
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MALWARE ADVENTURE

GIAC Reverse Engineering Malware
Pratical Assignment 1.0

Prepared by: Russell Elliott
September 17, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Abstract

This practical assignment reviews the steps taken to reverse engineer a malware
specimen. Before the analysis is started, the methodology used to step up a test
laboratory sutiable for reverse engineering malware is discussed. The necessary
tools that are need are reviewed. The reverse engineering is accomplished
through three steps, physical characteristics of the specimen, behavioral
analysis, and code analysis. Finally, through what is learned about the specimen
and combining the steps, defensive and prevent measures are discussed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

CONTENTS

Abstract 2

Table of Contents 3

List of Tables 4

List of Figures 5

Introduction 6

Laboratory Setup 6

Windows Operating System 6

Linux Operating System 9

Properies of the Malware Specimen 10

Behavioral Analysis 12

File Changes 13

Registry Changes 15

Network Connections 17

Code Analysis 19

Analysis Wrap-Up 21

Appendix A–PEInfo 23

Appendix B–Interesting FileMon Failures 30

Appendix C–Created Keys 34

List of References 38

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

LIST OF TABLES

Number Title Page

1 Windows Guest Software 8
2 Linux Guset Software 9
3 Summary of Properties of Malware Specimen 12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

LIST OF FIGURES

Number Title Page

1 Virtual Laboraory Network 10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

MALWARE ADVENTURE

INTRODUCTION

It will be an adventure in analyzing the malware specimen, msrll.exe. As with
any great adventure, the preparation for the adventure is with the laboratory
setup needed for the analysis of the malware specimen and will be discussed
first. Once the laboratory is setup and explained, the adventure begins with a
discussion of the properties of the malware specimen. Next, we start the
adventure with an examination the behavior by running msrll.exe. This
behavioral analysis will give us clues for what direction to go in when we begin
looking at the code. After the code analysis, the findings will be wrapped up.

Commands are typed are indicated in bold characters. After each command, an
explanation will be given on what the command will do.

LABORATORY SETUP

The laboratory setup must meet the needs of reverse-engineering. The major
problem with reverse-engineering is isolating the laboratroy computer(s) from
production networks and the internet. If not, there is a risk of not only purposely
infecting the laboratory computer(s) but also other computers on the network.
Therefore, to eliminate this risk a standalone computer is used with VMware
Workstation 4.0 software, so multiple physical computers, physical
hubs/switches, etc. are not needed. The resources required to run multiple
operating systems consists of three items, processing speed, memory, and disk
space. The host computer used is configured with a Pentium 4 2.6 GHz
processor, 1,024 MB of RAM, and 250 GB hard drive. This configuration will
allow for an acceptable level of performance for emulating an actual network.
Once the host computer was backed up, the next step will be installing and
configuring the guest operating systems.

Windows Operating System

The guest Windows operating system was initially installed in VMware with a
bridge connection to the internet. This allowed for activation of the Windows
guest and for running the Windows Automatic Update service to insure that the
operating system was fully patched. Once the activation and update were
completed, the host computer was physically removed from the network, the
bridge connection was removed, and the host only connection implemented. The
Windows guest computer’s final configuration consisted of one 8 GB IDE hard
drive with two partitions, C and D, 128 MB RAM, one network interface card
configured as a host only connection and to use DHCP, a IDE CD-ROM drive, a
USB controller, and of course a floppy drive.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

The Windows software from the course materials were copied to and installed on
the guest system. A list of the initially installed software along with a description,
anticipated use, and the area of analysis the software will be used for are given
in Table 1–Windows Guest Software. The area of use on for some of the tools
can be used either during the behavioral analysis phase, code analysis phase, or
both. Table 1–Windows Guest Software lists predominate area that the tool is
normally used in. When preparing to analyze an unknown malware specimen,
the exact tools required is not known. Therefore, I rather have most tools
installed and ready to use before the actual analysis begins. Even with the tools
listed in Table 1–Windows Guest Software, there is no guaranty that all of the
tools will be used or that additional tools will be needed. Finally, the msrll.zip file
is copied to the Windows guest operating.

The final step for setting up the Windows guest operating system is to obtain a
starting point or baseline. This will aid in starting over if needed during the
analysis with a fresh installation. Two options are used. First, a snapshot of the
current guest system is taken. This will be a quick way to restore the operating
system. The second is zipping the VMware files for the Windows guest operating
system. Next, we will look at the Linux setup.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

Software Description Use Area of
Analysis

Bintext Detects strings and ASCII
characters it the code

Determine strings and characters
used in the malware program

Behavioral

IDAPro (free
version)

Used to dissemble code. Determine how the program is
written and to identify what the
program does.

Code

Jad Utility to convert java class
files into java source files.

Analyze any java class files. Code

LordPE Edits PE files and can dump
the memory.

Use to modify the header for
memory dump files. This will
insure that the program will run.

Code

IEController-
2.0

Controls and monitors
connections with Internet
Explorer.

Use when investigating web
sites. Creates a sandbox for
Internet Explorer.

Code

Netcat Utility to transfer files across
a network.

Used to move files from the Linux
guest machine to the host
machine.

Behavioral

OllyDbg A debugger with a
disassembler.

Used to analysis code and
change the code as a program is
running.

Code

Plugin-
OllyDump

Dumps process memory for
debugging.

Used to help in analysis of code
and debugging.

Code

RegShot Creates a copy of the
registry and will compare
consecutive shots.

Used to see what registry
changes are made.

Behavioral

FileMon Logs the access of files on
the system.

Used to determine where, when,
and why the malware specimen
accesses files.

Behavioral

RegMon Logs the access to the
registry.

Used to determine where and
when malware specimen
accesses the registry and for
what purpose.

Behavioral

TDIMon Logs and monitor TCP and
UDP traffic at the Transport
Drive Interface level.

Used to see what connections
occur while running a program or
malware specimen.

Behavioral

upx Compresses executable
files.

Can be used to uncompress upx
files.

Code

Md5sums Generated the md5 hash file. Used to generate md5 hash for
comparison purposes. Will be
able to tell if a file has changed.

Behavioral

WinZip A file compression utility. Unzip files and to compress files
on the guest operating system.

Table 1 –Windows Guest Software

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

Linux Operating System

The guest Linux operating system is considerably easier to install in VMware.
Part of the course material included a VMware image of a scaled down Red Hat
Linux operating system with preinstalled software. The configuration of the Linux
guest computer consisted of a 2 GB SCSI hard drive, 64 MB RAM, only one
network interface card configured as a host only connection and to use DHCP,
an IDE CD-ROM drive, a USB controller, and an audio device. A list of the
initially installed software along with a description, anticipated use, and the area
of analysis the software will be used for are given in Table 2–Linux Guest
Software.

Software Description Use Area of
Analysis

Snort Sniffs network
traffic.

Capture network packets to determine
how machines are talking
(TCP/UDP/ARP and Protocol)

Both

IRC IRC server Provide an IRC server to malware
and attempt to communicate with
malware.

Behavioral

Honeyd A virtual
honey pot.

Provide services and protocols that
the malware may attempt to
communicate with.

Behavioral

TABLE 2 –Linux Guest Software

The final laboratory setup step was to start both guest operating systems and
verify the networking settings. Since both are set for DHCP an ipconfig was
performed on the Windows guest and an ifconfig was performed on the Linux
guest. The Windows guest computer IP address is 192.168.252.128, the Linux
guest computer is 192.168.252.129, and the host computer IP address is
192.168.252.1. Finally, pings were performed to each of the guest systems.
This ensured that the two machines could talk with each other and recognize
each other. Figure 1–Virtual Laboratory Network, illustrates the virtual
laboratory and how the host and guest computers are connected. Now, we can
start analyzing msrll.exe.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

Figure 1 –Virtual Laboratory Network

PROPERTIES OF THE MALWARE SPECIMEN

Let the adventure begin by looking at the properties of the malware specimen.
From now on we will be working in the laboratory with both the Windows guest
computer and the Linux guest computer. Even though the host computer is a
standalone computer, we still must take care in the transferring any files from the
computer.

The msrll.zip file was copied to its own directory, d:\msrll, during the preparation
phase. Now we double click on the file, msrll.zip, and extract it to c:\msrll\. Now
we can look at the file, in a windows explorer window, to determine two of the
properties, namely, the type of file, exe, and the size of the file, 41 Kb. The file
size reported by PEInfo confirms this by reporting a file size of 41,984 bytes.

PEInfo.exe is a command line tool. I placed PEInfo in the same directory with
msrll.exe. Then open a command prompt and change to the directory containing
both PEInfo and msrll. The command used was peinfo.exe msrll.exe >
peinformsrll.txt. This will run PEInfo using the msrll.exe file and place the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

output into the peinfomsrll.txt file. Reviewing the peinfomsrll.txt file, PEInfo also
provided additional information. The type of machine that the malware specimen
will run on is listed as“Machine: 014C, Translation--> Intel 80386 Processor.”

PEInfo also provides a listing of strings in the code. The interesting strings are
listed below. A portion of the listing omitted here due to being unreadable. The
complete output from PEInfo, including strings, is provided in Appendix A–
PEInfo. The first obvious string is “!This program cannot be run in DOS mode.”
You will also note that the specimen is packed with Aspack as indicated by the
string “.aspack”. This indicates that the information gather on the specimen itself
will not be accurate. Finally, note that various dlls are also listed.

PEInfo listing for msrll.exe

!This program cannot be run in DOS mode.
.idata
.aspack
.adata
6>HBId
Y^nk•K
. .
. .
. .
Z/rA'`
ga1YAx
kN2$6|[x
VirtualAlloc
VirtualFree
kernel32.dll
ExitProcess
user32.dll
MessageBoxA
wsprintfA
LOADER ERROR
The procedure entry point %s could not be located in the dynamic
link library %s
The ordinal %u could not be located in the dynamic link library
%s
(08@P`p
kernel32.dll
GetProcAddress
GetModuleHandleA
LoadLibraryA
advapi32.dll
msvcrt.dll
msvcrt.dll
shell32.dll
user32.dll
version.dll

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

wininet.dll
ws2_32.dll
AdjustTokenPrivileges
__getmainargs
ShellExecuteA
DispatchMessageA
GetFileVersionInfoA
InternetCloseHandle
WSAGetLastError

Now,let’sget some additional information about the specimen by looking at the
MD5 hash. The MD5 hash requires executing md5sum in a command prompt
window. Open a command prompt and change to the directory where md5sum
is located. Us the following command to generate the MD5 hash: md5sum
c:\msrll\msrll.exe > md5.txt. This will execute the md5sum program on the
msrll.exe file and output the MD5 hash to a text file called md5.txt. Opening the
md5.txt file in notepad we find that the MD5 hash is
84acfe96a98590813413122c12c11aaa. This is useful information in case the
malware specimen creates another msrll.exe file elsewhere. If this occurs, we
will compute the MD5 hash of the new file and compare it to the original MD5
hash. This will tell us if any changes in the file occur when it copies itself.

Property Characteristic
Type of file exe
Size of file 41 Kb

MD5 hash of file 84acfe96a98590813413122c12c11aaa
Operating system(s) it runs on Windows–W9x, Windows 2000, Windows

XP
Interesting strings embedded in

it
!This program cannot be run in DOS mode.

.aspack
various dlls

Table 3 –Summary of Properties of Malware Specimen

BEHAVIORAL ANALYSIS

Now that we have basic property information on the malware specimen we can
begin our adventure. First, let’s get a shot of the current registry. This is
accomplished by running RegShot and I saved this shot into an hiv file.

Next, let’s get the monitoring software fired up. We start FileMon, RegMon, and
TDIMon. You’ll notice that when these programs are started they will start
monitoring their respective system area. In each program stop the capturing,
clear the screen, and have the log files use the system time. Using the system

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

time to record the records will aid us in comparing the time events between the
logs. This may be important to determine what order events happened. Change
over to the Linux guest machine. I created a directory, /ilotx, and subdirectory
/snort1 in order for snort to output the captured network traffic in the /ilotx/snort1
directory. The command used to fire up snort is snort –dev –l /ilotx/snort1.
This will start snort, direct the packets to the screen, use verbose mode and
record the packets in the directory /ilotx/snort1. Snort will create subdirectories in
/ilotx/snort1 by origin IP address. Within each of these subdirectories, snort will
create files based on type of traffic, TCP, UDP, and ARP and also by origin port
and destination port. With each running of snort, I create another directory by
incrementing the number at the end. Therefore, the second execution of snort
will record its log in the /ilotx/snort2 directory.

Now switch back to the Windows guest machine and open Windows Explore and
change to the directory containing msrll.exe, namely c:\msrll\. Also, open the
task manager so we can be prepared to stop any processes or programs. Start
monitoring with FileMon, RegMon, and TDIMon. Finally, double click on
msrll.exe. Sit back and watch for approximately 30 seconds.

OH NO! The final disappeared from the c:\msrll directory. What has it done?
Quick, switch to task manager, processes tab and find msrll.exe. Right click the
process msrll.exe and click on end process. Once msrll.exe process stops, go to
each of the monitoring tools and stop the capturing. After this, I save each of the
log files for future use. Switch to the Linux guest machine and stop snort by
pressing Ctrl B.

Before we start the analysis, take another RegShot and save the file. Click on
difference in order for RegShot to generate a listing with the differences in the
first and second RegShot. Now, we can start analyzing the information
generated by FileMon, RegMon, TDIMon, and RegShot.

File Changes

Now, we can begin analyzing the behavior of msrll.exe. While the program was
running we noted that it deleted itself from the c:\msrll directory. What other files
has it deleted, changed or added. A listing from FileMon showing the files that
are created, deleted, written to, and changed is shown below. This first listing
shows msrll.exe copies or writes itself to C:\WINDOWS\System32\mfm\msrll.exe.
Of course, msrll.exe created the subdirectory mfm first before writing a copy
there. Then msrll.exe will go back and delete the original file in the C:\msrll
directory and it will go back to verify that the file was deleted. You will also notice
the PID of msrll.exe changes from 1372 to 1408. This was observed in FileMon,
RegMon, and TDIMon listings.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

462 7:32:30 PM msrll.exe:1372 WRITE C:\WINDOWS\System32\mfm\msrll.exe
SUCCESS Offset: 0 Length: 41984

967 7:32:32 PM msrll.exe:1408 OPEN C:\msrll\msrll.exe SUCCESS
Options: Open Access: All

968 7:32:32 PM msrll.exe:1408 DELETE C:\msrll\msrll.exe SUCCESS
969 7:32:32 PM msrll.exe:1408 CLOSE C:\msrll\msrll.exe SUCCESS
971 7:32:32 PM msrll.exe:1408 OPEN C:\msrll\msrll.exe FILE NOT FOUND

Options: Open Access: All

This next listing shows msell.exe writing to the file jtram.conf in the directory
C:\WINDOWS\system32\mfm. The writing to jtram.conf starts after we stop the
process msrll.exe. There appears to be a shutdown routine whenever the
process is stopped.

1767 7:33:58 PM msrll.exe:1408 WRITE C:\WINDOWS\system32\mfm\jtram.conf
SUCCESS Offset: 0 Length: 53

1788 7:33:58 PM msrll.exe:1408 WRITE C:\WINDOWS\system32\mfm\jtram.conf
SUCCESS Offset: 53 Length: 53

2169 7:33:59 PM msrll.exe:1408 WRITE C:\WINDOWS\system32\mfm\jtram.conf
SUCCESS Offset: 1006 Length: 77

2170 7:33:59 PM msrll.exe:1408 WRITE C:\WINDOWS\system32\mfm\jtram.conf
SUCCESS Offset: 1083 Length: 1

2171 7:33:59 PM msrll.exe:1408 CLOSE C:\WINDOWS\system32\mfm\jtram.conf
SUCCESS

2810 7:34:09 PM msrll.exe:1408 CLOSE C:\WINDOWS\System32\mfm SUCCESS

Looking at the jtram.conf file, it appears to be encrypted as the listing shows.

+P8RAA/6BcPcW82IaTZZvToQ18PaG8Fq0tDEOxoCIbLEN5tvPA==
P/8RAHl7FhUzkoXA9NBub9e0IsoRisbnebTfr3uakWK6Cw8CDA==
HgIRAI9184TgGftDpgr8Pl9JoFH8cAolG1BOgvg8D3n6NJ5oEg==
Ov4RAItTSttxPN2zgQ4FZ4TE01WZxcHS1ukv8+Ql/RbFRWiFmQ==
Yf8RABSSa6ugVIWoFe4UfmN/w5qm7x3A5USXq+8PlkXHTulvfA==
YQARAJ2ptgxFufalmnh0OUzB/Yh8lMBkQzbesUHdbECSYjomBA==
UAIRAFBpoHN8LeTK1a3qOH5vZ22WndptKYhyYI6i6TLm+3cj9A==
7QARAOZADgWXZNOmMsEmAvo6gkOoN7qLxTQnEn9rvWFE8m1iuA==
RgBKAEwmhsd+7zs2/v8hzRAadzxXAAbmxS+p1D/v5OmWHrLPiV90+tX5A+MaEXyDt+RpPbSa
k4fnZe9VMy5OnQ83jAvn4VgaguAbAikFjwCSWYBQx0EJR+b7DvleTg==
RQARAIU6QW5MOziIG6mAEf9qWKQNo+Yg2JE8U0zua/Dis1iEEQ==
4P0RABV6i/ME2XgmanIXm7Wf5qyDhS/N0GwADqm8l/6/Ro7vCQ==
e/0RAJC0MOnOW8eaigCatn+m3ERLOJ3Zcq8ErjLRlKV3tlnd+Q==
yfsRAPjglZH+96wJtbmgjuduvn+VnoyVlEuJrGxpJYhzwb6lYQ==
Ff4RAPAKN69Eg5at+feJxx1S3TFtolA+8usqBSSrxOKKW+Kyxg==
GwIjAAkWFXw0vN9Fy71ARJ8JUmI2EXIFU4/hgleOPmZE+Bl7gAFHvbFuzh1MDsrQ/A9M/Ojkzg
==

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

JQIRANHLt0GVbG0xV/o2sUAOf2Dk7mNRENPjH83Mu1tCNqcAQw==
DQIRAOTKxXbisTLp0gAscTf2kQUgenBxdpWFFmKzVk5lZJquSA==
kgIjADZJUpfGMVOG2TMlqnKoKXzpKijiPXcYNuObiHjqXGMI1uqiLehZeGG0JRmnPI4i2+/0Yw==

Other interesting files are the files that msrll attempted to open but could not find
or had other problems are included the list below. The failures included file not
found for files and dlls, path not found, and buffer overflow. These file reads
along with other interesting file reads are listed in Appendix B–Interesting
FileMon Failures.

1640 7:33:58 PM msrll.exe:1408 OPEN C:\dev\random PATH NOT FOUND
Options: Open Access: All

363 7:32:30 PM msrll.exe:1372 QUERY INFORMATION C:\msrll\msrll.exe
BUFFER OVERFLOW FileNameInformation

368 7:32:30 PM msrll.exe:1372 OPEN C:\WINDOWS\system32\wininet.dll.123.Manifest
FILE NOT FOUND Options: Open Access: All

369 7:32:30 PM msrll.exe:1372 OPEN C:\WINDOWS\system32\wininet.dll.123.Config
FILE NOT FOUND Options: Open Access: All

410 7:32:30 PM msrll.exe:1372 QUERY INFORMATION C:\msrll\msrll.exe.Local\
FILE NOT FOUND Attributes: Error

Finally, I did another md5sum on the new msrll.exe file. This is to verify that it is
the same file or if the file is changed. The file has the same md5 hash as the
original file. Next, let’s focus our attention to the results of RegMon and
RegShot.

Registry Changes

First, let’s examine the results of RegMon for changes made by the process
msrll.exe. After examining the changes listed by RegMon, we will examine the
results of RegShot. This will be helpful in that it will confirm the changes reported
by RegMon. There are numerous registry keys and values that were read by
msrll.exe. The keys we are most interested in are the created keys by msrll.exe.
All created keys by msrll.exe are listed in Appendix C–Created Keys. One
interesting observation is that numerous keys were repeatedly created. The
registry keys that were created are listed below with duplicate creates deleted.

HKLM\SOFTWARE\Microsoft\Cryptography\RNG
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{f7035723-f4b0-11d6-
b29f-806d6172696f}\
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{a99e5349-f4f7-11d6-
93ec-005056400081}\
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{f7035721-f4b0-11d6-
b29f-806d6172696f}\
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{091136c0-7a8e-
11d8-941f-000c29e6fb6b}\
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\Z
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
HKLM\Software\Microsoft\Tracing
HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon
HKCU\Software\Microsoft\windows\CurrentVersion\Internet Settings
HKCU\Software\Microsoft\windows\CurrentVersion\Internet Settings\Connections
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters

Another interesting observation is the attempted deletion of key values as shown.
These proxy settings were not deleted since a proxy server was not setup,
therefore the values were not there. This indicates that msrll.exe does not what
the use of a proxy server.

HKCU\Software\Microsoft\windows\CurrentVersion\Internet Settings\ProxyServer
NOTFOUND

HKCU\Software\Microsoft\windows\CurrentVersion\Internet Settings\ProxyOverride
NOTFOUND

HKCU\Software\Microsoft\windows\CurrentVersion\Internet Settings\AutoConfigURL
NOTFOUND

Compare these results with the RegShot results. RegShot will show the number
of keys added, number of values added, and the number of values modified.
This is only a before and after comparison of the registry and will not show which
process added or changed the key or value. Since I only focused on the process
msrll.exe with RegMon, only those values that msrll.exe changed are examined.
RegShot does show some additional information as shown.

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Security
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security

The significant of looking at changes to the registry is to determine what and how
msrll is impacting our system. Obviously, msrll is added as a process and will

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

start and stop when the system is turned on and off. Now let’s turn our attention
to the network connections that msrll.exe attempts to make.

Network Connections

The network connections were monitored by TDIMon. Unfortunately, the
TDIMon log did not provide much useful information expect that msrll was
interested in TCP ports 113 and 2200. To get the full implications of what
network connects are being made we need to look at the packet sent while msrll
is running. Along to the rescue is our good friend snort, running on the Linux
guest machine.

This first listing form the snort logs shows that the Windows guest computer is
attempting to resolve the address for collective7.zxy0.com by attempting to
connect to a DNS server on port 53.

=+
08/26-00:10:45.068204 0:C:29:B8:DB:B4 -> 0:50:56:C0:0:1 type:0x800 len:0x50
192.168.252.128:1033 -> 192.168.252.1:53 UDP TTL:128 TOS:0x0 ID:32 IpLen:20 DgmLen:66
Len: 38
00 02 01 00 00 01 00 00 00 00 00 00 0B 63 6F 6Ccol
6C 65 63 74 69 76 65 37 04 7A 78 79 30 03 63 6F lective7.zxy0.co
6D 00 00 01 00 01 m.....
=+

The msrll process is stopped and the host file on the Windows machine is
changed to make the msrll think collective7.zxy0.com address is
192.168.252.129, the Linux machine. Start snort on the Linux machine and then
switch over to the Windows machine and start msrll.exe. The new location of
msrll.exe is C:\Windows\System32\mfm. Let the process run for about 30
seconds and then stop the process through the task manager. Switch to the
Linux machine and stop snort. Now, let’s look at the log files.

Here are several attempts to connect to ports which did not show up in the
previous snort log file. Once the collective7.zxy0.com address was resolved,
attempts were made to connect to ports 6667, 9999, and 8080. These ports are
bolded in the listing below. Port 6667 is normally used for IRC, port 8080 is
normally used as a web or http, and we are not sure about port 9999.

=+
08/24-06:12:02.012874 192.168.252.128:1046 -> 192.168.252.129:6667
TCP TTL:128 TOS:0x0 ID:454 IpLen:20 DgmLen:48 DF
******S* Seq: 0xF7CCD404 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
=+
08/24-06:12:02.014171 192.168.252.129:6667 -> 192.168.252.128:1046

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF
***A*R** Seq: 0x0 Ack: 0xF7CCD405 Win: 0x0 TcpLen: 20
=+
08/24-06:12:33.040674 192.168.252.128:1047 -> 192.168.252.129:9999
TCP TTL:128 TOS:0x0 ID:467 IpLen:20 DgmLen:48 DF
******S* Seq: 0xF843D62B Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
=+
08/24-06:12:33.040987 192.168.252.129:9999 -> 192.168.252.128:1047
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF
***A*R** Seq: 0x0 Ack: 0xF843D62C Win: 0x0 TcpLen: 20
=+
08/24-06:12:59.077109 192.168.252.128:1048 -> 192.168.252.129:8080
TCP TTL:128 TOS:0x0 ID:470 IpLen:20 DgmLen:48 DF
******S* Seq: 0xF8A7F3AF Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
=+
08/24-06:12:59.077437 192.168.252.129:8080 -> 192.168.252.128:1048
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF
***A*R** Seq: 0x0 Ack: 0xF8A7F3B0 Win: 0x0 TcpLen: 20
=+

Since msrll is attempting to connect to an IRC server, I started the IRC and
restarted snort on the Linux machine. On the Windows machine, I restarted
msrll.exe. The snort log files below shows msrll.exe connecting with the IRC
server with a user name of GVmMMTUJVT and then joins the channel mils. I
also noticed that the user name is randomly generated. Each time msrll.exe is
started, it will connect using a different user name. Yet each time it connects, it
will always join the channel mils.

=+
09/12-01:32:12.108986 0:C:29:B8:DB:B4 -> 0:C:29:56:DA:DF type:0x800 len:0x86
192.168.252.128:1073 -> 192.168.252.129:6667 TCP TTL:128 TOS:0x0 ID:6009 IpLen:20 DgmLen:120 DF
AP Seq: 0xA1A8E80A Ack: 0x49C21F4E Win: 0x4421 TcpLen: 20
55 53 45 52 20 54 68 48 51 55 59 76 46 64 61 62 USER ThHQUYvFdab
20 6C 6F 63 61 6C 68 6F 73 74 20 30 20 3A 4A 54 localhost 0 :JT
6B 4E 71 58 63 61 63 54 48 57 6A 73 52 77 74 54 kNqXcacTHWjsRwtT
74 49 63 44 74 4D 6C 6B 52 42 6F 43 77 4D 68 0A tIcDtMlkRBoCwMh.
4E 49 43 4B 20 47 56 6D 4D 4D 54 55 4A 56 54 0A NICK GVmMMTUJVT.
=+
09/12-01:32:44.080649 0:C:29:B8:DB:B4 -> 0:C:29:56:DA:DF type:0x800 len:0x43
192.168.252.128:1073 -> 192.168.252.129:6667 TCP TTL:128 TOS:0x0 ID:6028 IpLen:20 DgmLen:53 DF
AP Seq: 0xA1A8E86D Ack: 0x49C225BE Win: 0x4422 TcpLen: 20
4A 4F 49 4E 20 23 6D 69 6C 73 20 3A 0A JOIN #mils :.
=+

I tried numerous times to communicate with msrll with no success. Since msrll is
listening on port 2200, I attempted to telnet to the port as well as using netcat. It
appeared that I would connect, but I could not get a response. I also attempted
to communicate through the IRC and again I would not get a response.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

Now would be a good time to start the code analysis. What are some of the
secrets that we will look for? First, what is the jtram.conf file used for. Since
encryption appears to be used, what is the encryption routine used. Can we
decrypt the file? How do you communicate with msrll? What other connections
does msrll attempt to make?

CODE ANALYSIS

The previous behavioral analysis showed an interesting string in the msrll.exe
file, namely .aspack. Executable files are packed for several reasons, to make it
compressed for quicker and easier distribution over the internet, to make it more
difficult to unpack and analyze, or to make it impossible to analyze the code.
First, an attempt was made to analysis the code with IDAPro. These results
were not encouraging. IDAPro produced unusable disassemble of the code.
The hex view in IDAPro has sectionsfilled with “?” marks as the listing shows
and thus not useable.

.idata:0051CCA0 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? "????????????????"

.idata:0051CCB0 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? "????????????????"

.idata:0051CCC0 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? "????????????????"

.idata:0051CCD0 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? "????????????????"

.idata:0051CCE0 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? "????????????????"

.idata:0051CCF0 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? "????????????????"

.idata:0051CD00 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? "????????????????"

.idata:0051CD10 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? "????????????????"

.idata:0051CD20 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? "????????????????"

Off to the internet we go to search for an Aspack unpacker. This is accomplished
by using another computer that is connected to the internet and doing a Google
search on“disassemble aspack” to find what tools are available to unpack the
msrll.exe file focusing mainly on AspackDie. Why AspackDie? In the course
material, I found a reference to AspackDie which stated “Here is an example of
one tool, called AspackDie, which worked well when I tried to unpack a malicious
executable protected by the Aspack utility.”1 I found several sites with
AspackDie. It is important that the unpacker be compatible with the version of
the packer. This may be a trail and error exercise. The site that I downloaded
AspackDie 1.41, written by yoda, from is
http://protools.anticrack.de/unpackers.htm.

I then transferred the zipped file to the laboratory Windows guest machine. I
unzipped it into its own directory on the d:\ drive. The readme.tXt file that came
with the program states that this will unpack all Aspack since 20002. I ran the

1 Zeltser, p 1-38.
2 yoda.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

program, AspackDie, and opened msrll.exe. When AspackDie was finished I
save the file as unpacked.exe in its own directory, d:\unpack. The test to see if
this unpacked code is correct, I executed unpack.exe. If the code is the code
that was packed with Aspack, then it should show the same behavior as
msrll.exe. The behavior of the unpacked code was the same as the pack code.
Therefore, I will examine this code.

First, examine the code using bintext. Bintext reveals more information than the
previous string searches. We are able to find the servers that msrll tries to
communicate with as the listing shows. The listing indicates that it uses
collective7.zxy.com.

0000BD6E 0040BD6E 0 servers
0000BD80 0040BD80 0
collective7.zxy0.com,collective7.zxy0.com:9999!,collective7.zxy0.com:8080

Running the unpacked code through IDAPro provides more useful information.
There are numerous jumps, subroutines, and functions that msrll uses. There
are also numerous calls to the following dlls, ADVAPI32, KERNEL32, msvcrt,
SHELL32, USER32, VERSION, WINNET, and WS2_32. Sections of the code
pertain to irc, SSL, and reporting statistics. Msrll also reads from the file
c:\dev\random. Initially, I thought that the reference to /dev/random was just a
mistake in the coding. In that the writer had mixed some Unix/Linux code with
Windows code. I created the file, C:\dev\random, with just 0’s and then ran the
program. It appears msrll uses this file to encrypt the file jtram.conf. By
changing the contents of C:\dev\random and rerunning msrll, the contents of
jtram.conf changes. I have not observed this behavior before.

Possible commands used to communicate with msrll where located. When I tried
the various commands on the irc channel, I still did not get a response from the
Windows computer. The commands found are listed below.

?clone ?clones ?login
?uptime ?reboot ?status
?jump ?nick ?echo
?hush ?wget ?join
?akick ?part ?dump
?md5p ?free ?update
?hostname ?!fif ?play
?copy ?move ?sums
?rmdir ?mkdir ?exec
?kill ?killall ?crash
?sklist ?unset ?uattr
?dccsk ?killsk

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

Let’s turn to using debugged, namely OllDbg. Load the unpacked version of
msrll into OllDbg. After it is loaded, OllDbg will pause on the entry point. Let’s
see if we can determine if there is a login command with a password using the irc
server. Start the Linux machine and the irc server. Next, search the code for
string compare commands. The first one that is found is actually a call command
jumping to msvcrt._stricmp function, as shown by the following code: 00401462 |.
E8 990B0100 |CALL <JMP.&msvcrt._stricmp> ; _stricmp. Instead of setting a
breakpoint on line 0040162, I found the function msvcrt._stricmp 00412000 $-FF25
F0B45100 JMP DWORD PTR DS:[<&msvcrt._stricmp>] ; msvcrt._stricmp,
and set the breakpoint there. This way any calls to msvcrt._stricmp will cause

the program to pause. While looking at the functions, I find the following lines,
00412280 $-FF25 90B55100 JMP DWORD PTR DS:[<&msvcrt.strcmp>] ; msvcrt.strcmp,
and 004122A0 $-FF25 A0B55100 JMP DWORD PTR DS:[<&msvcrt.strncmp>] ;
msvcrt.strncmp, and set breakpoints at these lines as well. To set a breakpoint,
highlight the line and press the F2 key. This will toggle on and off the breakpoint.

Once these breakpoints are set, they will show in the Breakpoints window. Using
the Breakpoints window, highlight the breakpoints and toggle them off. Start
running the program and switch to the Linux machine. Monitor the Linux
machine until you see a random user log into the irc channel. Switch back to the
Windows machine and pause OllDbg by pressing the F12 key. Now, toggle the
breakpoints on and continue running the program in OllDbg by pressing the Ctrl
and the F2 keys. Each time a string is compared the program will pause. Now,
try logging into the Windows machine by typing ?login password. Switch back
to the Windows machine and wait for a breakpoint to respond by pausing. Look
for the values for the strings being compared. If you see password then the
string that it is being compared with should be the password to login with.
Unfortunately, I was not able to obtain the login password.

I attempted to determine what is contained in the jtram.conf file. I set breakpoints
for fread, file reads, and ran the program. I was hoping to find when msrll would
read the c:\dev\random file and then step through commands one at a time by
pressing the F7 key. Stepping through the commands should reveal where this
data is used. Again, I was unable to find anything significant. Rats!!

ANALYSIS WRAP-UP

It has been a long adventurous journey. First, time was taken to discuss the
laboratory setup. Whenever you deal with malware, utmost care must be taken
to insure that the laboratory is isolated from the network. The worst that can
happen, when the laboratory is isolated, is having to discard or rebuild a
machine. Even though, VMware is used for the laboratory, care still must be
taken. I have accepted the risk that the malware may infect the host computer.
This is a manageable risk.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

The setup of the actual virtual machines was also discussed. I find it to be easier
to have all the possible tools that could be used preinstalled. This way, in the
heat of the analysis, you do not have to stop and search for any particular tool.
Although this was not the case, since I had to search for an unpacking utility to
unpack the malware specimen. I did not anticipate that the specimen was
packed using Aspack and most people may not anticipate it. Yet, I was able to
find an unpacking utility that worked and even found a web site that has many
unpacking utilities for future use.

The behavior analysis was able to tell us a lot about the malware specimen. We
found where it installed itself to, the registry keys that were created, modified,
and accessed. We were also able to analyze the networking desire of the
malware specimen through the use of snort. We were also able to provide
reasonable accommodations of the networking requests from the malware
specimen.

The code analysis yielded more information. We were able to find the actual
computer name that the malware specimen wanted to communicate with. The
specimen only wanted to communicate with one machine on multiple ports.

Based on what has been observed and found, the malware specimen loads a
backdoor on the computer, gathers information, and prepares a file. This file
probably contains information useful for identifying the computer that would be
useful for further mischievous activities. Either the backdoor or the irc channel
can be used for communication.

There are several ways to defend against such malware. The rule of least
privilege for users should be used. Users should only be users and not have the
privileges to install software, access the registry, or write to the system area.
The use of firewalls on the corporate network as well as on the PC to block
undesirable inbound and outbound ports will help to protect unsuspecting users.
The use of antivirus software that is regularly updated will help in protecting the
user from malware. Antivirus software is only as good as the virus definitions. A
newly released virus, Trojan, backdoor, worm, etc might not be detected by the
antivirus software. Finally, some sort of intrusion detection system may also be
used to detect and prevent backdoors. This would produce a defense in depth.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

APPENDIX A - PEINFO

Path: D:\Msrll\msrll.exe
File size: 41984

Image size: 1179648
File Alignment: 512
Resources account for 0.00% of the executable

Issues:
=======
String: GetProcAddress (1)
String: LoadLibrary (1)

***** HEADER *****

Machine: 014C
Translation--> Intel 80386 Processor

NumberOfSections : 0006
TimeDateStamp : 40790135

Created (GMT): Sun Apr 11 08:26:29 2004

PointerToSymbolTable: 00000000
NumberOfSymbols: 00000000
SizeOfOptionalHeader: 00E0
Magic: 010B
SizeOfCode: 00011800
SizeOfInitializedData: 00014600
SizeOfUninitializedData: 00105C00
AddressOfEntryPoint: 0011D001
BaseOfCode: 00001000
BaseOfData: 00013000
ImageBase: 00400000
SectionAlignment: 00001000
FileAlignment : 00000200
LinkerVersion: 2.56
OperatingSystemVersion: 4.00
ImageVersion: 1.00
SubsystemVersion: 4.00
Win32VersionValue: 00000000
SizeOfImage 00120000
SizeOfHeaders: 00000400
CheckSum: 00017803
Subsystem: 0002

Translation--> Windows GUI
DllCharacteristics: 0000
SizeOfStackReserve: 00200000
SizeOfStackCommit: 00001000
SizeOfHeapReserve: 00100000
SizeOfHeapCommit: 00001000
LoaderFlags: 00000000
NumberOfRvaAndSizes: 00000010
Characteristics: 020F

(non-32-bit-word machine)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

Bytes of machine word are not reversed
Relocation info stripped
Line numbers stripped
Local symbols stripped
Debugging info stripped into .dbg file
Need not copy to swapfile if run from removable media
Need not copy to swapfile if run from network
Runs on MP or UP machine
Working set trimmed normaly
Executable file
Not a system file
Not a DLL

***** DATA DIRECTORY *****

VAddress Size
-------- --------

Export: 00000000 00000000
Import: 0051dfac 000001F8
Resource: 00000000 00000000
Exception: 00000000 00000000
Security: 00000000 00000000
Relocation: 0051df54 00000008
Debug: 00000000 00000000
Architecture: 00000000 00000000
GlobalPtr: 00000000 00000000
TLS: 00000000 00000000
LoadConfig: 00000000 00000000
BoundImport: 00000000 00000000
IAT: 00000000 00000000

Section Name: .text
VirtualAddress: 00401000
VirtualSize: 00012000 (73728)
SizeOfRawData: 00008000 (32768)
PointerToRawData: 00000400
Section characteristics:

Contains initialized data
Default alignment (16 bytes)
Is readable
Is writeable

Section Name: .data
VirtualAddress: 00413000
VirtualSize: 00002000 (8192)
SizeOfRawData: 00000600 (1536)
PointerToRawData: 00008400
Section characteristics:

Contains initialized data
Default alignment (16 bytes)
Is readable
Is writeable

Section Name: .bss
VirtualAddress: 00415000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

VirtualSize: 00105B70 (1071984)
SizeOfRawData: 00000000 (0)
PointerToRawData: 00000000
Section characteristics:

Contains initialized data
Default alignment (16 bytes)
Is readable
Is writeable

Section Name: .idata
VirtualAddress: 0051B000
VirtualSize: 00002000 (8192)
SizeOfRawData: 00000800 (2048)
PointerToRawData: 00008A00
Section characteristics:

Contains initialized data
Default alignment (16 bytes)
Is readable
Is writeable

Section Name: .aspack
VirtualAddress: 0051D000
VirtualSize: 00002000 (8192)
SizeOfRawData: 00001200 (4608)
PointerToRawData: 00009200
Section characteristics:

Contains initialized data
Default alignment (16 bytes)
Is readable
Is writeable

Section Name: .adata
VirtualAddress: 0051F000
VirtualSize: 00001000 (4096)
SizeOfRawData: 00000000 (0)
PointerToRawData: 0000A400
Section characteristics:

Contains initialized data
Default alignment (16 bytes)
Is readable
Is writeable

Import Name: kernel32.dll
Name: 0051DF6C
Characteristics: 00400000
TimeDateStamp: 00000000
Not bound

Thunk Ordinal Name
-------- ------- ---------------
0011DF64 0 LoadLibraryA
0011DF60 0 GetModuleHandleA
0011DF5C 0 GetProcAddress

Import count: 3

Import Name: advapi32.dll

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

Name: 0051E074
Characteristics: 00400000
TimeDateStamp: 00000000
Not bound

Thunk Ordinal Name
-------- ------- ---------------
0011E0D1 0 AdjustTokenPrivileges

Import count: 1

Import Name: msvcrt.dll
Name: 0051E081
Characteristics: 00400000
TimeDateStamp: 00000000
Not bound

Thunk Ordinal Name
-------- ------- ---------------
0011E0D9 0 _itoa

Import count: 1

Import Name: msvcrt.dll
Name: 0051E08C
Characteristics: 00400000
TimeDateStamp: 00000000
Not bound

Thunk Ordinal Name
-------- ------- ---------------
0011E0E1 0 __getmainargs

Import count: 1

Import Name: shell32.dll
Name: 0051E097
Characteristics: 00400000
TimeDateStamp: 00000000
Not bound

Thunk Ordinal Name
-------- ------- ---------------
0011E0E9 0 ShellExecuteA

Import count: 1

Import Name: user32.dll
Name: 0051E0A3
Characteristics: 00400000
TimeDateStamp: 00000000
Not bound

Thunk Ordinal Name
-------- ------- ---------------
0011E0F1 0 DispatchMessageA

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

Import count: 1

Import Name: version.dll
Name: 0051E0AE
Characteristics: 00400000
TimeDateStamp: 00000000
Not bound

Thunk Ordinal Name
-------- ------- ---------------
0011E0F9 0 GetFileVersionInfoA

Import count: 1

Import Name: wininet.dll
Name: 0051E0BA
Characteristics: 00400000
TimeDateStamp: 00000000
Not bound

Thunk Ordinal Name
-------- ------- ---------------
0011E101 0 InternetCloseHandle

Import count: 1

Import Name: ws2_32.dll
Name: 0051E0C6
Characteristics: 00400000
TimeDateStamp: 00000000
Not bound

Thunk Ordinal Name
-------- ------- ---------------
0011E109 0 WSAGetLastError

Import count: 1

Strings:

!This program cannot be run in DOS mode.
.idata
.aspack
.adata
6>HBId
Y^nk•K
X•l?%A
\+VS`%
Y8EoM,
gPtL7S
YQ(W;n
oukd••
3#b5pHo
A^[jK<
w3i5Y-
[u)aH=
/0mo0^

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

Bj3K7%(
yko`w+r
•TN9x0
U[{*\4
m&8NRM
8e47xW
EAe4xIpO
r8cy!/
127$9v
zYX[[T
PS=,sdVQ
UZKSU,
5OUS</
%XjBZnu
:|gs3~3
s&+*uX
L,HvCy
wZMFN_
y!]zqZ
s$ILIEK
'.gcH(
PQiqGt
?Q~)Qv
Y|5S(K
0]2%I^
>~g[f!Unl
xaa11K
d{fB0d•^G
s$OY5-
s*9r\sN
Z3O-,;
kvK@~G
ek^{}P
}vlt•&E?
PAPD;-
xCd4!c
.`gmRx[
M'L s

I$^!%8
xq,p:j
bn;&%y
y[:BaV_
Yqc*Jam
GMZid+K
bI4x+Za
Z/rA'`
ga1YAx
kN2$6|[x
VirtualAlloc
VirtualFree
kernel32.dll
ExitProcess
user32.dll
MessageBoxA
wsprintfA
LOADER ERROR

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

The procedure entry point %s could not be located in the dynamic link
library %s
The ordinal %u could not be located in the dynamic link library %s
(08@P`p

kernel32.dll
GetProcAddress
GetModuleHandleA
LoadLibraryA
advapi32.dll
msvcrt.dll
msvcrt.dll
shell32.dll
user32.dll
version.dll
wininet.dll
ws2_32.dll
AdjustTokenPrivileges
__getmainargs
ShellExecuteA
DispatchMessageA
GetFileVersionInfoA
InternetCloseHandle
WSAGetLastError

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

APPENDIX B –INTERESTING FILEMON FAILURES

1640 7:33:58 PM msrll.exe:1408 OPEN C:\dev\random PATH NOT
FOUND Options: Open Access: All
1526 7:32:48 PM msrll.exe:1408 OPEN C:\Documents and
Settings\Administrator\Application
Data\Microsoft\Network\Connections\Pbk\ PATH NOT FOUND Options:
Open Directory Access: All
1493 7:32:48 PM msrll.exe:1408 DIRECTORY C:\Documents and
Settings\All Users\Application Data\Microsoft\Network\Connections\Pbk\

NO SUCH FILE FileBothDirectoryInformation: *.pbk
611 7:32:31 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\CLBCATQ.DLL FILE NOT FOUND Attributes: Error
615 7:32:31 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\COMRes.dll FILE NOT FOUND Attributes: Error
363 7:32:30 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\msrll.exe BUFFER OVERFLOW FileNameInformation
971 7:32:32 PM msrll.exe:1408 OPEN C:\msrll\msrll.exe FILE
NOT FOUND Options: Open Access: All
243 7:32:30 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\msrll.exe.Local FILE NOT FOUND Attributes: Error
302 7:32:30 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\msrll.exe.Local\ FILE NOT FOUND Attributes: Error
410 7:32:30 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\msrll.exe.Local\ FILE NOT FOUND Attributes: Error
671 7:32:31 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\msrll.exe.Local\ FILE NOT FOUND Attributes: Error
482 7:32:30 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\netapi32.dll FILE NOT FOUND Attributes: Error
675 7:32:31 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\Secur32.dll FILE NOT FOUND Attributes: Error
494 7:32:31 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\SETUPAPI.dll FILE NOT FOUND Attributes: Error
477 7:32:30 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\UxTheme.dll FILE NOT FOUND Attributes: Error
250 7:32:30 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\ws2_32.dll FILE NOT FOUND Attributes: Error
254 7:32:30 PM msrll.exe:1372 QUERY INFORMATION

C:\msrll\WS2HELP.dll FILE NOT FOUND Attributes: Error
732 7:32:31 PM msrll.exe:1372 OPEN

C:\WINDOWS\AppPatch\systest.sdb FILE NOT FOUND Options:
Open Access: All
1227 7:32:47 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\libssl32.dll FILE NOT FOUND Attributes: Error
1230 7:32:47 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\libssl32.dll FILE NOT FOUND Attributes: Error
782 7:32:31 PM msrll.exe:1408 OPEN

C:\WINDOWS\Prefetch\MSRLL.EXE-03966588.pf FILE NOT FOUND
Options: Open Access: All

241 7:32:30 PM msrll.exe:1372 OPEN
C:\WINDOWS\Prefetch\MSRLL.EXE-2C7795E2.pf FILE NOT FOUND
Options: Open Access: All

1226 7:32:47 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\system\libssl32.dll FILE NOT FOUND Attributes:

Error

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

1225 7:32:47 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\libssl32.dll FILE NOT FOUND Attributes:

Error
1229 7:32:47 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\system32\libssl32.dll FILE NOT FOUND Attributes:
Error
1010 7:32:32 PM msrll.exe:1408 CREATE C:\WINDOWS\System32\mfm

NAME COLLISION Options: Create Directory Access: All
1532 7:32:48 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\System32\mfm\DNSAPI.dll FILE NOT FOUND Attributes:
Error
1232 7:32:47 PM msrll.exe:1408 OPEN

C:\WINDOWS\system32\mfm\jtram.conf FILE NOT FOUND Options:
Open Access: All
1636 7:33:58 PM msrll.exe:1408 OPEN

C:\WINDOWS\system32\mfm\jtram.conf FILE NOT FOUND Options:
Open Access: All
224 7:32:47 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\System32\mfm\libssl32.dll FILE NOT FOUND
Attributes: Error

1228 7:32:47 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\system32\mfm\libssl32.dll FILE NOT FOUND
Attributes: Error

917 7:32:32 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\msrll.exe BUFFER OVERFLOW
FileNameInformation

784 7:32:32 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\msrll.exe.Local FILE NOT FOUND
Attributes: Error

839 7:32:32 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\msrll.exe.Local\ FILE NOT FOUND
Attributes: Error

964 7:32:32 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\msrll.exe.Local\ FILE NOT FOUND
Attributes: Error

1456 7:32:48 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\msrll.exe.Local\ FILE NOT FOUND
Attributes: Error

778 7:32:31 PM msrll.exe:1372 OPEN
C:\WINDOWS\System32\mfm\msrll.exe.Manifest FILE NOT FOUND
Options: Open Access: All

1396 7:32:48 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\NETAPI32.dll FILE NOT FOUND
Attributes: Error

1632 7:33:58 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\rasadhlp.dll FILE NOT FOUND
Attributes: Error

1388 7:32:48 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\RASAPI32.DLL FILE NOT FOUND
Attributes: Error

1392 7:32:48 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\rasman.dll FILE NOT FOUND Attributes:

Error
1404 7:32:48 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\System32\mfm\rtutils.dll FILE NOT FOUND Attributes:
Error

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

1315 7:32:48 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\mfm\Secur32.dll FILE NOT FOUND Attributes:

Error
1459 7:32:48 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\System32\mfm\sensapi.dll FILE NOT FOUND Attributes:
Error
1400 7:32:48 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\System32\mfm\TAPI32.dll FILE NOT FOUND Attributes:
Error
1408 7:32:48 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\System32\mfm\WINMM.dll FILE NOT FOUND Attributes:
Error
785 7:32:32 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\System32\mfm\ws2_32.dll FILE NOT FOUND Attributes:
Error
789 7:32:32 PM msrll.exe:1408 QUERY INFORMATION

C:\WINDOWS\System32\mfm\WS2HELP.dll FILE NOT FOUND Attributes:
Error
1496 7:32:48 PM msrll.exe:1408 DIRECTORY

C:\WINDOWS\System32\Ras\ NO SUCH FILE
FileBothDirectoryInformation: *.pbk

261 7:32:30 PM msrll.exe:1372 OPEN
C:\WINDOWS\system32\shell32.dll.124.Config FILE NOT FOUND
Options: Open Access: All

797 7:32:32 PM msrll.exe:1408 OPEN
C:\WINDOWS\system32\shell32.dll.124.Config FILE NOT FOUND
Options: Open Access: All

260 7:32:30 PM msrll.exe:1372 OPEN
C:\WINDOWS\system32\shell32.dll.124.Manifest FILE NOT FOUND
Options: Open Access: All

796 7:32:32 PM msrll.exe:1408 OPEN
C:\WINDOWS\system32\shell32.dll.124.Manifest FILE NOT FOUND
Options: Open Access: All

1415 7:32:48 PM msrll.exe:1408 OPEN
C:\WINDOWS\System32\TAPI32.dll.124.Config FILE NOT FOUND
Options: Open Access: All

1414 7:32:48 PM msrll.exe:1408 OPEN
C:\WINDOWS\System32\TAPI32.dll.124.Manifest FILE NOT FOUND
Options: Open Access: All

630 7:32:31 PM msrll.exe:1372 OPEN
C:\WINDOWS\system32\urlmon.dll.123.Config FILE NOT FOUND
Options: Open Access: All

629 7:32:31 PM msrll.exe:1372 OPEN
C:\WINDOWS\system32\urlmon.dll.123.Manifest FILE NOT FOUND
Options: Open Access: All

1231 7:32:47 PM msrll.exe:1408 QUERY INFORMATION
C:\WINDOWS\System32\Wbem\libssl32.dll FILE NOT FOUND
Attributes: Error

369 7:32:30 PM msrll.exe:1372 OPEN
C:\WINDOWS\system32\wininet.dll.123.Config FILE NOT FOUND
Options: Open Access: All

922 7:32:32 PM msrll.exe:1408 OPEN
C:\WINDOWS\system32\wininet.dll.123.Config FILE NOT FOUND
Options: Open Access: All

368 7:32:30 PM msrll.exe:1372 OPEN
C:\WINDOWS\system32\wininet.dll.123.Manifest FILE NOT FOUND
Options: Open Access: All

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

921 7:32:32 PM msrll.exe:1408 OPEN
C:\WINDOWS\system32\wininet.dll.123.Manifest FILE NOT FOUND
Options: Open Access: All

321 7:32:30 PM msrll.exe:1372 OPEN
C:\WINDOWS\WindowsShell.Config FILE NOT FOUND Options:

Open Access: All
861 7:32:32 PM msrll.exe:1408 OPEN

C:\WINDOWS\WindowsShell.Config FILE NOT FOUND Options:
Open Access: All

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

APPENDIX C –CREATED KEYS

989 7:32:30 PM msrll.exe:1372 CreateKey
HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:

0xE1914B30
1027 7:32:30 PM msrll.exe:1372 CreateKey

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings
SUCCESS Key: 0xE15C2450

1299 7:32:30 PM msrll.exe:1372 CreateKey
HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:

0xE1546020
1302 7:32:30 PM msrll.exe:1372 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1546020
1305 7:32:30 PM msrll.exe:1372 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1546020
1308 7:32:30 PM msrll.exe:1372 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1546020
1311 7:32:30 PM msrll.exe:1372 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1546020
1314 7:32:30 PM msrll.exe:1372 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1546020
1317 7:32:30 PM msrll.exe:1372 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1546020
1506 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Shell Folders SUCCESS Key: 0xE1FCC1B0
1509 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders SUCCESS Key: 0xE1FCC1B0
1842 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoin
ts2\{f7035723-f4b0-11d6-b29f-806d6172696f}\ SUCCESS Key:
0xE1FCC1B0
1845 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoin
ts2\{a99e5349-f4f7-11d6-93ec-005056400081}\ SUCCESS Key:
0xE1FCC1B0
1848 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoin
ts2\{f7035721-f4b0-11d6-b29f-806d6172696f}\ SUCCESS Key:
0xE1FCC1B0
1851 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoin
ts2\{091136c0-7a8e-11d8-941f-000c29e6fb6b}\ SUCCESS Key:
0xE1FCC1B0
1854 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoin
ts2\Z SUCCESS Key: 0xE1FCC1B0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

1905 7:32:31 PM msrll.exe:1372 CreateKey
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\User

Shell Folders SUCCESS Key: 0xE1F8E660
1908 7:32:31 PM msrll.exe:1372 CreateKey

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders SUCCESS Key: 0xE1F8E660
1916 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Shell Folders SUCCESS Key: 0xE1FCC1B0
1919 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders SUCCESS Key: 0xE1FCC1B0
1927 7:32:31 PM msrll.exe:1372 CreateKey

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Shell Folders SUCCESS Key: 0xE1F8E660
1930 7:32:31 PM msrll.exe:1372 CreateKey

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders SUCCESS Key: 0xE1F8E660
2214 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Shell Folders SUCCESS Key: 0xE118DD68
2217 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders SUCCESS Key: 0xE118DD68
2220 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Shell Folders SUCCESS Key: 0xE118DD68
2223 7:32:31 PM msrll.exe:1372 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders SUCCESS Key: 0xE118DD68
2518 7:32:32 PM msrll.exe:1408 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1585288
2548 7:32:32 PM msrll.exe:1408 CreateKey

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings
SUCCESS Key: 0xE1585288

3664 7:32:48 PM msrll.exe:1408 CreateKey
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User

Shell Folders SUCCESS Key: 0xE15864C8
3667 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders SUCCESS Key: 0xE15864C8
3702 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Shell Folders SUCCESS Key: 0xE15864C8
3705 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders SUCCESS Key: 0xE15864C8
3716 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Shell Folders SUCCESS Key: 0xE15864C8
3719 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders SUCCESS Key: 0xE15864C8
3926 7:32:48 PM msrll.exe:1408 CreateKey

HKLM\Software\Microsoft\Tracing SUCCESS Key: 0xE1B4A628

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

4297 7:32:48 PM msrll.exe:1408 CreateKey
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\User

Shell Folders SUCCESS Key: 0xE1F8DDB0
4402 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon
SUCCESS Key: 0xE1916C00

4433 7:32:48 PM msrll.exe:1408 CreateKey
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell

Folders SUCCESS Key: 0xE1F8DDB0
4437 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Shell Folders SUCCESS Key: 0xE1F856A0
4508 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Winlogon
SUCCESS Key: 0xE1AF4A08

4540 7:32:48 PM msrll.exe:1408 CreateKey
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell

Folders SUCCESS Key: 0xE1F8DDB0
4544 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\windows\CurrentVersion\Internet Settings
SUCCESS Key: 0xE1F8DDB0

4553 7:32:48 PM msrll.exe:1408 CreateKey
HKCU\Software\Microsoft\windows\CurrentVersion\Internet

Settings\Connections SUCCESS Key: 0xE1F8DDB0
4557 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\windows\CurrentVersion\Internet
Settings\Connections SUCCESS Key: 0xE1F8DDB0
4561 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\windows\CurrentVersion\Internet Settings
SUCCESS Key: 0xE1F8DDB0

4568 7:32:48 PM msrll.exe:1408 CreateKey
HKCC\Software\Microsoft\windows\CurrentVersion\Internet Settings
SUCCESS Key: 0xE1F856A0

4571 7:32:48 PM msrll.exe:1408 CreateKey
HKCU\Software\Microsoft\windows\CurrentVersion\Internet

Settings\Connections SUCCESS Key: 0xE1F856A0
4574 7:32:48 PM msrll.exe:1408 CreateKey

HKCU\Software\Microsoft\windows\CurrentVersion\Internet
Settings\Connections SUCCESS Key: 0xE1AF4A08
4578 7:32:48 PM msrll.exe:1408 CreateKey

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters
SUCCESS Key: 0xE1AF4A08

4658 7:32:48 PM msrll.exe:1408 CreateKey
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters
SUCCESS Key: 0xE1F856A0

4678 7:32:48 PM msrll.exe:1408 CreateKey
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters
SUCCESS Key: 0xE1AF4A08

4767 7:33:58 PM msrll.exe:1408 CreateKey
HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:

0xE1916C00
4770 7:33:58 PM msrll.exe:1408 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1916C00
4773 7:33:58 PM msrll.exe:1408 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1916C00

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

4776 7:33:58 PM msrll.exe:1408 CreateKey
HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:

0xE1916C00
4779 7:33:58 PM msrll.exe:1408 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1916C00
4782 7:33:58 PM msrll.exe:1408 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1916C00
4785 7:33:58 PM msrll.exe:1408 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1916C00

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

List of References

Baker, Andrew R., Caswell, Brian, Poor, Mike. Snort 2.1 Intrusion
Detedtion, Second Edition. Rockland: Syngress Publishing, 2004.

Duntemann, Jeff. Assembly Language Step-by-Step: Programming with
DOS and Linux, Second Edition. New York: John Wiley & Sons, 2000.

Hoglund, Greg, and McGraw, Gary. Exploiting Software: How to Break
Code. Boston: Addison-Wesley, 2004.

Negus, Christopher. Red Hat Linux 8 Bible. Indianapolis: Wiley, 2002.

Skoudis, Ed. Malware: Fighting Malicious Code. Upper Saddle River:
Prentice Hall PTR, 2004.

Yoda. Readme.tXt. 2002.

Zeltser, Lenny. Reverse-Engineering Malware, Section 3: Deeper
Analysis. 2004.

