
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Analysis of the building blocks and attack
vectors associated with the Unified Extensible

Firmware Interface (UEFI)

GIAC (GREM) Gold Certification

Author: Jean-François Agneessens (jean.agneessens@ncirc.nato.int)
Advisor: Manuel Humberto Santander Pelaez

Accepted:

Abstract
 While Operating Systems have seen tremendous and very visible
developments, driven by the evolution of hardware components, there are still some
remnants from the 8086-era, one of which is the BIOS. Led by a consortium of
vendors, the industry is now implementing a new style of BIOS which, by design,
appears to overcome all the issues introduced by the Intel 8086 engineering
decisions back in 1978.

 The Unified Extensible Firmware Interface (UEFI), replacement of the legacy
BIOS, is a blank-sheet design based on modular pieces of code following the well-
known Portable Executable/Common Object File Format (PE/COFF), found on all
Microsoft OS-based executable code. The UEFI code can therefore be reverse-
engineered using similar techniques learned during GREM. The concepts of UEFI,
and some of its VMware implementation, are presented here, as well as an insight
into the possible paths open for further exploitation of the extended capabilities
offered by UEFI.

A journey in the Unified Extensible Firmware Interface (UEFI) 2

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

1. Introduction

The Basic Input/Output System (BIOS) is the code that is the closest you can get

to the underlying hardware. Its role, since its inception in the early stage of the Intel 8086

era, has been to detect and initialize surrounding components, to prevent conflicts in

those components, and to allow the Operating System (OS) to boot (Note: before the

advent of Windows 95, the Disk Operating System (DOS) made constant use of the BIOS

for all access to peripherals, such as keyboard, floppy disk drives, screens and printers).

The DOS was running in 8086 mode (also called the real-address mode), which used a

20-bit addressing scheme to access up to 1MB of memory, sliced in 64KB blocks, called

the segments. The DOS was a single user OS, running in ring-0, where the interface

offered unrestricted access to the whole hardware (Figure 1).

Figure 1: Privilege levels, or rings (Intel Press, 2011)

The evolution of computer hardware, their greater affordability, and the desire for

GUI-based OS by the masses, were key in prompting OS vendors to make a complete

abstraction of the BIOS after the Initial Program Load (IPL) (Compaq, Phoenix, Intel,

1996), known in UEFI terminology as the Boot Device Selection (BDS). The gap

between the BIOS (made for 16-bit real-address mode OS), and the hardware/OS

currently available, grew over time, to the moment were a decision had to be made with

the introduction of Intel’s new generation of 64 bit processors, the Itanium (Vincent

Zimmer, 2010).

A journey in the Unified Extensible Firmware Interface (UEFI) 3

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Intel decided to start building, from scratch, a new type of BIOS; the Extensible

Firmware Interface (EFI), and this modular approach was adopted by other vendors,

notably Apple, and eventually became known as the Unified EFI (UEFI). The UEFI is

meant to be developed in C, with supporting libraries and a developer kit available for

free, and while it will no longer be able to boot DOS, it does allow more freedom in what

it offers, and is more tied with the OS (as in BIOS/DOS). Additionally, the presence of

UEFI runtime services is also a topic of interest.

2. The BIOS, or the end of an era

2.1. Intel CPUs’ mode of operations

Several modes of operation have been defined in the x86 architecture (Intel Press,

2011), and the default one at startup, called the real-address (or real) mode operates in

16bit mode, where only 1MB of memory can be addressed, and the memory is spliced

into blocks, called segments. This is due to the inherent design of the 8086, where a 20bit

addressing scheme is used. The 16 lower bits allow 64KB addressing (216) and the 4 extra

bits provided by the Code Segment register (CS) shifted 4 bits to the left to allow inter-

segment addressing (Figure 2).

Figure 2: 20-bit addressing (Kholodov, 2007)

The next operating mode of interest is called the protected mode. This is a 32bit

mode, for which memory addressing can be flat or segmented, and for which paging can

optionally be used. In the basic-flat model, the Code Segment register (CS) and the Data

segment registers (DS,ES,FS,GS,SS) all start at 0x0 and end at 0xFFFF_FFFF, which

A journey in the Unified Extensible Firmware Interface (UEFI) 4

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

means they overlap. Data can, therefore, be interpreted as code, depending which register

is used to access the address. The protected-flat model follows the same principle, but

will have an upper limit set to the real size of the DRAM. The multi-segment model

allows segregation of memory area to protect applications from each other (non-

overlapping address space) and typically makes sense for multitasking environments. For

each case, paging can be used, which allows allocation of more memory than what is

physically available and which, again, makes sense in multitasking environments.

The actual mode of the processor is stored on a special register called CR0. This

register is composed of bits that are set high or low. At INIT# or RESET# (the 2 ways of

bringing the computer to its initial stage), CR0 is set at 0x6000010, the real-address mode

(Figure 3).

Figure 3: CR0 register (Intel Press, 2011)

The descriptor tables are the link between the linear memory addressing and the

segmented memory addressing. They are composed of quad-words (8 bytes) elements,

each of which will define a register, its start address, length, property bits and purpose.

The mandatory descriptor table is called the Global Descriptor table, and is composed, at

A journey in the Unified Extensible Firmware Interface (UEFI) 5

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

the minimum, of a NULL descriptor (a sled of 0x0), a CS descriptor and a DS descriptor

(Figure 4).

Figure 4: Descriptor Table (Intel Press, 2011)

To allow the processor to switch from real-address mode to protected-mode,

several prerequisites have to be met, and (Intel Press, 2011) mentions a set of tasks to be

executed in the right order: Disable interrupts, set the GDT address on the GDT Register,

set CR0 to protected mode and execute a far jump.

The explanations above are only a small subset of what Intel’s systems are

providing, but this covers the prerequisites to go further. See Figure 5 for an overview in

yellow of what has been covered.

A journey in the Unified Extensible Firmware Interface (UEFI) 6

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Figure 5: System-level Registers and Data Structure (Intel Press, 2011)

A journey in the Unified Extensible Firmware Interface (UEFI) 7

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

2.2. What happens at RESET# or INIT#

When the computer is powered on, it will, by default, look at the global address

0xF_FFF0, and known as the Host Reset Vector (HRV); at this time, the system is in

real-address mode.

Figure 6: HRV Jump on Dell Optiplex 760 A02 BIOS

The HRV points, by design, to the address 16 bytes before the 4GB upper limit and as

this address is constructed by using the Code Segment (CS) register as high address

(which by default will be at value 0xFFFF at INIT), and the Instruction Pointer (IP) as

low address (0xFFF0 at INIT), there is little room for anything less than a jump to a

smaller address to continue executing the early initialization code.

 At this stage of the power-on process, the CPU is not aware of its surrounding

environment (what amount of memory can be used, what are the expansion buses, the

peripherals, the ports, the expansion cards, the other CPUs), so the role of the

NorthBridge chipset is to redirect the HRV address to the BIOS code (through the

Southbridge) stored on the NVRAM. How this happens is hardware specific, but on

fairly recent chipsets it is done by means of the Programmable Attribute Maps Registers

(PAM), which control if shadowing occurs for certain memory ranges or not. In actual

fact, the global addressing is not only used to access the memory, but the whole set of

peripherals that are surrounding the CPUs. The NorthBridge is the chipset that is

redirecting to the different hardware, and in some cases, one global address can be

redirected differently depending on the state of some Northbridge registers. On INIT#, it

A journey in the Unified Extensible Firmware Interface (UEFI) 8

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

will shadow the range 0xF_0000-0xF_FFFF to the NVRAM, whereas later on in the boot

process, it will most likely be pointing to the RAM, as executing from RAM is faster than

doing it from NVRAM (Dice, 2011).

Figure 7: Intel 955X-ICH7 chipsets (Salihun, 2007)

A journey in the Unified Extensible Firmware Interface (UEFI) 9

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Because the HRV is pointing at 0XFFFF_FFF0, there must be an alias between

0xF_FFF0 (1MB-16 bytes) and the HRV.

 The actual jump address will depend on the physical size of the BIOS chip.

Depending on the version, these chips can have size up to 16Mb (2MB), which would

then place the start of the NVRAM below 0xE_0000 (in fact, so big that the NVRAM

could not be copied to the 1MB addressable memory), but the problem is, by design, only

128K has been allocated for the BIOS. The memory below is reserved for Option ROM

(expansion card ROM), the VGA ROM and the DOS (Figure 8), therefore only a part of

the NVRAM will be accessible from the INIT#/RESET#. This means the jump will most

likely go anywhere within the last 64K of the NVRAM area and depends on how the

BIOS vendor implemented its code.

 (Dice, 2011) covers the boot flow of a modern Intel System and indicates that the

boot code’s goal is to switch as early as possible in protected basic flat mode with no

paging. (Salihun, 2007) extensive legacy BIOS reverse engineering explains that BIOS

ROM are made up of components that are compressed and added next to each other

because the limited size of NVRAM chipset made compression mandatory to hold all the

code (chipsets used to be 64KB or 128KB). Therefore, after having switched to protected

mode, the system will need to initialize the memory (controlled by the NorthBridge),

initialize the SouthBridge (to access the Low Pin Count (LPC) interface), and then

execute the code that will allow decompressing the different components of the Flash. It

can now copy itself into RAM (for faster processing of the code), initialize the Root

Complex Register Block (RCRB) (which allows addressing the PCI(-e) bus and

peripherals), which in turn gives the ability to look for expansion cards and their

firmware (called the Option ROM). This part of the boot process is particularly tricky, as

all the cards firmware need to be held in 128K of memory (and the results of heavily

populated expansion buses usually resulted in the BIOS hanging frequently).

According to (Compaq, Phoenix, Intel, 1996), the BIOS boot order is linked to

two lists; the Initial Program Load (IPL), the famous A:,C: in a user-defined order, and

the Boot Connection Vector (BCV), which points to a specific piece of code of an Option

ROM. The BIOS proceeds, in the given priority, to try to boot an OS in a sequential

A journey in the Unified Extensible Firmware Interface (UEFI) 10

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

manner. This also implies that any failing boot device should return the control to the

BIOS, and this handover back to the BIOS is made with INT 18h. The way the BIOS

gives control to a given IPL boot device is by calling INT 19h. but in the case of BCV

(aka Option ROM) boot devices it will be done by calling INT 13h. The Option ROM,

when executed, will hook INT 13h, and this interrupt is called before trying to start the

OS boot and gives the opportunity to the card to provide the first hard drive (C:), known

as 80h. The complexity arises when several Option ROMs are available and a chaining

of INT 13h devices occurs, so the first Option ROM that can provide the drive 80h

become, therefore, the “C:” in the IPL discussed above. This process is not trivial and

lead to a lot of frustrations in the past.

Figure 8: Memory mapping and legacy (DOS) memory area (Salihun, 2007)

A journey in the Unified Extensible Firmware Interface (UEFI) 11

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

3. UEFI, future-proof by design

3.1. Concepts and overall structure

It must be pointed out that using UEFI as the term to describe the replacement of

the legacy BIOS is not entirely correct, as another set of reference documents (PI

Working Group, 2012) exists to describe the Platform Initialization (PI). PI is a child of

UEFI, and the intent for UEFI is to focus on the interfaces with the boot devices and the

Operating System, while PI focuses on the initialization of system components (chipsets,

memory, buses) and component drivers (Option ROM in legacy BIOS terminology). This

means that both specifications are important, but PI is to be referred to first until the

hardware is brought into a UEFI compliant mode. These frameworks are complementary

(Figure 9), where PI is covering the yellow area and UEFI is covering the pink one. Most

of the information provided here is based on the book (Vincent Zimmer, 2010) and the

PI/UEFI specifications: (PI Working Group, 2012) (UEFI Spec Working Group, 2012).

Figure 9: PI and UEFI coverage (Vincent Zimmer, 2010)

A journey in the Unified Extensible Firmware Interface (UEFI) 12

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

PI is made up of Security (SEC), Pre-EFI Initialization (PEI) and Driver

Execution Environment (DXE). UEFI is composed of the Boot Device Selection (BDS),

the Transient System Load (TSL) and the Runtime (RT).

Some concepts and terminology need to be described before jumping into the sub-

components. A handle can be compared to a class in Object Oriented Programming, and

is a collection of one or several protocols; it is managed in the Handle Database. A

protocol is defined by a GUID, and can contain function pointers and data structures. It

can be used as an interface for hardware, as well as an interface with other protocols.

Examples of protocols are: UsbAtapi, VgaMiniPort, TCP/IP. Examples of functions

could be ClearScreen() or OpenVolume(). The functions mentioned above are provided

by UEFI drivers which are a subset of the different types of UEFI Images, and Images

can also be UEFI applications or OS loaders and will be covered later.

The core of UEFI is called the System Table (Figure 10). It contains references to

the available protocols as well as two other tables, the Boot and Runtime (RT) Service

Tables. Boot services are available until RT is achieved, and RT is called at the end of

TSL, when the OS Loader UEFI Image calls the boot service function ExitBootServices().

Runtime services are also available when the OS is running, meaning there are interfaces

available between UEFI and the OS. The list of boot and runtimes services is fixed by the

UEFI specifications revision, but can be extended above that minimum list, and the

remaining protocols to be found in the System Table are modular elements added by the

hardware vendor or the firmware manufacturer, hence the meaning of “extensible” in

UEFI.

A last table referred by the System Table is called the System Configuration

Table. It points to other tables, notably the Advanced Configuration and Power Interface

(ACPI), the SMBIOS Table, the Hands-Off Block Table (HOB) and DXE Services Tables.

The phases are explained more in details below, and the extensive terminology

will likely be better understood after reading these paragraphs.

A journey in the Unified Extensible Firmware Interface (UEFI) 13

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Figure 10: UEFI System Table structure (Vincent Zimmer, 2010)

3.2. SEC and PEI

The SEC phase has four responsibilities, as described in (PI Working Group,

2012). It handles the platform restart events (there are 11 “boot modes” described in the

PI specifications, notably “BOOT_WITH_DEFAULT_SETTINGS”,

“BOOT_ON_FLASH_UPDATE”, “BOOT_WITH_FULL_CONFIGURATION”,

“BOOT_ON_S3_RESUME”, etc). Next, SEC takes care of creating a temporary memory

store by using the processor cache as a flat memory. This is known as Cache-as-RAM

(Salihun, 2007) in Legacy BIOS terminology. SEC can serve as the Root of Trust (hence

A journey in the Unified Extensible Firmware Interface (UEFI) 14

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

its name), but this phase is optional. This is typically how the link with the Trusted

Platform Module (TPM) will happen and is the base of the Secure Boot. Lastly, SEC will

hand over the pointers to the temporary memory, the temporary stack and the Boot

Firmware Volume (BFV) to PEI.

The role of PEI role is to initialize the memory for the DXE phase to start, and as

such its role is very limited, but due to the overall stage of initialization of the system it

will rely on code that should be very similar to what can be found on legacy BIOS, with

the main difference being the format of the code itself, explained below. PEI makes use

of specialized drivers called the PEI Modules (PEIM) which are contained in the BFV

provided by SEC and the format in which they are encoded follows the Flash File System

(FFS) described in PI. Each PIEM is, therefore, a file encoded in PE/COFF (MZ then PE

headers) or in the Terse Executable format (TE) which will have a VZ (Vincent Zimmer)

header instead of the MZ (Mark Zbikowski) header. TE is a subset of PE as an answer to

the limited amount of resources available at such a stage of the boot process.

Hands-Off Blocks are data structures containing the state of the system. It is

received as the only input for the DXE phase, explained below.

3.3. DXE

The role of the Driver Execution Environment is to initialize the systems

components (chipsets, add-on cards) and to hand over to a specific Architectural Protocol

(see below) called the Boot Device Selection. To meet these requirements, the DXE is

composed of three elements, with the first one being the DXE Core, and its goal is to

produce the Boot, Runtime, DXE Services, to populate the EFI System Table and to

create the Handle Database. The DXE Core is the receiver of the HOBs List, from PEI,

and consumes Architectural Protocols. The difference between a Protocol and an

Architectural Protocol is the dependency of hardware for the later one.

The question is, how is it expected to work? In the HOBs lists, one HOB (or

more) contains the description of the firmware volume (The PI FFS for instance), and this

HOB has a specific GUID, which is linked to a DXE driver, the second of the three DXE

elements.

A journey in the Unified Extensible Firmware Interface (UEFI) 15

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

The last element, called the DXE Dispatcher, is the one which links the HOB

GUID to a specific DXE driver, so there must be a HOB related to a FFS DXE driver

that, when executed, will read the volume looking for a specific file called the apriori,

which is an authoritative list of DXE drivers to execute in order.

The apriori file is not mandatory, and if not present, the DXE Dispatcher will

search for DXE drivers in the volume, look at their dependencies, and then decide the

execution order. The DXE Dispatcher is also responsible for looking for DXE drivers

related to the other HOBs, which themselves can relate to other volumes, containing

more DXE drivers, and it is the versatility of this system that permits common file

systems like “FAT” to be recognized so that in the GUID Partition Table (GPT) the

200MB hidden system partition is exactly that; a partition recognized at the DXE (or

BDS) phase that can potentially contain DXE drivers.

Figure 11: Driver Execution Environment (Vincent Zimmer, 2010)

A journey in the Unified Extensible Firmware Interface (UEFI) 16

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

There are two categories of DXE drivers; the initial ones loaded at the early stage

(which should not be very different from legacy BIOS style code), and the true UEFI

drivers (which are compliant with the specifications). All of them are in the PE/COFF

format (or PE32+, if they include digital signature) and the true UEFI drivers can also be

coded in EFI Byte Code (EBC), which is platform independent but runs on top of an EBC

Virtual Machine, as described in (UEFI Spec Working Group, 2012). The DXE phase

can, therefore, be compared to the Option ROM loading with legacy BIOSs, but in a

much more controlled way.

3.4. BDS, TSL and RT

When all of the mandatory Architectural Protocols defined in (UEFI Forum,

2012) are available (that is, the Boot and Runtime services tables are filled), the DBS

Architectural Protocol is executed and has to follow a strict policy: Initialize the elements

required for human interaction (to allow entering Setup, a boot menu,…), load all drivers

stored in a specific variable, and attempt to boot every item contained in the BootOrder

variable. If any of these steps fails, the BDS gives control back to the DXE dispatcher

(Figure 11), and the dispatcher will try to find alternative DXE drivers in the newly

discovered firmware volumes resulting from the driver load of BDS.

For an OS to boot, the BDS will look for a platform specific file (Figure 12), this

file will always be in the /EFI/BOOT/BOOT/ folder, and once found the OS loader will

call ExitBootServices(), which only allows the Runtime Services to stay resident.

Figure 12: GPT Boot file name (UEFI Spec Working Group, 2012)

In addition to the capability of booting an OS, the BDS allows UEFI applications

to be run, one of which is the UEFI shell, which mixes DOS and UNIX notations. In

A journey in the Unified Extensible Firmware Interface (UEFI) 17

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

VMware, it can be accessed by selecting EFI BIOS for a new virtual machine and not

creating any hard drive. The system will fail boot in the UEFI shell.

4. Analyzing VMware UEFI 64 bit implementation

4.1. Extracting the ROM file

 VMware has been emulating the chipset Intel 440BX and has, therefore, been

using an implementation of a legacy BIOS based on that chipset, but since VMware

Workstation 8/ESXi 5 the option exists to allow you to boot with a UEFI firmware.

Figure 13: VMware UEFI boot option

A journey in the Unified Extensible Firmware Interface (UEFI) 18

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

The firmware itself is embedded in the file /bin/vmx of the hypervisor, and by using

objdump and objcopy, the UEFI firmware can be extracted.

The object 32 can be extracted and uncompressed by using zlib (939016 is the

size of the compressed ROM file).

The ROM studied here has a MD5 hash of dbc1a58988c150cb1eb95c04dcf06a1b

4.2. Preliminary Analysis

The uncompressed file is 2MB, and running strings on it shows some interesting

information. DLL names are self-explanatory for UEFI-aware people and PE structures

are to be found.

A journey in the Unified Extensible Firmware Interface (UEFI) 19

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Another topic worth mentioning is the very limited size of the last 64KB segment.

All the code and supporting data is contained between 0xFFDD0 and 0xFFFFF, which

corresponds to 559 bytes. The segment corresponding to 0xE_0000 is empty as well, and

analysing the legacy VMWare BIOS 440 shows that most of the last 128KB is not null.

4.3. From Power Up to PEI

As stated earlier, the system has to be in real-address mode, and the last 64KB of

the ROM are matching the addresses 0xF_0000 and 0xFFFF_0000 (the latter one is

meaningless before jumping in protected mode).

The options to be set when loading the file in IDA Pro are to set the CPU to

80x86:metapc, and to force the decoding in 16bit. When the file is loaded, segments must

be created and properly allocated. Therefore, the following IDC script has been used.

The entry point starts at 0xFFFF_FFF0 (Figure 14). The code running in 16bit is

exactly following what (Dice, 2011) presented and mentioned earlier in 2.2. Enabling the

auto ea,ea_src,ea_dst;
for(ea = 0x0; ea < 0x200000; ea = ea + 0x10000)
{

SegCreate(ea, ea + 0x10000, ea>>4, 0, 0, 0);
}
ea_src=0x001F0000;
ea_dst=0xFFFE0000;
SegCreate(ea_dst, ea_dst + 0x10000, ea_dst>>4, 0, 0, 0);
for(ea_dst; ea_dst <= 0xFFFFFFFF; ea_dst = ea_dst + 4)
{

PatchDword(ea_dst, Dword(ea_src));
ea_src = ea_src + 4;

}

A journey in the Unified Extensible Firmware Interface (UEFI) 20

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A20 Gate is required to switch to protected mode, and while out of scope here, the history

of the A20 spare pin is worth reading to understand how legacy decision are impacting

current architecture (Brouwer). Note that the value of DI, set in real-address mode, will

later be used after the switch to protected mode for a comparison. The instruction to load

the Global Descriptor Tables complies with 2.1. With CS and DS starting at 0 and

covering the whole memory range, this is according to the requirements of the basic flat

protected mode (see Figure 15). Note that the Code Segment is defined twice: one in

32bit, once in 64bit mode. The 32bit version of the VMWare UEFI ROM presents

exactly the same GDT.

Figure 14: from real-address mode to protected mode

A journey in the Unified Extensible Firmware Interface (UEFI) 21

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Figure 15: Global Descriptor Table

Because the firmware now needs to be studied in 32 bit mode, the file is reopened

accordingly with IDA Pro. The entry point is 0xFFFF_FF32. After a few instructions,

(setting some register at initial value and comparison of DI from real-address mode), the

code is defining a value for a GUID.

The GUID is: 8C8CE578-8A3D-4F1C-9935-896185C32DD3. Using a Hex Editor, it

can be found at address 0x10 of the binary ROM file. The next bit of interesting code is

A journey in the Unified Extensible Firmware Interface (UEFI) 22

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

the check for the MZ/VZ and PE headers. The figures below show a hexdump of the first

bytes of the ROM file, and the corresponding code for header checks.

The GUID (highlighted in yellow) mentioned earlier is referring to the

EFI_FIRMWARE_VOLUME_FILE_SYSTEM2_GUID, according to (PI Working

Group, 2012). The GUID is a constant and can therefore easily be found within a ROM

file. Another element to look for is the signature “_FVH”, typical for a FFS header. The

A journey in the Unified Extensible Firmware Interface (UEFI) 23

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

characteristics of the FFS is that it is composed of 32 blocks of 64K each which translates

to 2MB.

The next GUID to be found is the apriori file (in pink). The file is enclosed into a

file header of 24 bytes, followed by a 4 bytes section header. The content of the file

contains only one GUID, corresponding to the PCD PEIM, which is a PEI Module that

holds the Platform Configuration Database. Although not covered earlier, the PCD is a

means to pass parameters to Modules (being PEI or DXE drivers) or to store platform

specific information. The end goal of the PCD is to limit the modification of source code

for developers by allowing parameters to fine tune use of a specific module (Intel, 2010).

The next GUID (in light blue) is of some interest, as it happens to be SEC_MAIN,

the core module of the SEC phase. Shown as encoded in PE32, based on the file and

section headers, the MZ and PE header are present but meaningless because before the

DXE phase it is not defined how to interpret a proper PE/COFF header. When looking

back to IDA Pro, we can find the check for 0x10. The SEC phase continues at 0x330.

 Having the files properly structured in a FFS allow us to find the different files by

looking at their header, just like the BIOS will do when executed, and working this way it

is much easier to find files boundaries, as well as much easier to add, delete, modify or

replace modules within a ROM file (in Para 5.3 such a method is used to bypass windows

validation by stealing OEM strings and certificates and replacing them in other FFS-

structured files).

 At this stage, it is too early to consider opening the PEI or SEC files with IDA

Pro, as we would for windows applications. Similar Reverse Engineering techniques, as

used for legacy BIOSs, could be used to analyze the files (unless the files are coming

straight from Intel’s development kit), but even if they are not, having the source code of

similar implementations could really help, and the next phase is what would be more

interesting.

A journey in the Unified Extensible Firmware Interface (UEFI) 24

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

4.4. The Driver Execution Environment

Knowing that each element of the FFS is identified by its GUID, the path taken from here

will be relatively easy. The idea is to extract a driver at the DXE level by means of

analyzing which GUIDs are available, find them in the File System, and then extract

them. Accessing the shell in the VMware Environment can be done by not having any

bootable media for the guest VM and to have the UEFI BIOS selected (as explained in

4.1). While this is not the intent to look at the details provided by the CLI (“help” is your

friend), the command guid display the drivers and the corresponding GUID.

 None of the DXE drivers could, in fact, be found directly in the FFS, because a

file, called DXE File Volume (DXEFV) based on its GUID, contains all the DXE drivers

in a single RAW section. According to comments within the Virtual Box flash drivers

(Oracle Corporation), the section is compressed with LZMA. The file starts at 0x49150

and ends at 0x10EC52 and note the extension of the file; unlzma (xv) wants to see it to

decompress the file.

 dd if=efi64.rom of=DXEFV.lzma skip=299344 count=809730 bs=1
unlzma DXEFV.lzma

A journey in the Unified Extensible Firmware Interface (UEFI) 25

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

The uncompressed file has a MD5 hash of 9735970d40d9c626fffa23efa9e77d11

It contains another FFS, as clearly identified by _FVH at 0x38, and using strings against

the file now reveals what is expected:

Most of these files will follow the UEFI DXE drivers interface. The DiskIO

driver, with a GUID of CE345171-BA0B-11D2-8E4F-00A0C969723B (as reported by

the command guid within the UEFI shell) cannot be found in the image, although

“DiskIODxe.dll” can be found by using strings on the FFS image. The corresponding

GUID, based on a reverse search of the MZ header from that location, reveals a GUID

value of 6B38F7B4-AD98-40E9-9093-ACA2B5A253C4, which corresponds to a UEFI

1.0 DiskIO driver! (it is unclear why a 2.0+ compliant GUID is reported when a 1.0

version is loaded). Any occurrence of the GUID seems to be linked to a list of

dependencies (GUIDs are next to each other’s, as an array), except at address 0xC3017C,

where a lot of GUIDs are presents but with associated values. This address is part of the

UEFI shell application, and it may be a way to create aliases to GUIDs, but this cannot be

demonstrated.

A journey in the Unified Extensible Firmware Interface (UEFI) 26

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

However, the goal was to access the files that can, if needed, be loaded in IDA Pro as

64bit PE structured files, and to be complete, the exercise will:

1. Use the EDK II development interface to code a subverted driver and to give it

the associated GUID; the sky is the limit at this stage.

2. Replace the real driver with a new driver, but because it is in a File System, there

are some checksums at file level and File System level to recalculate. (see 0)

3. Compress the resulting File System with LZMA so it is now the new DXEFV to

be added in the Binary ROM image.

4. Replace the DXEFV file with the new one, recalculating the checksum for the file

and File System of the ROM file, and paying particular attention to ensure the

position of other files are not changed (as it may break the early stage of booting

where the BIOS is not yet able to read a file system).

5. In VMWare, copy the modified BIOS into the home folder of the virtual machine

and edit the corresponding vmx configuration file of the guest VM and by adding

the following entry it will now boot from the modified UEFI firmware.

6. Note that if you are creating your own driver, you can assign another GUID to it,

and it would be interesting to see if the GUID can just be added to the list in the

file to be loaded and executed, instead of modifying an existing capability.

5. How UEFI can be subverted

There are several paths worth considering for exploitation, and while they are presented

in dedicated subtopics, some of them are linked where exploitations paths are likely to

make use of several for effectiveness or wider coverage. Using a program like RW-

Everything (see 6.5), some of the specific elements mentioned below (ACPI Table,

Option ROMS, SMBIOS Table,…) can be easily accessed and are worth investigating.

efi64.filename = "myModdedUEFI.rom"

A journey in the Unified Extensible Firmware Interface (UEFI) 27

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

5.1. On signed code and the Trusted Platform Module

The code signing requirement of UEFI is not a mandatory one, but the principle

behind it is to verify that all code executed by the processor has been signed by a trusted

vendor. For this to be effective, it requires access to a safe place which contains the list of

all trusted certificates for every single code being executed which is called for

verification first. However, because this requirement was not planned in the earlier

releases of UEFI, code-signing is basically an add-on to the existing interface. The

requirement for a safe place to hold the certificates is, in most cases, the Trusted Platform

Module (TPM), connected to the Low Pin Count (LPC) interface of the Southbridge (see

Figure 7: Intel 955X-ICH7 chipsets (Salihun, 2007)). The TPM is not available on all

motherboards, and as such does not really make sense for the consumer products due to

extra cost, little or no added value for user experience, and extra burden for the end-user.

Additionally, the list of trusted certificates needs an update mechanism, so

implementation errors could lead to bogus certificates being added to the trusted list, and

another issue is the availability of 2 protocols to load UEFI binaries, as stated in (Michael

Rothman, 2009), which could possibly be another means of avoiding any signature

verification.:

In the VMWare implementation, the following 2 methods have been found by

using the command guid in the CLI:

Exploitation against the TPM has been demonstrated several times, although they

are fairly complex and were not targeting exploitation at the BIOS level.

Load : 56EC3091-954C-11D2-8E3F-00A0C969723B
Load2 : 4006C0C1-FCB3-403E-996D-4A6C8724E06D

A journey in the Unified Extensible Firmware Interface (UEFI) 28

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

5.2. On the System Management Mode

System Management Mode (SMM) is a 16 bit mode which has existed since the

386 (Collins, 1997), mainly for debugging purposes, and could be utilized by use of a

System Management Interrupt (SMI), where these interrupts are true hardware-based

interrupts on a physical pin of the CPU. Later on, use of SMM became more widespread

as it was very convenient to use it for Power Management (APM, ACPI) and hardware

control (for instance, OS-based BIOS firmware update or the associated actions when

you close the lid of a laptop). When SMM is called, all the CPU registers are saved on a

place in memory called the SMRAM and the CPU is switched back to 16 bit mode but

with access to the complete memory range. The power of SMM relies on its privileged

access to all the system resources and on its non-detectability by the OS (BSDaemon,

2008).

While several protection mechanisms have been set up at chipset level, with

specific registers controlling the accessibility of the SMRAM and its read/write status,

security experts have so far managed to circumvent these defences (Loïc Duflot, 2006),

(BSDaemon, 2008),(Wecherowski, 2009), (Rafal Wojtczuk). The SMM is a CPU feature

and therefore needs to be supported by UEFI (PI Working Group, 2012), for which a

whole chapter is devoted. The presence of properly documented libraries provided by

UEFI and its associated development kit will likely ease the task to prevent the SMM

protection from being circumvented, as nothing new on that subject has been brought

forward in recent chipset development.

5.3. On the Advanced Configuration and Power Interface (ACPI)
and the System Management BIOS (SMBIOS)

The ACPI, as briefly explained in 5.2, is used to control the Power efficiency of

the running system, as well as controlling embedded hardware like fans or physical

buttons connected to the motherboard. In contrary to its predecessor the Advanced Power

Management (APM), ACPI is meant to be controlled by the OS, and as such, offers ACPI

registers for control and ACPI tables to describe what capability the specific system has

to offer to the OS (Loïc Duflot O. L., 2009).

A journey in the Unified Extensible Firmware Interface (UEFI) 29

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Without going too much into the details, the OS accesses the ACPI tables to

extract the Differentiated System Descriptor Table (DSDT), which defines the ACPI

registers and the methods available to use them. In the same paper mentioned above, the

DSDT can point to any memory address, even if it is totally unrelated to the ACPI

registers. (Heasman, 2006) flashed a BIOS with a corrupted DSDT table to later use

crafted OS driver accessing it. Again, (Loïc Duflot O. L., 2009) pushed the concept

further by allowing the hidden code to be triggered by external physical events, in that

case the connection of the laptop’s power supply. Once again, the ACPI is a

functionnality that has to be supported by UEFI, and as such, the same kind of flaws

could, potentially, be developped on a UEFI based BIOS.

The SMBIOS (System Management BIOS) is another legacy feature that was

carried over in UEFI. It is currently under revision 2.7.1, and its role is to address how

motherboard and system vendors present management information about their products

in a standard format by extending the BIOS interface on Intel architecture systems.

(DMTF, 2011). As such, the SMBIOS offers a Table, similar to the ACPI, with the intent

of it being accessed by interfaces like WMI for Windows systems. The support for

SMBIOS is offered in (PI Working Group, 2012). One of the uses of SMBIOS is the

integration of OEM strings that can automate the activation of Windows without going

online (Techie, 2010). It is called SLP (System Locked Preinstallation), and is a code

stored in the OEM Strings of SMBIOS. The other piece of the BIOS needed is called the

SLIC (Software License Internal Code) which is a certicate stored in an ACPI Table

called the Software Licensing Descriptor Table. One of the tricks used by crackers is to

extract the SLP code and SLIC from a big vendor BIOS, modify a flashable version of

their own motherboard BIOS, and apply the flash. This shows that the UEFI does not

solve the piracy issue, at least not without the use of the TPM to protect its content.

A journey in the Unified Extensible Firmware Interface (UEFI) 30

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

5.4. On Option ROM support and the EFI Byte Code (EBC)

Option ROM (also called PCI expansion ROM) is the piece of code executed at

BIOS to allow the support of the PCI card (or embedded PCI chipset) by the system

before boot stage and is typically a network card with PXE capability, a RAID card and

nowadays USB chipsets. Option ROM is true legacy BIOS technology, dating back to the

ISA bus time, and is the answer to Personal Computer hardware flexibility.

In the legacy BIOS way of working, there is a specific memory region

(OxC_0000 to 0xD_FFFF) of 128KB size, used for Option ROM to be executed. After

POST, each PCI device is scanned, and whenever an expansion ROM was available

(identified by AA55h in its Base Address), it was copied over in memory starting from

0xB_0000. When all the Option ROMs are copied over, the BIOS will then sequentially

execute the ROMs (by looking for the 55AAh header in 2KB block) found in the order

they have been copied (Salihun, 2007). This led to a multitude of problems, such as

when Option ROMs were not compatible with each other (remember the times when you

had to swap expansion cards in the slot to get the computer working), or when there was

not enough space available for the code to be copied in the memory for execution. (UEFI

Spec Working Group, 2012)

ROM code is written for the same execution mode as the BIOS, explaining why

some physically compatible cards cannot work on a PC if they are coming from a SUN

computer for instance. If the execution code is RISC based and not x86, there is no

chance it will be interpreted correctly by the CPU. By design, the option ROM, when

executed, has a full access to the system and resources. (Heasman, Implementing and

detecting a PCI rootkit, 2007)

UEFI provides a completely different approach, where drivers have to be UEFI

compliant, where memory is assigned dynamically for it (see DXE), where drivers can be

linked to several PCI chipsets (no need to have 2 copies of the same option ROM in the

memory to get 2 cards running). The question comes when you want to know how your

PCI or PCIe card will be recognized on your UEFI computer, and several options exist.

A journey in the Unified Extensible Firmware Interface (UEFI) 31

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

First option, you can have the UEFI driver of your card already available in the original

BIOS firmware; unlikely unless you go for a brand-name PC with well-defined pre-order

options. Second option, you can have a UEFI driver on the EEPROM of your expansion

card; more likely to happen if it is brand new. Third option would be the lack of support

at BIOS level of your hardware, which can be problematic if it goes about a network or

block device controller. Last option, you can have the UEFI BIOS reading and executing

the legacy Option ROM as shown below in an example from a Dell Optiplex 990. While

the BIOS is UEFI, it is still embedded with legacy option ROM that will be executed by

the UEFI BIOS:

The support for legacy Option ROM in UEFI is planned in the UEFI

specifications 13.4.2. (UEFI Spec Working Group, 2012), and described for developers in

(Phoenix, 2009). What is not clear is how a proper legacy driver will be granted access to

the system. The kind of attack (Heasman, Implementing and detecting a PCI rootkit,

2007) proved in using Option ROM to load his rootkit code can, potentially, have the

same impact on a UEFI BIOS.

A journey in the Unified Extensible Firmware Interface (UEFI) 32

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Another topic worthy of study is the EFI Byte Code, or EBC, which is pseudo

assembly code that is meant to be architecture agnostic. Such an UEFI Option ROM

could then be run on any architecture which offers booting on UEFI aware architecture. It

prevents the hardware vendors from writing several versions of their UEFI drivers based

on the underlying CPU, and it also means that the EBC could be the source of code to

write multi-architecture rootkit at pre-OS level.

A last point, which can be linked further to 5.5 and 5.6, is the ability to have

applications stored on an expansion ROM and have them executed, as cited in (UEFI

Spec Working Group, 2012) below:

5.5. On the runtime services and the capsule

A brief mention of the boot and runtime services has been made in 3.4. The boot

services can be consumed during pre-OS level, while the runtime services are present

during the whole uptime of the system. There is a minimum set of runtime services that

have to be made available to be compliant, but nothing to prevent extra services made

available to the OS.

One such service is the capsule service (Vincent Zimmer, 2010). The capsule is a

placeholder that survives a reboot or reset. The most obvious use for such a service is the

update of the firmware. First, the capsule service is called to hold a copy of the piece of

code that needs to be loaded after reboot and then the reset service is called, in this case

“BOOT_ON_FLASH_UPDATE”. This method is convenient, because for the first time,

there is a generic way of upgrading a BIOS; however, it is also a convenient storage for

any piece of malware that needs to survive a reboot. When updating the BIOS of a Dell

Optiplex 990, a specific file called DBUtil_2_3.sys is created in the default temporary

folder, and then rapidly deleted. To get hold of this file you can explicitly deny anyone

the right to delete subfolders and files on the NTFS partition. The file has the following

MD5 hash: 084bd27e151fef55b5d80025c3114d35

It is also possible to place an application written to this specification in a PCI
Option ROM. However, the PCI Bus Driver will ignore these images. The exact
mechanism by which applications can be loaded and executed from a PCI Option
ROM is outside the scope of this document.

A journey in the Unified Extensible Firmware Interface (UEFI) 33

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Using strings on the file the following item can be found:

c:\data\work\tools_efitools\trunk\ringzeroaccesslibrary\win\kernelmodedriver\obj
fre_wlh_x86\i386\DBUtilDrv2_32.pdb

The driver has not been studied further, and unfortunately no clear evidence of the use of

the capsule could be found. In reality, and quoting Vincent Zimmer himself in a very

recent blog post (Zimmer, 2012), the Windows OS offers very limited access to UEFI so

far, so that the UEFI runtime services are at the day of today pretty much not in use.

 Because a runtime service can technically link a ring-3 user to anything the

service offers, a modified UEFI driver could technically link a runtime service to a

System Management Interrupt, which from there would launch the same kind of

undetectable exploits as described in 5.2. A runtime service could also, for instance, be

used to get access to a block device, or to the whole memory range, to make use of the

network card without using any of the OS drivers.

5.6. On the scripting capability and binary shell execution

The UEFI BIOS offer the ability to access the command line, which is an

interesting mix between DOS and UNIX commands. The shell happens before the

ExitBootServices(), meaning that the boot services are available. The UEFI shell is a 21st

century DOS environment, in the sense it is a single user mode with access to all

resources. The environment was originally created for hardware vendors, integrators and

BIOS developers to test the capability of their systems. Because of the scripting

capabilities, and the ease of development by mean of the freely available EDK II,

applications could be created at pre-OS level. This full access to the system means any

application badly written, or written for a bad purpose, could be harmful for the system

itself. There are obviously some interesting applications that should ease for instance

forensics examiners (like dd for UEFI), but it is out of the scope of this document.

A journey in the Unified Extensible Firmware Interface (UEFI) 34

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Recently, a bootkit attack against Windows 8 has been demonstrated, where the

fact that the early stage of windows boot happens before the ExitBootServices() could be

exploited in conjunction with the fact that UEFI applications or drivers can reside on any

block device, in this case the GPT hidden partition (Allievi, 2012). This is a good

example of the danger of a powerful pre-boot environment.

6. Online Resources and Tools

Two main categories of tools exist to assist in extracting or modifying the ROM

binaries. First of all, and for obvious reasons, tools are being developed by BIOS vendors

to help hardware integrators to tweak them to their likings and to allow end-users to flash

the upgrade on their motherboard. The tools are coming from Intel, Phoenix, AMI,

Award and Insyde. There is also the UEFI Forums’ development toolkit which allows

new drivers and applications to be coded.

The second category is the one filled by non-official tools. Interestingly enough,

the tools are mostly developed for hardware modders. It permits them to change some

settings unavailable from the BIOS interface and to replace an Option ROM with a

modified one (typical for video cards). As a general rule, these tools are also BIOS

vendor specific.

To start digging into BIOS modification resources, the following forums are

worth visiting.

My Digital Life : http://forums.mydigitallife.info/

BIOS Mods : http://www.bios-mods.com/

The Rebels Haven : http://www.rebelshavenforum.com/sis-bin/ultimatebb.cgi

Wim’s BIOS : http://www.wimsbios.com/forum/

A journey in the Unified Extensible Firmware Interface (UEFI) 35

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

6.1. Intel BIOSs

The Intel Integrator Toolkit v5.01 is an official tool to modify UEFI BIOS. It

allows you to select from a list of motherboards and will download whichever version of

the firmware you want to modify. It allows the change of logos, the default values of the

settings, and specific details about the SMBIOS (Some motherboards require the v4.0

toolkit).

Figure 16: Intel Integrator Toolkit

While this was not meant to be a hacker tool, the benefit of this tool is that you

are able to access all BIOS revisions for all available Intel motherboards. This tool will

allow you to create a perfectly valid ROM with some interesting options to consider, such

1 http://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=20829

A journey in the Unified Extensible Firmware Interface (UEFI) 36

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

as Unattended BIOS Configuration and the Execute Disable Bit; creating a valid BIOS,

with a downgraded security posture, is a first step towards exploitation!

6.2. Phoenix BIOSs

Phoenix WinPhlash 1.7.16.02 is a tool to backup, and load, firmware on Phoenix
based motherboards (such as some DELL computers).

Figure 17 : WinPhlash

The tool only works on a Phoenix-based motherboard and also exists as a 64 bit

version (WinPhlash64). It is used to extract the original BIOS and flash a modified one,

and the tool can be rebranded by hardware integrators. While it has limited capabilities

for modifying its configuration, an alternate tool, discussed in 6.5 will allow the proper

insertion, removal or change of specific GUID and to recreate a valid UEFI FFS.

o 2 http://www.bios-

mods.com/tools/index.php?dir=Phoenix+WinPhlash+v1.7.16.0%2F&download=Pho
enix+WinPhlash+v1.7.16.0.zip

A journey in the Unified Extensible Firmware Interface (UEFI) 37

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

6.3. American Megatrends (AMI) BIOSs

AMI version of UEFI BIOS is called Aptio, and. MMTool Aptio v 4.50.0.23

allows to modify a BIOS file by extracting, inserting, deleting or replacing modules

(identified by their GUID) in a ROM FFS.

Figure 18: MMTool Aptio

The ROM file above is from a Lenovo ThinkServer RD630. At index 53, the

presence of the UEFI shell can be identified. This tool, combined with the AMIFlash3 or

3 http://www.ami.com/support/downloads/amiflash.zip

A journey in the Unified Extensible Firmware Interface (UEFI) 38

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

its Linux equivalent, AFULNX4 (here embedded with the Lenovo BIOS) should be

enough to manipulate Aptio-based ROM binaries. These two applications allow you to

back-up the current version or flash another binary.

6.4. Insyde BIOSs

Insyde BIOS is what some HP products, and VMWare, are using. InsydeFlash5

version 4.0.7.3 is the application which allows the EEPROM to be backed-up or flashed

(the DOS based version is called FlashIT6). There is another tool from Insyde, called

InsydeFDPacker7, but only an older version (2.0.6) could be found embedded with

InsydeFlash version 3.53. This tool allows the creation of an executable with everything

embedded for flashing the firmware. Nevertheless, as for Phoenix UEFI images, a third-

party application, covered in the next section, will allow to properly modify the Insyde

BIOSs.

Figure 19: InsydeFDPacker

4 http://download.lenovo.com/ibmdl/pub/pc/pccbbs/thinkservers/bios_rd530_v205.tgz

5 http://www.mediafire.com/?d6fgcgqq08cwc3n

6 http://www.mediafire.com/?tlsbq634hinzavn

7 http://www.biosrepair.com/biosfiles/InsydeFlash%203.53.rar

A journey in the Unified Extensible Firmware Interface (UEFI) 39

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

6.5. Generic

There is one tool which is very handy when dealing with UEFI images and it has

several names. It used to be called the PhoenixTools, more recently called

Phoenix/Dell/EFI SLIC MOD8 v 2.12. The tool works with some legacy BIOS (hence

the reference to Dell, Phoenix and Insyde) but can also decode UEFI FFS. While

primarily meant to modify SLIC and SLP, as explained in 5.3, the tool can also allow

viewing, inserting, replacing and deleting elements of a UEFI firmware, which means

that the features lacking with some BIOS vendor-specific tools are actually provided by

this underground tool. The tool can read the VMware EFI64 image, as seen below:

Figure 20 : VMWare EFI64 FFS in PhoenixTools

8 http://www.sendspace.com/file/cztx25

A journey in the Unified Extensible Firmware Interface (UEFI) 40

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

As well as the Dell Optiplex 990 EFI ROM extracted using WinPlash. The tool

can be used to extract EFI applications or drivers to be reused in another firmware,

perhaps from another vendor as well.

Figure 21 : Dell Optiplex 990-A02 structure with PhoenixTools

Another useful tool is RW-Everything9, and version 1.4.9 has been tested. The

tool can help viewing and extracting the tables available in the system: SMBIOS, ACPI-

related ones like the DSDT or RSDT. It can also extract the content of Option ROMs.

9 http://jacky5488.myweb.hinet.net/

A journey in the Unified Extensible Firmware Interface (UEFI) 41

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Figure 22: RW-Everything on a Toshiba Tecra Laptop

6.6. The development environment

Initially called the EFI Development Kit (EDK), at that time mostly an Intel

initiative, it became EDK II when UEFI became v2.0 and came with a UEFI

implementation called TianoCore, for which all the source code and libraries were

available. The UEFI Development Kit (UDK 2010)10 is based on stable and validated

code from EDK II. Additionally, starting from EDK II the code can be compiled with

10 http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=UDK2010

A journey in the Unified Extensible Firmware Interface (UEFI) 42

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

GCC, whereas before the development environment had to run on Microsoft Windows

only.

The UDK2010 comes with some base tools for developers. Two tools are

definitely needed to handle firmware image properly: GenFfs and GenSec. GenSec’s

role is to take, as input, an EFI binary (being most likely an application or a driver) and

make a FFS-compatible section of it. (Files on Flash File Systems can be composed of

sections, as explained in (PI Working Group, 2012)). GenFfs is used to take one or more

sections to structure them into a File (or module) that can be integrated into a Flash File

System. The tricky bit with such file systems is that specific details regarding block size

and alignment needs to be extracted from the File Volume when the File is created with

GenFfs. The other point of contention is related to the different status that can be given to

files and sections within a File volume. Some options seem to be missing from the EDK

tools, but having wrong parameters in the file or section headers can potentially result in

unbootable systems.

In the case of VMWare, the example given in 4.4 has an extra layer of

complexity, and the GenSec and GenFfs need to be used first on the module to be

inserted or replaced on the compressed file Volume, then when done, it needs to be

compressed with lzma. The resulting file has to be included in a section using these

commands:

The insertion of the generated module can be done with MMTool or the

PhoenixTools. The former does not handle the GUID section within a GUID File

properly and creates an empty section in the firmware, whereas the PhoenixTools is able

to handle the replacement file properly. However, byte to byte comparison between the

original firmware, and the modified one, shows unsuitable file status in the FFS header.

lzma embeddedFileVolume.ffs

GenSec -o FileVolume.SEC -s EFI_SECTION_GUID_DEFINED -c PI_NONE -g EE4E5898-3914-
4259-9D6E-DC7BD79403CF -l 0 -r PROCESSING_REQUIRED embeddedFileVolume.ffs.lzma

GenFfs -o FileVolume.MOD -t EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE -g 20BC8AC9-
94D1-4208-AB28-5D673FD73486 -s -i fileVolume.SEC

A journey in the Unified Extensible Firmware Interface (UEFI) 43

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

While the section status can be set with GenFv, the file status is missing from the options

with GenFfs, and as any hexeditor modification is also breaking the checksum of the file

content, this is also not a solution. This means that the base tools of the EDK II might

need to be modified to allow more flexibility for UEFI hackers. While the theory is still

valid, VMware refused to start with the modified firmware; this problem has also been

found on physical hardware11.

One point to consider when wanting to add applications to UEFI is the

unavailability of the FFS when in the shell. The binaries need to be loaded from

elsewhere, like a FAT volume (USB stick), or maybe the network. In contrary to drivers

that can reside on the FFS, and that will be loaded by the DXE dispatcher, for an UEFI

application residing on the firmware volume to be executable from the shell, it would

require the assistance of a third party DXE driver, called the EDK II FileSystemPkg12.

This is definitely a driver to include in hacked firmware if there is a need to have access

to other applications stored on that firmware.

Finally, the EFI Toolkit13 v2.0.0.1 is worth mentioning. It contains a pack of

applications, with the corresponding source code, that can be used as basis for further

development, or as nice add-ons to a UEFI shell. The Toolkit provides ifconfig, route,

ping but also a python interpreter and other useful examples.

11 http://forums.mydigitallife.info/threads/13194-Tool-to-Insert-Replace-SLIC-in-Phoenix-Insyde-
Dell-EFI-BIOSes/page280

12 https://github.com/cfdrake/FileSystemPkg

13 http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EFI_Toolkit

A journey in the Unified Extensible Firmware Interface (UEFI) 44

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

7. Conclusions

UEFI has three main goals: to make it easier for developers, integrators and

hardware manufacturers; to fix the legacy issues of hardware support and boot device

selection; and to be future-proof by means of a modular design. There is little doubt these

goals are being achieved and that the building blocks are very well thought out, but based

on its potential power (basically an OS before the OS) and the legacy elements that have

to be carried over, UEFI could very much become a Pandora’s Box that has just been

cracked open. Never before was the pre-boot environment so convenient for the power

user, so well documented, so properly supported by means of a development environment

and libraries. Never before was the BIOS code so portable up to cross-platform level, and

never before was it so easy to add extra code to be executed at pre-boot level that could

reside on the local hard drive or even on the network.

Sadly, the security considerations for its design came too late and are not

enforced, allowing manufacturers and developers to make it happen with only usability

and cost in mind. The security community should be worried on the exploitation paths

UEFI could be victim of, or could facilitate. They should, at the enterprise level, ensure

that all security measures proposed by the UEFI specifications are set. Another mitigation

measure is the enforcement of the Intel Trusted Execution Technology (TxT) or the

AMD Presidio, which allow safe execute of code, even on untrusted environments.

A lot of power can be gained, with much less effort than with the legacy BIOS,

and as such, we might be looking at the dawn of another wave of BIOS-based malware.

A journey in the Unified Extensible Firmware Interface (UEFI) 45

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

8. Bibliography

Allievi, A. (2012, September 9). UEFI technology: say hello to the Windows 8 bootkit!
Retrieved from http://www.itsec.it/2012/09/18/uefi-technology-say-hello-
to-the-windows-8-bootkit/

Brouwer, A. E. (n.d.). A20 - a pain from the past. Retrieved from Technische
Universiteit Eindhoven: http://www.win.tue.nl/~aeb/linux/kbd/A20.html

BSDaemon, c. (2008). System Management Mode Hack - Using SMM for "Other
Purposes. Phrack 65.

Collins, R. R. (1997, January). Intel's System Management Mode. Retrieved from Dr
Dobbs' undocumented corner:
http://www.rcollins.org/ddj/Jan97/Jan97.html

Compaq, Phoenix, Intel. (1996, January 11). BIOS boot specification 1.01. Retrieved
from http://www.scs.stanford.edu/nyu/04fa/lab/specsbbs101.pdf

Dice, P. (2011). The flow of booting an Intel Architecture system.
DMTF. (2011). SMBIOS Reference Specifications.
Heasman, J. (2006). Implementing and Detecting a ACPI BIOS rootkit.
Heasman, J. (2007). Implementing and detecting a PCI rootkit.
Hoffman, A. (1989). Assembleur sur PC. Paris: Micro Applications.
Intel. (2008, March). Intel® X48 Express Chipset datasheet. Retrieved from

http://www.intel.com/Assets/PDF/datasheet/319122.pdf
Intel. (2010). UEFI Development environment update. Retrieved from intel.com:

http://software.intel.com/sites/default/files/m/1/f/0/3/4/31686-
11_UEFI_Development_Environment_Update.pdf

Intel Press. (2011). Intel 64 and IA-32 Architecture Software Developer's manuals.
Intel Press.

Kholodov, I. (2007). CIS-77 Introduction to Computer Systems. Bristol Community
College.

Loïc Duflot, D. E. (2006). Using CPU System Management Mode to Circumvent
Operating System Security Functions.

Loïc Duflot, O. L. (2009). ACPI et routines de traitement de la SMI: des limites à
línformatique de confiance?

Michael Rothman, T. L. (2009). Harnessing the UEFI shell: moving the platform
beyond DOS. Santa Clara: Intel Press.

Oracle Corporation. (n.d.). VBoxPkg.fdf - VirtualBox Flash Device. Retrieved from
http://www.virtualbox.org/svn/vbox/trunk/src/VBox/Devices/EFI/Firmw
are2/VBoxPkg/VBoxPkg.fdf

Phoenix. (2009, January 9). BIOS Undercover: Launching A Legacy Option ROM In
SecureCore-Tiano. Retrieved from
http://blogs.phoenix.com/phoenix_technologies_bios/2009/01/bios-
undercover-launching-a-legacy-option-rom-in-securecoretiano.html

PI Working Group. (2012). Platform Initialization Framework 1.2.1. UEFI Forum.
Rafal Wojtczuk, J. R. (n.d.). Attacking SMM Memory via Intel® CPU Cache Poisoning.
Salihun, D. M. (2007). BIOS Disassembly Ninjutsu Uncovered. Wayne: A-List, LLC.

A journey in the Unified Extensible Firmware Interface (UEFI) 46

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Techie, G. (2010, February 25). How SLP and SLIC Works. Retrieved from
http://www.guytechie.com/articles/2010/2/25/how-slp-and-slic-
works.html

UEFI Spec Working Group. (2012). Unified Extensible Firmware Interface
Specifications 2.3.1 Errata B. UEFI Forum.

Vincent Zimmer, M. R. (2010). Beyond BIOS: Developing with the Unified Extensible
Firmware Interface (2nd ed.). Santa Clara: Intel Press.

Wecherowski, F. (2009). A Real SMM Rootkit: Reversing and Hooking BIOS SMI
Handlers. Phrack 66.

Zimmer, V. (2012, 12 18). Accessing UEFI from Operating System. Retrieved from
http://vzimmer.blogspot.be/2012/12/accessing-uefi-form-operating-
system.html

