel 2.4.18-14. The most current update as of the
submission of this paper is 2.4.18-24 dated 2-3-2003. The Iptables (NetFilter)
version that shipped with 8.0 was 1.2.6a-2 and that binary remains the current
version.

1.4 Network Access Communities

Following are GIAC’s access groups and their access requirements and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

restrictions.

1) Customers
Customers for GIAC’s bulk cookie fortunes initially make contact either through
GIAC’s web site, mass mailings, the outside sales force or the inside sales force.
Once the customer decides to do business with GIAC, a customer account is
setup in GIAC’s accounting system. The information can be filled out by the
customer on the web site or by GIAC sales personnel on behalf of the customer.
Included with the information are the assignment of an account ID and password
and the provision of GIAC’s public key. Thereafter, the customer can order on
the web site, from GIAC’s traveling sales force during a site visit or via phone to
GIAC’s customer service personnel. In any case, after the order is scheduled, an
acknowledgement is emailed (digitally signed) to the customer. When the order
is completed, an order availability notice is emailed (digitally signed) to the
customer. For many orders, the acknowledgement and availability notice are
combined. Then the customer signs on to the ftp site and downloads the file
from an order specific URL.

User account information for the Web and FTP servers is retrieved from an LDAP
server on the internal network.

A task on the externally visible ftp server monitors the download and sends
notification to billing; the same task schedules file deletion for 24 hours later. If
files are not downloaded within a prescribed time (as dictated by the customer in
their account setup), follow up with the customer is made.

Security Summary:

a) SSL access to Web site to order
b) Email acknowledgements and billing
c) FTP download from GIAC by customer
d) CRON scheduled follow up on FTP server
e) GIAC employees can act as proxy for customers
f) PKI required for email

2) Suppliers
Relations with cookie fortune suppliers are, in many ways, a mirror image of
relations with customers. Suppliers contact GIAC through GIAC’s web site (a
bid/auction system), email, telephone or site visit. Purchasing gives them a
vendor account in GIAC’s accounting system. Purchasing emails digitally signed
contracts to suppliers when they are selected for specific work. The cookie
fortunes flow from the supplier to GIAC, requiring: GIAC’s personnel to make
contact with supplier’s Internet sites, the supplier’s personnel to connect to
GIAC’s FTP server or GIAC’s personnel to authenticate email from suppliers. If
the supplier’s Internet site is used, authentication is handled by the method
implemented by the supplier. If GIAC’S ftp server is used, authentication is by a
supplier account on GIAC’s network. If email is used, authentication is by

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

exchanged public keys.

Security summary:

a) Suppliers may use GIAC’s Web bid/auction system
b) GIAC phone’s, emails or enters orders on supplier’s Web site
c) Supplier phone’s or emails acknowledgements
d) GIAC employees receive the product either via email, access the

supplier’s FTP site, or the supplier uploads the product onto GIAC’s FTP
site

e) PKI required for email authentication
f)

3) Partners
Partners are trusted vendors. For many of their transactions, they use the same
mechanisms as suppliers. However, they are also given user accounts with
access to GIAC’s internal network and have limited access to GIAC computing
resources.

Security summary:

a) Includes all supplier items
b) Require accounts on GIAC network
c) Require VPN access to GIAC internal network
d) Require partner’s public key for VPN access

4) GIAC employees inside the firewall
Previously, all GIAC employees were on the same subnet. Access to computing
resources was managed through a mix of filesystem permissions and multiple
logins on servers.

The major division of employee groups is between production and administration
employees. These two groups have many mutually exclusive resources as well
as some shared resources. Within each major group, there are many
subdivisions with a single employee enrolled in potentially many of those
subdivisions.

GIAC employees access the Internet for both business and personnel use.
Under no circumstances, however, is pornography, pirated software or hate
literature tolerated. All employees have email accounts and can send and
receive email internally and externally. All employees can access web sites, web
services and download files from the Internet. Only selected employees are
allowed to upload files to sites on the Internet, and only for business purposes.
Only selected employees (computer operations and production personnel) are
allowed access to servers on GIAC’s service network. Only selected computer
operations personnel are allowed to sign in to the various routers, servers and
firewalls via secure shell accounts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

Security summary:
a) A major split exists between production employees and administrative

employees
b) All employees have internal and external Web access
c) All employees have internal and external email access
d) All employees can download from external hosts via FTP
e) Selected employees can upload to external hosts via FTP
f) Access to infrastructure hosts is via SSH

5) GIAC employees outside the firewall
This category includes all the mobile workforce as well as employees who work
part time from home. The mobile workforce needs to connect to the
administrative and product systems to inquire about customers and order status.
They also need to pickup email and voice mail messages. The home workers fall
into two overlapping groups. First are the employees scheduled to work from
home. During their scheduled work hours, they may be continuously connected
to the internal network for up to 9 hours or so. They may also have intermittent
connections. The second group is those who are traveling or want to ‘check in’
on some activity or process on off hours. All employees accessing GIAC must
do so using company supplied laptops. GIAC only allows external users to
connect through the Internet gateway (no modem access).

Security summary:

a) VPN access to GIAC internal network through company laptops
b) Time of day of access isn’t firm
c) Activities allowed are the same as if the employee was locally attached

6) Other hosts on the internal network

a) Printers and copiers are all directly connected to the network.
Maintenance of these devices is outsourced. Staff and management
believe the risks are low enough to leave these devices unmonitored.

b) A few fax machines exist in house, but none are connected to either a
host or the network. No action will be taken for these units.

c) Vendor supplied hosts (i.e. FedEx, Pitney Bowles, etc) are all standalone
and, like the fax machines, no action will be taken.

d) Legacy hosts. There are a few applications that run on Mac’s (Marketing),
Windows (Accounting), OS2 (maintenance) and even DOS (payroll).
These hosts will be fire walled by a Linux box either individually or, where
possible, on a subnet of like machines. (The current users are urged to
find a Linux based substitute.) The Linux firewall for these hosts will only
allow through the minimal set of services (ping, dhcp, DNS, ntp, http, ftp
and email), and in no case will these hosts be allowed access outside of
the interior network (this excludes the exterior services network as well as
the Internet). Users requiring Internet or exterior service network access
will have two hosts, the second one being a Linux host. (It is hoped that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

this discomfort will accelerate the move to a Linux solution.)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

1.5 Network Graphic

Doc Mgt server

SSMS

File server

Security
workstations

SSMS

RDBMS server

Doc Mgt server

File server

Print server

Workstations

SSMS

RDBMS server

Doc Mgt server

File server

Workstations

SSMS

GIAC Enterprises

E-Commerce
Web Host

E-Commerce
FTP Host

E-Mail Proxy

General Services
Subnet

10.1.0.0/16Production
Subnet

10.2.0.0/16

Security Services
Subnet

10.255.0.0/16

Print server

File server

E-Mail server

LDAP server

RDBMS server

Doc Mgt server

Web server

VPN host

Internet

T1
giac.com
public IP

102.17.94.35

SSMS

SSN

SSN

SSN SSN

SSN

Notes:
1) Subnet Security Mgt Station (SSMS)
2) Security Station Subnet (SSN)

10.254.0.0/16

Exterior Gateway
Subnet

192.168.0.0/24
Exterior Services

Subnet
192.168.1.0/24

VPN Gateway
Connection

192.168.2.0/24

Non-VPN Gateway
Connection

192.168.3.0/24

Administration
Subnet

10.3.0.0/20

Non-Linux
Subnets

10.3.16.0/20
10.3.32.0/20
10.3.48.0/20
10.3.64.0/20

Exterior Subnets
Router

Filtering Border Router
with NAT

Interior Subnets Router

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

1.6 Filtering Border Router w/NAT

The Filtering Router that straddles GIAC’s Internet connection is a generic Linux
host. In the future, should a generic host prove unable to scale to the required
volume of new business, a special purpose routing host, running Linux 2.4, can
be substituted. (The NetFilter script is not expected to require any change.) The
purpose of the router is:

1) leverage GIAC’s single public IP address for use by multiple hosts on
the internal private address network by running Network Address
Translation (NAT).

2) protect the private network from:
a) denial Of Service (DOS) attacks.
b) simple probes.

3) prevent address spoofing from either side.
4) segment the Internet between trusted and untrusted domains.

Because the Border Router runs Network Address Translation (NAT), it
functions, by default, as the primary firewall between GIAC and the Internet. The
NetFilter software will:

1) reassemble fragments before routing them.
2) Keep track of state for all connections (required for NAT)
3) Deliver all inbound non-NAT’d packets (to GIAC from the Internet) to

the Border Router’s own TCP/IP stack where they must be filtered.

This covers the bulk of the work of a firewall located on the perimeter. It is
common, for performance reasons, to separate the static filtering done by a
Border Router from the stateful inspection performed by the primary firewall.
However, since the Border Router’s NetFilter is NATing packets, it must be
stateful. The security staff feels that combining the firewall and router in one host
makes sense because of the nearly complete overlap in functionality.

The added filtering needed on the router to provide all the functionality of a
firewall is relatively minor. The staff feels that the clarity of having a single host
perform all the filtering outweighs any minor performance concerns. Adding
more hardware capability to the generic hardware platform can enhance
performance or, if required, request funds for a special purpose router running
Linux 2.4.

Linux based routers tend to be much less expensive to purchase than the
industry standard Cisco products. For example, a comprehensive router line is
available from ImageStream:

(http://www.imagestream-is.com/index_1280.html)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

The NetFilter scripts are portable to these special purpose Linux routers, thus
providing a seamless and relatively inexpensive upgrade path if one is required.

1.7 Exterior Subnets Router

The Exterior Firewall Subnets Router protects the Exterior Services Subnet from
the Untrusted Internet, and it also protects the Interior subnets from both the
Untrusted Internet and the Exterior Services Subnet. The Exterior Subnets
Router Firewall performs the following activities:

1) logs all TCP and most UDP connections.
2) blocks unauthorized traffic.
3) prevents address spoofing.
4) reassembles fragmented packets.

1.8 VPN

The decision to reduce costs by only holding one public IP address and to deploy
one standardized platform causes the following problems for the architecture of
VPN’s.

1) A Network-to-Network VPN requires the connected organizations to
coordinate their use of private IP addresses. If it were just two parties that
had to negotiate, that hurdle would seem to be low. However, because of
the “transitivity of Trust”, it actually includes the IP address space of all the
networks that each party is attached (or becomes attached) to plus all the
networks that those networks become attached, etc. The coordination
effort could spiral towards GIAC essentially setting up it’s own IANA for it’s
VPN network.

2) The lack of platform diversity at GIAC means that not only will the effort of
GIAC technical personnel scale well, so will the effort of any attacker.
GIAC tightly controls the software available to users on its network in
order to minimize the toolset available to an attacker on the inside. By
placing many uncontrolled platforms and users “on the inside” (via a VPN),
GIAC greatly increases the risk of a compromise.

The decision by GIAC was to employ the simplest and safest solution. The
router will tunnel port 22 (SSH) to a host connected to the interior firewall. Users
will login to the VPN host for a secure session (the user’s host and GIAC’s VPN
concentrator will mutually authenticate themselves as well). This setup
preserves the single IP address and uses NAT. By requiring all user work to be
performed on the VPN concentrator, no “hole” is opened in the Exterior Firewall.
There is no trust relationship with a host outside of GIAC’s network (external
hosts are acting as nothing more than dumb terminals). Attacker toolkits are
avoided because the external users are restricted to a platform (the VPN
concentrator) that is under GIAC control.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

1.9 Subnet Security Management Stations (SSMS) and the Security Station
Subnet (SSN)

Each subnet has attached a host (SSMS) that performs the following tasks:

1) Dynamic Host Configuration Protocol (DHCP) server (if used on that
subnet)

2) Domain Name Service (DNS) server
3) Network Time Protocol (NTP) server
4) remote syslog server
5) snort IDS agent (manually activated)

The SSMS hosts are tied together with a network that is private to them. This
network’s purpose is to:

1) insure Quality of Service (QOS) for remote syslog traffic by preventing it
from crossing any router, thus reducing both total network load and the
possibility of loss of the UDP traffic.

2) insure that a compromised router cannot subvert remote logging.
3) allow access to all SSMS hosts from the Security Subnet without allowing

traffic analysis of the communication from any compromised non-SSMS
host.

4) isolate DNS and NTP communication between SSMS hosts from attack by
a compromised non-SSMS host.

1.10 Network addressing

GIAC has one fixed public IP address (GIAC.com, 102.17.94.135). assigned to
the external interface of the Border Router. All other network taps use either the
192.168.0.0/16 or the 10.0.0.0/24 private address spaces.

The 192.168.0.0 addresses cover all network connections between the Internet
and the Interior Subnets Router. This network is both small and static in its
hardware composition. Thus, these addresses are static and assigned in each
host’s configuration scripts. The ARP mappings are also entered in scripts and
are marked as permanent. Thus no spoofing of hosts ought to occur (eliminating
man in the middle attacks), and analysis of syslogs (both interactive and scripted)
can be tailored to the specific host.

The 10.0.0.0 network addresses cover everything inside the Interior Subnets
Router. The interior network is divided into 5 subnets:

1) General services 10.1.0.0/16 (gs.giac.com)
2) Production 10.2.0.0/16 (prod.giac.com)
3) Administration 10.3.0.0/20 (admin.giac.com)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

Administration itself is sub netted due to the presence of legacy Windows
and Mac hosts. A dual hosted Linux box acting as a firewall controls each
subnet. The function of the Linux box is to provide NetFilter syslog,
DHCP, DNS, and NTP services for the subnet:

a) General Administration 10.3.0.0/20 (ga.admin.giac.com)
b) Accounting (10 Windows hosts) 10.3.16.0/20 (acc.admin.giac.com)
c) Marketing (5 Mac hosts) 10.3.32.0/20 (mrk.admin.giac.com)
d) Maintenance (1 OS2 host) 10.3.48.0/20 (main.admin.giac.com)
e) President’s office (3 Windows hosts) 10.3.64.0/20

(boss.admin.giac.com)
4) Security 10.255.0.0/16 (sec.giac.com)
5) Security Station Subnet 10.254.0.0/16 (ssn.giac.com)

1.11 Security Domains

General information regarding user accounts and security domains:

1) All user accounts at GIAC are maintained on an LDAP server on the
interior network.

2) The following conceptual security domains exist:
a) The Internet-untrusted (IU)
b) The Internet-trusted (IT)
c) GAIC external services subnet (ExSub)
d) GAIC internal subnet (InSub)
e) SSN

3) The following protocols services are allowed between security domains
a) IU ß à IT: no direct connection
b) IU ß à ExSub: SSH, HTTP, FTP, SMTP
c) IU à InSub: established on outbound connection
d) IT ß à ExSub: SSH
e) IT ß à InSub: no direct connection
f) ExSub ß à InSub: SSH, HTTP, FTP, SMTP
g) InSub à IU:

1) SMTP- proxy via ExSub
2) SSH, HTTP, FTP, DNS, NTP
3) All others- not allowed

h) SSN ß à all others: proxy through an SSMS via SSH logon

1.12 Interior Routers

All traffic to GIAC’s interior subnets goes through its Interior Subnets Router
(ISR). The purpose of the ISR is to:

1) isolate security, production and administrative data.
2) record inter-subnet traffic to validate the partioning logic of the network.
3) archive administrative isolation of untrusted Internet traffic from trusted

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

Internet traffic by routing the VPN gateway past the exterior firewall.
4) prevent and report address spoofing

All Linux hosts (servers and workstations) will run NetFilter. Besides protecting
the individual host, probes and illicit traffic will be logged.

1.13 Non-VPN Remote Access

There is no remote access other than through the VPN gateway.

1.14 Intrusion Detection Systems

As stated in 1.10 above, NetFilter protects all hosts. The logs are recorded
locally and sent to the local subnet’s SSMS where analysis takes place.

All Linux hosts have /home directory trees on separate disk partitions. These
home partitions will be mounted with the options nodev, noexec, nosuid, and
nouser. While not a complete solution (noexec can be worked around), it helps a
lot. All programs, libraries, scripts, document macros, and other executable
content will be outside of /home and users will not have write permission to those
directories. (For a user to get executable content onto those drives, Computer
Operations must vet the executable and then add it to the master filesystem
template and installation routines.) Where write permission is granted, the file
will not be marked as executable.

The point of isolating executables from user maintainable filesystems is to assist
in making Tripwire effective by eliminating false positives. Tripwire will monitor
the (largely static) filesystems where executables reside. The filesystems that
users can write to will not be allowed to have executable content and thus will not
be monitored by Tripwire.

There are other requirements for securing Linux hosts (lots of them), but only
their effects concern us here. The other significant item is the limitation of
unfettered root access to Computer Operations staff only; no end user will have
root access except through sudo and those cases that require suid and are in the
master filesystem template. This helps insure that the filesystem permissions,
and their Tripwire monitoring system remain unadulterated. Thus, for network
security purposes, the expected network traffic is very tightly constrained by
design. Combining the presence of NetFilter and Tripwire on every host with the
limited allowed traffic, the normal IDS function is implemented through analysis of
NetFilter and Tripwire entries on the Remote Log Server. This poor man’s IDS
has the advantage of both securing the host and monitoring traffic between
hosts, even when both hosts are internal to the local network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

2.0 Security Policy and Tutorial

2.1 Overview

Since the rulesets are executable scripts, they are in appendices for readability,
rather than being included here in the commentary. Each script contains
comments concerning its organization, references and rule rational. The tutorial
for implementing the Border Router policy is contained below.

2.2 Rulesets

All the scripts have default policies of DROP for the INPUT, OUTPUT and
FORWARD chains. Each chain (built-in and custom) is separately defined in it’s
own block in the scripts. Custom user chains only LOG packets and take
negative action (DROP, REJECT). Thus all the built-in chains explicitly contain
all ACCEPT targets within a short span of each script. This increases the ease
of auditing for the critical ACCEPT rules.

The Rulesets are all organize as follows:

1) Declare macros
2) Initialize
3) Create user chains
4) Mangle table
5) NAT table
6) Filter table-INPUT chain
7) Filter table-OUTPUT chain
8) Filter table-FORWARD chain

This organization is universal, even if a particular host doesn’t implement a
particular section. For example, the VPN has no mangle, NAT or FORWARD
chain entries, yet the sections are there for consistency.

Each rule has a reference in its comment, if the rule is derived or copied from
some source document. Generally, the script macros and initialization closely
follow the example scripts in Oskar Andreasson's "Iptables Tutorial 1.1.11" found
at:

http://www.netfilter.org/documentation/tutorials/blueflux/

The actual ruleset is generally this author's. If specific sources were used in
creating individual rules, they are referenced at the point of use:

1) snort rules: ("; sid:625") (http://www.snort.org/dl/rules/)
2) rfc's: ("; rfc:3330") (http://www.rfc-editor.org/)
3) SANS online self study course: ("SANS course materials-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

fw_26_netfilter_gaunt.pdf, page 210")
(http://www.sans.org/onlinetraining/track2.php)

The security policy (NetFilter script) is provided for:

1) The NetFilter script template (Appendix A)
2) The Border Router (Appendix B)
3) The Exterior Subnets Router (Appendix C)
4) The VPN (Appendix D)
5) The Exterior Gateway’s SSMS (Appendix E)
6) A typical user workstation (Appendix F)

Notes on the uses of the targets LOG, DROP and REJECT:

1) LOG: This target is used as follows:
a) --log-level crit is used only on infrastructure hosts (routers, VPN,

SSMS, servers; not on user machines) when a situation may signal
either an insider attack on that host, or a compromise of that host.

b) Except for some obvious scanning and attacks from within its ISP,
GIAC doesn’t bother logging DROP’d or REJECT’d external traffic.
The reason is that there simply isn’t the time to do anything about
them, and they both take resources to LOG and clutter the other,
meaningful entries in the syslog files.

c) Internal host’s NEW connections are always logged except for traffic to
SSMS hosts. The reasons for not doing so are that a udp syslog
packet would trigger a new syslog entry, which could cause a new udp
syslog packet, … in a never-ending loop. Because of timers in the
state module, this shouldn’t actually happen, but there would still be
added volume and redundancy in the LOGing that GIAC wants to
avoid. This opens up port 514 on SSMS host to dos attacks. Because
of this hole, trying to prevent dos attacks via DNS (port 53), NTP (port
123) and DHCP (port 67) on SSMS hosts is pointless. Thus the
LOGing can also be turned off on those ports. (The SSN network
allows access to the SSMS hosts even when they are under dos
attack, so the security staff can still investigate the situation and
capture information for remediation of the situation.)

d) --log-prefix strings have the following patterns:
1. “<host> invalid <builtin chain>”
2. “<host> NEW <builtin chain>”
3. “<host> excessive pings”
4. “<router> spoofing”
5. “SSN NEW <builtin chain>”
6. “tcp-chain: <scan/attack>”
7. “ISP: <scan/attack>”

e) --log-tcp-sequence is only LOG’d for external NEW connections.
GIAC’s tcp sequences are known to be random, but if outsider initiated

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

connections have anomalies, this will capture those sequences.
2) DROP is used for scans/attacks and trash from the Internet; REJECT

(with --reject-with tcp-reset for tcp) is used for indent connections from the
Internet and all internal problem connections. This maximizes internal
host performance.

Lastly, the 192.168 networks are small and have few address changes. Thus to
avoid arp poisoning and host spoofing on these static networks, the arp cache
and hostnames/IP’s are fixed. Complete listings are in Appendix G.

2.3 Security Tutorial for the Border Router

2.3.1 Platform preparation

If this is an existing production machine, skip steps 1 and 2 immediately below.
Otherwise, if the Border Router is a vendor-supplied platform that runs Linux (2.4
required), follow that vendors recommendations for securing the platform; then
skip step 1 immediately below.

To secure a “generic host” (i.e. general purpose computer), the following steps
are required:

1) Install GIAC’s base platform. (Appendix H)
2) Physically secure the host and secure the boot process. (Appendix I)
3) Install/uninstall all additional packages as appropriate. Only packages

required to boot, manage the host from the SSMS and perform the
required functions ought to be installed.

4) Log the host/packages into the Security database.

2.3.2 Create the initial NetFilter script

1) If an existing script can be used, just export it from the CVS archive. Don’t
reinvent the wheel; it’s expensive.

2) If an existing script can be easily modified, export it from the CVS archive.
Do not check it out! To avoid unintended and potentially dangerous
collateral effects on other scripts, each script must stand on it’s own.

3) If many modifications are required, or no similar script exists, start from
scratch. The script’s logical integri ty and ease of audit far outweigh minor
savings in script generation. Export the NetFilter template script.

4) Only if this is maintenance to an existing script, do a checkout from the
CVS archive.

2.3.3 Script rules construction

1) Do not modify, reorder or delete any of the script’s template lines. The
template lines all begin with 6 or more ‘#’ symbols. Also, all your

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

comments must use only 2 or 4 ‘#’s to distinguish them from the template
lines.

2) The template is supposed to enforce a chain-sequenced organization. Do
not place rules for a chain outside of that chain’s section.

3) Organize the rules in some reasonable fashion. If possible, use the same
organizational logic of existing scripts.

4) Place references for a rule in a comment immediately preceding the rule.
5) If reasonable, place high volume rules before low volume rules. However,

if the logic for a chain becomes too messy, simplify by sacrificing
performance.

6) Do not place extraneous matching logic in rules. Each match in a rule
MUST be required for the rule to work correctly. Placing extraneous
matches in a rule misleads a reviewer about the structure and logic of a
chain. For example, assume only tcp, udp and icmp are valid in this
chain, and all the tcp and icmp rules come first and DROP rules for the
balance of those protocols have been declared. Then recognize that with
a comment and a “–p ! udp –j DROP” rule thus both DROPing all other
protocols and excluding any further “-p udp” matches. This helps a
reviewer follow the chain’s logic by systematically eliminating partitions of
the universe of packets.

2.3.4 Script testing

Scripts need to be tested. The tester cannot be the script’s author. Each series
of tests is crafted for the particular script, but includes some common steps.

1) Review the script for completeness of coverage, clarity, correctness and
performance.

2) Run the series of automated scanning tools currently specified by
Company policy. (GIAC’s current automated testing tools are listed in
Appendix J.)

3) Verify that the traffic expected to be ACCEPT'd is actually passed through.
4) The other test partition, traffic that ought not to be ACCEPT’d is not,

cannot be definitively verified via test packets (it’s complexity is usually too
great.) However, if any particular situation appears questionable, it ought
to be exercised with test packets.

2.3.5 Script acceptance

At this point, the script appears to be good. But the last stage is use in
production and final archiving.

1) For the first week in production, the local network SSMS must run packet
capture on the host running the new or modified script. And both the
script’s author and the script’s tester must review those dumps
independently for problems. If any problems occur, go back to 2.3.2 or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

2.3.3; otherwise execute step 2 or 3 as appropriate.
2) If this is a new script:

a) Import the script to the CVS archive.
b) Log the host/script into the Security database.

3) If this is an existing script:
a) Checkin the script to the CVS archive.
b) If this is a new host, log the host/script into the security database.
c) Export the script from the Security database and update all hosts

registered in the security database as using this script.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

3.0 Verify the Firewall Policy

3.1 Overview

The ruleset for the Border Router (Appendix B) can be tested like any program.
The ideal method for testing a program’s functionality is to create a testset that
exercises all logic paths in the code. In the case of the Border Router’s NetFilter
script, that testset could be done created simply by following the logic tree of the
tables and chains. Then a predicted result for each rule (LOG’s, REJECT
packets, evidence of successful connections, tcpdump of forwarded packets, etc)
would be checked against the syslog entries and tcpdump listings. Nessus
(http://www.nessus.org/) is the ideal tool for this selective packet passing. The
use of Nessus would also allow throughput tests to be run on the Border Router
to examine performance impact of various ruleset choices and orderings.

But, as is usual here at GIAC, the ideal is taking a backseat to the doable. The
actual test will involve nmap and ping. The tcpdump of incoming, forwarded, and
returned packets along with the resulting log entries from NetFilter will be
examined for correct behavior, along with the output of nmap and ping
themselves. This is actually a necessary test to perform to insure that there are
not missing, malformed or mal-ordered rules.

3.2 The Plan

Because GIAC is using a general-purpose computer running GIAC’s self-defined
platform as a Border Router, the correctness (but not the performance) of the
NetFilter script can be fully and completely examined on a test bed network. The
test bed host will have the CVS archive of post install configuration changes from
the production Border Router applied. There will be no production hosts
required, and no impact on daily operations.

The test bed consists of two hosts, the Border Router (BR) host and the nmap &
ping (testing) host. The BR host is outfitted with two NIC’s, but the testing host
has just one, aliasing that single NIC as all the required internal non-BR hosts.
The two machines will be connected with a hub.

The BR host, besides it’s syslog entries from NetFilter, will run tcpdump on an
interface. The testing host will just keep its nmap and ping output.

After starting the NetFilter script on the BR host, the following was will be run:

tcpdump –n –i eth1 –w /root/tcpdump_eth1.txt

The initial tests to be run from testing host address 102.17.94.36 are:

1) nmap -e eth0:6 -S 102.17.94.36 -sS -P0 -F -v -n -oN nmap_extest.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

102.17.94.35
2) ping –c 30 102.17.94.35nmap –sS –P0 –oN /root/nmap_1.txt

102.17.94.35
3) nmap -e eth0:6 -S 102.17.94.36 -sF -P0 –p22 -v -n -oN

nmap_extest_sA.txt 102.17.94.35
4) nmap -e eth0:6 -S 102.17.94.36 -sF -P0 –p55555 -v -n -oN

nmap_extest_sA.txt 102.17.94.35
5) nmap -e eth0:6 -S 102.17.94.36 -sX -P0 –p22 -v -n -oN

nmap_extest_sA.txt 102.17.94.35
6) nmap -e eth0:6 -S 102.17.94.36 -sX -P0 –p55555 -v -n -oN

nmap_extest_sA.txt 102.17.94.35nmap –sT –P0 –F –oN /root/nmap_2.txt
102.17.94.35

7) nmap -e eth0:6 -S 102.17.94.36 -sN -P0 -p55555 -v -n -oN
nmap_extest_sF.txt 102.17.94.35

8) nmap -e eth0:6 -S 102.17.94.36 -sN -P0 –p22 -v -n -oN
nmap_extest_sA.txt 102.17.94.35

9) nmap -e eth0:6 -S 102.17.94.36 -sN -P0 –p55555 -v -n -oN
nmap_extest_sA.txt 102.17.94.35

10) nmap -e eth0:6 -S 102.17.94.36 -sA -P0 –p22 -v -n -oN
nmap_extest_sA.txt 102.17.94.35

11) nmap -e eth0:6 -S 102.17.94.36 -sA -P0 –p55555 -v -n -oN
nmap_extest_sA.txt 102.17.94.35nmap –sX –P0 –F –oN /root/nmap_3.txt
102.17.94.35

12) ping -c 30 -I eth0:5 192.168.0.2
13) http to 102.17.94.35

Then packets originating from the interior (IP’s 192.168.0.3 and 10.3.0.5):

14) ping –c 30 102.17.94.36
15) http to 102.17.94.36

The results of the previous tests will determine whatever follow-on action to take.
The initial series of tests is expected to take 3 hours to run and an additional 2
hours to review the results. After the first complete analysis (including any
NetFilter corrections required), future test results can be compared to the original
results via analysis scripts that strip out timestamps and compare the remainder
of the text.

3.3 The Tests

A limitation of the test bed was highlighted while constructing the tests. (It
actually should have been obvious from the start.) By having the testing machine
alias one NIC for both sides of the firewall, the TCP/IP stack behavior ought to
prevent the packets from hitting the wire by looping the packets internally. For
this reason, no tests from the interior network to the exterior network were
attempted. (Because of NAT, connections from the exterior are OK because

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

they are always pointed at the NIC on the BR host.) While initial connection
packets should clear the firewall if they were directed to an address not assigned
to the testing host’s NIC, there would be no return traffic to validate the
connection.

The same problem exists in reverse. However, while deferring the validation of
NAT connection handling (the http connection), the scanning by nmap and pings
of same network hosts can continue.

Thus the tests can only involve the following:

1) scans of the firewall from the exterior
2) initial syn packets from the exterior to DMZ hosts
3) pings of the firewall (DNAT’d and unDNAT’d ports)
4) interior packets directed to the firewall’s interior interface

In terms of the proposed tests from 3.2 above, only #’s 13, 14 and 15 are being
dropped in this past iteration of the test.

In retrospect, the testing host needs two NICs and instead of a single common
hub, either two null modem cables or two hubs are required.

3.4 The Setup

To setup a new environment, new or changed entries can be 1) entered in
configuration files, entered via commandline tools or entered via GUI tools. The
results are all the same, the choice made is up to personnel taste. (As part of the
test, all three methods were used in this test. The /etc/hosts file was edited to
added the host names needed for the tests; the arp command was used to
create permanent arp entries; and the KDE NIC configuration tool was used to
set IP address.) The results of this work are seen in the output of the arp
command listing the arp cache. First on the BR hosts:

Address HWtype HWaddress Flags Mask Iface
delta.egs.giac.com ether 00:40:63:C1:9D:D3 CM eth1
theta.ess.giac.com ether 00:40:63:C1:9D:D3 CM eth1
eta.ess.giac.com ether 00:40:63:C1:9D:D3 CM eth1
gamma.egs.giac.com ether 00:40:63:C1:9D:D3 CM eth1
zeta.ess.giac.com ether 00:40:63:C1:9D:D3 CM eth1
alpha.egs.giac.com ether 00:40:63:C1:9D:D3 CM eth1
somebody.nowhere.com ether 00:40:63:C1:9D:D3 CM eth0
Entries: 7 Skipped: 0 Found: 7

and also on the testing host:

Address HWtype HWaddress Flags Mask Iface

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

beta ether 00:03:6D:13:37:FD CM eth0
GIACcom ether 00:03:6D:14:29:ED CM eth0
Entries: 2 Skipped: 0 Found: 2

However, the GUI NIC maintenance tool in the KDE environment provides an
easy way to create and manage two separate IP profiles for hosts. The
‘Common’ profile is the one used by the hosts in their normal functioning and a
new profile ‘Fwtest’ was created for this exercise. The most interesting work was
done on the many-aliased testing host.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

To add an alias, two simple screens need to be filled out. First, the name and IP
address are specified:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

then the alias is attached to a NIC interface:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

After all these aliases were setup for the testing host, the KDE tool displayed:

The same information is displayed in the familiar ifconfig output:

eth0 Link encap:Ethernet HWaddr 00:40:63:C1:9D:D3
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:286 errors:0 dropped:0 overruns:0 frame:0
 TX packets:67 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0
 RX bytes:18792 (18.3 Kb) TX bytes:4314 (4.2 Kb)

eth0:1 Link encap:Ethernet HWaddr 00:40:63:C1:9D:D3
 inet addr:192.168.0.3 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

eth0:2 Link encap:Ethernet HWaddr 00:40:63:C1:9D:D3
 inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

eth0:3 Link encap:Ethernet HWaddr 00:40:63:C1:9D:D3
 inet addr:192.168.1.3 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

eth0:4 Link encap:Ethernet HWaddr 00:40:63:C1:9D:D3
 inet addr:192.168.1.4 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

eth0:5 Link encap:Ethernet HWaddr 00:40:63:C1:9D:D3
 inet addr:10.3.0.5 Bcast:10.3.15.255 Mask:255.255.240.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

eth0:6 Link encap:Ethernet HWaddr 00:40:63:C1:9D:D3
 inet addr:102.17.94.36 Bcast:102.17.255.255 Mask:255.255.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:72 errors:0 dropped:0 overruns:0 frame:0
 TX packets:72 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0
 RX bytes:4682 (4.5 Kb) TX bytes:4682 (4.5 Kb)

3.5 The Audit Results

The tcpdump capture file contained 4,840 lines, almost all of which were of the
nature of:

15:36:57.869323 somebody.nowhere.com.63222 > 102.17.94.35.2241: S [tcp
sum ok] 2513326235:2513326235(0) win 4096 (ttl 51, id 19967, len 40)

The above record, and thousands of others like it, is not matched in the NetFilter
log file since the NetFilter script was not started with the –test option. (That
option would have had NetFilter LOG all otherwise silently DROP’d packets.)
Later selective testing may require such logging, but the simple scanning and
pinging here doesn’t. The tcpdump capture file has had all those lines expunged
for readability.

Comments were added to the tcpdump capture file to label the entries by the test
they cover. Also, the nmap and ping output captured on the test host in included
in the comments. Only the NetFilter output is missing. It was kept together on
it’s own for integrity purposes.

Appendix K contains the annotated tcpdump capture file and Appendix L has the
complete and unadulterated NetFilter log.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

While the detail is in the above two Appendixes, in summary the following can be
stated.

1) All nmap scans verified that the NetFilter script performed correctly. Only
the ports covered by DNAT rules show as passing through the NetFilter
chains.

2) The ping tests showed the NetFilter rule on the ping LOG rules were
correct. However, the ACCEPT rules had the same limit match and thus
performed opposite of what they ought to have. They ignored the packets
they should have answered and answered the packets they should have
ignored. As noted in the commentary, simply dropping the ‘! ’ in the
ACCEPT rules will fix the problem.

3) Besides the expected log records, the NetFilter log shows some entries
that were DROP’d in the firewall’s OUTPUT chain. These packets were
not part of the test, but were the result of the modifications of the router’s
networking parameters for the test. The modifications incorrectly left intact
the pre-existing DNS server entries.

Lastly, regrettably, the continuation of testing has been indefinitely postponed.
As the analyst was examining the results of the first round of tests, other
personnel tore down the testbed platform in order to return the units to their
previous uses. (OK, my wife demanded access to the Internet and her email and
the tests were stopped.) At a resource strapped enterprise such as GIAC,
dedicated testing equipment is always in short supply as is the time to do the
tests. Because of the problems in the testing layout (see 3.3 above) as well as
the error uncovered in the ping tests, this firewall script is being temporarily
withheld from production.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

4.0 Design Under Fire

4.1 Overview

The Practicum selected for this part is by Robert Alley, and it can be found at:

http://www.giac.org/practical/GCFW/Robert_Alley_GCFW.pdf

[The network diagram contained in that paper is printed on the next page.]

Two months ago, Hortis Hacker was eating out at a Chinese restaurant. The
dessert included with his Chicken Lo Mein Loo was a fortune cookie. Hortis’s
cookie had this fortune:

“You will be very lucky in the next lotto drawing.”

Thrilled, Hortis took all his savings, borrowed from family and friends, and maxed
out his credit cards (all 12) by taking cash advances. He then used all this cash
to purchase PowerBall tickets as the next drawing was for a prized of over $300
million. Surely this was what the cookie fortune referred to!

Needless to say, somebody else won. Hortis was ruined! And Hortis vowed
revenged. After some research, Hortis discovered that the fortune came from a
company named GIAC.

Hortis prepared for his attack. He searched for all the information he could find
out about GIAC and scanned their network. He discovered that an ISA Server
protected GIAC. He discovered much more about GIAC and was able to draw
the network diagram found on the following page. Then Hortis began to plan his
attack…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

4.2 Attacking the firewall

4.2.1 Research

When searching for vulnerabilities for an ISA Standard Edition firewalls, the
attacker knows both what firewall is employed and the underlying Operating
System. From the system requirements for the ISA Server page at:

http://www.microsoft.com/isaserver/evaluation/sysreqs/default.asp

Hortis read the following:

“Operating System: Microsoft Windows® 2000 Server or Windows 2000
Advanced Server with Service Pack 1 or later*, or Windows 2000
Datacenter Server operating system.”

This provides a number of avenues of attack. They break down roughly into the
following categories:

1) ISA Server vulnerabilities
2) W2k Server vulnerabilities
3) Vulnerabilities arising from misapplied patches
4) Mis-configuration vulnerabilities in the ISA Server
5) Mis-configuration vulnerabilities in the W2k Server

If an administrator runs a network of only one kind of host OS, that administrator
has the ability to scale their skill set for the particular platform. While Windows
OS vulnerabilities outnumber ISA Server vulnerabilities, thus offering many more
opportunities, the relative rarity of the ISA server on this administrator’s network
could mean that the ISA Server software might not be as competently maintained
as the underlying OS.

Because any unsuccessful attack on a network can be expected to alert it ’s
administrator to the attack, just as in hunting, your first shot is your best shot.
Therefore, the sequence of assaults will be ISA Server vulnerabilities first and
W2k Server vulnerabilities second.

The first step Hortis took was to check for known vulnerabilities at the vendor’s
site (www.microsoft.com) and in the SANS (www.sans.org) vulnerability listings.
The latest vulnerability related to the Gopher protocol; Microsoft’s advisory was
MS02-027
(http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bull
etin/MS02-027.asp). This gave a brief description, and included a Common
Vulnerabilities and Exposures key of CAN-2002-037. This lead to the CAN
document (http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-
0371) which contained a URL that eventually led to a somewhat detailed

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

explanation of how to trigger the vulnerability:
(http://www.solutions.fi/index.cgi/news_2002_06_12?lang=eng).

4.2.2 Designing the attack

According to the information, Hortis needs exploit code to take advantage of the
buffer overrun, a server to deliver up the malicious buffer overrun code, and a
user to run the request to Hortis’s server through the ISA proxy Web server.
Then, if the ISA server is not patched, the attack can take effect.

The web sites Hortis found explained how to trigger the attack, but they didn’t
contain any actual exploit code. Thus Hortis has to either write his own from
scratch, or search the seamy underside of the Internet for a prewritten exploit.

Setting up a server for the attack is simple. Hortis doesn’t actually need a
Gopher server, just a program listening for the connection attempt. This program
opens a server socket and returns the exploit code when a client connects.

Lastly, Hortis has to have a user inside of GIAC make the connection to his
gopher server. This will cause the exploit to run in the proxy on the ISA server.
The simplest way to do this is to send users email with the URL contained within
it. The social engineering involved is both simple and familiar. Common
approaches are to:

1) offer free, sexually explicit content via the URL.
2) claim that a prize of some sort is available via the URL.
3) offer humorous or otherwise interesting content via the URL.

Hortis decides to offer a chance to enter a contest to win a laptop computer. His
email is simply a copy of a well know company’s email to him on the very subject.
Hortis substitutes his URL for the URL of the real contest’s web site. To protect
the innocent, only the original and substituted tags are included here; and the
original tag has a fake URL.

Original hypertext link:

<TD align=middle width=450 colSpan=2> To enter Click

here</TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE><B
R></BODY></HTML>

Hortis’s version:

<TD align=middle width=450 colSpan=2> To enter Click

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

here</TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE><B
R></BODY></HTML>

In order to get email accounts for users at GIAC, Hortis finds out that GIAC
conveniently offers Microsoft Outlook Web Access and allows guests to peruse
their entire address book to find email addresses for all the employees. Since
the listings also state the employees’ department, Hortis is able to avoid the
security, network and system administration staff, targeting more likely
candidates in production and administration.

Now, Hortis is already in lots of trouble and doesn’t want more, so he needs to
make sure that the attack can’t be traced back to him. There are many ways to
strip the email of headers; Hortis finds an anonymous remailer that does this.
The hard part is finding a host to act as his gopher server. This server will have
to remain available for hours or days, waiting for the email victim to connect. And
if the victim can locate this server, so can the police. All the information will be in
the email that launches the attack.

Since Hortis expects the police to find the gopher server, this host must be
Hortis’s first victim. How Hortis gains control of this host is another story that,
unfortunately, we don’t have time for here.

4.2.3 The Results

According to the hot fix patch for the ISA proxy server

(http://www.microsoft.com/downloads/details.aspx?displaylang=en&Family
ID=2581B8C5-E709-4914-91BC-CFA13D031BC8) :

“When a malicious Gopher request is received, the Proxy Server 2.0 Web
Proxy may send back an invalid response, generate an access violation
error message, and stop providing services.”

Hortis can actually test his exploit in advance since Microsoft offers a 120-day
trial version of the ISA Server, downloadable from the Microsoft web site:

http://www.microsoft.com/isaserver/evaluation/trial/default.asp

If Hortis has an exploit that, as stated in the Microsoft document, can just crash
the ISA server, then, he only needs to know if it succeeded or failed. In order to
know if his attack is successful, Hortis has to simply have his fake gopher server
send a follow up packet to close the connection (gopher uses the tcp protocol) to
the targeted client inside GIAC’s network. If the client responds (sends an ack
packet in response to Hortis’s fin packet), the attack failed (meaning the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

vulnerability was patched.) If there is no response, then Hortis has successfully
taken down the ISA Proxy Server on the GIAC firewall.

If Hortis found or constructed an exploit that takes over the ISA server, then his
attack program must verify the zombie status of the ISA server through some
communication with the exploit code running on the ISA server.

In both cases, the attack program Hortis uses will send a specially worded
message to some predesignated, high traffic site that Hortis can monitor without
drawing suspicion to himself. Hortis has chosen a popular Bulletin Board System
(BBS). The attack program will post a prewritten, innocuous sounding message.
The subject line will signal success or failure. Only Hortis will understand the
posting’s real meaning. Then the attack program erases itself, helping to break
the trail back to Hortis.

4.2.4 Defensive measures

This attack on the firewall is merely a specific case of the general case of an
attack on a host. See the list of defensive measures under Targeting a Particular
Host

4.3 Denial of Service Attack

Definition:

A denial of service (DOS) attack consumes all available instances of a resource,
preventing other hosts or processes from being able to carry on normal activity
that requires the subject resource.

4.3.1 The Design

Hortis has 50 zombie hosts with broadband connections via cable modem or
DSL. These hosts typically have a maximum upstream bandwidth of 128 kilobits
per second (kbps) (see
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213915,00.html).
Since Hortis can harness 50 of these zombies, he has (50 x 128kbps =) 6.4
million bits per second (Mbps) of available peak bandwidth for his attack. If
Hortis’s peak transmission bandwidth exceeds GIAC’s peak receive bandwidth,
then Hortis can perform a Distributed DOS (DDOS) attack on GIAC by filling
GIAC’s connection to the Internet. Since GIAC is an online company, this is
equivalent to shutting down GIAC’s business.

From the earlier reconnaissance on GIAC’s network, Hortis knows that the
gateway router is a Cisco 2600. According to the Cisco spec sheet:

http://www.cisco.com/en/US/products/hw/routers/ps259/products_data_sh

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

eet09186a00800a912b.html

the 2600 can handle a maximum of 8 T1/E1 connections. Since the T1 is
1.55Mbps and the E1 is 2Mbps, the maximum bandwidth of a wire into GIAC is
an E1 at 2Mbps. Since Hortis found only one line between GIAC and it’s ISP,
that means Hortis cam fill the bandwidth, preventing anybody else from
establishing, or for practical purposes, using a connection to GIAC.

GIAC, by itself, cannot prevent an attack on i ts bandwidth. GIAC must determine
where the attack is coming from and gain the cooperation of administrators of the
routers between itself and the attacking hosts. GIAC will probably contact its ISP
(by phone) and ask for the flood of traffic to be identified and dropped at the
ISP’s outer perimeter. By varying the signature of the attack (type of packets,
spoofing addresses), each of Hortis’s zombies can continue to cause trouble via
a different vector until the owner or ISP of the zombie finally shuts it down. This
can take time. If Hortis doesn’t need all of his zombies to mount a successful
attack, then the extra ones can be held in reserve to reinforce and renew the
attack as the original hosts get shutdown.

The response to the DDOS attack requires human intervention. Thus the timing
of the attack (i.e. off hours in GIAC’s time zone) can mean a slower response to
the attack. But the attack has to occur when GIAC’s customers, vendors and
partners are trying to connect to the GIAC site. Intelligence about GIAC’s
business would help to target the best window for an attack. Ideally, the attack
should be started after hours in GIAC’s time zone and at the start of normal
hours in the time zone of its major customers, vendors and partners. Also, the
International Dateline can assist in the planning if much of GIAC’s business
originates in Asia while GIAC resides in North America. Then an attack can start
on Sunday in North America (very, very much off hours) while it’s a normal
Monday workday in Asia. If GIAC’s business originates in Europe, a different
timing is called for. Holidays in the various countries can also impact the
effectiveness of the attack. Hortis needs to study GIAC’s business in order to
cause the most damage.

If GIAC’s connection to the Internet had exceeded Hortis’s maximum attack
bandwidth, then Hortis would have to target a host (or hosts) on GIAC’s network
and overwhelm it (them) in some manner. This could be as simple as the jolt2
attack that floods a Windows host with unassembled packet fragments (see
SANS GCFW “IP Behavior III” page 4-30) or the generic and venerable tcp SYN
flood (http://www.cert.org/advisories/CA-1996-21.html). To maximize the
effectiveness of this attack, Hortis needs to know more about how GIAC’s
network is organized.

For example, if more than one service is carried on a single host (as the
perimeter network’s host GIACWEB does ftp as well as http), a DOS attack on
that particular host takes down two or more services. And which services are

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 40

most critical to GIAC depends upon how GIAC conducts it’s business. Thus
visits to GIAC’s site can tell Hortis which services GIAC most depends upon.

But due to the narrow nature of the pipe into GIAC, Hortis chooses to launch a
simple DDOS attack, and flood the pipe with a mix of traffic (icmp, http, ftp, dns,
smtp, etc) from 16 zombies. The zombies will (if their connection allows it) spoof
their IP address, thus requiring more effort in tracking down the attackers and
shutting them off at the source.

This attack across many protocols and services means that GIAC’s ISP can’t just
shutdown one protocol or service. The more time consuming task of tracing (the
hopefully spoofed) traffic will be required. Of course, the ISP could just drop all
traffic inbound to GIAC, but that makes the DOS attack succeed! As the attack
has been timed for off hours, detection and remediation resources at both GIAC
and its ISP should be minimal.

These 16 hosts should be the minimum required to flood the GIAC connection to
the Internet. The other 34 zombies will be held in reserve. They will randomly try
to make an http or ftp connection to GIAC every 10 to 30 seconds. If the
connection succeeds, that zombie will join the attack. Thus, as GIAC’s ISP
succeeds in shutting off the attackers one by one, the reserve zombie hosts will
take up the slack. This will both lengthen the attack, and withhold information on
how numerous the zombie army is.

4.3.2 Defensive Measures

There really are no defenses against a DOS attack. There are things that can be
done to mitigate the effects, but they are usually expensive.

For example, GIAC could have had a higher bandwidth connection to the
Internet. Hortis only had 6.4Mbps of attacking bandwidth. But more bandwidth
costs money and it can be overcome by more zombie attackers.

GIAC could have arranged for more remediation resources to be called upon in
case of an attack. If the ISP doesn’t offer those resources and GIAC doesn’t
want to hire the extra staff itself, then a security service can be hired. Again, all
of these steps cost more money.

GIAC needs to have a security plan in place that describes, in detail, what to do
in case of an attack. Included in those steps ought to be both a call to law
enforcement and steps for the capture of forensic evidence. This will not stop the
current attack, but it is a necessary step to take that, over the long term, raises
the cost to the attacker. Maybe, someday, the frequency of attacks will decline
because of vigorous and successful law enforcement.

4.4 Targeting a Particular Host

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 41

4.4.1 Selection of the Victim

The victim selected is the one noted above; the dual ftp and http server on the
perimeter network. It is selected both because it supports two protocols and
because it is the lone NT host in a W2k network.

Because it supports both ftp and http, a vulnerability in either protocol can
compromise the host and automatically compromise the other service. It’s a two
for one deal.

Also, since this is the only NT host in an otherwise W2k environment, the
chances are greater for mis-management of the host by its administrator. The
administrator has to concentrate on his/her most prevalent platform first; more
bang for the buck. That increases the chances of short changing the minor
platform by either skipping some maintenance or doing it in a hurried manner and
possibly doing it wrong.

4.4.2 How to Design an Attack

Because the host provides services to clients across the Internet, the perimeter
defenses at GIAC will allow traffic relating to those services through. The
attacker doesn’t have to defeat the router or the firewall, both will cooperate if the
traffic looks legitimate. Thus we need to research the five protocols:

1) http
2) ftp
3) ip
4) tcp
5) imp

for vulnerabilities that may exist in either IIS or NT. Just as with the attack on the
firewall, we will search for these vulnerabilities at:

1) the vendor’s web site
2) security web sites (SANS, CERT, Bugtraq)
3) hacker sites

From Microsoft’s s site, all the NT 4.0 service packs are listed at:

http://support.microsoft.com/default.aspx?scid=/support/servicepacks/Win
NT/4.0/default.asp

Starting with the latest package (SP6a) at:

http://support.microsoft.com/default.aspx?scid=/support/servicepacks/Win

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 42

NT/4.0/SP6a.asp

the list of security fixes is listed. In SP6a, there are hundreds of patches,
including 58 for the basic OS, 21 for IIS and 31 for security. If the service pack
has not been applied and no individual hot fix for the vulnerability has been
applied either, then the host may fall to an attack through this vector. Each
vulnerability must be read to determine if a compromise is possible. Simply
crashing the system, or having it misbehave isn’t enough.

From the Bugtraq site:

http://online.securityfocus.com/archive/

It is prudent to search for any vulnerability discovered after the release of SP6a
(11/30/1999). A quick search of the archives for “NT 4.0” provided 186 posting
after the SP6a date to pursue, while “MS IIS” showed 67 items.

And there are numerous hacking sites, all of which this author avoids.

4.4.3 Defensive measures

The number one defensive measure is to apply all service packs, security
updates, hot fixes, etc. The systems administrator must keep current on
patching vulnerabilities. The attacker (as noted above) will look at vendor
updates, searching for a vulnerability to exploit. If the intended victim doesn’t
bother to apply the patches that the attacker is researching, then the game is
certainly lost. And as obvious a step as this is, the recent Slammer event
showed that most organizations don’t do it. Even Microsoft had not applied its
own patch to its own internal hosts six months after releasing the patch:

http://zdnet.com.com/2100-1105-982305.html

The second defensive step to take is to minimize the effects of a successful
attack. In the example above, two different, but vital services were hosted on the
same machine. A successful attack against either delivered the second service
for free.

A third defensive measure is to reduce the workload by making administration as
scalable as possible. In the example network above, the target host was the lone
NT 4.0 host. The administrator thus had two platforms (W2k and NT 4.0) to
administer on the vulnerable perimeter services net. Diversity is often promoted
as a defense against attack. However, it also provides both more potential
vulnerabilities for the administrator to fix and more potential vulnerabilities for
attacker to test.

The network appears to be lacking a common defensive measure; there isn’t

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 43

mention of a remote logging feature. If (when?) a host is compromised, the host-
based logfiles (if any) can be sanitized by the attacker. The compromise may
never be detected until the attacker decides to tip his/her hand.

Also, as mentioned above in the DOS defensive measures, a security plan
detailing what to do (including contacting law enforcement and collecting forensic
evidence) is a useful precaution.

Lastly, the network administrator has to have an active defense as well as a
passive defense. On the perimeter network was an IDS system. If (when?) a
host becomes compromised, intrusion detection systems (both network and host
based) are the last line of defense that allows the administrator to defeat the
attacker even after the attacker has experienced initial success. Without IDS, the
defenses are just a hard shell that delay but don’t defeat the attacker. Without
IDS, a single mistake by the defense forfeits the entire game. No network can
win that kind of a game and no administrator should want to fight on those terms.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 44

5.0 References

Andreasson, Oskar. “Iptables Tutorial 1.1.11” Version 3.14159-1.00a-pretest-
20010004-ojmw. 21-March-2002. URL
http://www.netfilter.org/documentation/tutorials/blueflux/

Bartz, Manfred. NetFilter Log Format”. URL http://logi.cc/linux/netfilter-log-
format.php3

Brockmeier, Joe. “Iptables connection tracking”. 2-October-2002. URL
http://www.sns.ias.edu/~jns/security/iptables/iptables_conntrack.html

Computer System Technology, National Institute of Standards and Technology,
U.S. Department of Commerce. “NIST Special Publication 800-7; Security in
Open Systems”. July-1994. URL http://csrc.nist.gov/publications/nistpubs/800-7/

The Internet Society. “Special-Use IPv4 Addresses”. Request for Comments:
3330. September-2002. URL ftp://ftp.rfc-editor.org/in-notes/rfc3330.txt

Roesch, Martin. “Snort 1.9.0 Ruleset”. 11-September-2002. URL
http://www.snort.org/

Russell, Rusty. “Linux 2.4 NAT HOWTO”, Revision 1.18. 14-January-2002. URL
http://www.netfilter.org/documentation/HOWTO//NAT-HOWTO.txt

Russell, Rusty. “Linux 2.4 Packet Filtering HOWTO”, Revision 1.26. 24-January-
2002. URL http://www.netfilter.org/documentation/HOWTO//packet-filtering-
HOWTO.txt

Stevens, Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesley
Longman, 1994.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 45

Appendix A.

########
######## Template NetFilter bash script
########

########
######## macros for common values
########

executable

interfaces

local subnet hosts

except for SSMS host,
at least a LOCAL_SSMS
must be defined here

########
######## Initialization
########

Load modules

Set chain policies

This is GIAC's default security posture;
DROP it. This allows the ruleset to grow
by simply allowing in whatever new traffic
that is required. Since the new rules
can be added directly before the DROP
rule in the specific chain, there is
no great security concern about emergency
maintenance to the ruleset. Any
performance concerns can be addressed
by a thoughtful review of the entire
ruleset at a later time.

must contain these lines only
$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 46

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

Enable/Disable (1/0) IP Forwarding

echo "0" > /proc/sys/net/ipv4/ip_forward
echo "0" > /proc/sys/net/ipv4/ip_forward

########
######## Create User chains
########

site-policy-chain

########
######## Mangle
########

########
######## NAT
########

DNAT: NATing new connections from the exterior interface

SNAT: NATing new connections from the interior interface

########
######## Filtering
########

INPUT chain ######

OUTPUT chain ######

FORWARD chain ######

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 47

Appendix B.

#!/bin/bash

########
######## Template NetFilter bash script
########

Border Router
by Greg Leisner

For testing purposes, a limited number of
conditionally executed LOG rules will
log otherwise silently dropped packets.

This logging is activated by invoking this
script with a single argument of '--test'.

########
######## macros for common values
########

executable

IPTABLES=/sbin/iptables

interfaces

IF_Exterior="eth0"
IF_Interior="eth1"
IP_Exterior="102.17.94.35"
IP_Exterior_Mask="102.17.0.0/16"
IP_Interior="192.168.0.2"

exterior services subnet
ES_Server_HTTP="192.168.1.2"
ES_Server_SMTP="192.168.1.3"
ES_Server_FTP="192.168.1.4"

local subnet hosts

except for SSMS host,
at least a LOCAL_SSMS
must be defined here
LOCAL_SSMS="192.168.0.1"
EG_Server_SSH="192.168.0.3"

interior subnets
IP_ADMIN_SUBNET="10.3.0.0/16"
IP_PROD_SUBNET="10.2.0.0/16"
IP_SEC_SUBNET="10.255.0.0/16"

Internet based services
ISP_DNS_PRIMARY="102.17.194.1"
ISP_DNS_SECONDARY="102.17.35.40"
ISP_SMTP_PRIMARY="mailhost1.mytown.myisp.net"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 48

ISP_SMTP_SECONDARY="mailhost2.mytown.myisp.net"
NPT_SERVER_1="ntp1.cs.wisc.edu"
NPT_SERVER_2="ntp3.sf-bay.org"
NPT_SERVER_3="ntp-1.mcs.anl.gov"

########
######## Initialization
########

Load modules

/sbin/depmod -a -q

/sbin/modprobe -q ip_tables
/sbin/modprobe -q ip_conntrack
/sbin/modprobe -q iptable_filter
/sbin/modprobe -q iptable_mangle
/sbin/modprobe -q iptable_nat
/sbin/modprobe -q ipt_LOG
/sbin/modprobe -q ipt_limit
/sbin/modprobe -q ipt_state
/sbin/modprobe -q ipt_REJECT
/sbin/modprobe -q ip_conntrack_ftp
/sbin/modprobe -q ip_nat_ftp
/sbin/modprobe -q ipt_length
/sbin/modprobe -q ipt_ttl

Set chain policies

This is GIAC's default security posture;
DROP it. This allows the ruleset to grow
by simply allowing in whatever new traffic
that is required. Since the new rules
can usually be added directly before the
final DROP rule in the specific chain, there
is no great security concern about emergency
maintenance to the ruleset. Any
performance concerns can be addressed
by a thoughtful review of the entire
ruleset at a later time.

must contain these lines _only_
/sbin/iptables -P INPUT DROP
/sbin/iptables -P OUTPUT DROP
/sbin/iptables -P FORWARD DROP

/sbin/iptables -t nat -P PREROUTING ACCEPT
/sbin/iptables -t nat -P POSTROUTING ACCEPT
/sbin/iptables -t nat -P OUTPUT ACCEPT

/sbin/iptables -t mangle -P PREROUTING ACCEPT
/sbin/iptables -t mangle -P OUTPUT ACCEPT

/sbin/iptables -P INPUT DROP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 49

/sbin/iptables -P OUTPUT DROP
/sbin/iptables -P FORWARD DROP

/sbin/iptables -t nat -P PREROUTING ACCEPT
/sbin/iptables -t nat -P POSTROUTING ACCEPT
/sbin/iptables -t nat -P OUTPUT ACCEPT

/sbin/iptables -t mangle -P PREROUTING ACCEPT
/sbin/iptables -t mangle -P OUTPUT ACCEPT

Enable/Disable (1/0) IP Forwarding

echo "0" > /proc/sys/net/ipv4/ip_forward
echo "1" > /proc/sys/net/ipv4/ip_forward

########
######## Create User chains
########

site-policy-chain

There is no overriding site policy chain at this time.

tcp-chain

This chain checks the tcp header; it will
only LOG and DROP bad packets. The main
chain will have to ACCEPT the packet.

If the default logging isn't desired, the
host will have to do tcp checks in the
main chains.

The order is unimportant except that the
syn/fin must be last because we want to
catch all other combinations not enumerated
earlier in the chain.

/sbin/iptables -N tcp-chain
data in syn packet; sid: 526
/sbin/iptables -A tcp-chain -p tcp --tcp-flags SYN SYN -m length ! --length 40:40 -j LOG --log-
prefix "tcp_chain: syn packet data "
/sbin/iptables -A tcp-chain -p tcp --tcp-flags SYN SYN -m length ! --length 40:40 -j REJECT --
reject-with tcp-reset
null scan; sid: 623
/sbin/iptables -A tcp-chain -p tcp --tcp-flags ALL NONE -j LOG --log-prefix "tcp_chain: null scan "
/sbin/iptables -A tcp-chain -p tcp --tcp-flags ALL NONE -j REJECT --reject-with tcp-reset
xmas scan; sid: 625
/sbin/iptables -A tcp-chain -p tcp --tcp-flags ALL ALL -j LOG --log-prefix "tcp_chain: xmas scan "
/sbin/iptables -A tcp-chain -p tcp --tcp-flags ALL ALL -j REJECT --reject-with tcp-reset
cybercop scan; sid: 627
/sbin/iptables -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j LOG --log-prefix "tcp_chain:
cybercop scan "
/sbin/iptables -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j REJECT --reject-with tcp-reset
nmap fingerprint scan; sid: 629

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 50

/sbin/iptables -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j LOG --log-prefix
"tcp_chain: nmap scan "
/sbin/iptables -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j REJECT --reject-with tcp-
reset
syn/fin scan; sid: 624, 630
/sbin/iptables -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j LOG --log-prefix "tcp_chain:
syn/fin scan "
/sbin/iptables -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j REJECT --reject-with tcp-reset

udp-chain

There is no udp-chain because the only check is on
ports and they are validated in the NAT process.

icmp-chain

There is no icmp-chain because the only checks
are on:

1) connection-state and they are validated
in the NAT process.
2) ping rules in the Input and Forward chains.

########
######## Mangle
########

There are no mangle rules at this time.

########
######## NAT
########

nat rules are not logged, this should occur if
and when the connected is ACCEPTed.

DNAT: NATing new connections from the exterior interface

in order of expected volume:HTTP, SMTP, FTP, SSH
/sbin/iptables -t nat -A PREROUTING -d $IP_Exterior -p tcp --dport 80 -j DNAT --to
$ES_Server_HTTP
/sbin/iptables -t nat -A PREROUTING -d $IP_Exterior -p tcp --dport 25 -j DNAT --to
$ES_Server_SMTP
/sbin/iptables -t nat -A PREROUTING -d $IP_Exterior -p tcp --dport 21 -j DNAT --to
$ES_Server_FTP
/sbin/iptables -t nat -A PREROUTING -d $IP_Exterior -p tcp --dport 22 -j DNAT --to
$EG_Server_SSH

SNAT: NATing new connections from the interior interface

no protocol or address filtering here
/sbin/iptables -t nat -A POSTROUTING -o $IF_EXTERIOR -j SNAT --to-source $IP_Exterior

########

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 51

######## Filtering
########

INPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is sensitive to volume,
both by connection-state and within
each connection-state.

1) established connections
2) new connections from the Exterior Interface
3) new connections from the Interior Interface

Since we have validated the IP connection,
pass the existing connections.
/sbin/iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Next, allow Unix socket stuff.
/sbin/iptables -A INPUT -i lo -j ACCEPT

The exterior interface is first because this is where most of
the traffic will be coming from.

IF_Exterior ##

The Border router is different from all other filtering rule sets
because on the exterior interface we will generally drop all unwanted
packets without logging them. The reason for this is that GIAC
isn't responsible for remediation of any issues outside of it's
network. To do so would consume scarce internal resources (people
time.) An exception is made for some packets indicating a compromise
on GIAC's ISP's network. (Neighborhood Watch)

After NATing the packets in prerouting, anything left directed to
our external IP address is probably trash. We respond to pings
from our ISP's address space, but that's all.

ping traffic
first DROP anything not from the ISP's address space
if ["$1" == "--test"]; then
 /sbin/iptables -A INPUT -s ! $IP_Exterior_Mask -p icmp --icmp-type 8 -j LOG --log-prefix
"testing: INPUT DROP "
fi
/sbin/iptables -A INPUT -i $IF_Exterior -s ! $IP_Exterior_Mask -p icmp --icmp-type 8 -j DROP
the remaining ping traffic is logged and DROP'd if excessive
/sbin/iptables -A INPUT -i $IF_Exterior -m limit ! --limit 20/hour -p icmp --icmp-type 8 -j LOG --log-
prefix "ISP: excessive pings "
/sbin/iptables -A INPUT -i $IF_Exterior -m limit ! --limit 20/hour -p icmp --icmp-type 8 -j DROP
This ping we will respond to
/sbin/iptables -A INPUT -i $IF_Exterior -p icmp --icmp-type 8 -j ACCEPT

Bad traffic & scans; just grab enough to alert the ISP to the problem.
Only grab packets that can't be false positives.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 52

There is more that we could do, but we just keep it simple.

reserved IP addresses; rfc:3330
/sbin/iptables -A INPUT -i $IF_Exterior -m limit --limit 1/hour -s 10.0.0.0/8 -j LOG --log-prefix "ISP:
bad address 1 "
/sbin/iptables -A INPUT -i $IF_Exterior -m limit --limit 1/hour -s 127.0.0.0/8 -j LOG --log-prefix
"ISP: bad address 2 "
/sbin/iptables -A INPUT -i $IF_Exterior -m limit --limit 1/hour -s 169.254.0.0/16 -j LOG --log-prefix
"ISP: bad address 3 "
/sbin/iptables -A INPUT -i $IF_Exterior -m limit --limit 1/hour -s 172.16.0.0/16 -j LOG --log-prefix
"ISP: bad address 4 "
/sbin/iptables -A INPUT -i $IF_Exterior -m limit --limit 1/hour -s 192.0.2.0/24 -j LOG --log-prefix
"ISP: bad address 5 "
/sbin/iptables -A INPUT -i $IF_Exterior -m limit --limit 1/hour -s 192.168.0.0/16 -j LOG --log-prefix
"ISP: bad address 6 "
/sbin/iptables -A INPUT -i $IF_Exterior -m limit --limit 1/hour -s 192.18.0.0/15 -j LOG --log-prefix
"ISP: bad address 7 "
/sbin/iptables -A INPUT -i $IF_Exterior -m limit --limit 1/hour -s 240.0.0.0/4 -j LOG --log-prefix
"ISP: bad address 8 "
data in syn packet; sid: 526
/sbin/iptables -A INPUT -i $IF_Exterior -p tcp --tcp-flags SYN SYN -m length ! --length 40:40 -m
limit --limit 1/hour -j LOG --log-prefix "ISP: data in syn packet"
null scan; sid: 623
/sbin/iptables -A INPUT -i $IF_Exterior -p tcp --tcp-flags ALL NONE -m limit --limit 1/hour -j LOG --
log-prefix "ISP: null scan"
xmas scan; sid: 625
/sbin/iptables -A INPUT -i $IF_Exterior -p tcp --tcp-flags ALL ALL -m limit --limit 1/hour -j LOG --
log-prefix "ISP: xmas scan"
cybercop scan; sid: 627
/sbin/iptables -A INPUT -i $IF_Exterior -p tcp --tcp-flags ALL SYN,FIN,URG -m limit --limit 1/hour -
j LOG --log-prefix "ISP: cybercop scan"
nmap fingerprint scan; sid: 629
/sbin/iptables -A INPUT -i $IF_Exterior -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -m limit --limit
1/hour -j LOG --log-prefix "ISP: nmap scan"
syn/fin scan; sid: 624, 630
/sbin/iptables -A INPUT -i $IF_Exterior -p tcp --tcp-flags SYN,FIN SYN,FIN -m limit --limit 1/hour -j
LOG --log-prefix "ISP: syn/fin scan"

The rest from the Exterior is all trash
if ["$1" == "--test"]; then
 /sbin/iptables -A INPUT -i $IF_Exterior -j LOG --log-prefix "testing: INPUT DROP "
fi
/sbin/iptables -A INPUT -i $IF_Exterior -j DROP

IF_Interior ##

The interface must be the interior, so -i $IF_Interior is implicit in all the following

Our major activity for the INPUT chain is control from the
Interior Network. We only accept SSH connects from our
local subnet's SSMS or the Security subnet; the rest get
logged and dropped.

log and pass the new connections
/sbin/iptables -A INPUT -s $LOCAL_SSMS -p tcp --dport 22 -m state --state NEW -j LOG --log-
prefix "Bdr Router NEW INPUT "

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 53

/sbin/iptables -A INPUT -s $LOCAL_SSMS -p tcp --dport 22 -m state --state NEW -j ACCEPT
/sbin/iptables -A INPUT -s $IP_SEC_SUBNET -p tcp --dport 22 -m state --state NEW -j LOG --
log-prefix "Bdr Router NEW INPUT "
/sbin/iptables -A INPUT -s $IP_SEC_SUBNET -p tcp --dport 22 -m state --state NEW -j ACCEPT

The rest should be invalid and could signal an attack
/sbin/iptables -A INPUT -j LOG --log-prefix "Bdr Router invalid INPUT "
/sbin/iptables -A INPUT -j DROP

OUTPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is simply by volume. There
are few rules because there is little traffic.

site policy
#/sbin/iptables -j site-policy-chain
/sbin/iptables -A OUTPUT -o lo -j ACCEPT

Top priority is the syslog dump.
/sbin/iptables -A OUTPUT -o $IF_Interior -d $LOCAL_SSMS -p udp --dport 514 -j ACCEPT

check all tcp traffic
/sbin/iptables -A OUTPUT -p tcp -j tcp-chain

pass the existing connections
/sbin/iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

allow out valid DNS traffic
/sbin/iptables -A OUTPUT -o $IF_Interior -d $LOCAL_SSMS -p udp --dport 53 -m state --state
NEW -j ACCEPT

allow out valid NTP traffic
/sbin/iptables -A OUTPUT -o $IF_Interior -d $LOCAL_SSMS -p udp --dport 123 -m state --state
NEW -j ACCEPT

The Border Router is passive; syslog, DNS & NTP above are it's only
internally initiated IP traff ic. The rest should be invalid
and could signal a compromise.
/sbin/iptables -A OUTPUT -j LOG --log-prefix "Bdr Router invalid OUTPUT "
/sbin/iptables -A OUTPUT -p tcp -j REJECT --reject-with tcp-reset
/sbin/iptables -A OUTPUT -j REJECT

FORWARD chain ######

Here is where the real work gets done.

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is sensitive to volume,
both by connection-state and within

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 54

each connection-state.

1) established connections
2) inbound new connections
3) outbound new connections

first, rules for both directions

check all tcp traffic
/sbin/iptables -A FORWARD -p tcp -j tcp-chain

Since we have validated the IP connection,
pass the existing connections.
/sbin/iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

IF_Exterior ##

From the Internet

Because we use NAT, traffic inbound from the Internet
either has matched our DNAT targets, or it is part of
an existing connection.

Since all hosts filter interior traffic, any checks made
here at the Border Router of Internet traffic would
duplicate those checks. However, since all interior
hosts log their invalid packets, the Border Router will
filter all syn packets related to DNAT targets and
silently discard the bad ones. This is done instead
of using the tcp-chain because GIAC will not waste
time trying to remediate the situation.

tcp ##

NEW packet, no syn; see Iptables Tutorial App B
if ["$1" == "--test"]; then
 /sbin/iptables -A FORWARD -i $IF_Exterior -p tcp ! --tcp-flags SYN SYN -m state --state
NEW -j LOG --log-prefix "testing: FORWARD DROP "
fi
/sbin/iptables -A FORWARD -i $IF_Exterior -p tcp ! --tcp-flags SYN SYN -m state --state NEW -j
DROP

IDENT, quickly, gracefully kil l all INDENT requests;
SANS course materials-fw_26_netfilter_gaunt.pdf, page 210
/sbin/iptables -A FORWARD -i $IF_Exterior -p tcp --dport 113 -j REJECT --reject-with tcp-reset

data in syn packet; sid: 526
if ["$1" == "--test"]; then
 /sbin/iptables -A FORWARD -i $IF_Exterior -p tcp -m length ! --length 40:40 -j LOG --log-
prefix "testing: FORWARD DROP "
fi
/sbin/iptables -A FORWARD -i $IF_Exterior -p tcp -m length ! --length 40:40 -j DROP

additional flags; sid:624, 625, 1228, 629, 630, 627
because of the first rule in this section, these packets

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 55

all have the SYN flag set
if ["$1" == "--test"]; then
 /sbin/iptables -A FORWARD -i $IF_Exterior -p tcp --tcp-flags FIN FIN -j LOG --log-prefix
"testing: FORWARD DROP "
 /sbin/iptables -A FORWARD -i $IF_Exterior -p tcp --tcp-flags RST RST -j LOG --log-prefix
"testing: FORWARD DROP "
 /sbin/iptables -A FORWARD -i $IF_Exterior -p tcp --tcp-flags URG URG -j LOG --log-
prefix "testing: FORWARD DROP "
fi
/sbin/iptables -A FORWARD -i $IF_Exterior -p tcp --tcp-flags FIN FIN -j DROP
/sbin/iptables -A FORWARD -i $IF_Exterior -p tcp --tcp-flags RST RST -j DROP
/sbin/iptables -A FORWARD -i $IF_Exterior -p tcp --tcp-flags URG URG -j DROP

OK, looks good to accept new connections
/sbin/iptables -A FORWARD -i $IF_Exterior -p tcp -m state --state NEW -j LOG --log-prefix "NEW
Incoming to GIAC " --log-tcp-sequence
/sbin/iptables -A FORWARD -i $IF_Exterior -p tcp -m state --state NEW -j ACCEPT

udp ##

none allowed

icmp ##

none allowed

lastly, out with the trash
if ["$1" == "--test"]; then
 /sbin/iptables -A FORWARD -i $IF_Exterior -j LOG --log-prefix "testing: FORWARD
DROP "
fi
/sbin/iptables -A FORWARD -i $IF_Exterior -j DROP

IF_Interior ##

To the Internet

The interface must be the interior, so
-i $IF_Interior is implicit in all the following.

All dns is handled through the local SSMS.
Since we are a single external IP, there are no
zone transfers and udp should do but because of
volume, we do not record NEW connections.
/sbin/iptables -A FORWARD -s $LOCAL_SSMS -d $ISP_DNS_PRIMARY -p udp --dport 53 -m
state --state NEW -j ACCEPT
/sbin/iptables -A FORWARD -s $LOCAL_SSMS -d $ISP_DNS_SECONDARY -p udp --dport 53 -
m state --state NEW -j ACCEPT

We allow out HTTP from any address on the sec, admin and production subnets
but because of volume, we do not record NEW connections
/sbin/iptables -A FORWARD -s $IP_ADMIN_SUBNET -p tcp --dport 80 --tcp-flags SYN SYN -m
state --state NEW -j LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $IP_ADMIN_SUBNET -p tcp --dport 80 --tcp-flags SYN SYN -m
state --state NEW -j ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 56

/sbin/iptables -A FORWARD -s $IP_PROD_SUBNET -p tcp --dport 80 --tcp-flags SYN SYN -m
state --state NEW -j LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $IP_PROD_SUBNET -p tcp --dport 80 --tcp-flags SYN SYN -m
state --state NEW -j ACCEPT
/sbin/iptables -A FORWARD -s $IP_SEC_SUBNET -p tcp --dport 80 --tcp-flags SYN SYN -m
state --state NEW -j LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $IP_SEC_SUBNET -p tcp --dport 80 --tcp-flags SYN SYN -m
state --state NEW -j ACCEPT

allow out valid NTP traffic
/sbin/iptables -A FORWARD -s $LOCAL_SSMS -d $NPT_SERVER_1 -p udp --dport 123 -m state
--state NEW -j ACCEPT
/sbin/iptables -A FORWARD -s $LOCAL_SSMS -d $NPT_SERVER_2 -p udp --dport 123 -m state
--state NEW -j ACCEPT
/sbin/iptables -A FORWARD -s $LOCAL_SSMS -d $NPT_SERVER_3 -p udp --dport 123 -m state
--state NEW -j ACCEPT

We allow out FTP from any address on the sec, admin and production subnets
but we log it
/sbin/iptables -A FORWARD -s $IP_ADMIN_SUBNET -p tcp --dport 21 --tcp-flags SYN SYN -m
state --state NEW -j LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $IP_ADMIN_SUBNET -p tcp --dport 21 --tcp-flags SYN SYN -m
state --state NEW -j ACCEPT
/sbin/iptables -A FORWARD -s $IP_PROD_SUBNET -p tcp --dport 21 --tcp-flags SYN SYN -m
state --state NEW -j LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $IP_PROD_SUBNET -p tcp --dport 21 --tcp-flags SYN SYN -m
state --state NEW -j ACCEPT
/sbin/iptables -A FORWARD -s $IP_SEC_SUBNET -p tcp --dport 21 --tcp-flags SYN SYN -m
state --state NEW -j LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $IP_SEC_SUBNET -p tcp --dport 21 --tcp-flags SYN SYN -m
state --state NEW -j ACCEPT

The only outbound SMTP is from the Exterior Services E-Mail proxy to our ISP
/sbin/iptables -A FORWARD -s $ES_Server_SMTP -d $ISP_SMTP_PRIMARY -p tcp --dport 25 --
tcp-flags SYN SYN -m state --state NEW -j LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $ES_Server_SMTP -d $ISP_SMTP_PRIMARY -p tcp --dport 25 --
tcp-flags SYN SYN -m state --state NEW -j ACCEPT
/sbin/iptables -A FORWARD -s $ES_Server_SMTP -d $ISP_SMTP_SECONDARY -p tcp --dport
25 --tcp-flags SYN SYN -m state --state NEW -j LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $ES_Server_SMTP -d $ISP_SMTP_SECONDARY -p tcp --dport
25 --tcp-flags SYN SYN -m state --state NEW -j ACCEPT

Pings outbound are a responsibility of the Security staff only
/sbin/iptables -A FORWARD -s $LOCAL_SSMS -p icmp --icmp-type 8 -m state --state NEW -j
LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $LOCAL_SSMS -p icmp --icmp-type 8 -m state --state NEW -j
ACCEPT
/sbin/iptables -A FORWARD -s $IP_SEC_SUBNET -p icmp --icmp-type 8 -m state --state NEW -j
LOG --log-prefix "NEW Out going from GIAC "
/sbin/iptables -A FORWARD -s $IP_SEC_SUBNET -p icmp --icmp-type 8 -m state --state NEW -j
ACCEPT

We don't expect anything else at this point, instead
of the default policy, we log it and REJECT. We
REJECT for performance reasons; these _are_ our hosts.
/sbin/iptables -A FORWARD -j LOG --log-prefix "Bdr Router invalid FORWARD "

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 57

/sbin/iptables -A FORWARD -p tcp -j REJECT --reject-with tcp-reset
/sbin/iptables -A FORWARD -j REJECT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 58

Appendix C.

#!/bin/sh

########
######## Template NetFilter bash script
########

Exterior Subnets Router
by Greg Leisner

########
######## macros for common values
########

executable

IPTABLES="/sbin/iptables"

interfaces

IF_EG="eth0"
IF_ES="eth1"
IF_Interior="eth2"
IP_EG="192.168.0.3"
IP_ES="192.168.1.5"
IP_Interior="192.168.3.2"
IP_EG_MASK="192.168.0.0/24"
IP_ES_MASK="192.168.1.0/24"
IP_Interior_Mask="192.168.3.0/24"
local subnet hosts

except for SSMS host,
at least a LOCAL_SSMS
must be defined here
LOCAL_SSMS="192.168.0.1"

interior subnets
IP_ADMIN_SUBNET="10.3.0.0/16"
IP_PROD_SUBNET="10.2.0.0/16"
IP_SEC_SUBNET="10.255.0.0/16"

########
######## Initialization
########

Load modules

/sbin/depmod -a

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe iptable_mangle
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 59

/sbin/modprobe ipt_state
/sbin/modprobe ipt_REJECT
/sbin/modprobe ip_conntrack_ftp
/sbin/modprobe ipt_ipv4options
/sbin/modprobe ipt_length
/sbin/modprobe ipt_ttl

Set chain policies

This is GIAC's default security posture;
DROP it. This allows the ruleset to grow
by simply allowing in whatever new traffic
that is required. Since the new rules
can be added directly before the DROP
rule in the specific chain, there is
no great security concern about emergency
maintenance to the ruleset. Any
performance concerns can be addressed
by a thoughtful review of the entire
ruleset at a later time.

must contain these lines only
$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

Enable/Disable (1/0) IP Forwarding

echo "0" > /proc/sys/net/ipv4/ip_forward
echo "1" > /proc/sys/net/ipv4/ip_forward

########
######## Create User chains
########

site-policy-chain

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 60

No nonsense, always applied rules.

$IPTABLES -N site-policy-chain
IP options shouldn't happen, and if they
do, it's a "Bad Thing". Don't even bother
logging them; GIAC doesn't care what the
intent was. If this was part of an attack,
we'll catch them some other way. If it
was innocent, we don't waste time on it.
$IPTABLES -A site-policy-chain -m ipv4options --rr -j DROP
$IPTABLES -A site-policy-chain -m ipv4options --ts -j DROP

tcp-chain

This chain checks the tcp header; it will
only LOG and DROP bad packets. The main
chain will have to ACCEPT the packet.

If the default logging isn't desired, the
host will have to do tcp checks in the
main chains.

The order is unimportant except that the
syn/fin must be last because we want to
catch all other combinations not enumerated
earlier in the chain.

$IPTABLES -N tcp-chain
data in syn packet; sid: 526
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN SYN -j LOG --log-prefix "tcp_chain: syn packet
data "
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN SYN -j DROP
null scan; sid: 623
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL NONE -j LOG --log-prefix "tcp_chain: null scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL NONE -j DROP
xmas scan; sid: 625
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL ALL -j LOG --log-prefix "tcp_chain: xmas scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL ALL -j DROP
cybercop scan; sid: 627
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j LOG --log-prefix "tcp_chain:
cybercop scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j DROP
nmap fingerprint scan; sid: 629
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j LOG --log-prefix "tcp_chain:
nmap scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j DROP
syn/fin scan; sid: 624, 630
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j LOG --log-prefix "tcp_chain:
syn/fin scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

udp-chain

icmp-chain

########

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 61

######## Mangle
########

########
######## NAT
########

DNAT: NATing new connections from the exterior interface

SNAT: NATing new connections from the interior interface

########
######## Filtering
########

INPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

site policy
$IPTABLES -j site-policy-chain

check all tcp traffic
$IPTABLES -A INPUT -p tcp -j tcp-chain

Since we have validated the IP connection,
pass the existing connections.
$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

LOG and DROP all traffic with the wrong
interface/IP address combination.
$IPTABLES -A INPUT -i $IF_EG -s ! $IF_EG_MASK -j LOG --log-prefix "EFW spoofing "
$IPTABLES -A INPUT -i $IF_EG -s ! $IF_EG_MASK -j DROP
$IPTABLES -A INPUT -i $IF_ES -s ! $IF_ES_MASK -j LOG --log-prefix "EFW spoofing "
$IPTABLES -A INPUT -i $IF_ES -s ! $IF_ES_MASK -j DROP
$IPTABLES -A INPUT -i $IP_Interior -s ! $IP_Interior_Mask -j LOG --log-prefix "EFW spoofing "
$IPTABLES -A INPUT -i $IP_Interior -s ! $IP_Interior_Mask -j DROP

ping traffic
the remaining ping traffic is logged and DROP'd if excessive
$IPTABLES -A INPUT -m limit ! --limit 20/hour -p icmp --icmp-type 8 -j LOG --log-prefix "EFW
excessive pings "
$IPTABLES -A INPUT -m limit ! --limit 20/hour -p icmp --icmp-type 8 -j DROP
This ping we will respond to
$IPTABLES -A INPUT -p icmp --icmp-type 8 -j ACCEPT

Our major activity for the INPUT chain is control from the
Interior Network. We only accept SSH connects from our
local subnet's SSMS or the Security subnet.

log and pass the new connections
$IPTABLES -A INPUT -i ! $IF_Interior -s $LOCAL_SSMS -p tcp --dport 22 -m state --state NEW -j
LOG --log-prefix "EFW NEW INPUT "
$IPTABLES -A INPUT -i ! $IF_Interior -s $LOCAL_SSMS -p tcp --dport 22 -m state --state NEW -j
ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 62

$IPTABLES -A INPUT -i $IF_Interior -s $IP_SEC_SUBNET -p tcp --dport 22 -m state --state
NEW -j LOG --log-prefix "EFW NEW INPUT "
$IPTABLES -A INPUT -i $IF_Interior -s $IP_SEC_SUBNET -p tcp --dport 22 -m state --state
NEW -j ACCEPT

The rest should be invalid and could signal an attack
$IPTABLES -A INPUT -j LOG --log-prefix "EFW invalid INPUT " --log-level crit
$IPTABLES -A INPUT -j DROP

OUTPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is simply by volume. There
are few rules because there is little traffic.

site policy
$IPTABLES -j site-policy-chain

Top priority is the syslog dump.
$IPTABLES -A OUTPUT -o $IF_Interior -d $LOCAL_SSMS -p udp --dport 514 -j ACCEPT

check and pass the existing connections
$IPTABLES -A OUTPUT -p tcp -j tcp-chain
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

allow out valid DNS traffic
$IPTABLES -A OUTPUT -o $IF_Interior -d $LOCAL_SSMS -p udp --dport 53 -m state --state
NEW -j ACCEPT

allow out valid NTP traffic
$IPTABLES -A OUTPUT -o $IF_Interior -d $LOCAL_SSMS -p udp --dport 123 -m state --state
NEW -j ACCEPT

The Exterior Firewall is passive; syslog & NTP above are it's only
internally initiated IP traff ic. The rest should be invalid
and could signal a compromise.
$IPTABLES -A OUTPUT -j LOG --log-prefix "EFW invalid OUTPUT " --log-level crit
$IPTABLES -A OUTPUT -p tcp -j REJECT --reject-with tcp-reset
$IPTABLES -A OUTPUT -j REJECT

FORWARD chain ######

Here is where the real work gets done.

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is sensitive to volume;
and a minimal ruleset is

first, rules for both directions

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 63

site policy
$IPTABLES -j site-policy-chain

check all tcp traffic
$IPTABLES -A FORWARD -p tcp -j tcp-chain

Since we have validated the IP connection,
pass the existing connections.
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

LOG and DROP all traffic with the wrong
interface/IP address combination.
$IPTABLES -A INPUT -i $IF_EG -s ! $IF_EG_MASK -j LOG --log-prefix "EFW spoofing "
$IPTABLES -A INPUT -i $IF_EG -s ! $IF_EG_MASK -j DROP
$IPTABLES -A INPUT -i $IF_ES -s ! $IF_ES_MASK -j LOG --log-prefix "EFW spoofing "
$IPTABLES -A INPUT -i $IF_ES -s ! $IF_ES_MASK -j DROP
$IPTABLES -A INPUT -i $IP_Interior -s ! $IP_Interior_Mask -j LOG --log-prefix "EFW spoofing "
$IPTABLES -A INPUT -i $IP_Interior -s ! $IP_Interior_Mask -j DROP

Now LOG and ACCEPT the NEW traff ic.
We now can do traffic analysis of traffic
between our subnets, if need be.
$IPTABLES -A FORWARD -m state --state NEW -j LOG --log-prefix "EFW NEW FORWARD "
$IPTABLES -A FORWARD -m state --state NEW -j ACCEPT

We don't expect anything else at this point, if
there is anything, we log it and REJECT. We
REJECT for performance reasons; these _are_ our hosts.
$IPTABLES -A FORWARD -j LOG --log-prefix "EFW invalid FORWARD "
$IPTABLES -A FORWARD -p tcp -j REJECT --reject-with tcp-reset
$IPTABLES -A FORWARD -j REJECT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 64

Appendix D.

#!/bin/sh

########
######## Template NetFilter bash script
########

VPN concentrator
by Greg Leisner

########
######## macros for common values
########

executable

IPTABLES="/sbin/iptables"

interfaces

IF_Exterior="eth0"
IF_Interior="eth1"
IP_Exterior="192.168.0.4"
IP_Exterior_Mask="192.168.0.0/24"
IP_Interior="192.168.2.2"

local subnet hosts

except for SSMS host,
at least a LOCAL_SSMS
must be defined here
LOCAL_SSMS="192.168.0.1"

interior subnets
IP_10_SUBNET="10.0.0.0/8"
IP_192_168_SUBNET="192.168.0.0/16"
IP_ADMIN_SUBNET="10.3.0.0/16"
IP_GS_SUBNET="10.1.0.0/16"
IP_ES_SUBNET="192.168.1.0/24"
IP_PROD_SUBNET="10.2.0.0/16"
IP_SEC_SUBNET="10.255.0.0/16"

########
######## Initialization
########

Load modules

/sbin/depmod -a

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 65

/sbin/modprobe ipt_state
/sbin/modprobe ipt_REJECT
/sbin/modprobe ip_conntrack_ftp
/sbin/modprobe ipt_ipv4options
/sbin/modprobe ipt_length

Set chain policies

This is GIAC's default security posture;
DROP it. This allows the ruleset to grow
by simply allowing in whatever new traffic
that is required. Since the new rules
can be added directly before the DROP
rule in the specific chain, there is
no great security concern about emergency
maintenance to the ruleset. Any
performance concerns can be addressed
by a thoughtful review of the entire
ruleset at a later time.

must contain these lines only
$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

Enable/Disable (1/0) IP Forwarding

echo "0" > /proc/sys/net/ipv4/ip_forward
echo "0" > /proc/sys/net/ipv4/ip_forward

########
######## Create User chains
########

site-policy-chain

No nonsense, always applied rules.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 66

$IPTABLES -N site-policy-chain
IP options shouldn't happen, and if they
do, it's a "Bad Thing". Don't even bother
logging them; GIAC doesn't care what the
intent was. If this was part of an attack,
we'll catch them some other way. If it
was innocent, we don't waste time on it.
$IPTABLES -A site-policy-chain -m ipv4options --rr -j DROP
$IPTABLES -A site-policy-chain -m ipv4options --ts -j DROP

tcp-chain

This chain checks the tcp header it will
only LOG and DROP bad packets. The main
chain will have to ACCEPT the packet.

If the default logging isn't desired, the
host will have to do tcp checks in the
main chains.

The order is unimportant except that the
syn/fin must be last because we want to
catch all other combinations not enumerated
earlier in the chain.

$IPTABLES -N tcp-chain
data in syn packet; sid: 526
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN SYN -j LOG --log-prefix "tcp_chain: syn packet
data "
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN SYN -j DROP
null scan; sid: 623
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL NONE -j LOG --log-prefix "tcp_chain: null scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL NONE -j DROP
xmas scan; sid: 625
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL ALL -j LOG --log-prefix "tcp_chain: xmas scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL ALL -j DROP
cybercop scan; sid: 627
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j LOG --log-prefix "tcp_chain:
cybercop scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j DROP
nmap fingerprint scan; sid: 629
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j LOG --log-prefix "tcp_chain:
nmap scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j DROP
syn/fin scan; sid: 624, 630
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j LOG --log-prefix "tcp_chain:
syn/fin scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

udp-chain

icmp-chain

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 67

########
######## Mangle
########

########
######## NAT
########

########
######## Filtering
########

INPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is sensitive to volume,
both by connection-state and within
each connection-state.

1) established connections
2) new connections for SSH
3) new connections for ping

site policy
$IPTABLES -j site-policy-chain

check all tcp traffic
$IPTABLES -A INPUT -p tcp -j tcp-chain

Since we have validated the IP connection,
pass the existing connections.
$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

log and pass the new SSH connections
the security connections
$IPTABLES -A INPUT -i $IF_Interior -s $LOCAL_SSMS -p tcp --dport 22 -m state --state NEW -j
LOG --log-prefix "VPN NEW INPUT "
$IPTABLES -A INPUT -i $IF_Interior -s $LOCAL_SSMS -p tcp --dport 22 -m state --state NEW -j
ACCEPT
$IPTABLES -A INPUT -s $IP_SEC_SUBNET -p tcp --dport 22 -m state --state NEW -j LOG --log-
prefix "VPN NEW INPUT "
$IPTABLES -A INPUT -s $IP_SEC_SUBNET -p tcp --dport 22 -m state --state NEW -j ACCEPT
LOG and REJECT improper internal port 22 attempts
$IPTABLES -A INPUT -s $IP_10_SUBNET -p tcp --dport 22 -m state --state NEW -j LOG --log-
prefix "VPN invalid INPUT "
$IPTABLES -A INPUT -s $IP_10_SUBNET -p tcp --dport 22 -m state --state NEW -j REJECT --
reject-with tcp-reset
$IPTABLES -A INPUT -s $IP_192_168_SUBNET -p tcp --dport 22 -m state --state NEW -j LOG --
log-prefix "VPN invalid INPUT "
$IPTABLES -A INPUT -s $IP_192_168_SUBNET -p tcp --dport 22 -m state --state NEW -j
REJECT --reject-with tcp-reset
the remainder of port 22 attempts are from the Internet-accept
$IPTABLES -A INPUT -i $IF_Exterior -p tcp --dport 22 -m state --state NEW -j LOG --log-prefix
"VPN NEW INPUT "

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 68

$IPTABLES -A INPUT -i $IF_Exterior -p tcp --dport 22 -m state --state NEW -j ACCEPT
any Internet port 22 connects arriving at the internal interface will be DROP'd

ping traffic
the ping traffic is logged and DROP'd if excessive
$IPTABLES -A INPUT -m limit ! --limit 20/hour -p icmp --icmp-type 8 -j LOG --log-prefix "VPN
excessive pings "
$IPTABLES -A INPUT -m limit ! --limit 20/hour -p icmp --icmp-type 8 -j DROP
This ping we will respond to
$IPTABLES -A INPUT -p icmp --icmp-type 8 -j ACCEPT

The rest should be invalid and could signal an attack
$IPTABLES -A INPUT -j LOG --log-prefix "VPN invalid INPUT " --log-level crit
$IPTABLES -A INPUT -j DROP

OUTPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is simply by volume. There
are few rules because there is little traffic.

site policy
$IPTABLES -j site-policy-chain

Top priority is the syslog dump.
$IPTABLES -A OUTPUT -o $IF_Exterior -d $LOCAL_SSMS -p udp --dport 514 -j ACCEPT

check all tcp traffic
$IPTABLES -A OUTPUT -p tcp -j tcp-chain

pass the existing connections
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

allow out valid DNS traffic
$IPTABLES -A OUTPUT -o $IF_Exterior -d $LOCAL_SSMS -p udp --dport 53 -m state --state
NEW -j ACCEPT

allow out valid NTP traffic
$IPTABLES -A OUTPUT -o $IF_Exterior -d $LOCAL_SSMS -p udp --dport 123 -m state --state
NEW -j ACCEPT

The VPN itself is passive; syslog & NTP above are it's only
internally initiated IP traff ic. The rest of the NEW connections
must be users connecting with internal resources. We'll accept
those, but not direct connections to the Internet because then
non-GIAC personnel would generate traffic from GIAC's network to
outside parties. Corporate Counsel advises against allowing GIAC
to be used as a relay by outsiders.

For readability and performance reasons, the LOG lines
are broader in coverage than the ACCEPT lines.
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ADMIN_SUBNET -p tcp -m state --state NEW -j
LOG --log-prefix "VPN NEW OUTPUT "

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 69

$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ADMIN_SUBNET -p tcp --dport 80 -m state --
state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ADMIN_SUBNET -p tcp --dport 25 -m state --
state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ADMIN_SUBNET -p tcp --dport 21 -m state --
state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ADMIN_SUBNET -p tcp --dport 22 -m state --
state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ADMIN_SUBNET -p tcp --dport 445 -m state --
state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ADMIN_SUBNET -p tcp --dport 515 -m state --
state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_GS_SUBNET -p tcp -m state --state NEW -j LOG
--log-prefix "VPN NEW OUTPUT "
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_GS_SUBNET -p tcp --dport 80 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_GS_SUBNET -p tcp --dport 25 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_GS_SUBNET -p tcp --dport 21 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_GS_SUBNET -p tcp --dport 22 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_GS_SUBNET -p tcp --dport 445 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_GS_SUBNET -p tcp --dport 515 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_PROD_SUBNET -p tcp -m state --state NEW -j
LOG --log-prefix "VPN NEW OUTPUT "
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_PROD_SUBNET -p tcp --dport 80 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_PROD_SUBNET -p tcp --dport 25 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_PROD_SUBNET -p tcp --dport 21 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_PROD_SUBNET -p tcp --dport 22 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_PROD_SUBNET -p tcp --dport 445 -m state --
state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_PROD_SUBNET -p tcp --dport 515 -m state --
state NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ES_SUBNET -p tcp -m state --state NEW -j LOG
--log-prefix "VPN NEW OUTPUT "
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ES_SUBNET -p tcp --dport 80 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ES_SUBNET -p tcp --dport 25 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -o $IF_Interior -d $IP_ES_SUBNET -p tcp --dport 21 -m state --state
NEW -j ACCEPT

lastly, LOG and REJECT
$IPTABLES -A OUTPUT -j LOG --log-level crit --log-prefix "VPN invalid OUTPUT "
$IPTABLES -A OUTPUT -p tcp -j REJECT --reject-with tcp-reset
$IPTABLES -A OUTPUT -j REJECT

FORWARD chain ######

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 70

Appendix E.

#!/bin/sh

########
######## Template NetFilter bash script
########

Security Subnet Management Station
by Greg Leisner

########
######## macros for common values
########

executable

IPTABLES="/sbin/iptables"

interfaces

IF_Clients="eth0"
IF_Clients2="eth1"
IF_SSN="eth3"
IP_Clients="192.168.0.1"
IP_Clients2="192.168.1.1"
IP_SSN="10.254.0.5"
IP_Clients_Mask="192.168.0.0/24"
IP_Clients2_Mask="192.168.1.0/24"
IP_SSN_Mask="10.254.0.0/16"

local subnet hosts

except for SSMS host,
at least a LOCAL_SSMS
must be defined here

########
######## Initialization
########

Load modules

/sbin/depmod -a

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_state
/sbin/modprobe ipt_REJECT
/sbin/modprobe ip_conntrack_ftp
/sbin/modprobe ipt_ipv4options
/sbin/modprobe ipt_length

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 71

Set chain policies

This is GIAC's default security posture;
DROP it. This allows the ruleset to grow
by simply allowing in whatever new traffic
that is required. Since the new rules
can be added directly before the DROP
rule in the specific chain, there is
no great security concern about emergency
maintenance to the ruleset. Any
performance concerns can be addressed
by a thoughtful review of the entire
ruleset at a later time.

must contain these lines only
$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

Enable/Disable (1/0) IP Forwarding

echo "0" > /proc/sys/net/ipv4/ip_forward
echo "0" > /proc/sys/net/ipv4/ip_forward

########
######## Create User chains
########

site-policy-chain

No nonsense, always applied rules.

$IPTABLES -N site-policy-chain
IP options shouldn't happen, and if they
do, it's a "Bad Thing". Don't even bother
logging them; GIAC doesn't care what the
intent was. If this was part of an attack,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 72

we'll catch them some other way. If it
was innocent, we don't waste time on it.
$IPTABLES -A site-policy-chain -m ipv4options --rr -j DROP
$IPTABLES -A site-policy-chain -m ipv4options --ts -j DROP

tcp-chain

This chain checks the tcp header it will
only LOG and DROP bad packets. The main
chain will have to ACCEPT the packet.

If the default logging isn't desired, the
host will have to do tcp checks in the
main chains.

The order is unimportant except that the
syn/fin must be last because we want to
catch all other combinations not enumerated
earlier in the chain.

$IPTABLES -N tcp-chain
data in syn packet; sid: 526
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN SYN -j LOG --log-prefix "tcp_chain: syn packet
data "
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN SYN -j DROP
null scan; sid: 623
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL NONE -j LOG --log-prefix "tcp_chain: null scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL NONE -j DROP
xmas scan; sid: 625
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL ALL -j LOG --log-prefix "tcp_chain: xmas scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL ALL -j DROP
cybercop scan; sid: 627
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j LOG --log-prefix "tcp_chain:
cybercop scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j DROP
nmap fingerprint scan; sid: 629
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j LOG --log-prefix "tcp_chain:
nmap scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j DROP
syn/fin scan; sid: 624, 630
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j LOG --log-prefix "tcp_chain:
syn/fin scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

udp-chain

icmp-chain

########
######## Mangle
########

########
######## NAT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 73

########

########
######## Filtering
########

INPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is sensitive to volume,
both by connection-state and within
each connection-state.

1) established connections
2) new connections for SSH
3) new connections for ping

site policy
$IPTABLES -j site-policy-chain

check all tcp traffic
$IPTABLES -A INPUT -p tcp -j tcp-chain

Since we have validated the IP connection,
pass the existing connections.
$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

ACCEPT client syslogs, if we get flooded,
we'll figure out who's doing it
$IPTABLES -A INPUT -i $IF_CLIENTS -s IP_Clients_Mask -p udp --dport 123 -j ACCEPT
$IPTABLES -A INPUT -i $IF_CLIENTS2 -s IP_Clients2_Mask -p udp --dport 123 -j ACCEPT

The 191.168 networks don't do DHCP,
but rather use static ARP, host IP's,
network masks and routing tables.

pass new DNS and NTP connections
$IPTABLES -A INPUT -i $IF_SSN -s $IP_SSN_Mask -p tcp --dport 53 -m state --state NEW -j
ACCEPT
$IPTABLES -A INPUT -i $IF_SSN -s $IP_SSN_Mask -p udp --dport 53 -m state --state NEW -j
ACCEPT
$IPTABLES -A INPUT -i $IF_CLIENTS -s $IP_Clients_Mask -p udp --dport 53 -m state --state
NEW -j ACCEPT
$IPTABLES -A INPUT -i $IF_CLIENTS2 -s $IP_Clients2_Mask -p udp --dport 53 -m state --state
NEW -j ACCEPT
$IPTABLES -A INPUT -i $IF_SSN -s $IP_SSN_Mask -p udp --dport 123 -m state --state NEW -j
ACCEPT
$IPTABLES -A INPUT -i $IF_CLIENTS -s $IP_Clients_Mask -p udp --dport 123 -m state --state
NEW -j ACCEPT
$IPTABLES -A INPUT -i $IF_CLIENTS2 -s $IP_Clients2_Mask -p udp --dport 123 -m state --state
NEW -j ACCEPT

log and pass the new SSH connections
$IPTABLES -A INPUT -i $IF_SSN -s $IP_SSN_Mask -p tcp --dport 22 -m state --state NEW -j

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 74

LOG --log-prefix "SSN NEW INPUT "
$IPTABLES -A INPUT -i $IF_SSN -s $IP_SSN_Mask -p tcp --dport 22 -m state --state NEW -j
ACCEPT

ping traffic
the ping traffic is logged and DROP'd if excessive
$IPTABLES -A INPUT -i $IF_SSN -s $IP_SSN_Mask -m limit ! --limit 20/hour -p icmp --icmp-type
8 -j LOG --log-prefix "SSMS excessive pings "
$IPTABLES -A INPUT -i $IF_SSN -s $IP_SSN_Mask -m limit ! --limit 20/hour -p icmp --icmp-type
8 -j DROP
This ping we will respond to
$IPTABLES -A INPUT -i $IF_SSN -s $IP_SSN_Mask -p icmp --icmp-type 8 -j ACCEPT

The rest should be invalid and could signal an attack
$IPTABLES -A INPUT -j LOG --log-prefix "SSMS invalid INPUT " --log-level crit
$IPTABLES -A INPUT -j DROP

OUTPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is simply by volume. There
are few rules because there is little traffic.

site policy
$IPTABLES -j site-policy-chain

check all tcp traffic
$IPTABLES -A OUTPUT -p tcp -j tcp-chain

pass the existing connections
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

Allow access to clients; the user will
be logged in to this host via the SSN,
or this will be a scripted connection.
$IPTABLES -A OUTPUT -i $IF_CLIENTS -s $IP_Clients_Mask -p tcp --dport 22 -m state --state
NEW -j LOG --log-prefix "SSN NEW OUTPUT "
$IPTABLES -A OUTPUT -i $IF_CLIENTS -s $IP_Clients_Mask -p tcp --dport 22 -m state --state
NEW -j ACCEPT
$IPTABLES -A OUTPUT -i $IF_CLIENTS2 -s $IP_Clients2_Mask -p tcp --dport 22 -m state --
state NEW -j LOG --log-prefix "SSN NEW OUTPUT "
$IPTABLES -A OUTPUT -i $IF_CLIENTS2 -s $IP_Clients2_Mask -p tcp --dport 22 -m state --
state NEW -j ACCEPT

lastly, LOG and DROP
$IPTABLES -A OUTPUT -j LOG --log-prefix "SSMS invalid OUTPUT " --log-level crit
$IPTABLES -A OUTPUT -p tcp -j REJECT --reject-with tcp-reset
$IPTABLES -A OUTPUT -j REJECT

FORWARD chain ######

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 75

Appendix F.

#!/bin/sh

########
######## Template NetFilter bash script
########

End User Workstation
by Greg Leisner

########
######## macros for common values
########

exexecutable

IPTABLES="/sbin/iptables"

interfaces

IF="eth0"
IP= <supplied by a helper function in the real script>
IP_MASK= <supplied by a helper function in the real script>

local subnet hosts

except for SSMS host,
at least a LOCAL_SSMS
must be defined here
LOCAL_SSMS= <supplied by a helper function in the real script; all SSMS's are IP=(network +
1)>

########
######## Initialization
########

Load modules

/sbin/depmod -a

/sbin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/sbin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/sbin/modprobe ipt_state
/sbin/modprobe ipt_REJECT
/sbin/modprobe ip_conntrack_ftp
/sbin/modprobe ipt_ipv4options
/sbin/modprobe ipt_length

Set chain policies

This is GIAC's default security posture;
DROP it. This allows the ruleset to grow

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 76

by simply allowing in whatever new traffic
that is required. Since the new rules
can be added directly before the DROP
rule in the specific chain, there is
no great security concern about emergency
maintenance to the ruleset. Any
performance concerns can be addressed
by a thoughtful review of the entire
ruleset at a later time.

must contain these lines only
$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

$IPTABLES -t nat -P PREROUTING DROP
$IPTABLES -t nat -P POSTROUTING DROP
$IPTABLES -t nat -P OUTPUT DROP

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT

Enable/Disable (1/0) IP Forwarding

echo "0" > /proc/sys/net/ipv4/ip_forward
echo "0" > /proc/sys/net/ipv4/ip_forward

########
######## Create User chains
########

site-policy-chain

No nonsense, always applied rules.

$IPTABLES -N site-policy-chain
IP options shouldn't happen, and if they
do, it's a "Bad Thing". Don't even bother
logging them; GIAC doesn't care what the
intent was. If this was part of an attack,
we'll catch them some other way. If it
was innocent, we don't waste time on it.
$IPTABLES -A site-policy-chain -m ipv4options --rr -j DROP
$IPTABLES -A site-policy-chain -m ipv4options --ts -j DROP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 77

tcp-chain

This chain checks the tcp header it will
only LOG and DROP bad packets. The main
chain will have to ACCEPT the packet.

If the default logging isn't desired, the
host will have to do tcp checks in the
main chains.

The order is unimportant except that the
syn/fin must be last because we want to
catch all other combinations not enumerated
earlier in the chain.

$IPTABLES -N tcp-chain
data in syn packet; sid: 526
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN SYN -j LOG --log-prefix "tcp_chain: syn packet
data "
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN SYN -j DROP
null scan; sid: 623
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL NONE -j LOG --log-prefix "tcp_chain: null scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL NONE -j DROP
xmas scan; sid: 625
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL ALL -j LOG --log-prefix "tcp_chain: xmas scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL ALL -j DROP
cybercop scan; sid: 627
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j LOG --log-prefix "tcp_chain:
cybercop scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,URG -j DROP
nmap fingerprint scan; sid: 629
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j LOG --log-prefix "tcp_chain:
nmap scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags ALL SYN,FIN,PSH,URG -j DROP
syn/fin scan; sid: 624, 630
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j LOG --log-prefix "tcp_chain:
syn/fin scan "
$IPTABLES -A tcp-chain -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

udp-chain

icmp-chain

########
######## Mangle
########

########
######## NAT
########

########
######## Filtering

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 78

########

INPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

Then, the order is sensitive to volume,
both by connection-state and within
each connection-state.

1) established connections
2) new connections for SSH
3) new connections for ping

site policy
$IPTABLES -j site-policy-chain

check all tcp traffic
$IPTABLES -A INPUT -p tcp -j tcp-chain

Since we have validated the IP connection,
pass the existing connections.
$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

log and pass the new SSH connections
the security connections
$IPTABLES -A INPUT -i $IF -s $LOCAL_SSMS -p tcp --dport 22 -m state --state NEW -j LOG --
log-prefix "user NEW INPUT "
$IPTABLES -A INPUT -i $IF -s $LOCAL_SSMS -p tcp --dport 22 -m state --state NEW -j
ACCEPT
$IPTABLES -A INPUT -i $IF -s $IP_SEC_SUBNET -p tcp --dport 22 -m state --state NEW -j LOG
--log-prefix "user NEW INPUT "
$IPTABLES -A INPUT -i $IF -s $IP_SEC_SUBNET -p tcp --dport 22 -m state --state NEW -j
ACCEPT

ping traffic
the ping traffic is logged and DROP'd if excessive
$IPTABLES -A INPUT -i $IF -m limit ! --limit 20/hour -p icmp --icmp-type 8 -j LOG --log-prefix
"user excessive pings "
$IPTABLES -A INPUT -i $IF -m limit ! --limit 20/hour -p icmp --icmp-type 8 -j DROP
This ping we will respond to
$IPTABLES -A INPUT -i $IF -p icmp --icmp-type 8 -j ACCEPT

Lastly, LOG and REJECT the rest.
Because all the rules have -i $IF, this script
will not work for multi-homed hosts.
$IPTABLES -A INPUT -j LOG --log-prefix "user invalid INPUT "
$IPTABLES -A INPUT -p tcp -j REJECT --reject-with tcp-reset
$IPTABLES -A INPUT -j REJECT

OUTPUT chain ######

The first rules applied are the overriding,
always enforced, site policy.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 79

Then, the order is simply by volume. There
are few rules because there is little traffic.

site policy
$IPTABLES -j site-policy-chain

Top priority is the syslog dump.
$IPTABLES -A OUTPUT -o $IF -d $LOCAL_SSMS -p udp --dport 514 -j ACCEPT

check all tcp traffic
$IPTABLES -A OUTPUT -o $IF -p tcp -j tcp-chain

pass the existing connections
$IPTABLES -A OUTPUT -o $IF -m state --state ESTABLISHED,RELATED -j ACCEPT

allow out valid DNS traffic
$IPTABLES -A OUTPUT -o $IF -d $LOCAL_SSMS -p udp --dport 53 -j ACCEPT

allow out valid NTP traffic
$IPTABLES -A OUTPUT -o $IF -d $LOCAL_SSMS -p udp --dport 123 -j ACCEPT

allow out valid DHCP traffic
$IPTABLES -A OUTPUT -o $IF -d $LOCAL_SSMS -p udp --dport 67 -j ACCEPT

The host itself is passive; syslog & NTP above are it's only
internally initiated IP traff ic. The rest of the NEW connections
must be users connecting with other hosts.

We don't test --dport or -d because we don't
really know who the user is and what their
permited activities are.

We will LOG each users' NEW connections
for analysis and enforcement reasons.
$IPTABLES -A OUTPUT -o $IF -m state --state NEW -j LOG --log-prefix "user NEW OUTPUT "
$IPTABLES -A OUTPUT -o $IF -m state --state NEW -j ACCEPT

Lastly, LOG and REJECT the rest.
Because all the rules have -o $IF, this script
will not work for multi-homed hosts.
$IPTABLES -A OUTPUT -j LOG --log-prefix "user invalid OUTPUT "
$IPTABLES -A OUTPUT -p tcp -j REJECT --reject-with tcp-reset
$IPTABLES -A OUTPUT -j REJECT

FORWARD chain ######

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 80

Appendix G.

GIAC static networks (192.168.x.x) arp (/etc/ethers)
and hostname mappings (/etc/hosts)

During boot, the arp entries are registered with:

arp -f /etc/ethers

The host name mappings will be automatically found.

192.168.0.0/16 Exterior Gateway subnet

/etc/ethers

192.168.0.1 00:15:02:00:17:01
192.168.0.2 00:15:02:00:17:02
192.168.0.3 00:15:02:00:17:03
192.168.0.4 00:15:02:00:17:04

/etc/hosts

127.0.0.1 localhost.localdomain localhost
192.168.0.1 alpha.egs.giac.com alpha
192.168.0.2 beta.egs.giac.com beta
192.168.0.3 gamma.egs.giac.com gamma
192.168.0.4 delta.egs.giac.com delta

192.168.1.0/16 External Services subnet

/etc/ethers

192.168.1.1 00:15:02:00:19:01
192.168.1.2 00:15:02:00:19:02
192.168.1.3 00:15:02:00:19:03
192.168.1.4 00:15:02:00:19:04
192.168.1.5 00:15:02:00:19:05

/etc/hosts

127.0.0.1 localhost.localdomain localhost
192.168.1.1 epsilon.ess.giac.com epsilon
192.168.1.2 zeta.ess.giac.com zeta
192.168.1.3 eta.ess.giac.com eta
192.168.1.4 theta.ess.giac.com theta
192.168.1.5 iota.ess.giac.com iota

192.168.2.0/16 VPN Gateway connection

/etc/ethers

192.168.2.2 00:15:02:00:15:02
192.168.2.3 00:15:02:00:15:03

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 81

/etc/hosts

127.0.0.1 localhost.localdomain localhost
192.168.2.2 kappa.vgs.giac.com kappa
192.168.2.3 lambda.vgs.giac.com lambda

192.168.3.0/16 Non-VPN Gateway connection

/etc/ethers

192.168.3.2 00:15:02:00:15:02
192.168.3.3 00:15:02:00:15:03

/etc/hosts

127.0.0.1 localhost.localdomain localhost
192.168.3.2 mu.nvgs.giac.com mu
192.168.3.3 nu.nvgs.giac.com nu

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 82

Appendix H.

GIAC Enterprises
Redhat Kickstart-base platform
copyright 2003

what we are doing
text
install
cdrom
#nfs --server 192.168.1.1 --dir /usr/kickstart/

setup the harddrive
zerombr yes
clearpart --all
part / --onprimary=1 --badblocks --fstype ext3 --size 1000
part swap --onprimary=2 --badblocks --size 256

generic platform build
auth --enablemd5 --enableshadow
Linux only platform build
#auth --enablemd5 --enableshadow --enableldap --ldapserver= --ldapbasedn= --enableldaptls --
enablecache
windows cooperative platform build
#auth --enablemd5 --enableshadow --enablesmbauth --smbservers= --smbworkgroups= --
enableldap --ldapserver= --ldapbasedn= --enableldaptls --enablecache

user interface stuff
keyboard us
lang en_US
langsupport --default en_US
timezone --utc America/Chicago

for non-desktops
skipx
for desktops
#xconfig

misc configuration settings
firewall --high --ssh --dhcp
mouse --emulthree
network --bootproto dhcp

the following passwords must be made unique by host
scale for password 1234567890
bootloader --location=mbr --password=Pf7v#@63RD
rootpw KR@1am59A$

finally
reboot

%packages
@ Network Support
-rwho
-micq

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 83

-MAKEDEV
-lokkit
-ipchains
-pam_krb5
-telnet
-radvd
-yp-tools
-apmd
-krbafs
-finger
-up2date
-rhn_register
-lilo
-ypbind
-rsh
-ash
-wget
-rdate
-sendmail
-ftp
-sendmail-cf
-talk
-whois
-rusers
-nfs-utils
-raidtools
-reiserfs-utils
-parted
-dhcpcd
-ncftp
-mkbootdisk
-dosfstools
-syslinux
-mailx
-procmail
-rmt
-python-xmlrpc
-m4
-cpio
-authconfig
-ed
-mailcap
-netconfig
-nmap
-ntsysv
-pcre
-time
-utempter

deducts only for generic

-openldap
-openldap-clients

libcap

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 84

ntp
openssl096
pump
stunnel
sysreport
traceroute
tripwire
xinetd

%post

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 85

Appendix I.

GIAC physical security standards

The explicit promise of this project is to deliver a secure host. No operating system of any vendor
can promise to do that without the underlying hardware being secured. From NIST 800-7:

All software security depends on hardware security. If the hardware can be stolen or
surreptitiously replaced, secure software will not help. When computers filled a room, stolen
computers were not a big problem. Now that laptop and palmtop computers are the fastest
growing market, physical security is at least as important as software security.
Some of the most common problems are:

• equipment and removable media is stolen or replaced;
• security can be circumvented by changing hardware setup parameters;
• systems can be booted by unauthorized users;
• systems can be booted from unauthorized software;
• boot media can be re-written by unauthorized software, and
• unauthorized software can be executed from removable media.
• Some of the safeguards which can be taken are:
• locked doors and secured equipment;
• lockable cases, keyboards, and removable media drives;
• key or password-protected configuration and setup;
• password required to boot;
• password required to mount removable media;
• read-only boot media, and
• storing removable media in secured areas.

The steps GIAC requires taken to avoid physical circumvention of software security are:

1) never purchase hardware with the first harddrive swappable unless the host is to be
deployed in a locked and sealed enclosure.

2) all host firmware (BIOS) be configured to boot only from the first harddrive; don’t let hosts
be booted from floppy or cdrom.

3) all host firmware (BIOS) be password protected by random computer generated codes
and those codes be physically secured by Computer Operations; the BIOS ought to be
hard to change!

4) all hosts have locked cases or are in locked enclosures with Computer Operations
physically securing the keys; keep the bad guys out.

5) all host cases and enclosures be sealed with a GIAC custom, tamperproof, serialized
label that will self-destruct if broken; detect covert intrusion.

6) require supervisory personnel to verify integrity of seals (5) periodically.
7) the physical media (i.e. cable) and switching nodes must also be secured, but those

issues are not addressed here.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 86

Appendix J.

GIAC approved automated scanning tools

Nmap

www.nmap.org

nessus

www.nessus.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 87

Appendix K.

trimmed and annotated tcpdump capture file

the following is the nmap section trimmed of all the actual nmap packets except for
the ones that triggered DNAT rules and the resulting packet with a new destination
host.

The nmap output file was simply:

nmap (V. 3.00) scan initiated Sat Feb 1 15:16:01 2003 as: nmap -e eth0:6 -S
102.17.94.36 -sS -P0 -F -v -n -oN nmap_extest.txt 102.17.94.35
All 1150 scanned ports on (102.17.94.35) are: filtered

Nmap run completed at Sat Feb 1 15:39:05 2003 -- 1 IP address (1 host up)
scanned in 1384 seconds

The NetFilter log file has corresponding entries for each of the scans that were
DNAT'd.

15:20:00.230310 somebody.nowhere.com.63218 > 102.17.94.35.ssh: S [tcp
sum ok] 763580494:763580494(0) win 4096

(ttl 51, id 58343, len 40)
15:20:00.231332 somebody.nowhere.com.63218 > gamma.egs.giac.com.ssh: S
[tcp sum ok] 763580494:763580494(0) win

4096 (ttl 50, id 58343, len 40)
15:20:06.251861 somebody.nowhere.com.63219 > 102.17.94.35.ssh: S [tcp
sum ok] 2513326235:2513326235(0) win 4096

(ttl 51, id 37929, len 40)
15:20:06.252789 somebody.nowhere.com.63219 > gamma.egs.giac.com.ssh: S
[tcp sum ok] 2513326235:2513326235(0) win

4096 (ttl 50, id 37929, len 40)
15:25:01.314433 somebody.nowhere.com.63218 > 102.17.94.35.http: S [tcp
sum ok] 763580494:763580494(0) win 4096

(ttl 51, id 22813, len 40)
15:25:01.315642 somebody.nowhere.com.63218 > zeta.ess.giac.com.http: S
[tcp sum ok] 763580494:763580494(0) win

4096 (ttl 50, id 22813, len 40)
15:25:07.334341 somebody.nowhere.com.63219 > 102.17.94.35.http: S [tcp
sum ok] 2513326235:2513326235(0) win 4096

(ttl 51, id 37509, len 40)
15:25:07.335413 somebody.nowhere.com.63219 > zeta.ess.giac.com.http: S
[tcp sum ok] 2513326235:2513326235(0) win

4096 (ttl 50, id 37509, len 40)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 88

15:25:25.399540 somebody.nowhere.com.63218 > 102.17.94.35.smtp: S [tcp
sum ok] 763580494:763580494(0) win 4096

(ttl 51, id 52077, len 40)
15:25:25.400875 somebody.nowhere.com.63218 > eta.ess.giac.com.smtp: S
[tcp sum ok] 763580494:763580494(0) win

4096 (ttl 50, id 52077, len 40)
15:25:31.421261 somebody.nowhere.com.63219 > 102.17.94.35.smtp: S [tcp
sum ok] 2513326235:2513326235(0) win 4096

(ttl 51, id 47560, len 40)
15:25:31.422446 somebody.nowhere.com.63219 > eta.ess.giac.com.smtp: S
[tcp sum ok] 2513326235:2513326235(0) win

4096 (ttl 50, id 47560, len 40)
15:25:55.509606 somebody.nowhere.com.63218 > 102.17.94.35.ftp: S [tcp
sum ok] 763580494:763580494(0) win 4096

(ttl 51, id 38581, len 40)
15:25:55.511137 somebody.nowhere.com.63218 > theta.ess.giac.com.ftp: S
[tcp sum ok] 763580494:763580494(0) win

4096 (ttl 50, id 38581, len 40)
15:26:01.529174 somebody.nowhere.com.63219 > 102.17.94.35.ftp: S [tcp
sum ok] 2513326235:2513326235(0) win 4096

(ttl 51, id 8616, len 40)
15:26:01.530193 somebody.nowhere.com.63219 > theta.ess.giac.com.ftp: S
[tcp sum ok] 2513326235:2513326235(0) win

4096 (ttl 50, id 8616, len 40)
15:33:27.111606 somebody.nowhere.com.63221 > 102.17.94.35.ftp: S [tcp
sum ok] 763580494:763580494(0) win 4096

(ttl 51, id 38260, len 40)
15:33:27.112583 somebody.nowhere.com.63221 > theta.ess.giac.com.ftp: S
[tcp sum ok] 763580494:763580494(0) win

4096 (ttl 50, id 38260, len 40)
15:33:33.134567 somebody.nowhere.com.63222 > 102.17.94.35.ftp: S [tcp
sum ok] 2513326235:2513326235(0) win 4096

(ttl 51, id 59350, len 40)
15:33:33.135477 somebody.nowhere.com.63222 > theta.ess.giac.com.ftp: S
[tcp sum ok] 2513326235:2513326235(0) win

4096 (ttl 50, id 59350, len 40)
15:33:57.219927 somebody.nowhere.com.63221 > 102.17.94.35.smtp: S [tcp
sum ok] 763580494:763580494(0) win 4096

(ttl 51, id 60741, len 40)
15:33:57.221303 somebody.nowhere.com.63221 > eta.ess.giac.com.smtp: S
[tcp sum ok] 763580494:763580494(0) win

4096 (ttl 50, id 60741, len 40)
15:34:03.241173 somebody.nowhere.com.63222 > 102.17.94.35.smtp: S [tcp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 89

sum ok] 2513326235:2513326235(0) win 4096

(ttl 51, id 11312, len 40)
15:34:03.242177 somebody.nowhere.com.63222 > eta.ess.giac.com.smtp: S
[tcp sum ok] 2513326235:2513326235(0) win

4096 (ttl 50, id 11312, len 40)
15:34:27.329744 somebody.nowhere.com.63221 > 102.17.94.35.http: S [tcp
sum ok] 763580494:763580494(0) win 4096

(ttl 51, id 62906, len 40)
15:34:27.331058 somebody.nowhere.com.63221 > zeta.ess.giac.com.http: S
[tcp sum ok] 763580494:763580494(0) win

4096 (ttl 50, id 62906, len 40)
15:34:33.349641 somebody.nowhere.com.63222 > 102.17.94.35.http: S [tcp
sum ok] 2513326235:2513326235(0) win 4096

(ttl 51, id 65210, len 40)
15:34:33.350836 somebody.nowhere.com.63222 > zeta.ess.giac.com.http: S
[tcp sum ok] 2513326235:2513326235(0) win

4096 (ttl 50, id 65210, len 40)
15:38:16.150829 somebody.nowhere.com.63221 > 102.17.94.35.ssh: S [tcp
sum ok] 763580494:763580494(0) win 4096

(ttl 51, id 22977, len 40)
15:38:16.152359 somebody.nowhere.com.63221 > gamma.egs.giac.com.ssh: S
[tcp sum ok] 763580494:763580494(0) win

4096 (ttl 50, id 22977, len 40)
15:38:22.174030 somebody.nowhere.com.63222 > 102.17.94.35.ssh: S [tcp
sum ok] 2513326235:2513326235(0) win 4096

(ttl 51, id 29272, len 40)
15:38:22.175366 somebody.nowhere.com.63222 > gamma.egs.giac.com.ssh: S
[tcp sum ok] 2513326235:2513326235(0) win

4096 (ttl 50, id 29272, len 40)

The ping test of the exterior interface.

Oops! This is wrong. The first 5 pings were unanswered, then the remaining
ones were all responded to. The source of the problem is obvious. While the
LOG rule must negate '!' the limit match to get those not corresponding, the
ACCEPT rule ought to do exactly the opposite. Dropping the '!' in the ACCEPT
rule will f ix this.

The script command captured the following from the test host:

Script started on Sat Feb 1 16:16:14 2003

[root@localhost root]# ping -c 30 -I eth0:6 102.17.94.35

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 90

PING 102.17.94.35 (102.17.94.35) from 102.17.94.36 eth0:6: 56(84) bytes of data.
64 bytes from 102.17.94.35: icmp_seq=6 ttl=64 time=0.506 ms
64 bytes from 102.17.94.35: icmp_seq=7 ttl=64 time=0.321 ms
64 bytes from 102.17.94.35: icmp_seq=8 ttl=64 time=0.322 ms
64 bytes from 102.17.94.35: icmp_seq=9 ttl=64 time=0.320 ms
64 bytes from 102.17.94.35: icmp_seq=10 ttl=64 time=0.337 ms
64 bytes from 102.17.94.35: icmp_seq=11 ttl=64 time=0.318 ms
64 bytes from 102.17.94.35: icmp_seq=12 ttl=64 time=0.307 ms
64 bytes from 102.17.94.35: icmp_seq=13 ttl=64 time=0.324 ms
64 bytes from 102.17.94.35: icmp_seq=14 ttl=64 time=0.327 ms
64 bytes from 102.17.94.35: icmp_seq=15 ttl=64 time=0.330 ms
64 bytes from 102.17.94.35: icmp_seq=16 ttl=64 time=0.311 ms
64 bytes from 102.17.94.35: icmp_seq=17 ttl=64 time=0.306 ms
64 bytes from 102.17.94.35: icmp_seq=18 ttl=64 time=0.319 ms
64 bytes from 102.17.94.35: icmp_seq=19 ttl=64 time=0.317 ms
64 bytes from 102.17.94.35: icmp_seq=20 ttl=64 time=0.334 ms
64 bytes from 102.17.94.35: icmp_seq=21 ttl=64 time=0.318 ms
64 bytes from 102.17.94.35: icmp_seq=22 ttl=64 time=0.310 ms
64 bytes from 102.17.94.35: icmp_seq=23 ttl=64 time=0.316 ms
64 bytes from 102.17.94.35: icmp_seq=24 ttl=64 time=0.318 ms
64 bytes from 102.17.94.35: icmp_seq=25 ttl=64 time=0.325 ms
64 bytes from 102.17.94.35: icmp_seq=26 ttl=64 time=0.316 ms
64 bytes from 102.17.94.35: icmp_seq=27 ttl=64 time=0.308 ms
64 bytes from 102.17.94.35: icmp_seq=28 ttl=64 time=0.342 ms
64 bytes from 102.17.94.35: icmp_seq=29 ttl=64 time=0.314 ms
64 bytes from 102.17.94.35: icmp_seq=30 ttl=64 time=0.333 ms

--- 102.17.94.35 ping statistics ---
30 packets transmitted, 25 received, 16% loss, time 29013ms
rtt min/avg/max/mdev = 0.306/0.327/0.506/0.045 ms

Script done on Sat Feb 1 16:17:58 2003

16:18:00.060440 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:01.073939 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:02.074236 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:03.074490 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:04.074773 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:05.075057 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:05.075491 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27615, len 84)
16:18:06.075323 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:06.075570 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27616, len 84)
16:18:07.075594 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:07.075846 102.17.94.35 > somebody.nowhere.com: icmp: echo reply

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 91

(ttl 64, id 27617, len 84)
16:18:08.075878 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:08.076128 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27618, len 84)
16:18:09.076146 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:09.076409 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27619, len 84)
16:18:10.076419 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:10.076666 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27620, len 84)
16:18:11.076698 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:11.076934 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27621, len 84)
16:18:12.076964 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:12.077215 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27622, len 84)
16:18:13.077231 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:13.077491 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27623, len 84)
16:18:14.077523 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:14.077781 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27624, len 84)
16:18:15.077786 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:15.078028 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27625, len 84)
16:18:16.078061 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:16.078296 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27626, len 84)
16:18:17.078345 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:17.078591 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27627, len 84)
16:18:18.078611 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:18.078855 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27628, len 84)
16:18:19.078887 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:19.079147 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27629, len 84)
16:18:20.079166 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:20.079417 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27630, len 84)
16:18:21.079430 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:21.079669 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27631, len 84)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 92

16:18:22.079706 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:22.079950 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27632, len 84)
16:18:23.079990 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:23.080235 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27633, len 84)
16:18:24.080246 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:24.080504 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27634, len 84)
16:18:25.080529 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:25.080772 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27635, len 84)
16:18:26.080811 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:26.081048 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27636, len 84)
16:18:27.081076 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:27.081339 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27637, len 84)
16:18:28.081351 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:28.081592 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27638, len 84)
16:18:29.081637 somebody.nowhere.com > 102.17.94.35: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:18:29.081894 102.17.94.35 > somebody.nowhere.com: icmp: echo reply
(ttl 64, id 27639, len 84)

Selective scans using invalid tcp flags. Each test first tried the DNAT'd port 22 and
then a nonDNAT'd port (55555). As these are correctly unanswered by the Border Router.

The output from nmap was of two kinds: ACK scans and all others.

nmap (V. 3.00) scan initiated Sat Feb 1 16:29:44 2003 as: nmap -e eth0:6 -S
102.17.94.36 -sA -P0 -p55555 -v -n -oN nmap_extest_sA.txt 102.17.94.35
Interesting ports on (102.17.94.35):
Port State Service
55555/tcp filtered unknown

Nmap run completed at Sat Feb 1 16:30:20 2003 -- 1 IP address (1 host up)
scanned in 36 seconds

nmap (V. 3.00) scan initiated Sat Feb 1 16:26:41 2003 as: nmap -e eth0:6 -S
102.17.94.36 -sN -P0 -p55555 -v -n -oN nmap_extest_sF.txt 102.17.94.35
Interesting ports on (102.17.94.35):
Port State Service
55555/tcp open unknown

Nmap run completed at Sat Feb 1 16:26:53 2003 -- 1 IP address (1 host up) scanned in 12

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 93

seconds

16:22:29.736534 somebody.nowhere.com.48721 > 102.17.94.35.ssh: F [tcp
sum ok] 0:0(0) win 3072 (ttl 54, id 51575,

len 40)
16:22:35.740904 somebody.nowhere.com.48722 > 102.17.94.35.ssh: F [tcp
sum ok] 0:0(0) win 3072 (ttl 54, id 26608,

len 40)
16:23:53.637199 somebody.nowhere.com.36535 > 102.17.94.35.55555: F [tcp
sum ok] 0:0(0) win 4096 (ttl 47, id

36383, len 40)
16:23:59.644010 somebody.nowhere.com.36536 > 102.17.94.35.55555: F [tcp
sum ok] 0:0(0) win 4096 (ttl 47, id

51974, len 40)
16:25:36.980393 somebody.nowhere.com.61760 > 102.17.94.35.ssh: FP [tcp
sum ok] 0:0(0) win 2048 urg 0 (ttl 37, id

5051, len 40)
16:25:42.992212 somebody.nowhere.com.61761 > 102.17.94.35.ssh: FP [tcp
sum ok] 0:0(0) win 2048 urg 0 (ttl 37, id

39242, len 40)
16:26:03.285591 somebody.nowhere.com.35006 > 102.17.94.35.55555: FP
[tcp sum ok] 0:0(0) win 4096 urg 0 (ttl 59,

id 61981, len 40)
16:26:09.287724 somebody.nowhere.com.35007 > 102.17.94.35.55555: FP
[tcp sum ok] 0:0(0) win 4096 urg 0 (ttl 59,

id 20816, len 40)
16:26:34.317996 somebody.nowhere.com.39943 > 102.17.94.35.ssh: . [tcp
sum ok] win 1024 (ttl 56, id 57786, len

40)
16:26:40.326292 somebody.nowhere.com.39944 > 102.17.94.35.ssh: . [tcp
sum ok] win 1024 (ttl 56, id 16601, len

40)
16:27:16.699809 somebody.nowhere.com.46275 > 102.17.94.35.55555: . [tcp
sum ok] win 2048 (ttl 49, id 64896, len

40)
16:27:22.708051 somebody.nowhere.com.46276 > 102.17.94.35.55555: . [tcp
sum ok] win 2048 (ttl 49, id 53321, len

40)
16:29:19.801485 somebody.nowhere.com.62643 > 102.17.94.35.ssh: . [tcp
sum ok] ack 3090964817 win 4096 (ttl 51,

id 28633, len 40)
16:29:25.821589 somebody.nowhere.com.62644 > 102.17.94.35.ssh: . [tcp
sum ok] ack 3090964817 win 4096 (ttl 51,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 94

id 51209, len 40)
16:29:31.843266 somebody.nowhere.com.62645 > 102.17.94.35.ssh: . [tcp
sum ok] ack 3090964817 win 4096 (ttl 51,

id 7094, len 40)
16:29:37.864901 somebody.nowhere.com.62646 > 102.17.94.35.ssh: . [tcp
sum ok] ack 3090964817 win 4096 (ttl 51,

id 18098, len 40)
16:29:43.886572 somebody.nowhere.com.62647 > 102.17.94.35.ssh: . [tcp
sum ok] ack 3090964817 win 4096 (ttl 51,

id 14237, len 40)
16:29:49.888359 somebody.nowhere.com.62648 > 102.17.94.35.ssh: . [tcp
sum ok] ack 3090964817 win 4096 (ttl 51,

id 10075, len 40)
16:30:19.916278 somebody.nowhere.com.54653 > 102.17.94.35.55555: . [tcp
sum ok] ack 3324693154 win 4096 (ttl 51,

id 18389, len 40)
16:30:25.928117 somebody.nowhere.com.54654 > 102.17.94.35.55555: . [tcp
sum ok] ack 3324693154 win 4096 (ttl 51,

id 34920, len 40)
16:30:31.949717 somebody.nowhere.com.54655 > 102.17.94.35.55555: . [tcp
sum ok] ack 3324693154 win 4096 (ttl 51,

id 42551, len 40)
16:30:37.973069 somebody.nowhere.com.54656 > 102.17.94.35.55555: . [tcp
sum ok] ack 3324693154 win 4096 (ttl 51,

id 33858, len 40)
16:30:43.993068 somebody.nowhere.com.54657 > 102.17.94.35.55555: . [tcp
sum ok] ack 3324693154 win 4096 (ttl 51,

id 47142, len 40)
16:30:50.014670 somebody.nowhere.com.54658 > 102.17.94.35.55555: . [tcp
sum ok] ack 3324693154 win 4096 (ttl 51,

id 41275, len 40)

This is an interior ping of the firewall's interior interface. It correctly
elicits no response. The NetFilter log records all the packets.

The script command captured the following from the test host:

Script started on Sat Feb 1 16:32:53 2003

[root@localhost root]# ping -c 30 -I eth0:5 192.168.0.2
PING 192.168.0.2 (192.168.0.2) from 192.168.0.3 eth0:5: 56(84) bytes of data.

--- 192.168.0.2 ping statistics ---

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 95

30 packets transmitted, 0 received, 100% loss, time 29574ms

Script done on Sat Feb 1 16:42:49 2003

16:39:51.450334 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:39:52.464976 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:39:53.485313 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:39:54.505513 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:39:55.525866 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:39:56.546072 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:39:57.566429 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:39:58.586631 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:39:59.606986 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:00.627209 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:01.647882 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:02.667764 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:03.688006 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:04.708512 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:05.728664 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:06.749038 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:07.769363 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:08.789466 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:09.809780 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:10.830016 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:11.850347 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:12.870588 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:13.890895 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:14.911144 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:15.931458 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:16.952067 gamma.egs.giac.com > 192.168.0.2: icmp: echo request

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 96

(DF) (ttl 64, id 0, len 84)
16:40:17.972024 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:18.992278 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:20.012477 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)
16:40:21.032732 gamma.egs.giac.com > 192.168.0.2: icmp: echo request
(DF) (ttl 64, id 0, len 84)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 97

Appendix L.

NetFilter log

Feb 1 15:16:18 leisuxII kernel: eth1: Promiscuous mode enabled.
Feb 1 15:16:18 leisuxII kernel: device eth1 entered promiscuous mode
Feb 1 15:20:00 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.0.3 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=58343 PROTO=TCP SPT=63218 DPT=22 SEQ=763580494 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:20:06 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.0.3 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=37929 PROTO=TCP SPT=63219 DPT=22 SEQ=2513326235 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:25:01 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.2 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=22813 PROTO=TCP SPT=63218 DPT=80 SEQ=763580494 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:25:07 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.2 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=37509 PROTO=TCP SPT=63219 DPT=80 SEQ=2513326235 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:25:25 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.3 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=52077 PROTO=TCP SPT=63218 DPT=25 SEQ=763580494 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:25:31 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.3 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=47560 PROTO=TCP SPT=63219 DPT=25 SEQ=2513326235 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:25:55 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.4 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=38581 PROTO=TCP SPT=63218 DPT=21 SEQ=763580494 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:26:01 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.4 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=8616 PROTO=TCP SPT=63219 DPT=21 SEQ=2513326235 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:33:27 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.4 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=38260 PROTO=TCP SPT=63221 DPT=21 SEQ=763580494 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:33:33 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.4 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=59350 PROTO=TCP SPT=63222 DPT=21 SEQ=2513326235 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:33:57 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.3 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=60741 PROTO=TCP SPT=63221 DPT=25 SEQ=763580494 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:34:03 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.3 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=11312 PROTO=TCP SPT=63222 DPT=25 SEQ=2513326235 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:34:27 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.2 LEN=40 TOS=0x00 PREC=0x00 TTL=50

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 98

ID=62906 PROTO=TCP SPT=63221 DPT=80 SEQ=763580494 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:34:33 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.1.2 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=65210 PROTO=TCP SPT=63222 DPT=80 SEQ=2513326235 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:38:16 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.0.3 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=22977 PROTO=TCP SPT=63221 DPT=22 SEQ=763580494 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 15:38:22 leisuxII kernel: NEW Incoming to GIAC IN=eth0 OUT=eth1
SRC=102.17.94.36 DST=192.168.0.3 LEN=40 TOS=0x00 PREC=0x00 TTL=50
ID=29272 PROTO=TCP SPT=63222 DPT=22 SEQ=2513326235 ACK=0 WINDOW=4096
RES=0x00 SYN URGP=0
Feb 1 16:11:41 leisuxII kernel: Bdr Router invalid OUTPUT IN= OUT=eth1
SRC=192.168.0.2 DST=65.43.19.26 LEN=60 TOS=0x00 PREC=0x00 TTL=64
ID=45054 DF PROTO=UDP SPT=1091 DPT=53 LEN=40
Feb 1 16:11:41 leisuxII kernel: Bdr Router invalid OUTPUT IN= OUT=eth1
SRC=192.168.0.2 DST=206.141.192.60 LEN=60 TOS=0x00 PREC=0x00 TTL=64
ID=45055 DF PROTO=UDP SPT=1091 DPT=53 LEN=40
Feb 1 16:11:41 leisuxII kernel: Bdr Router invalid OUTPUT IN= OUT=eth1
SRC=192.168.0.2 DST=65.43.19.26 LEN=60 TOS=0x00 PREC=0x00 TTL=64
ID=45055 DF PROTO=UDP SPT=1091 DPT=53 LEN=40
Feb 1 16:11:41 leisuxII kernel: Bdr Router invalid OUTPUT IN= OUT=eth1
SRC=192.168.0.2 DST=206.141.192.60 LEN=60 TOS=0x00 PREC=0x00 TTL=64
ID=45055 DF PROTO=UDP SPT=1091 DPT=53 LEN=40
Feb 1 16:11:41 leisuxII kernel: Bdr Router invalid OUTPUT IN= OUT=eth1
SRC=192.168.0.2 DST=65.43.19.26 LEN=60 TOS=0x00 PREC=0x00 TTL=64
ID=45055 DF PROTO=UDP SPT=1091 DPT=53 LEN=40
Feb 1 16:11:41 leisuxII kernel: Bdr Router invalid OUTPUT IN= OUT=eth1
SRC=192.168.0.2 DST=206.141.192.60 LEN=60 TOS=0x00 PREC=0x00 TTL=64
ID=45055 DF PROTO=UDP SPT=1091 DPT=53 LEN=40
Feb 1 16:11:41 leisuxII kernel: Bdr Router invalid OUTPUT IN= OUT=eth1
SRC=192.168.0.2 DST=65.43.19.26 LEN=60 TOS=0x00 PREC=0x00 TTL=64
ID=45056 DF PROTO=UDP SPT=1091 DPT=53 LEN=40
Feb 1 16:11:41 leisuxII kernel: Bdr Router invalid OUTPUT IN= OUT=eth1
SRC=192.168.0.2 DST=206.141.192.60 LEN=60 TOS=0x00 PREC=0x00 TTL=64
ID=45056 DF PROTO=UDP SPT=1091 DPT=53 LEN=40
Feb 1 16:18:00 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=24844 SEQ=256
Feb 1 16:18:01 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=24844 SEQ=512
Feb 1 16:18:02 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=24844 SEQ=768
Feb 1 16:18:03 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=24844 SEQ=1024
Feb 1 16:18:04 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 99

TYPE=8 CODE=0 ID=24844 SEQ=1280
Feb 1 16:26:34 leisuxII kernel: ISP: null scanIN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=40 TOS=0x00 PREC=0x00 TTL=56 ID=57786 PROTO=TCP
SPT=39943 DPT=22 WINDOW=1024 RES=0x00 URGP=0
Feb 1 16:26:40 leisuxII kernel: ISP: null scanIN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=40 TOS=0x00 PREC=0x00 TTL=56 ID=16601 PROTO=TCP
SPT=39944 DPT=22 WINDOW=1024 RES=0x00 URGP=0
Feb 1 16:27:16 leisuxII kernel: ISP: null scanIN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=40 TOS=0x00 PREC=0x00 TTL=49 ID=64896 PROTO=TCP
SPT=46275 DPT=55555 WINDOW=2048 RES=0x00 URGP=0
Feb 1 16:27:22 leisuxII kernel: ISP: null scanIN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=40 TOS=0x00 PREC=0x00 TTL=49 ID=53321 PROTO=TCP
SPT=46276 DPT=55555 WINDOW=2048 RES=0x00 URGP=0
Feb 1 16:36:10 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=42508 SEQ=256
Feb 1 16:36:11 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=42508 SEQ=512
Feb 1 16:36:12 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=42508 SEQ=768
Feb 1 16:36:13 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=42508 SEQ=1024
Feb 1 16:36:14 leisuxII kernel: ISP: excessive pings IN=eth0 OUT=
MAC=00:03:6d:14:29:ed:00:40:63:c1:9d:d3:08:00 SRC=102.17.94.36
DST=102.17.94.35 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=42508 SEQ=1280
Feb 1 16:39:51 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=256
Feb 1 16:39:52 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=512
Feb 1 16:39:53 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=768
Feb 1 16:39:54 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=1024
Feb 1 16:39:55 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=1280

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 100

Feb 1 16:39:56 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=1536
Feb 1 16:39:57 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=1792
Feb 1 16:39:58 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=2048
Feb 1 16:39:59 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=2304
Feb 1 16:40:00 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=2560
Feb 1 16:40:01 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=2816
Feb 1 16:40:02 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=3072
Feb 1 16:40:03 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=3328
Feb 1 16:40:04 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=3584
Feb 1 16:40:05 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=3840
Feb 1 16:40:06 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=4096
Feb 1 16:40:07 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=4352
Feb 1 16:40:08 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=4608
Feb 1 16:40:09 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=4864
Feb 1 16:40:10 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 101

MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=5120
Feb 1 16:40:11 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=5376
Feb 1 16:40:12 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=5632
Feb 1 16:40:13 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=5888
Feb 1 16:40:14 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=6144
Feb 1 16:40:15 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=6400
Feb 1 16:40:16 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=6656
Feb 1 16:40:17 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=6912
Feb 1 16:40:18 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=7168
Feb 1 16:40:20 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=7424
Feb 1 16:40:21 leisuxII kernel: Bdr Router invalid INPUT IN=eth1 OUT=
MAC=00:03:6d:13:37:fd:00:40:63:c1:9d:d3:08:00 SRC=192.168.0.3
DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=43276 SEQ=7680
Feb 1 16:43:34 leisuxII kernel: device eth1 left promiscuous mode

