
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Reverse Engineering Malware (GREM)

Practical Assignment (v1.0)

16 September 2004

Analyzing a BackDoor-CGM Trojan

Prepared by:

Andrew Mackie

Abstract: This report describes an analysis process applied to an unknown
malware specimen. The report begins with a detailed description of the
laboratory set-up established to contain and examine the malware. The
findings of each step of the analysis are documented and, where possible,
observations are made about the implications of the findings. Some of the
inner workings of this Trojan were successfully revealed. The report
concludes with an assessment of the capabilities of the malware and the
threat it poses to my organization.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 2 -

1 INTRODUCTION

The sharing of information is essential to business operations. Unfortunately the
creativity of those developing malicious software (malware) is making it ever
more difficult for businesses to protect themselves while they share information
between their IT systems. The Internet has become a perilous place for the
unwary.

The IT security community must continue to analyse the techniques and
strategies used by malware authors so that defences can be improved.
Fundamental to this is the reverse engineering of malware and sharing the
knowledge gained so that there is benefit to the entire IT community.

This report provides a detailed assessment of an unknown specimen of malware.
The report details the laboratory techniques used to isolate the specimen,
describes the analysis techniques used and the information gained as a result of
the analysis.

The practical assignment report begins with a description of the laboratory set-up
in section 2.

Section 3 describes the properties of the malware specimen provided for
analysis.

Section 4 offers a behavioural analysis of the malware specimen infecting a
system in the laboratory.

Section 5 provides the results of a code analysis of the malware specimen.

The report concludes with an analysis wrap-up in section 6.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 3 -

2 LABORATORY SETUP

A Dell Dimension XPS T500 computer (500 MHz PIII with 512 MB memory) with
a new 40 GB Maxtor hard drive was set up as a dedicated malware analysis
computer. Windows 2000 Professional was installed as the host operating
system. The required display driver was installed to support the ATI Radeon
7500 add-in video controller board for this computer. The latest Windows service
pack (SP4) was applied from a distribution CD. This machine was used as the
physical host computer onto which guest virtual machines were installed.

Virtual Machines

Guest virtual machines are accomplished using a licensed version of VMware
workstation 4 running on the host computer. VMware workstation software allows
a single physical host computer to concurrently run a variety of guest operating
systems and their applications. Host-only networking creates a network that is
completely contained within the physical host computer [VM]. Configuring each
virtual machine to use host-only networking allows each to inter-communicate
among themselves and with the underlying physical host as though they shared
the same network hub. The IP addressing for host-only networking is provided by
Vmware’s DHCP server service. The result of this configuration is a completely
isolated networked environment of heterogeneous systems on one stand-alone
computer.

As the analysis progressed, virtual machines were installed and/or configured to
provide services that the malware attempted to contact.

Configuration of Windows Malware Analysis Virtual Machine

A Windows 2000 Professional virtual machine was created and installed with
host-only networking. It was configured with 64MB RAM and 1.0GB disk space.
Once the virtual machine had been installed the IP address was determined to
be 192.168.92.128 and connectivity between physical host and virtual machine
was confirmed. This machine provided an environment for analysis of Windows-
based malware. The VMware Tools was installed and the display settings re-
configured to 800x600.

The ILOT X CD, provided as course material, was the source of most of the
utilities. An evaluation version of WinZip [WZ] was installed on the virtual
machine so that other tools could be extracted from the CD and installed. The
executables for the following tools were installed directly into the c:\WINNT
directory of the virtual machine:

 upx.exe [UP] compressed file unpacker;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 4 -

 md5sum.exe [MD] file checksum calculator;

 strings.exe [ST] string extraction utility; and

 nc.exe [NC1] NetCat multi-purpose network utility.

All files for these additional tools were extracted from archives on the CD into
folders under c:\Program Files:

 LordPE [LP] Portable Execution (PE) file editing and dumping tool;

 Filemon [SI1] file activity monitoring utility;

 Regmon [SI2] registry activity monitoring utility;

 TDIMon [SI3] network activity monitoring utility;

 Regshot [RS] registry snapshot comparison tool;

 BinText [BT] binary to text conversion tool; and

 OllyDbg [OD1] executable debugging tool.

All files from the OllyDbg plug-in [OD2] ZIP archive on the CD were extracted into
the folder for OllyDbg. Desktop shortcuts were created for each of the above
tools. Finally IDA Pro [ID] was installed from the CD using its installation wizard.

As a precaution the integrity of the source file for each installed tool was verified
using the md5sum utility and comparing its results to the values provided in the
associated md5 text files on the CD.

Returning to the physical host, a VMware snapshot was made of the virtual
machine before shutting this machine down and making a copy of the Windows
2000 Professional folder under c:\My Documents\My Virtual Machines. This
provided two levels of backup from which the trusted image of the Windows
virtual machine could be restored.

An additional PsKill [SI4] utility from Sysinternals was added later in the analysis
process. It was obtained from the Internet to allow killing of the malware process.

Configuration of Linux Target Virtual Machine

The ILOTX CD provided the folder for a pre-configured Red Hat Linux 9.0–REM
virtual machine. It had been configured with 64MB RAM and 0.6GB disk space.
The folder of files for this virtual machine was extracted into c:\My Documents\My
Virtual Machines on the physical host. This RedHat-REM machine was accessed
using VMware’s File/Open and its host-only configuration was confirmed under
its virtual machine settings. The machine was started and logged onto
successfully using the root password provided in the course notes. It’s IP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 5 -

address of 192.168.92.130 was noted and connectivity with the underlying
physical host was confirmed.

These pre-installed Linux system utilities were used in this analysis:

 NetCat [NC2];

 IRCD and its IRCII client [IR]; and

 Snort [SN].

Configuration of Physical Host

The NetCat (nc.exe) utility from the ILOT X CD was installed in c:\WINNT on the
physical host. Figure 1 below shows the lab environment with the physical
Windows 2000 host attached to a virtual hub network with its three guest virtual
machines.

Lab Network 192.168.92.0/24

Windows 2000
192.168.92.128

Linux
192.168.92.130

Physical Host
Windows 2000
192.168.92.1

Figure 1 Isolated Malware Analysis Laboratory Network

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 6 -

3 PROPERTIES OF THE MALWARE SPECIMEN

The specimen of malware was provided in a password-protected archive. This
archive file was downloaded from the course site and transferred to CD for
transfer to the isolated analysis computer. The specimen was extracted to the
Windows 2000 virtual machine. The Windows file properties of the extracted file
(msrll.exe) indicated it was an application of size 41,984 bytes.

The bintext utility provided the following strings in the malware specimen:

0040004D !This program cannot be run in DOS mode.
00400178 .text
004001A0 .data
004001F0 .idata
00400218 .aspack
00400240 .adata

The following strings were found at the end of the file:

0051D071 VirtualAlloc
0051D07E VirtualFree
0051D441 kernel32.dll
0051D44E ExitProcess
0051D45A user32.dll
0051D465 to 0051DF6C showed various messages, system calls and data
0051EC81 msvcrt.dll
0051E08C msvcrt.dll
0051E097 shell32.dll
0051E0A3 user32.dll
0051E0AE version.dll
0051E0BA wininet.dll
0051E0C6 ws2_32.dll
0051E113 to 0051E192 showed various messages, system calls and data

The suspicion that msrll.exe had been compressed was confirmed by loading the
file for OllyDbg analysis. OllyDbg statistical testing suggested that the code
section might have been compressed or encrypted.

An MD5 hash of the file was obtained using md5sum.exe. Its value was
84acfe96a98590813413122c12c11aaa.

Opening the malware specimen with the DOS editor showed the first two bytes
as “MZ” which indicated that the file was most likely an executable. The first

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 7 -

string of the file and those at the end of the file indicated msrll.exe was likely a
Windows executable.

4 BEHAVIORAL ANALYSIS

The behavioural analysis of the specimen began by using the RegShot utility to
determine the changes made to the target Windows system by the specimen.
This was followed by a more detailed analysis using monitoring tools to track
changes to the file system, changes to the registry and any network activity.
Initial observations were drawn from the results of this monitoring and the
laboratory environment was adjusted to accommodate the expectations of the
specimen. This process of giving the malware what it expects then observing the
results was repeated until it was felt that little more could be obtained from such
observation.

Changes Made by Malware
A snapshot of the Windows 2000 virtual machine was made using Regshot.exe
before the malware specimen was first executed. The scan dir parameter was set
to c:\ for this first shot.

In a DOS command window the netstat –a command was run to identify the initial
network connections before infection. The Task Manager monitoring utility was
activated and the malware specimen was executed by double-clicking on its file
icon. A new entry (msrll.exe) was added to list of active processes. After giving
the malware sufficient time to contaminate the machine (45 seconds) the
msrll.exe process was selected in the process list and its processing was
stopped. A second Regshot capture was made and compared to the first to give
the following important changes:

Table 1 Summary of Changed Values

Change Description
HKLM\SYSTEM\ControlSet001\Services\mfm
HKLM\SYSTEM\ControlSet001\Services\mfm\Security
HKLM\SYSTEM\CurrentControlSet\Services\mfm

Key added

HKLM\SYSTEM\CurrentControlSet\Services\mfm\Security
Change Description Value

HKLM\SYSTEM\ControlSet001\Services\mfm\Security\S
ecurity

String of hex values

HKLM\SYSTEM\ControlSet001\Services\mfm\Type 0x00000120
HKLM\SYSTEM\ControlSet001\Services\mfm\Start 0x00000002
HKLM\SYSTEM\ControlSet001\Services\mfm\ErrorContr
ol

0x00000002

Key Values
Added

HKLM\SYSTEM\ControlSet001\Services\mfm\ImagePat
h

“C:\WINNT\System3
2\mfm\msrll.exe”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 8 -

HKLM\SYSTEM\ControlSet001\Services\mfm\DisplayNa
me

“Rll enhanced drive”

HKLM\SYSTEM\ControlSet001\Services\mfm\ObjectNa
me

“LocalSystem”

HKLM\SYSTEM\CurrentControlSet\Services\mfm\Securi
ty\Security

String of hex values

HKLM\SYSTEM\CurrentControlSet\Services\mfm\Type 0x00000120
HKLM\SYSTEM\CurrentControlSet\Services\mfm\Start 0x00000002
HKLM\SYSTEM\CurrentControlSet\Services\mfm\ErrorC
ontrol

0x00000002

HKLM\SYSTEM\CurrentControlSet\Services\mfm\Image
Path

“C:\WINNT\System3
2\mfm\msrll.exe”

HKLM\SYSTEM\CurrentControlSet\Services\mfm\Displa
yName

“Rll enhanced drive”

HKLM\SYSTEM\CurrentControlSet\Services\mfm\Object
Name

“LocalSystem”

HKU\S-1-5-21-507921405-1614895754-1801674531-
1000\Software\Microsoft\Windows\CurrentVersion\Explo
rer\UserAssist\{75048700-EF1F-11D0-9888-
006097DEACF9}\Count\HRZR_EHACNGU:P:\Qbphzrag
f naq Frggvatf\ive20001\Zl Qbphzragf\zfeyy.rkr

02 00 00 00 06 00
00 00 40 A9 D9 F8
E3 8A C4 01

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed Changed twice
HKU\S-1-5-21-507921405-1614895754-1801674531-
1000\Software\Microsoft\Windows\CurrentVersion\Explo
rer\UserAssist\{75048700-EF1F-11D0-9888-
006097DEACF9}\Count\HRZR_EHACNGU

Changed twice
Key Values
Modified

HKU\S-1-5-21-507921405-1614895754-1801674531-
1000\Software\Microsoft\Windows\CurrentVersion\Intern
et Settings\Connections\SavedLegacySettings

Changed twice

Change Description
C:\WINNT\system32\mfm\jtram.confFiles Added
C:\WINNT\system32\mfm\msrll.exe

Files Deleted C:\Documents and Settings\vir20001\My Documents\msrll.exe
C:\Documents and Settings\vir20001\Cookies\index.dat
C:\Documents and Settings\vir20001\Local
Settings\History\History.IE5\index.dat
C:\Documents and Settings\vir20001\Local Settings\Temporary Internet
Files\Content.IE5\index.dat
C:\Documents and Settings\vir20001\NTUSER.DAT
C:\Documents and Settings\vir20001\ntuser.dat.LOG
C:\WINNT\system32\config\software
C:\WINNT\system32\config\software.LOG
C:\WINNT\system32\config\system

Files
[attributes?]
Modified

C:\WINNT\system32\config\SYSTEM.ALT
C:\WINNT\system32\mfm
C:\WINNT\system32\mfm\.

Folder Added

C:\WINNT\system32\mfm\..

The reasons for modifying all the keys and file attributes listed in Table 3 were not
immediately obvious. The creation of the new “c:\WINNT\system32\mfm” folder
and dropping of two new files into this folder was noted. The removal of the
original infecting malware file was also noted. Attempts to access some of the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 9 -

files (eg., NTUSER.DAT and ntuser.dat.log under the vir20001 user folder)
indicated some of the key settings applied were self-protective access controls.

The netstat –a command was re-run on the infected Windows virtual machine to
see what new connections might have been established by the malware. It was
noted that two new TCP connections were now in the listening state on TCP
ports 113 and 2200.

Secondary Monitoring
The original VMware snapshot was restored and the malware specimen
extracted from CD in preparation for more extensive analysis. Monitoring was
started using the Filemon, Regmon and TDImon utilities on the Windows 2000
virtual machine. The monitoring for each was paused while the windows were
sized and positioned so that the folder containing the malware specimen
remained visible. The task manager was activated before re-activating each of
the paused monitoring. Finally the malware specimen (msrll.exe) was executed
for another 45 seconds before stopping the capturing of events by the three
monitoring utilities and ending the msrll.exe process.

It was noted that the file for the malware specimen was removed from its original
location. The Regmon monitoring showed that msrll.exe checks and often
changes many registry settings, some of the more interesting of which are
summarized in the following table:

Table 2 Summary of Regmon Monitored Events

Process Action Key Status
msrll.exe Create HKLM\Software\Microsoft\Windows\CurrentVersion\

Explorer
SUCCESS

msrll.exe Create HKCU\SOFTWARE\Microsoft\Windows\CurrentVer
sion\Internet Settings

SUCCESS

services.
exe

CreateKey HKLM\System\CurrentControlSet\Services\mfm SUCCESS

services.
exe

CreateKey HKLM\System\CurrentControlSet\Services\mfm\Se
curity

SUCCESS

services.
exe

SetValue HKLM\System\CurrentControlSet\Services\mfm\Se
curity\Security

SUCCESS

msrll.exe CreateKey HKLM\SOFTWARE\Microsoft\Cryptography\RNG
(multiple times)

SUCCESS

msrll.exe Enumerate
Value

HKLM\Software\Microsoft\Windows\CurrentVersion\
URL\Prefixes\ftp

SUCCESS
"ftp://"

msrll.exe Enumerate
Value

HKLM\Software\Microsoft\Windows\CurrentVersion\
URL\Prefixes\gopher

SUCCESS
"gopher://"

msrll.exe Enumerate
Value

HKLM\Software\Microsoft\Windows\CurrentVersion\
URL\Prefixes\home

SUCCESS
"http://"

msrll.exe Enumerate
Value

HKLM\Software\Microsoft\Windows\CurrentVersion\
URL\Prefixes\mosaic

SUCCESS
"http://"

msrll.exe Enumerate
Value

HKLM\Software\Microsoft\Windows\CurrentVersion\
URL\Prefixes\www

SUCCESS
"http://"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 10 -

Process Action Key Status
msrll.exe CreateKey HKCU\Software\Microsoft\Windows\CurrentVersion\

Explorer\MountPoints\C
SUCCESS

msrll.exe Create HKLM\Software\Microsoft\Windows\CurrentVersion\
Explorer

SUCCESS

msrll.exe Create HKCU\SOFTWARE\Microsoft\Windows\CurrentVer
sion\Internet Settings

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\User Shell Folders

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Shell Folders

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\User Shell Folders

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Shell Folders

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\User Shell Folders

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Shell Folders

SUCCESS

msrll.exe CreateKey KLM\Software\Microsoft\Tracing SUCCESS
msrll.exe QueryValue HKLM\Software\Microsoft\Tracing\RASAPI32\FileDi

rectory
SUCCESS
"%windir%\trac
ing"

msrll.exe CreateKey HKLM\Software\Microsoft\Windows\CurrentVersion\
Explorer\User Shell Folders

SUCCESS

msrll.exe CreateKey HKLM\System\CurrentControlSet\Services\Tcpip\P
arameters

SUCCESS

msrll.exe CreateKey HKLM\System\CurrentControlSet\Services\Tcpip\P
arameters

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon

SUCCESS

msrll.exe CreateKey HKLM\Software\Microsoft\Windows\CurrentVersion\
Explorer\Shell Folders

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\User Shell Folders

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\Windows\CurrentVersion\
Explorer\Shell Folders

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\windows\CurrentVersion\
Internet Settings

SUCCESS

msrll.exe SetValue HKCU\Software\Microsoft\windows\CurrentVersion\
Internet Settings\ProxyEnable

SUCCESS

msrll.exe DeleteValu
eKey

HKCU\Software\Microsoft\windows\CurrentVersion\
Internet Settings\ProxyServer

NOTFOUND

msrll.exe DeleteValu
eKey

HKCU\Software\Microsoft\windows\CurrentVersion\
Internet Settings\ProxyOverride

NOTFOUND

msrll.exe DeleteValu
eKey

HKCU\Software\Microsoft\windows\CurrentVersion\
Internet Settings\AutoConfigURL

NOTFOUND

msrll.exe CreateKey HKCU\Software\Microsoft\windows\CurrentVersion\
Internet Settings\Connections

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\windows\CurrentVersion\
Internet Settings\Connections

SUCCESS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 11 -

Process Action Key Status
msrll.exe CreateKey HKCU\Software\Microsoft\windows\CurrentVersion\

Internet Settings
SUCCESS

msrll.exe CreateKey HKCC\Software\Microsoft\windows\CurrentVersion\
Internet Settings

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\windows\CurrentVersion\
Internet Settings\Connections

SUCCESS

msrll.exe CreateKey HKCU\Software\Microsoft\windows\CurrentVersion\
Internet Settings\Connections

SUCCESS

msrll.exe CreateKey HKLM\System\CurrentControlSet\Services\Tcpip\P
arameters

SUCCESS

msrll.exe CreateKey HKLM\System\CurrentControlSet\Services\Tcpip\P
arameter

SUCCESS

msrll.exe CreateKey HKLM\System\CurrentControlSet\Services\Tcpip\P
arameters

SUCCESS

msrll.exe CreateKey HKLM\SOFTWARE\Microsoft\Cryptography\RNG
(many times)

SUCCESS

msrll.exe OpenKey HKLM\SOFTWARE\Microsoft\Cryptography\Default
s\Provider\Microsoft Base Cryptographic Provider
v1.0

SUCCESS

msrll.exe QueryValue HKLM\SOFTWARE\Microsoft\Cryptography\Default
s\Provider\Microsoft Base Cryptographic Provider
v1.0\Image Path (4 times)

SUCCESS

msrll.exe QueryValue HKLM\Software\Microsoft\Cryptography\MachineGu
id (4 times)

SUCCESS

Again the reasons for most of these registry manipulations were not readily
apparent at this stage of the analysis. As noted before, some appear to set
strong access controls on files the malware uses. The Filemon monitoring
revealed the interesting activities summarized in the table below:

Table 3 Summary of Filemon Monitored Events

Process Action Key Status
msrll.exe Create C:\WINNT\System32\mfm SUCCESS
msrll.exe Create C:\WINNT\System32\mfm\msrll.exe SUCCESS
msrll.exe Write C:\WINNT\System32\mfm\msrll.exe SUCCESS
msrll.exe Set

Information
C:\WINNT\System32\shell32.dll SUCCESS

msrll.exe Set
Information

C:\WINNT\System32\mfm\msrll.exe SUCCESS

msrll.exe Delete C:\Documents and Settings\vir20001\My
Documents\msrll.exe

SUCCESS

msrll.exe Set
Information

C:\Documents and Settings\vir20001\Local
Settings\Temporary Internet Files

SUCCESS

msrll.exe Set
Information

C:\Documents and Settings\vir20001\Local
Settings\History

SUCCESS

msrll.exe Set
Information

C:\Documents and Settings\vir20001\Local
Settings\Temporary Internet Files\Content.IE5\

SUCCESS

msrll.exe Set
Information

C:\Documents and Settings\vir20001\Local
Settings\Temporary Internet
Files\Content.IE5\index.dat

SUCCESS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 12 -

Process Action Key Status
msrll.exe Set

Information
C:\Documents and Settings\vir20001\Cookies\ SUCCESS

msrll.exe Set
Information

C:\Documents and
Settings\vir20001\Cookies\index.dat

SUCCESS

msrll.exe Set
Information

C:\Documents and Settings\vir20001\Local
Settings\History\History.IE5\

SUCCESS

msrll.exe Set
Information

C:\Documents and Settings\vir20001\Local
Settings\History\History.IE5\index.dat

SUCCESS

msrll.exe Set
Information

C:\Documents and Settings\vir20001\Local
Settings\Temporary Internet Files\Content.IE5\

SUCCESS

msrll.exe Set
Information

C:\Documents and Settings\vir20001\Local
Settings\History\History.IE5\

SUCCESS

msrll.exe Set
Information

C:\Documents and Settings\vir20001\ntuser.dat.LOG SUCCESS

msrll.exe Query
Information

C:\WINNT\System32\rsabase.dll SUCCESS

msrll.exe Set
Information

C:\WINNT\system32\config\software.LOG SUCCESS
Length:
4096

msrll.exe Set
Information

C:\WINNT\system32\config\software.LOG SUCCESS
Length:
8192

msrll.exe Open C:\dev\random (many times) NOT
FOUND

msrll.exe Write C:\WINNT\system32\mfm\jtram.conf (many sequential
writes)

SUCCESS

This file activity indicates which files are important to the malware’s operations.
After the malware had been running for a while it carried out periodic queries of
the length of the hidden system file C:\Documents and Settings\vir20001\Local
Settings\Temporary Internet Files\content.IE5\index.dat. This may be used for
logging of status. The TDImon monitoring showed attempted UDP probing of the
physical host (192.168.92.1) on port 53 (DNS).

The Windows 2000 virtual machine was restarted and the Task Manager was
used to determine that msrll.exe was running. Attempts to end this process failed
due to access controls applied by the malware during its infection process. This
was overcome by using the PsKill utility to successfully stop the process.

The C:\WINNT\system32\mfm\jtram.conf file created by the malware was opened
for editing. It appeared to be scrambled or encoded in some way. By the
extension it appeared to be a configuration file. The contents of this file are
shown in Table 4 however the original format had a table-like structure of three
columns and six rows.

Table 4 First Version of jtram.conf

CAARAMsx4wHZq1JKZ3pnbtbqpP9XHbDnzZP6cnaOqpkOOQi6tw==
QAIRABNuE0hETp5PKLxeZwi4CEnA9+ujR0UHuUDn2k4wfejV0A==

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 13 -

c/8RACx04pna+dK312xzuyoG8T7CoduakxUk06aAejA2xmUJag==
nQARAGNaync3y7HnndgQk/U2XOJ5P+xIKZ5A/CWnLb0yjwauWQ==
VP8RADfdkAznDweBRVPhMreMMHGp6sRzUazkINo1ZPTt+s+FGQ==
5v0RAIHf5zrQT0eHXeFkqOqksV0XttyIq+ypQdQJ1jUWjtQTXA==
SAARALBrthRXUmYwJGFt1WmsvKSR6ocl+oYU77dS9/Y8PsLIMw==
tgARAG7HnuSHy1wdim8XjNVQ+58C9fdsWUSZ0zbNayAOIXQGLg==
cgFKAKoWujcgHZ4Jwm8Z5Qh3F7FMy6DC4OxuBZN3YLPsXtWo8iQSdnLVa97QQpoNNU9Ykrcml+/x
dKD9GqNZJN8QRNbm1e34CifqmkZYy88FOSOXjlZd4F/kw/rcag==
a/4RAA1xUAYY/gSTk/zMBV7inH7cETQU5aY5mv2IpgMH/sSBFA==
UwARAB4ZLmEiME4x0FvAHSAOg7CzqZB/nzxoh/B28MXFLQ8izw==
jf4RAKzzTs8xuuyPYGjDqiiVV/QfQfKKCMsGHVqSghpkrQYckA==
xP8RAHtNmGn0IQfOIjK3mWbRDH2fx7p/W0meUZ2VbrONjnif5Q==
GgARAB4ebEfaNXfu5JUQPkBfbwG1/dc3w4qh7AzQpAh2nM8NwA==
vv8jAM+IAND3LC9i9slEdpRFhFzAEhI5+LLlcezdoSsOk6KlhFQX7m6kb3Ni7JlyTpKhBW8E0Q==
YP8RAIVqhybFU3U101LKwDBVs5qIpewS4UV/xQOSBiMzARDd/A==
kf4RAOUGXbUbEm5hBOGVdgCA9za6waE0u8PEnCuI7hIGdLFbgw==
UwIjAHjTfmcoeL5cZT7brDNa+6dVI+PHxVksDcYdiTgxUcW6PqywMSt54OofcdB4oKTsxA8aoQ==

This file was renamed and the malware was re-run. A new version of jtram.conf
was created, this time with differently coded contents with the same basic
structure. This indicates that the malware probably requires the presence of this
file.

Monitoring Network Activity
The Linux virtual machine was started and the snort utility was run to capture
network activity using the command snort –vd | tee <filename>. The Windows
virtual machine was reverted to its clean state and re-infected by repeating the
extraction and running of msrll.exe. The infected machine quickly identified that
physical machine was present on the network and sent a DNS query for
“collective7.zxy0.com”.

The Trojan specimen was killed using the DOS command pskill msrll.exe. The
entry “192.168.92.130 collective7.zxy0.com” was added to the
c:\WINNT\system32\drivers\etc\hosts file on the infected machine. The snort
monitoring on the Linux machine was re-started using a different filename and
the Trojan executable was run from its new location of
“\WINNT\system32\mfm\msrll.exe”. The snort logs showed the expected ARP
and NetBIOS broadcasts as well as a repeated pattern of network activity
between the infected Windows virtual machine and the Linux virtual machine.
These were at IP addresses 192.168.92.128 and 192.168.92.130 respectively.
The infected machine expected collective7.zxy0.com to be at 192.168.92.130.
This repeated polling activity is shown in Table 5 below.

Table 5 Summary of Repeated Network Activity

Source Address Protocol Port Destination Address Port Description
192.168.92.128 TCP 1070 192.168.92.130 6667 Infected machine contacts

IRC service on Linux
machine

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 14 -

Source Address Protocol Port Destination Address Port Description
192.168.92.130 TCP 6667 192.168.92.128 1070 No service—reset

connection
The above attempted dialogue occurred twice more
192.168.92.128 TCP 1071 192.168.92.130 9999 Attempt to contact

unknown service
192.168.92.130 TCP 9999 192.168.92.128 1071 No service—reset

connection
The above attempted contact occurred twice more
192.168.92.128 TCP 1072 192.168.92.130 8080 Attempt to contact port

8080
192.168.92.130 TCP 8080 192.168.92.128 1072 No service—reset

connection
The above attempted contact occurred twice more

Capturing Service Activities
The probes of TCP port 6667 were likely attempts to contact an IRCD server.
The IRCD service was started on the Linux virtual machine to confirm this. The
logged in root account was switched to the ircd user (su –ircd), the IRC service
was started (./ircd) and control was returned to the root account (exit). Snort
monitoring showed that the infected machine joined the #mils channel.

Table 6 Joining IRC #mils Channel

=+=
08/28-19:57:11.607975 192.168.92.128:2471 -> 192.168.92.130:6667
TCP TTL:128 TOS:0x0 ID:19956 IpLen:20 DgmLen:53 DF
AP Seq: 0xC24569EC Ack: 0xF456862D Win: 0x4423 TcpLen: 20
4A 4F 49 4E 20 23 6D 69 6C 73 20 3A 0A JOIN #mils :.
=+=

Restarting the infected Windows machine several times showed that the
usernames and nicknames used to join this channel were different each time and
appeared to be comprised of random letters.

The IRC server was stopped and NetCat was run and the following user and
nickname announcements were captured on TCP port 6667 using the command
nc –p <port #> –l –n .

USER ZftQReBb localhost 0 : MhemUxTTxIxEUr
NICK uScZBauPzktW

NetCat captures on ports 9999 and 8080 showed the same pattern of user and
nickname transmissions with random upper and lower case values. This
indicates that msrll.exe is looking for IRC servers on all three ports (6667, 9999
and 8080) and it confirms that the malware repeated its probed for these
services.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 15 -

The IRC server was stopped, the ircd.conf file was altered to switch the port on
which it listens from 6667 to 9999 and the IRC service was re-started. Snort
monitoring was used to observe the activities of the malware when it was re-run.
The steps of this test were repeated, this time changing the IRC port from 9999
to 8080. The malware joined the same #mils channel for all three IRC ports.
There did not appear to be a password involved in any of these attempts. The
malware may use some other security mechanism to protect this channel.

The malware specimen was stopped using PsKill. The IRC server was restarted
to provide services on TCP port 6667 and the malware was re-run. The IRC
service was accessed with a Linux client (irc) and the channel was joined
successfully (/join #mils). The presence of the malware was confirmed with a
who command (/who #mils) but attempts to contact this other user (eg., /msg
#mils hello there, /msg <nick> hello there) elicited no response.

Network monitoring recorded that when the malware joined the #mils channel the
IRC server looked up the hostname of the source using authentication port 113
on the infected machine. Once the lookup had been successfully completed,
netstat showed the infected machine eventually removed this active port. This is
shown below in the netstat - a monitoring snapshot:

Table 7 Authentication by IRC Server

=+
09/05-23:48:12.906718 192.168.92.130:1024 -> 192.168.92.128:113
TCP TTL:64 TOS:0x0 ID:56011 IpLen:20 DgmLen:65 DF
AP Seq: 0x4DDEBFF3 Ack: 0x76FE5997 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 25928 0
31 33 30 37 20 2C 20 36 36 36 37 0D 0A 1307 , 6667..
=+=
09/05-23:48:12.914351 192.168.92.128:113 -> 192.168.92.130:1024
TCP TTL:128 TOS:0x0 ID:1195 IpLen:20 DgmLen:97 DF
AP Seq: 0x76FE5997 Ack: 0x4DDEC000 Win: 0x4463 TcpLen: 32
TCP Options (3) => NOP NOP TS: 120617 25928
31 33 30 37 20 2C 20 36 36 36 37 20 3A 20 55 53 1307 , 6667 : US
45 52 49 44 20 3A 20 55 4E 49 58 20 3A 20 6F 62 ERID : UNIX : ob
71 6D 4A 78 5A 46 53 76 6A 59 4F 6D 0A qmJxZFSvjYOm.
=+=

There were also repeated “PING” and “PONG” message exchanges from the
server to the client to maintain the IRC session.

Table 8 IRC Server Session Keep Alive

=+=
08/28-20:00:14.446451 192.168.92.130:6667 -> 192.168.92.128:2471
TCP TTL:64 TOS:0x0 ID:253 IpLen:20 DgmLen:69 DF
AP Seq: 0xF4568834 Ack: 0xC2456A0E Win: 0x16D0 TcpLen: 20
50 49 4E 47 20 3A 6C 6F 63 61 6C 68 6F 73 74 2E PING :localhost.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 16 -

6C 6F 63 61 6C 64 6F 6D 61 69 6E 0D 0A localdomain..
=+=
08/28-20:00:14.455177 ARP who-has 192.168.92.130 tell 192.168.92.128

08/28-20:00:14.456546 ARP reply 192.168.92.130 is-at 0:C:29:6A:59:5F

08/28-20:00:14.457940 192.168.92.128:2471 -> 192.168.92.130:6667
TCP TTL:128 TOS:0x0 ID:19960 IpLen:20 DgmLen:68 DF
AP Seq: 0xC2456A0E Ack: 0xF4568851 Win: 0x41FF TcpLen: 20
50 4F 4E 47 20 3A 6C 6F 63 61 6C 68 6F 73 74 2E PONG :localhost.
6C 6F 63 61 6C 64 6F 6D 61 69 6E 0A localdomain.
=+=

Since it was noted that the IRC client indicated the localhost address, the
/etc/hosts table on the Linux guest machine was edited to remove localhost
(127.0.0.1). The IRC client had to use the /server 192.168.92.130 command to
connect. As a result the client session showed the IP address of
collective7.zxy0.com. Unfortunately this made no noticeable difference to the
malware; it still did not respond to messages or even to attempts at direct
communications using /msg or /dcc chat commands. The localhost address entry
was restored.

The malware’s use of TCP ports 113, 6667, 9999 and 8080 had been verified.
This left TCP port 2200 to be investigated. A connect to this port was established
using the command telnet 192.168.92.128 2200 from the Linux machine. Upon
successful connection the prompt “#:” was displayed. Typing anything failed to
elicit a response.

A copy of the malware msrll.exe file was extracted to a floppy disk and inserted
into a stand-alone computer protected by McAfee Anti-Virus [NA1]. The virus
scanner automatically detected and cleaned the file a:/msrll.exe. The label
associated with the malware was “BackDoor-CGM Trojan” [MA2]. The McAfee
description of this Trojan was very limited, indicating only that it was of unknown
origin, was a remote access sub-type and had no known aliases.

5 CODE ANALYSIS

The malware appeared to be packed or encrypted. A copy was made of the
msrll.exe specimen before attempting to unpack it with the upx unpacker
supplied on the course CD (upx -d msrll-new.exe). The utility indicated that the
specimen was not packed by upx.

The earlier text analysis showed no strings that indicated the “upx” packer had
been used but there was an “aspack” string. Assuming that this meant the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 17 -

ASPack compression program [AP1] had been applied to compress and obscure
the executable, attempts were made to find a native decompression that would
work for the type and version of compression used on msrll.exe. The AspackDie
1.3d utility [AD] was found to successfully unpack the specimen. The
decompression was carried out with a simple file selection operation using the
utility’s graphical user interface. Since a native unpacker was found it was not
necessary to use the OllyDbg utility to dump the running image of the executable
for analysis.

The bintext utility was used to analyse the decompressed executable. The
following is a list of the observations that could be made about the malware
specimen from its strings:

 Several strings (eg., “smurf” [AO1] and “jolt” [AO2]) indicated the malware
could have a comprehensive set of denial of service tools

 A long list of what appeared to be commands included such interesting
actions as: “?rmdir”, “?clone”, “?clones”, “?login”, “?reboot”, “?update”,
“?exec”, “?kill”, “?killall” and “?crash”

 A section of the code had the strings “?insmod”, “?rmmod”, and “?lsmod”
which indicated an ability to modify Linux kernels

 There appeared to be extensive IRC DCC commands for sending and
receiving files

 There appeared to be extensive cryptographic capabilities including SSL-
protected communications, twelve crypto algorithms, eight different built-n
hash algorithms, three separate block chaining modes, several pseudo-
random number generators and public key (PK) algorithms

 The “GCC compiler detected” string indicated the malware could possibly
detect the presence of a GCC compiler

 There appeared to be a version indication of “m220 1.0 #2730 Mar 16
11:47:38 2004”

 There was the string “Mozilla/4.0” which might be a client indicator in
HTTP requests

IDAPro was used to analyse the decompressed executable, develop a
comprehensive list of strings and provide contextual information that could be
referred to during the actual debugging of the AspackDie unpacked executable
using OllyDbg.

Debugging a complex specimen of code without source code is a matter of
building up a larger picture of its operations using many successive observations
of how small parts of the program work. The debugging started by letting the
executable run on its own then pausing execution (F12) and stepping over (F8)
or sometimes into (F7) the code, watching what gets put on the stack or into
registers. It was found that this main program loop begins at 0040C438. IDA was
used to determine that the loop involves the following procedural steps:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 18 -

Table 9 Mail Code Loop of Malware

loc_40C438: Call PeekMessageA –obtain a message if one exists in the message queue of
the calling thread [MS1]

Jump to loc_40C49D if no message

Call GetMessageA –wait for and obtain a message from the message queue
[MS2]

Jump to loc_40C49D if no message

Call DispatchMessageA–send the message data to a windows procedure [PM]

loc_40C49D: Call sub_40D8CE–operations of subroutine A to be determined

Jump to loc_40C361 based on a result of the previous subroutine

Call sub_40426D–operations of subroutine B to be determined

Call msvcrt.time procedure [MS3]–returns elapsed time

Jump to loc_40C4F8 based on a result of the previous subroutine

Call sub_40492B–operations of subroutine C to be determined

Call sub_404B8F–operations of subroutine D to be determined

Call sub_40A7B3–operations of subroutine E to be determined

Call msvcrt.time procedure–returns elapsed time

loc_40C4F8: Call msvcrt.time procedure–returns elapsed time

Jump to loc_40C438 based on a result of the previous subroutine

Call msvcrt.time procedure–returns elapsed time

Call sub_409A30–operations of subroutine F to be determined

Jump to loc_40C438 (start of main loop)

The jump to location loc_40C361 in the code made a call to an earlier part of the
program (loc_40171F) and returns. This indicated that the malware looped
waiting to receive some sort of communications. While it waited it appeared to
carry out activities based on a schedule.

The next step in the debugging was to investigate each subroutine further. First
the jtram.conf file was removed to observe which subroutine would replace the
file. Each subroutine was stepped into (F7) and the code was executed until
return (Ctrl + F9) repeatedly. Notes were made of the stack values.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 19 -

The calls to subroutines A, B, C and E (see Table 9 above) were “stepped into”
using F7 and allowed to run until each return using <Ctrl + F9>. This was
repeated until control was returned to the main loop. These subroutines
appeared to do little when there was no network environment (eg., IRC or port
2200) with which to interact. Prior to the call to sub_40D8CE the stack had the
UNICODE value of “WS2HELP.DLL”. WS2HELP.DLL contains functions used
by the Windows Sockets API used by Internet and network applications [LI].

Subroutine D (loc_40C4DD)
The following stack values were noted during debugging of this subroutine:

 ASCII “C:\WINNT\system32\mfm\msrll.exe”
 UNICODE “RASAPI32.DLL”, “RASMAN.DLL”,
 UNICODE “C:\WINNT\system32\mfm;.;C:\WINNT\system32;C:\WINNT\system;

C:\WINNT;C:\WINNT\system32;C:\WINNT;C:\WIN”
 UNICODE “TAPI32.DLL”, “RTUTILS.DLL”, “RasPbFile”
 ASCII
 “Settings\Vir20001\Local Settings\History\History.IE5\MSHist012004091120040912”
 UNICODE “sensapi.dll”, “ntdll.dll”, “USERENV.DLL”, “USER32.DLL”
 ASCII “ExpandEnvironmentStringsForUserW”
 UNICODE “%ALLUSERSPROFILE%\Application Data”
 ASCII “{W#”
 UNICODE “netapi32.dll”, “SECUR32.DLL”, “NETRAP.DLL”
 UNICODE “AP.DLL”, SAMLIB.DLL”, Wbem”, WLDAP32.DLL”
 UNICODE “DNSAPI.DLL”, WSOCK32.DLL”, VIR2000”
 UNICODE “C:\Documents and Settings\All Users\Application Data”
 ASCII “C:\WINNT\system32\winrnr.dll”
 UNICODE “%SystemRoot%\system32\winrnr.dll”
 ASCII “collective7.zxy0.com”
 UNICODE “rasadhl.dll”, “File Directory”
 ASCII “s_check: trying %s”

Subroutine F (loc_40C51F)
The following stack values were noted during debugging of this subroutine:

 ASCII “PE”
 UNICODE “rsabase.dll”
 UNICODE “C:\WINNT\system32\mfm;.;C:\WINNT\system32;C:\WINNT\system;

C:\WINNT;C:\WINNT\system32;C:\WINNT;C:\WIN”
 UNICODE “ole32.dll”, “CRYPT32.dll”, “MSASN1.DLL”, “NTDLL.DLL”
 ASCII “Microsoft Base Cryptographic Provider v1.0”
 ASCII “d/8RAAbq2j7J/KK/jtAwjOhCydI2V6466uYLNNoCrAbvVix7rA==”
 ASCII “DiCHFc2ioiVmb3cb4zZ7zWZH1oM=”

During the execution of subroutine F a new jtram.conf file with different values
was dropped into the mfm folder. Looking at the list of values shown above and
knowing that the jtram.conf file was re-created made it appear likely that this
subroutine carried out the infection of the system. The last two ASCII values in
the list were probably key values for the cryptographic algorithm. Restarting the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 20 -

malware and retracing the above process showed that the first ASCII value (key)
changed but the second stayed constant.

Debugging with the IRC service on TCP port 6667 available on the Linux guest
machine allowed further analysis to see how this changed the operation.
Subroutine D carried out activities involving “RPCRT4.DLL” when it could interact
with IRC.

Attempts were made to step through with breakpoints (F2) on the main
subroutines and observe the IRC interaction. Unfortunately the delays involved
made debugging difficult. Instead a search was made to find the “#:” prompt used
on TCP port 2200. This was found at 0040BD04. A breakpoint was set at
0040BD10, after the routine that issues the prompt and the malware was allowed
to run.

When Telnet was used successfully to contact the infected machine’s port 2200,
the breakpoint was triggered. Single stepping (F8) through subroutine after this
location (at 0040BD27) showed that register eventually contained the string
“bot.port: connect from 192.168.92.130”. Register EDI contained “***”. This
confirmed that the malware detected the contact on port 2200. It also supported
the likelihood that the malware was an IRC “bot”.

There was no success in eliciting a response from the malware on TCP port
2200 using Telnet. Reviewing strings from this and other areas of the code
provided possible strings (eg., pass, jtr.bin, msrll.exe, jtr.home, mfm, 220, jtr.id,
run5, irc.quit). The “***” string noticed in the register was also tried to no avail.
The connection consistently accepted two lines of input before closing. The code
was unsuccessfully searched for the appropriate condition that would unlock
access.

The names such as “jtr.bin”, “jtr.home”, “jtr.id”, and “ïrc.quiet” that were noticed in
the code were intriguing. It was unclear whether these identified file names or
referred to variables. A reference to “jtr.*” in the code supported the fact they
might be filenames, however a search of the infected system did not find any files
with “jtr” before any extension. A search of IRC references did not reveal any use
for an “irc.quit” file. If they were referring to variables, the name “jtr” must have
been important to the code’s author(s). They could even be the initials of the
original author.

Breakpoints were set on the calls to the three message routines (ie.,
PeekMessageA, GetMessageA) and at the top of the main loop to attempt to
catch reception of incoming messages submitted via the IRC or Telnet channels.
This became a very frustrating and time-consuming process that was eventually
abandoned. Single stepping through the code altered the timing of
communications and made it difficult to synchronize the submission of a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 21 -

message from the Linux client applications and detection by the malware
executable.

The key (as it were) to this malware appeared to involve the jtram.conf file. IDA
was used to search for references to the filename and identify the location where
this file is created (00409FD5). Setting a breakpoint at this location in OllyDbg,
removing the file from its “mfm” folder, restarting debug execution and then
stepping through the code allowed tracking of activities involving the “jtram.conf”
file.

Observing stack values with breakpoints at locations 00409DE6 and 00409DF4
caught the contents prior to their being written to the new “jtram.conf” file and
revealed the values they represented. Arranging these values into the original
structure (three columns by six rows) resulted in following mapping for values in
the file (see Table 10):

Table 10 Map of Values in Configuration File

Command Variable Value
set bot.port 2200
set irc.quit <blank>
set servers collective7.zxy0.com,collective7.zxy0.com:9999!,collecti

ve7.zxy0.com:8080
set irc.chan #mils
set pass 1KZLPLKDf$W8kl8Jr1X8DOHZsmIp9qq0
set dcc.pass 1KZLPLKDf$55isA1ItvamR7bjAdBziX.

This mapping of values in Table 10 confirmed many of the characteristics
observed in the analysis. Some sort of channel, named the “bot.port. can be
used to communicate with the malware on port 2200. The malware looks for
servers on three separate ports (default 6667, 9999 and 8080) at
“collective7.zxy0.com”. The malware uses IRC channel “#mils”. The use of the
value “ïrc.quit” is unknown. The “dcc.pass” name indicates there may be a
password for IRC DCC communications. The remaining “pass” variable may
indicate there is a password for port 2200.

The two passwords were of most interest. The lengths and complexity of these
passwords, along with the length of the IRC nicknames would make it a painful
process to establish communication sessions unless some utility can be used to
do this automatically.

OllyDbg was used to create simpler passwords within a new “jtram.conf” file in
the hope that the passwords could be used to finally establish successful remote
access to the malware. The executable was restarted with the pre-existing
breakpoints in place to catch writes to the file. The “jtram.conf” file was deleted
and debugging run until the first breakpoint. The debugging was re-run until the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 22 -

stack pointers to the passwords could be recorded as 003F53C0 and 003F5498
for “pass” and “dcc.pass” respectively. The above steps were repeated until first
breakpoint for writing to the file.

The memory map was activated and the memory range 003F0000 was selected
for editing. All but the first three values (“1”) of the passwords were selected
for editing and filled with zeros using the right-click activations for the selection.
Execution was continued but the values on the stack did not get altered.

The memory range was revisited and the two original passwords were found to
be also at locations 003F39F8 and 003F3A88. The steps were repeated again,
this time zero filling all but the first three characters for all four locations. This
time stepping through the writes to the file appeared to set the value “1” for
both “pass” and “dcc.pass”. The “jtram.conf” had now been configured to suit
further manual testing.

Unsuccessful attempts were made to communicate with the malware using IRC
messages to the channel (eg., /msg #mils login 1) and private messages (eg.,
/msg <nick> login 1). Telnet sessions to the malware were established on port
2200 and attempts to elicit a response were attempted (eg., login 1), again
unsuccessfully. Lenny Zeltser’s SANS Malware FAQ [LZ] indicated
communications with another malware specimen required that the password
precede commands so the tests on IRC and Telnet sessions were attempted with
the “1” password first. There was still no success gaining a response. The
Malware FAQ analysis also indicated that communications had to be encrypted
as well. Possibly this is also the case for msrll.exe. This was set aside as
something for later analysis when there was more time.

6 ANALYSIS WRAP-UP

The malware specimen appears to be a complex Windows Trojan (msrll.exe)
with an extensive set of potentially malicious capabilities ranging from controlling
a victim system to killing its processes and launching distributed denial of service
(DdoS) attacks against other systems. The common IRC channel for all infected
systems could be used to create a network of malicious “bots” that can launch
coordinated attacks from a large number of sources, making the attacks more
difficult to defend against. People use such attacks to extort money from
businesses [SO1], to make some statement [WN], to gain stature within their
community or just for fun [SW].

The Trojan removes the infecting file, installs itself within a system directory and
configures registry settings to ensure that it always starts upon system start-up. It

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 23 -

protects itself with access controls to prevent the killing of its running process
and it periodically takes steps to ensure that its executable and an associated file
remain in the system folder, even if deleted. The associated “jtram.conf” file is a
cryptographically obscured configuration file. This file sets encrypted
configuration parameters for the malware operation (eg., bot.port set to 2200 and
irc.chan set to “#mils”). The “bot.port” value has the malware listen for incoming
communications from a remote user on port 2200.

Strings within the executable indicate the Trojan has an extensive set of
commands. The most interesting of these appear to be the infection of remote
Windows systems (ie., “?clone”) and some ability to manipulate Linux/Unix
systems (ie,. “?insmod”, “?rmmod” and GCC compiler detection).

The analysis indicated that theTrojan would likely respond to specific commands
via the #mils channel on IRC served up by collective7.zxy0.com as well as
directly on TCP port 2200. It is highly likely that the commands require a
password however testing with control over the passwords was still unsuccessful.
It is quite possible that the communications sessions must be properly encrypted.

While interaction with the malware was unsuccessful, the analysis did provide
sufficient information to use in protecting my organization. Certainly the fact that
our corporate McAfee virus scanner detected its signature is encouraging.
Should the Trojan escape this detection, its telltale use of IRC services and
communications to TCP port 2200 would be blocked by the highly restrictive
policies enforced by our corporate perimeter firewalls. Outbound IRC is not
allowed. The firewalls block all but selected the incoming ports necessary to
carry out business.

Since malware authors will re-use code to create new variants with different
signatures and communications channels, it is important to reduce the chance of
infection by controlling the methods of infection. Given that the corporate firewalls
block all peer-to-peer and instant messaging activity, most viruses and Trojans
are likely to arrive either as e-mail attachments or as downloads from web sites.
Users need to be reminded about proper precautions for their handling of e-mail
attachments and file downloads. They also must be aware of the policy to report
suspect or unusual activities on their computer to the corporate Information
Protection Centre.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 24 -

REFERENCES
[VM] Vmware, Inc. “Vmware Workstation 4 User’s Manual” v4.5.2. URL:
http://vmware-svca.www.conxion.com/software/ws45_manual.pdf . 6 September
2004.

[WZ] Winzip Computing, Inc. Evaluation copy of WinZip 9.0 for Windows
systems. URL:
http://www.winzip.com . 6 September 2004.

[UP] Oberhumer, Markus. Molnár, László. UPX version 1.21 for Windows
operating systems. URL:
http://upx.sourceforge.net/download/00-OLD-VERSIONS . 6 September 2004.

[MD] A port of the GNU "md5sum" utility to Windows. Extracted from the
distribution file UnxUtils.zip. URL:
http://www.weihenstephan.de/~syring/win32 . 6 September 2004.

[ST] A port of the UNIX "strings" utility to Windows. Extracted from MinGW
distribution file binutils-2.11.92-20011113.tar.gz. URL:
http://www.mingw.org . 6 September 2004.

[NC1] @Stake, Inc. NetCat 1.1 for Win9x/Me/NT/2000/XP. URL:
http://www.atstake.com/research/tools/network_utilities . 6 September 2004.

[LP] Yoda. Lord PE version RolyalTS. URL:
http://mitglied.lycos.de/yoda2k/LordPE/info.htm . 6 September 2004.

[SI1] Russinovich, Mark. Cogswell, Bryce. Filemon v6.06 for Windows NT/9x.
URL:
http://www.sysinternals.com/ntw2k/source/filemon.shtml . 6 September 2004.

[SI2] Russinovich, Mark. Cogswell, Bryce. Regmon v6.06 for Windows NT/9x.
URL:
http://www.sysinternals.com/ntw2k/source/regmon.shtml . 6 September 2004.

[SI3] Russinovich, Mark. TDImon v1.01 for Windows NT/9x. URL:
http://www.sysinternals.com/ntw2k/source/regmon.shtml . 6 September 2004.

[RS] TiANWEi. RegShot 1.61e5 Final for Windows operating systems.

[BT] Foundstone, Inc. BinText version 3.00. URL:
http://www.foundstone.com/knowledge/forensics.html . 6 September 2004.

[OD1] Clarke, Alex. OllyDbg version 1.09 for Windows operating systems. URL:
http://home.t-online.de/home/Ollydbg . 6 September 2004.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 25 -

[OD2] Clarke, Alex. OllyDump v2.20.108. URL:
http://home.t-online.de/home/Ollydbg . 6 September 2004.

[ID] Evaluation copy of IDA Pro v4.6.

[SI4] Russinovich, Mark. PsKill v1.03 for Windows NT/2000/XP. URL:
http://www.sysinternals.com/ntw2k/freeware/pskill.shtml . 6 September 2004.

[NC2] @Stake, Inc. NetCat 1.10 for Unix platforms. URL:
http://www.atstake.com/research/tools/network_utilities . 6 September 2004.

[IR] RedHat, Inc. Linux 9.0 operating system utilities. Internet Relay Chat. URL:
http://www.redhat.com . 6 September 2004.

[SN] Caswell, Brian. Roesch, Marty. Snort.org. Snort. URL:
http://www.snort.org . 6 September 2004.

[NA1] Network Associates, Inc. McAfee AntiVirus System Protection. URL:
http://www.mcafeesecurity.com/us/products/mcafee/antivirus/category.htm .
15 September 2004.

[NA2] Network Associates, Inc. BackDoor-CGM Trojan. URL:
http://vil.mcafeesecurity.com/vil/content/v_126653.htm . 6 September 2004.

[AP1] Aspack Software. Aspack for Windows 95/98/NT4/2000/XP. URL:
www.aspack.com . 6 September 2004.

[AD] Yoda. AspackDie 1.3d for PE files compressed by Aspack
2.11/2.11c/2.11d/2.12. URL:
http://www.exetools.com/unpackers.htm . 6 September 2004.

[AO1] TFreak. Attrition.org. Smurf TCP/IP flooding utility. URL:
http://www.attrition.org/security/denial/w/jolt.dos.html . 6 September 2004.

[AO2] Attrition.org. Jolt 1.0 Denial of Service utility. URL:
http://www.attrition.org/security/denial/w/jolt.dos.html . 6 September 2004.

[MS1] Microsoft.com. MSDN Library. PeekMessageA of text services framework.
URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tsf/tsf/itfmessagepump_peekmessagea.asp . 12 September 2004.

[MS2] Microsoft.com. MSDN Library. GetMessageA of text services framework.
URL:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andrew Mackie GIAC GREM Practical (v1.0)

- 26 -

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/tsf/tsf/itfmessagepump_getmessagea.asp . 12 September 2004.

[PM] McKevitt, Paul. Windows Api Programming in C#, VB and VB6.
DispatchMessage. URL:
http://custom.programming-in.net/articles/art9-1.asp?f=DispatchMessage . 12
September 2004.

[MS3] Microsoft.com. MSDN Library. Visual C and C++ Libraries. Time function.
URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_time.asp . 12 September 2004.

[LI] Uniblue Systems, Ltd. LIUtilities. WinTasks DLL Library. ws2help -
ws2help.dll - DLL Information. URL:
http://www.liutilities.com/products/wintaskspro/dlllibrary/ws2help/ . 12 September
2004.

[SO1] Sophos, Plc. Virus information Articles. Police crack suspected online
extortion ring, Sophos reports. 23 July 2004. URL:
http://www.sophos.com/virusinfo/articles/extortion.html . 14 September 2004.

[LZ] Zeltser, Lenny. SANS Malware FAQ: Reverse Engineering Srvcp.exe. URL:
http://www.sans.org/resources/malwarefaq/srvcp.php . 15 September 2004.

[WN] Shachtman, Noah. Wired News. Hackers Take Aim at GOP. 17 August
2004. URL:
http://www.wired.com/news/politics/0,1283,64602,00.html?tw=wn_story_top5 . 14
September 2004.

[SW] mobman. Author of SubSeven Trojan. SwatIt Anti Trojan and Bot Scanner
and Remover. Bots. URL:
http://swatit.org/bots/mobman.html . 14 September 2004.

