
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Reverse Engineering Malware
GREM Practical Assignment

Version 1.0

Malware: A Look at Reverse Engineering
MSRLL.EXE

Lorna J. Hutcheson
Orlando SANS 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents
Page 2 of 24

TABLE OF CONTENTS

Abstract ...4
Part 1: Laboratory Setup ...4

Introduction... 4
Hardware Setup... 4
Networking Setup ... 4
Software Resources... 5

VMWare Workstation 4.5.1.. 5
Linux Redhat... 5
Windows 98 .. 5
Windows 2000 .. 5
PEInfo ... 5
Ollydbg ... 5
Ethereal ... 6
SNORT ... 6
Filemon ... 6
RegMon... 6
TDIMon .. 6
LordPE .. 6
Notepad ... 7
Regshot ... 7
Netcat .. 7
Process Explorer ... 7
PSkill... 7
MD5sum ... 7

Part 2: Properties of the Malware Specimon8
Type of File... 8
Size of the File .. 8
MD5 Hash of the File ... 8
Operating System it Runs on .. 8
Strings Embedded into it... 8

Part 3: Behavioral Analysis..14
Behavior Before Code Analysis.. 14

Monitoring of File System Access.. 14
Monitoring registry/configuration Access .. 14
Monitoring/Redirecting Network Connections... 15
Monitoring Processes on the System .. 15

Behavior After Code Analysis .. 16
The “Bot Army”.. 18

Part 4: Code Analysis..19
Unpacking/Unencrypting.. 19
Program Code Disassembly.. 20
Debugging... 20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents
Page 3 of 24

Part 5: Analysis Wrap-Up ..23
Citation of Sources ...24
Sites for Tools..24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 1: Laboratory Setup
Page 4 of 24

Abstract
This practical will cover the reverse engineering of a malicious piece of code given to us
to analyze. It will use the procedures taught in class and will follow the outline of the
Table of Contents listed above.

Part 1: Laboratory Setup

Introduction
The laboratory environment was set up to safely analyze an unknown and
potentially malicious piece of code called msrll.exe. In order to do so, the
environment needed to be capable of exploring the full capabilities of the code,
without allowing it to be released into the wild and potentially cause damage to
systems. To facilitate this, the following laboratory configurations were designed
to allow flexability and ensure confinement of the unknown piece of software.

Hardware Setup
Only one computer was used as the test machine. This box is running a fully
patched Windows XP Home edition and has a 2.70 GHz processor with one
Gigabyte of memory. The unknown code was transferred to the box via a USB
thumb drive. This was done to bypass the antivirus software running on the base
system and allowed it to be copied directly to the VM image. Also available were
CDROM and floppy drive capabilities.

Networking Setup
The base system was configured with Internet access and the Internet
Connection Firewall turned on. There is a second Linksys firewall/router
controlling access out of the live network. The box is running Norton Antivirus
with the latest definitions. During testing, all ports to the internet were denied by
blocking the box at the Linksys firewall/router. Once it was determined the ports
in use I created a rule in the Linksys firewall/router to allow access on port 80
and port 443. This was to ensure that the malicious code could not get to the
internet incase of a mishap during testing.

In order to create the closed network test environment, VMWare Workstation
software was used to create the test network. Three images were used for
testing: an unpatched Windows 2000; an unpatched Windows 98 and the Linux
Redhat image given to us during the REM track. These images were configured
in host only mode on bootup to disallow access outside of the VM environment to
ensure containment of the malware. The boxes were configured using DHCP
and network connectivity was checked between the boxes by ensuring that you
could ping each system from the Windows 2000 image.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 1: Laboratory Setup
Page 5 of 24

Software Resources

VMWare Workstation 4.5.1
The key part of the testing was the ability to use VMWare. The software provides
the ability to run a completely isolated network with multiple operating systems all
on one box. It reduces cost of tesing by reducing the need for multiple test boxes
and networking hardware. This can be found at http://www.vmware.com/.

Linux Redhat
The image was given during the Reverse Engineering Malware course at a
SANS conference. It was used as one of the test operating systems and
provided a box for the malicious code to attempt to connect to via an IRC
channel since it already had an IRC server loaded on it. Linux can be obtained
free from http://www.linux.org/.

Windows 98
The image was an unpatched Windows 98 operating system used as a
secondary box on which to launch the malicious code. This was done for two
reasons: one was to determine the effects of how the code interacted with
multiple systems infected with the same thing in an enclosed environment and
second to observe any differences on different operating platforms.

Windows 2000
The image was an unpatched Windows 2000 operating system and was used as
the primary system to launch the code on and conduct the analysis on. On this
image was also loaded all the tools necessary to conduct our analysis.

PEInfo
PEInfo is a tool developed by Tom Liston and allows for the breakdown of an
executable to examine the PE header information and the structure of the
windows executable. However, when dealing with a packed file, it first has to be
unpacked before it can be of much use. The primary use of this tool was to
analyze the strings of the file once it was unpacked. This is done by dragging the
file over the window of PEInfo and dropping it. I obtained this tool from Tom
Liston.

Ollydbg
This is a great tool and it’s free. Ollydbg is a disassembler with great
functionality and it is relatively easy to use. Also downloaded was OllyDump
which is a plugin that will allow you to dump code from memory. This tool was
used to obtain a clean, unpacked version of the malicious code. Many scripts
are available for Ollydbg that will allow you to find the Operational Entry Point
(OEP) of the code in assembly. However, in the reality that one of these might
not be available and the desire to learn how to find it manually, I enlisted the help
of Tom Liston and his great programming skills. His techniques for finding the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 1: Laboratory Setup
Page 6 of 24

OEP manually through Ollydbg will be described later in detail. This can be
found at http://home.t-online.de/home/Ollydbg/.

Ethereal
Many sniffers exist, but Ethereal is my favorite. It is easy to use and allows you
to look at the information in a concise fashion or provide an indepth look at the
packets. This was used to sniff the network traffic on the Windows boxes. A
requirement to run any sniffer is winpcap which allows the interface to go into
promiscuious mode. The program as well as the winpcap drivers can be found at
http://www.ethereal.com/.

SNORT
SNORT was also used as a sniffer. Since the Linux image already had snort
installed, I used it to monitor traffic coming to the Linux box. It can be found at
http://www.snort.org/.

Filemon
This a great tool provided free by Sysinternals and allows you to monitor
changes as well as access to the file system. This tool was used when msrll.exe
was launched to monitor what activity was taking place on the file system. This
can be found at http://www.sysinternals.com/ntw2k/source/filemon.shtml.

RegMon
This tool is also provided free by Sysinternals and allows you to monitor registry
accesses and changes. This tool was used when msrll.exe was launched to
monitor what it was activity was taking place in the registry. This can be found at
http://www.sysinternals.com/ntw2k/source/regmon.shtml.

TDIMon
TDIMon is a tool that allows you to monitor the TCP and UDP activity on the
system. TDI stands for Transport Driver Interface which is exactly what it is
monitoring. This was used to help determine what activity msrll.exe might be
doing. This can be found at
http://www.sysinternals.com/ntw2k/freeware/tdimon.shtml.

LordPE
LordPE is a tool that was used during the analysis without useful results. The
tool is intended to allow a look at processes that are running and how it interacts.
It also allows to you dump a process from memory. This was used after
launching msrll.exe to attempt to get an unpacked version of the code. However,
the code that was obtained was still not readable so another method was used
which was ollydbg. It can be found at
http://mitglied.lycos.de/yoda2k/LordPE/info.htm.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 1: Laboratory Setup
Page 7 of 24

Notepad
Notepad is a built in text editor that comes with Windows systems. It is used as a
method to safely view files without launching them. This was used in many
different forms throughout the analysis to look at files and view output from tools.

Regshot
Regshot is a great tool that allows you to do a before and after picture of the
registry settings. This was run before msrll.exe was launched and again
immediately afterwards to help determine the modifications to the registry. The
homepage for Regshot is http://regshot.ist.md/ however it was unavailable the last
time I checked. It can be found easy by a simple Google query.

Netcat
This tool has been often called a “Swiss Army Knife” because of its many
capabilities. You can use it to set up a listener on any port to allow connections
to it or you can transfer files using it. It is very flexible and will be used to similate
any needed listening ports that the malware might want to connect to. This can
be found at http://netcat.sourceforge.net.

Process Explorer
This is a tool from Sysinternals that allows you to monitor the processes running
on the system as well as any handles they might have. You can also view all the
information about the process such as the command line that calls it, security
settings etc. This will be used to help monitor what the malware is doing. This
can be found at http://www.sysinternals.com/ntw2k/freeware/procexp.shtml.

PSkill
This tool is a command line tool that will allow you to terminate a process by
typing “pskill <PID>”. This will be used to quickly kill a process if needed.This
can be found at http://www.sysinternals.com/ntw2k/freeware/pskill.shtml.

MD5sum
The tool is a command line executable that allows you generate an MD5 hash of
a file. This will be used to hash the malware in question before and after it is
launched to see if it is modifying itself or if it is the same as the orginal. The tool
can be found at http://www.gnu.org/software/textutils/textutils.html.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2: Properties of the Malware Specimen
Page 8 of 24

Part 2: Properties of the Malware Specimon

Type of File
The malware file is a compressed executable that has been compressed with
ASPack. This was determined by looking at the file in PEInfo. It was easy to
look at the Sections area and find how the file was compressed as .aspack is
listed. This is key to know because the file is unreadable for the strings in its
current state and will require the file to be unpacked.

Size of the File
The file itself in its packed state is 41,984 bytes (41 KB). This was determined by
looking at the file in PEInfo. If you click on the filename itself at the top of PEInfo,
it will show you the file size. This was futher verified by right clicking on the file
and looking at the properties of it using Explorer. After the file was unpacked via
Ollydbg and following the same procedure as described above, the file size was
1,182,720 bytes (1.12 MB)

MD5 Hash of the File
The MD5 hash of the file in its packed state is
84acfe96a98590813413122c12c11aaa. This was determined by using a
command line tool called md5sum.exe. This tool is used by issueing the
following command at the commandline “md5sum.exe msrll.exe”. I placed
MD5sum.exe in the directory where the malware was located to avoid modifying
the path. The MD5 hash of the file was also taken after it was launched with the
following results:
\84acfe96a98590813413122c12c11aaa *C:\WINNT\system32\mfm\msrll.exe.
This was done to ensure no modification of the file occurred after it was
launched.

Operating System it Runs on
The malware is a Windows based executable. This was determined by using
PEInfo, which breaks down the file structure of Windows based executables.

Strings Embedded into it
The strings embedded into it are not visiable via PEInfo in its packed state.
However, once the file was unpacked using Ollydbg, the strings were readily
available using PEInfo and there were lots of strings. Here are the strings found:
!This program cannot be run in
DOS mode

?msg GetExitCodeProcess StartServiceCtrlDispatcherA

.idata ?kb GetFileSize kernel32.dll

.aspack ?sklist GetFullPathNameA AddAtomA

.adata ?unset GetLastError CloseHandle

.newIID ?uattr GetModuleFileNameA CopyFileA
?insmod ?dccsk GetModuleHandleA CreateDirectoryA
?rmmod ?con GetProcAddress CreateFileA

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2: Properties of the Malware Specimen
Page 9 of 24

?lsmod ?killsk GetStartupInfoA CreateMutexA
%s: <mod name> VERSION* GetSystemDirectoryA CreatePipe
%s: mod list full %ud %02uh %02um %02us GetSystemInfo CreateProcessA
%s: err: %u %02uh %02um %02us GetTempPathA CreateToolhelp32Snapshot
mod_init %um %02us GetTickCount DeleteFileA
mod_free jtram.conf GetVersionExA DuplicateHandle
%s: cannot init %s DiCHFc2ioiVmb3cb4zZ7zWZH1oM= GlobalMemoryStatus RtlEnterCriticalSection
%s: %s loaded (%u) conf_dump: wrote %u lines InitializeCriticalSection ExitProcess
%s: mod allready loaded get of %s incomplete at %u bytes IsBadReadPtr ExitThread
%s:%s err %u dcc_wait: get of %s from %s timed out LeaveCriticalSection FileTimeToSystemTime
%s:%s not found dcc_wait: closing [#%u] %s:%u (%s) LoadLibraryA FindAtomA
%s: unloading %s %4s #%.2u %s %ucps %u%% [sk#%u] %s MoveFileA FindClose
[%u]: %s hinst:%x %u Send(s) %u Get(s) (%u transfer(s)

total) UP:%ucps DOWN:%ucps
Total:%ucps

OpenProcess FindFirstFileA

unloading %s send of %s incomplete at %u bytes PeekNamedPipe FindNextFileA
%s: invalid_addr: %s send of %s completed (%u bytes), %u

seconds %u cps
Process32First FreeLibrary

%s%s [port] cant open %s (err:%u) pwd:{%s} Process32Next GetAtomNameA
finished %s DCC SEND %s %u %u %u QueryPerformanceFrequency GetCommandLineA
%s <ip> <port> <t_time>
<delay>

%s exited with code %u ReadFile GetCurrentDirectoryA

sockopt: %u %s: %s ReleaseMutex GetCurrentProcess
sendto err: %u exec: Error:%u pwd:%s cmd:%s RemoveDirectoryA GetCurrentThreadId
sockraw: %u dcc.pass SetConsoleCtrlHandler GetExitCodeProcess
syn: done bot.port SetCurrentDirectoryA GetFileSize
%s <ip> <duration> <delay> %s bad pass from "%s"@%s SetFilePointer GetFullPathNameA
sendto: %u %s: connect from %s SetUnhandledExceptionFilter GetLastError
jolt2: done jtr.bin TerminateProcess GetModuleFileNameA
%s <ip> <p size> duration>
<delay>

msrll.exe WaitForSingleObject GetModuleHandleA

Err: %u jtr.home WriteFile The procedure entry point
%s could not be located in
the dynamic link library %s

smurf done jtr.id _strdup The ordinal %u could not be
located in the dynamic link
library %s

&err: %u irc.quit _stricmp (08@P`p
PONG :%s Servers __getmainargs kernel32.dll
%s!%s@%s collective7.zxy0.com,collective7.zxy0.com

:9999!,collective7.zxy0.com:8080
__p__environ GetProcAddress

SVh=+@ irc.chan __p__fmode GetModuleHandleA
irc.nick 1KZLPLKDf$W8kl8Jr1X8DOHZsmIp9

qq0
__set_app_type LoadLibraryA

NICK %s 1KZLPLKDf$55isA1ITvamR7bjAdBzi
X.

_beginthread advapi32.dll

NETWORK= SSL_get_error _cexit msvcrt.dll
irc.pre SSL_load_error_strings _errno msvcrt.dll
__%s__ SSL_library_init _fileno shell32.dll
__%s___ SSLv3_client_method _onexit user32.dll
NICK %s SSL_set_connect_state _setmode version.dll
irc.chan SSL_CTX_new _vsnprintf wininet.dll
WHO %s SSL_new atexit ws2_32.dll
PPhV,@ SSL_set_fd fclose AdjustTokenPrivileges
USERHOST %s SSL_connect fflush __getmainargs
logged into %s(%s) as %s SSL_write fprintf ShellExecuteA
<$hE:@ SSL_read fwrite DispatchMessageA
nick.pre SSL_shutdown malloc GetFileVersionInfoA
%s-%04u SSL_free memcpy InternetCloseHandle
irc.user SSL_CTX_free memset WSAGetLastError
irc.usereal kernel32.dll printf advapi32.dll
irc.real QueryPerformanceCounter realloc AdjustTokenPrivileges
irc.pass QueryPerformanceFrequency setvbuf CloseServiceHandle
tsend(): connection to %s:%u
failed

RegisterServiceProcess signal CreateServiceA

USER %s localhost 0 :%s jtram.conf sprintf CryptAcquireContextA

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2: Properties of the Malware Specimen
Page 10 of 24

NICK %s irc.user stricmp CryptGenRandom
PRIVMSG %s : USERID : UNIX : %s strcat CryptReleaseContext
trecv(): Disconnected from %s
err:%u

QUIT :FUCK %u strchr GetUserNameA

NOTICE Killed!? Arrg! [%u] strcmp LookupPrivilegeValueA
%s %s :%s QUIT :%s strcpy OpenProcessToken
MODE %s -o+b %s *@%s SeShutdownPrivilege strerror OpenSCManagerA
C'PSWh %s\%s\%s strncat RegCloseKey
MODE %s -bo %s %s Rll enhanced drive strncmp RegCreateKeyExA
%s.key software\microsoft\windows\currentversio

n\run
strncpy RegSetValueExA

sk#%u %s is dead! /d "%s" strstr RegisterServiceCtrlHandler
A

s_check: %s dead? pinging... ./0123456789ABCDEFGHIJKLMNOPQR
STUVWXYZabcdefghijklmnopqrstuvwxy
z

toupper SetServiceStatus

PING :ok usage %s: server[:port] amount ShellExecuteA GetProcAddress
s_check: send error to %s
disconnecting

%s: %s DispatchMessageA GetStartupInfoA

expect the worst %s %s %s <PARAM> ExitWindowsEx GetSystemDirectoryA
s_check: killing socket %s %s: [NETWORK|all] %s <"parm"> ... GetMessageA GetSystemInfo
irc.knick USER %s localhost 0 :%s PeekMessageA GetTempPathA
jtr.%u%s.iso NICK %s GetFileVersionInfoA GetTickCount
ison %s buf != NULL VerQueryValueA GetVersionExA
servers hash != NULL InternetCloseHandle GlobalMemoryStatus
s_check: trying %s message digest InternetGetConnectedState InitializeCriticalSection
uYVh|K@ abcdefghijklmnopqrstuvwxyz InternetOpenA IsBadReadPtr
%s.mode ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz0123456789
InternetOpenUrlA RtlLeaveCriticalSection

MODE %s %s 1234567890123456789012345678901234
5678901234567890123456789012345678
901234567890

InternetReadFile LoadLibraryA

PShZP@ sprng.c WSAGetLastError MoveFileA
mode %s +o %s buf != NULL WSASocketA OpenProcess
mode %s +b %s %s skey != NULL WSAStartup PeekNamedPipe
KICK %s %s key != NULL __WSAFDIsSet Process32First
irc.pre ct != NULL accept Process32Next
Set an irc sock to preform %s
command on Type

pt != NULL closesocket QueryPerformanceFrequenc
y

%csklist #4EVgx connect ReadFile
to view current sockets, then $5FWhy gethostbyaddr ReleaseMutex
%cdccsk #4EVgx gethostbyname RemoveDirectoryA
%s: dll loaded $5FWhy gethostname SetConsoleCtrlHandler
%s: %d #4EVgx getsockname SetCurrentDirectoryA
said %s to %s $5FWhy inet_addr SetFilePointer
usage: %s <target> "text" desired_keysize != NULL inet_ntoa SetUnhandledExceptionFilte

r
%s not on %s ctr != NULL ioctlsocket TerminateProcess
usage: %s <nick> <chan> key != NULL listen WaitForSingleObject
%s logged in count != NULL select WriteFile
sys: %s bot: %s ct != NULL sendto msvcrt.dll
preformance counter not avail pt != NULL setsockopt _mbsdup
usage: %s <cmd> ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz0123456789
+/

shutdown _strcmpi

%s free'd ?456789:;<= socket msvcrt.dll
unable to free %s !"#$%&'()*+,-./0123 ADVAPI32.DLL __getmainargs
later! base64.c KERNEL32.dll __p__environ
unable to %s errno:%u outlen != NULL msvcrt.dll __p__fmode
service:%c user:%s inet
connection:%c contype:%s
reboot privs:%c

out != NULL msvcrt.dll __set_app_type

%-5u %s in != NULL SHELL32.DLL _beginthread
%s: %s _ARGCHK '%s' failure on line %d of file

%s
USER32.dll _cexit

%s: somefile crypt.c VERSION.dll _errno
host: %s ip: %s name != NULL WININET.DLL _fileno

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2: Properties of the Malware Specimen
Page 11 of 24

capGetDriverDescriptionA cipher != NULL WS2_32.DLL _onexit
cpus:%u hash != NULL VirtualAlloc _setmode
WIN%s (u:%s)%s%s
mem:(%u/%u) %u%% %s %s

prng != NULL VirtualFree _vsnprintf

%s: %s (%u) LibTomCrypt 0.83 kernel32.dll atexit
%s bad args Endianess: little (32-bit words) ExitProcess fclose
%s[%u] %s Clean stack: disabled user32.dll fflush
%s removed Ciphers built-in: MessageBoxA fprintf
couldnt find %s Blowfish wsprintfA fwrite
%s added RC2 LOADER ERROR malloc
%s allready in list RC5 The procedure entry point %s

could not be located in the
dynamic link library %s

memcpy

usage: %s +/- <host> RC6 The ordinal %u could not be
located in the dynamic link
library %s

memset

jtram.conf Serpent (08@P`p printf
%s /t %s Safer+ kernel32.dll realloc
jtr.home Safer GetProcAddress setvbuf
%s: possibly failed: code %u Rijndael GetModuleHandleA signal
%s: possibly failed XTEA LoadLibraryA sprintf
%s: exec of %s failed err: %u Twofish advapi32.dll strcat
jtr.id CAST5 msvcrt.dll strchr
%s: <url> <id> Noekeon msvcrt.dll strcmp

#%u [fd:%u] %s:%u [%s%s]
last:%u

Hashes built-in: shell32.dll strcpy

|\=> [n:%s fh:%s] (%s) SHA-512 user32.dll strerror
|---[%s] (%u) %s SHA-384 version.dll strncat
| |-[%s%s] [%s] SHA-256 wininet.dll strncmp
|=> (%s) (%.8x) TIGER ws2_32.dll strncpy

B$PRhco@ SHA1 AdjustTokenPrivileges strstr
%s <pass> <salt> MD5 __getmainargs toupper
%s <nick> <chan> MD4 ShellExecuteA shell32.dll
PING %s MD2 DispatchMessageA ShellExecuteA
mIRC v6.12 Khaled Mardam-
Bey

Block Chaining Modes: GetFileVersionInfoA USER32.dll

VERSION %s CFB InternetCloseHandle DispatchMessageA
dcc.pass OFB WSAGetLastError ExitWindowsEx
temp add %s CTR advapi32.dll GetMessageA
%s%u-%s Yarrow AdjustTokenPrivileges PeekMessageA
%s opened (%u) SPRNG CloseServiceHandle version.dll
%u bytes from %s in %u
seconds saved to %s

RC4 CreateServiceA GetFileVersionInfoA

(%s %s): incomplete! %u bytes PK Algs: CryptAcquireContextA VerQueryValueA
couldnt open %s err:%u RSA CryptGenRandom wininet.dll
(%s) %s: %s ECC CryptReleaseContext InternetCloseHandle
(%s) urlopen failed Compiler: GetUserNameA InternetGetConnectedState
(%s): inetopen failed WIN32 platform detected. LookupPrivilegeValueA InternetOpenA
no file name in %s GCC compiler detected. OpenProcessToken InternetOpenUrlA
%s created Various others: BASE64 MPI HMAC OpenSCManagerA InternetReadFile
%s %s to %s Ok /dev/random RegCloseKey ws2_32.dll
%0.2u/%0.2u/%0.2u
%0.2u:%0.2u %15s %s

Microsoft Base Cryptographic Provider
v1.0

RegCreateKeyExA WSAGetLastError

%s (err: %u) XTEA RegSetValueExA WSASocketA
err: %u bits.c RegisterServiceCtrlHandlerA WSAStartup
%s %s :ok buf != NULL SetServiceStatus __WSAFDIsSet
unable to %s %s (err: %u) prng != NULL StartServiceCtrlDispatcherA accept
%-16s %s <"tx< tf< kernel32.dll closesocket
%-16s (%u.%u.%u.%u) -LIBGCCW32-EH-SJLJ-GTHR-

MINGW32
AddAtomA connect

[%s][%s] %s <ip> <total secs> <p size> <delay> CloseHandle gethostbyaddr
closing %u [%s:%u] modem CopyFileA gethostbyname
unable to close socket %u Proxy CreateDirectoryA gethostname
using sock #%u %s:%u (%s) none CreateFileA getsockname
Invalid sock m220 1.0 #2730 Mar 16 11:47:38 2004 CreateMutexA inet_addr
usage %s <socks #> unable to %s %s (err: %u) CreatePipe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2: Properties of the Malware Specimen
Page 12 of 24

leaves %s unable to kill %s (%u) CreateProcessA inet_ntoa
:0 * * :%s %s killed (pid:%u) CreateToolhelp32Snapshot ioctlsocket
joins: %s AVICAP32.dll DeleteFileA listen
ACCEPT unable to kill %u (%u) DuplicateHandle select
resume pid %u killed RtlEnterCriticalSection sendto
err: %u error! ExitProcess setsockopt
DCC ACCEPT %s %s %s ran ok ExitThread shutdown
dcc_resume: cant find port %s MODE %s +o %s FileTimeToSystemTime socket
dcc.dir set %s %s FindAtomA
%s\%s\%s\%s Mozilla/4.0 FindClose
unable to open (%s): %u Accept: */* FindFirstFileA
resuming dcc from %s to %s <DIR> FindNextFileA
DCC RESUME %s %s %u Could not copy %s to %s FreeLibrary
?si %s copied to %s GetAtomNameA
?ssl 0123456789abcdef GetCommandLineA
?clone %s unset GetCurrentDirectoryA
?clones unable to unset %s GetCurrentProcess
?login (%s) %s GetCurrentThreadId
?uptime libssl32.dll GetExitCodeProcess
?reboot libeay32.dll GetFileSize
?status <die|join|part|raw|msg> GetFullPathNameA
?jump AdjustTokenPrivileges GetLastError
?nick CloseServiceHandle GetModuleFileNameA
?echo CreateServiceA GetModuleHandleA
?hush CryptAcquireContextA The procedure entry point %s

could not be located in the
dynamic link library %s

?wget CryptGenRandom The ordinal %u could not be
located in the dynamic link
library %s

?join CryptReleaseContext (08@P`p
?op GetUserNameA kernel32.dll
?aop LookupPrivilegeValueA GetProcAddress
?akick OpenProcessToken GetModuleHandleA
?part OpenSCManagerA LoadLibraryA
?dump RegCloseKey advapi32.dll
?set RegCreateKeyExA msvcrt.dll
?die RegSetValueExA msvcrt.dll
?md5p RegisterServiceCtrlHandlerA shell32.dll
?free SetServiceStatus user32.dll
?raw StartServiceCtrlDispatcherA version.dll
?update AddAtomA wininet.dll
?hostname CloseHandle ws2_32.dll
?fif CopyFileA AdjustTokenPrivileges
?!fif CreateDirectoryA __getmainargs
?del CreateFileA ShellExecuteA
?pwd CreateMutexA DispatchMessageA
?play CreatePipe GetFileVersionInfoA
?copy CreateProcessA InternetCloseHandle
?move CreateToolhelp32Snapshot WSAGetLastError
?dir DeleteFileA advapi32.dll
?sums DuplicateHandle AdjustTokenPrivileges
?ls EnterCriticalSection CloseServiceHandle
?cd ExitProcess CreateServiceA
?rmdir FileTimeToSystemTime CryptAcquireContextA
?mkdir FindAtomA CryptGenRandom
?run FindClose CryptReleaseContext
?exec FindFirstFileA GetUserNameA
?ps FindNextFileA LookupPrivilegeValueA
?kill FreeLibrary OpenProcessToken
?killall GetAtomNameA OpenSCManagerA
?crash GetCommandLineA RegCloseKey
?dcc GetCurrentDirectoryA RegCreateKeyExA
?get GetCurrentProcess RegSetValueExA
?say GetCurrentThreadId RegisterServiceCtrlHandlerA

SetServiceStatus

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2: Properties of the Malware Specimen
Page 13 of 24

The first step in starting to analyze the malware was to look at the strings for any
clues about the capabilities of the malware and what it might do. One of the first
things that popped out were references to“IRC”in some of the strings. So my
initial assumption was it was an IRC bot of some sort. In light of this, I looked for
strings that might be used as IRC commands. I found several that were
proceeded by a ? and looked like good candidates such as“?login”,“?uptime”,
“?join”,“?die”etc. Other strings that caught my attention were things like
“irc.pass”and“dcc.pass”as possible ways for IRC password validation. The
string“bot.port”seemed to indicate either a port that might be listening on the
infected machine or that you could use it to specifiy the port that bot was
connecting on so it was something to look at later. I also noticed the strings
“Ciphers built-in” and “Hashes built-in” so I figured I would have to look for their
usage and might make password identification difficult. “Mozilla/4.0” and strings
such as “InternetCloseHandle” and “InternetOpenUrlA” might mean web server of
some sort was being used. Also found were references to one server
(collective7.zxy0.com) but two different ports were specified: 9999 and 8080.
The other didn’t specifiy a port, so it looked like it might be a webserver
connection. There were two strings that seemed similar that I found that I
thought might be useful “1KZLPLKDf$W8kl8Jr1X8DOHZsmIp9qq0” and
“1KZLPLKDf$55isA1ITvamR7bjAdBziX”. I did not know what they were for,
but I wanted to explore them further. Also mentioned were “Ping” “UDP” “Smurf”,
“Jolt2”, and “SYN”. This was evident that it possessed to capability to do denial
of service (DOS) attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3: Behavioral Analysis
Page 14 of 24

Part 3: Behavioral Analysis

Behavior Before Code Analysis
In preparation of launching of msrll.exe on the Windows 2000 image, there were
several tools set up in advance to monitor the behavior of it. Filemon, Regmon
and TDImon were all launched, the captures paused and the contents cleared.
This was to attempt to capture only what was being used by the msrll.exe. Also
launched were LordPE to monitor the processes and RegShot to keep track of
the registry. Ethereal was also run to sniff traffic coming from the system. The
malware was then executed in the controlled environment described above. The
tools and their output are described below in the analysis of the malware,
however it is important to note that only the key pieces of the analysis are listed.
Each of these tools generate a lot of data that has to be analyzed to determine
what is relevant in understanding the malware.

Monitoring of File System Access
Filemon showed some very key things that are listed and discussed below.

We see that the malware created a directory named mfm in the system32 folder
177 3:08:45 PM msrll.exe:252CREATE C:\WINNT\system32\mfm

SUCCESS Options: Create Directory Access: All

Next the malware copied itself to the directory, which was verified via an MD5
hash to be the same as the orginal file.
224 3:08:45 PM msrll.exe:252CREATE

C:\WINNT\system32\mfm\msrll.exe SUCCESS Options: OverwriteIf
Sequential Access: AllMonitoring

Then we see the malware creates a file calld jtram.conf
869 3:09:04 PM msrll.exe:1044 CREATE

C:\WINNT\system32\mfm\jtram.conf SUCCESS Options: OverwriteIf
Access: All

Monitoring registry/configuration Access
For the registry I was looking for things created and/or modified that might be
something that tells us what and how its doing it. Here are some of the
interesting findings from Regmon and RegShot.

Regmon shows us that it is putting its self in to run as a service.
1462 101.79209788 SERVICES.EXE:212 CreateKey

HKLM\System\CurrentControlSet\Services\mfm SUCCESS Key:
0xE13704E0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3: Behavioral Analysis
Page 15 of 24

Regmon also shows that several keys were created dealing with Cryptograph
such as the one below. Probably to ensure that it had the crypto capabilities that
it was wanting.
249 100.15181874 Filemon.exe:680 CreateKey

HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE1D14FE0

RegShot showed us more about the service that it set itself up to run as and the
name of the service was “Rll enhanced drive.”
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ImagePath:
"C:\WINNT\system32\mfm\msrll.exe"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\DisplayName:
"Rll enhanced drive"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ObjectName:
"LocalSystem"

Monitoring/Redirecting Network Connections
Before launching the program, I used Ethereal to start a packet capture to see if
it was doing anything. One of the things noted after it was run were the DNS
queries to the collective7.zxy0.com that we noted in the strings. Since it was
looking for them, I modified the host file to point to my VMimage of Linux that I
was going to use as the server. As soon as it got the DNS name resolved, it
attempted connections to the server on ports 6667, 9999 and 8080. These
connections were sent a RST since I have nothing listening on them yet.

In order to give it something to connect to, I used the VMimage of Linux that was
given to us in class. On it is an IRC server that was ready to be used. Before
starting the IRC server, I fired up Snort since it was already on the Linux box to
capture the data that was being sent to us. Now, I launched the IRC server and
waited. The packets showed connection attempts to a channel called #mils. So
on the IRC channel I joined the IRC channel and very shortly a “user” popped up
in it with me. The bot was now connected. The nickname used was not one that
was readable and subsequent connections while analyzing the bot showed that it
was a randomly generated nickname. I decided to also set up a netcat listener
on each of the other ports and see what would happen. The bot connects to the
netcat listener in the same fashion it appears that they connected to the IRC
channel. Once a connection is established and the bot logins in there are no
more attempts to connect to the other ports. The final thing I attempted was to
issue commands to the bot from the IRC server that I was logged into. On the
Linux image, I attempted all of the commands that I found listed and attempted to
use them to get the bot to respond. I was unsuccessful in my attempts.

Monitoring Processes on the System
I used Task Manager to check the processes running on the system and I found
that msrll.exe was indeed running now as a process. I tried to kill it from the
process list and found that I was denied. I then went to look at the services and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3: Behavioral Analysis
Page 16 of 24

found I could not kill it from there either. I opened Sysinternals Process Explorer
and found it there. I was able to kill it using Process Explorer or the command
line tool PSkill also from Sysinternals.

The next thing I wanted to know, was what ports were being used by msrll.exe. I
used Process Explorer again to find the msrll.exe process. Once selected I right
clicked to look at the properties. From there, I could see the connection to the
IRC server, but I also saw that it was listening on port 2200 as well. To watch
what was happening I launched Ethereal again and since Mozilla was mentioned,
I used it and attempted to connect to the bot on port 2200. I was unsuccessful
and kept getting RSTs from the bot host. I then attempted to pass it things from
the strings that looked like it could be connected to such as
http://192.168.6.129:2200/jtr.home and http://192.168.6.129:2200/jtr.bin. I got
nothing back on the first one, but on the second one I got a file that I
downloaded. The file contained a “#:”. I tried connecting the same way via SSL
since it was mentioned and I received a connection to port 2200. The packet
captures showed that I wassent a “#:” in the data, but nothing appeared on my
screen. I tried sending commands, but nothing would leave my browser based
on packet captures. I then tried a telnet session since it appeared to attempt to
shovel me a prompt with the “#:”. I was rewarded with a “#:” on my screen but
after typing “?login testuser” and “?pwd testpwd” I was disconnected. So now I
new I had three avenues to attempt to figure out how to get in: the IRC channel,
port 2200 via telnet and using Mozilla.

Behavior After Code Analysis
Once I was able to bypass the authentication (see the code analysis section
below) and talk to the bot directly, I attempted the commands to see what I was
able to do with them Of the three ways that I tried to get the bot to respond, the
only one that was successful was via telnet. Here are the results of what I found
for the commands that could be used and what I observed.

COMMAND RESULTS
?si This command gives the system information about the computer that you connect to

via telnet. “WIN2k (u:Administrator) mem176/255) 30% GenuineIntel Intel(R)
Celeron(R)CPU 2.70 GHz”

?ssl This returned “?ssl: -1” I believe that this tells you whether SSL is being used or not
?clone It showed the following: “usage ?clone: server[:port] amount”. I tested this by typing

“?clone 192.168.6.129:2200 1kb and received ***bot.port: connect from
192.168.6.129”

?clones This showed usage of “[NETWORK|all] <die|join|part|raw|msg> <”parm”>…”,
however, I could not get it to do anything. I believe it allows you to send commands
to multiple clones.

?login ?login requires username then <ENTER> and password then <ENTER>
?uptime Shows how long the system has been up and how long the bot has been up in h/m/s
?reboot This command reboots the system you are connected to and responds with “later!”
?status Shows information about the computer the bot is on: “service:Y user:SYSTEM inet

connection:Y contype:Lan reboot privs:Y”
?jump I got no response from this command

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3: Behavioral Analysis
Page 17 of 24

?nick This tells me to “Set an irc sock to perform ?nick command on Type .sklist to view
current sockets, then .dccsk <#>” The .sklist shows me the IRC channel and
everyone in it and then it shows me just the irc server I am on. If you type .dccsk
and then the number of the irc socket you get “using sock #1
collective7zxy0.com:667 (XmCMYbzhM, which is the current nick of the bot that is
logged in on the channel from the machine I am connected to port 2200 on.

?echo In watching packet captures, this appears to echo whatever was typed to the bot
?hush I got no response to hush
?wget This command gets you a file from the system you are connected to
?join ?join functioned in the same way as ?nick above
?op I got “bad args” with this one, but I don’t know what they are looking for here.
?aop No response
?akick No response
?part No response
?dump No response
?set This command lets you set values of jtr.bin, jtr.home, bot.port, jtr.id, irc.quit, servers

and their ports, irc.chan, pass (a hash, but not sure what the password is for) and
dcc.pass which is the password of the login to the bot.port. The password can be
changed using this command.

?die Killed all windows that I had open on the Linux box that was acting as my IRC server
?md5p Takes the parameters <pass> <salt> and returns 1SALT$Password Hash
?free Takes the value <?cmd> and releases it from use. Tested with passing it ?pwd and

?pwd no longer returned results even after quiting the telnet session and relogging
in. I had to terminate the msrll.exe and restart it to get the functionality back.

?raw ?raw functioned in the same way as ?nick above
?update Takes the parameters <url> <id>, but I couldn’t find how to use it.
?hostname Returns the name of the computer and the IP address
?fif No response
?!fif No response
?del Deletes the name of a file and you can specify the path
?pwd Tells you the current directory that you are in
?play Shows you the contents of the file specified
?copy Copies the file specified to another location and to the name specified
?move Moves the file specified to the location of choice and to the name specified
?dir Shows the directories and files of the directory that is your present working directory
?sums Gives you the md5 hash of the files and their versions if known
?ls Same as ?dir, Unix based command
?cd Changes directories and uses 8.3 filename convention.
?rmdir Deletes the directory specified and the path can be included
?mkdir Creates a directory where specified
?run Runs the executable specified, but you have to give the path to it. It shows in the

processes as running, but not on the screen. Indicates OK for success
?exec Same as run above, but does not indicate whether it successfully completed as ?run

does
?ps Lists all the processes running and their Process ID
?kill Kills the specified process by ?kill <PID> Reports success or failure
?msg ?msg functioned in the same way as ?nick above
?kb ?kb functioned in the same way as ?nick above
?sklist Shows the information about the current sockets
?unset Stopped any commands from displaying information, although Snort showed that the

correct information was being returned for the commands run such as ?set.
?uattr ?uattr functioned in the same way as ?nick above
?dccsk Used to connect to a socket that is specified by the socket number that can be found

with ?sklist

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3: Behavioral Analysis
Page 18 of 24

?con Unsure of its use, but when used with a file namespecified such as notepad I
received the following: ***chdir: C:\winnt\system32\mfm -> C:\winnt\system32\mfm
(0)

?killsk Said it couldn’t kill the socket and specified a socket number
?insmod Installs loadable modules
?rmmod Removes Loadable modules
?lsmod Lists loadable modules

The “Bot Army”
I infected a windows 98 box so that I now had a bot “army” to play with.I tried to
get the commands to work that seemed to allow the access to all of the bots such
as ?clones. I was unable to get mybot army” to respond to this command. I also
tried to figure out how to get it to launch a DDOS attack that was referenced, but
I was unable to do this as well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 4: Code Analysis
Page 19 of 24

Part 4: Code Analysis

Unpacking/Unencrypting
The first attempt to get the dumped code was with LordPE. However, I was not
able to obtain an unpacked copy of the process that was decrypted. There are
several tools that will dump an aspacked executable; however, I chose not to use
them as the results can produce modified results and I wanted to make sure I
had a clean copy. In order to get the unpacked code so that we can look at it, we
are going to use Ollydbg to dump the code once it is unpacked in memory. The
steps below will describe how to get the unpacked code from memory. The
description in class showed an UPX packed file and used Ollydbg to dump it from
memory. However, it did not discuss how to find the Orginal Entry Point (OEP)
and the process to dump any type of file. It only showed what the code in
Assembly would look like for the end of an UPX packed file. There are scripts
that will do this for you for any type of packed file such as those found at
http://ollyscript.apsvans.com/. However, I wanted to learn the manual method of
how it worked and with help from Tom Liston, he showed how to do this for any
type file and what to look for. I will describe the process below that will work to
find the OEP and allow you to dump the contents of msrll.exe.

Before firing up Ollydbg, make sure that Ollydump has been downloaded and
placed in the Ollydbg directory. This is a free plugin that can be found at
http://dd.x-eye.net/file/. To get started, first open Ollydbg and load msrll.exe.
Now we want to press ALT M to open a memory map of the file. We are looking
for the PE header information so that we can find the location in memory of the
base image. Once you find the first PE header, click on it and a new window will
popup. In the new window scroll down until you find “image base” in the right
column. We find the image base is at 400000 and this was recorded for use
later. Next, return to the CPU main thread module and you should be at the first
command “PUSHAD”. At this point we are going to push F8 to set over the entire
subroutine. We want to be at the end of it, not stepping into it. We arrive at a
call to msrll.0051d00a. We want to follow this in a dump, but we want to follow it
in memory so that we can see the code in memory of this call. Right click over
the ESP register and select “Follow in Dump”. Now in the bottom left pane,
highlight the first four bytes by holding the left mouse button down and selecting
them. We only want the first four bytes before the next jump since this is what
was pointed to in that call. Now right click and select breakpoint, hardware on
access, dword. A hardware breakpoint does not modify the memory contents.
Now comes the fun part, as we are going to run the code up to that point by
pressing F9. We should be at a command “jnz short msrll.0051d3ba” in the main
cpu thread window. We will press F8 until we hit a “RETN” command, which
should be the end of the decompression function. Now we will step INTO it by
pressing F7. We are now at the OEP which is very key. Write down the address
of the OEP which was 401240 and press CTRL A which will analyze the code.
You should now see code. To dump the code, we need that first number we

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 4: Code Analysis
Page 20 of 24

wrote down of the image base. To find the memory location of the code, you use
this formula: OEP–Base Image. In our case its 1240 so now we select plugins
from the top of the Ollydbg main window and then choose Ollydump and Dump
debugged Process. You put 1240 in the modify box, and then select the “rebuild
import” box and dump the code. Now you will have a dumped code that is
unpacked and readable for later use.

Program Code Disassembly
Once the bot was connected, I wanted to find out as much as I could about what
it was doing. This was done by attaching to the process using Ollydbg on the
W2K image and doing the same procedures as I did above to dump the code into
readable form. After this, I decided to use breakpoints at key places to try to
determine which parts of the code are controlling what. It will be impossible to
disscuss all of them, since I set so many different ones. However, there are a
few that will be discussed. My ultimate goal was to learn how the Bot was
logging in to the IRC channel and to be able to control it. After this, I will
discuss what I saw found from the code. Here are the techniques used to figure
out where to set breakpoints.

Ollydbg has great functionality and flexability. One feature is to right click on the
Main CPU window (upper left window) and select “Search for” then choose “All
referenced Text Strings”.A wonderful window will appear that shows you all of
the readable text strings and where they are used in the code. From here you
can select your breakpoints by highlighting the item and pressing F2. To view
your break points and turn them on and off very quickly, use ALT-B to bring up a
window that shows them all to you. As a side note, to turn off your hardware
breakpoints that you set, you need to use the main tool bar and under DEBUG
select “hardware breakpoints”.Another way of finding good places to set
breakpoints are the commands that do comparisons such as “strncmp” and
“strcmp”. If you select the procdure that does these, then hit CTRL-R you will
bring up a window that shows you everytime that command is called and from
where. You can then set breakpoints on these commands to see when they are
used.

Debugging
To find where the password was being used, I set breakpoints on all commands
referencing anything looking like it was associated with a password such as
“dcc.pass” and “irc.pass”.I then attempted to launch commands from the IRC
window and started by stepping through the code line by line from the breakpoint
and watching what was happening. However, after hours of looking at the code,
I realized that I was not seeing a password and could not figure out how irc.pass
was working, which appeared to control the password to the IRC channel. I then
attempted to login via the telnet session using the commands “?login testlogin”
and “?pwd testpwd” (it was later determined that ?pwd was not for the password,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 4: Code Analysis
Page 21 of 24

but rather for the “present working directory”) which kept triggering the dcc.pass
and then I would end up hitting these two lines of:
0040BC6A PUSH msrll.0040BB49 ASCII "bot.port"
0040BC6F PUSH msrll.0040BB52 ASCII "%s bad pass from "%s"@%s"

I knew I had found the login code for port 2200. During the process, I found one
of the hashes appear that were mentioned in the strings earlier and being passed
as a value: “1KZLPLKDf$55isA1ITvamR7bjAdBziX”.In watching the code be
parsed, I saw the value passed and it was broke down by the $. 1 was always
a constant value passed, then the KZLPLKDf and finally the last letters. These
were concatenated together. Later I realized that the ?login required a username
(appears to be ignored) to be entered and then a password to be entered. The
above string is the hash of the password that expected. I tested three passwords
and set a breakpoint at Address 0040D655 which is the final compare of the
password inputted and the actual password. To do this I used different
usernames with each of the passwords. Every password had its own unique
hash regardless of the username that I used. Since I was only seeing the hash,
which was determined to be stored encrypted in used I decided to see if I could
bypass the authentication by modifiying the registers. I set a breakpoint at
0040BBD9 PUSH msrll.0040BB40 ASCII “dcc.pass"Here are the key lines of
code that will allow you to bypass the authentication.
0040BBD9 PUSH msrll.0040BB40 Arg2 = 0040BB40 ASCII "dcc.pass"
0040BBDE PUSH EDX Arg1
0040BBDF CALL msrll.00405872 msrll.00405872
0040BBE4 ADD ESP,10
0040BBE7 TEST EAX,EAX
0040BBE9 JE SHORT msrll.0040BC5A

If you read what this is doing, you see its passing “dcc.pass” as a variable to the
Call to msrll.405872 procedure. Then it adjusts the stack size withthe “ADD
ESP,10” and finally the key to the puzzle is its checking EAX. “TEST EAX, EAX”
tell you to check the value of EAX and see if its 0 or 1 (False or True). If its True,
it takes the jump and you end up with a bad password, but if its false you get
authenticated. So, I forced it to bypass the jump by modifiying the value of EAX
to be 1 (right click and then Increment). After pressing F9, I returned to my telnet
session and sure enough I was still running. To see if I was authenticated, I
typed ?si and got the information of the system. I was finally in. Once
authenticated I tested the ?md5p and got the following results “?md5p <pass>
<salt>”. So I put in a password of malware and a salt of test and got the
following results: “1test$02Ctxuuyv0OHiS01Hx6hS1”. I know now that
KZLPLKDf is the salt being used, but I still had no way of determining the
password that was in use.

Another important file was created and used by the malware was jtram.conf. To
find out what this file was used for I set breakpoints in the code that referenced
the file. This file was written to on occasion, six lines at a time, usually after

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 4: Code Analysis
Page 22 of 24

several login and log outs by the bot due to me pausing the code and stepping
through it. However, it was written to after using the ?set command for the
passwords. At these times it appears that the passwords generated for the bot
was written to it. However, the hashes do not match those passed as arguments
so my guess is that they are the password hashes that have been encrypted and
written to the file. From all indications, this file is read at initial startup and then
not again. I believe this to be the case because I never saw it read during any
login attempts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 5: Analysis Wrap-Up
Page 23 of 24

Part 5: Analysis Wrap-Up
The malware that we were asked to analyze is an IRC bot. It connects to the IRC server
called collective7.zxy0.com on one of three ports: 8080, 9999 and 6667. It also listens
on port 2200 which appears to be the command port to talk to the bot directly and I
believe to control the bot network, but I could not validate this. Based on observations of
the bot and the commands, the owner of the bot network has full control over all of the
infected the systems.

The malware has the capability to allow full control over each individual computer that
has been infected. The owner of the PC no longer is the “true” owner of the system.
Based upon the strings, it allows a connection to the bot via a web interface using
Mozilla, but I couldn’t not figure out how to issue commands once connected, it denies
connections from Internet Explorer. It has the capability as well to launch the following
DOS attacks: JOLT2, Smurf, UDP, SYN and Ping floods, combined with all the Bots
participating, the bot network would be able to launch a DDOS attack against a specific
target. It appears that the bots can be controlled by specifying a specific network that
certain bots are on or all of them participating due to the parameters of the “?clones”
command. This program would be used by someone who wanted to have an “army” at
their disposal. There are many people who would use this capability such as people out
for revenge or someone with a bot Army for hire that wanted to make money to take out a
target. It could also be by folks participating in IA warfare and to disrupt Internet
connectivity. This could be devasting for our Armed Forces, especially in light of the use
of the Internet for daily operations.

In order to help protect against this type of malware several things should be done. Users
need to ensure they have antivirus software running and updated as this malware is
detected by Norton as Backdoor.IRC.bot. Organizations can do this by using something
like Norton’s Coporate Edition to manage the who organization. The firewall, whether at
corporate or home, needs to block unneeded ports such as those being used here. If
infected, it would stop the bot from connecting. Also, users need to log on with the most
restrictive privileges. If they were infected, it appears the bot has the privileges of the
logged on user. The system needs to be kept up will all patches to ensure that there is no
way to be infected using a known exploit such as the .chm vulnerability. One of the most
important things is user training. Users need to learn not to open email from someone
they don’t know or to click on attachments they are unsure of. They also need to learn to
be careful in downloading software from unknown websites as these can contain the
malicious code.

To clean your system of this bot, you need to run your antivirus software and remove all
references that it finds to it. Also, you can manually remove it by deleting the registry
keys that were mentioned above for the service and under the Run key. The service can
be stopped using pskill or Process Explorer, then the directory mfm and its contents can
be deleted. This type of bot should be easy to prevent if the steps above are taken.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Works Cited
Page 24 of 24

Citation of Sources
Liston, Tom. Conversation via Jabber on finding the OEP. September 2004

Smit, Ferdi. “Assembly Tutorial.” 1996. URL:
http://www.xs4all.nl/~smit/asm01001.htm (30 August 2004).

Vonck, Tjerk. “IRC FAQ: Introduction to IRC for people using Windows.” URL:
http://www.mirc.com/ircintro.html (1 September 2004).

Sites for Tools
VMWare Workstation 4.5.1: http://www.vmware.com/
Linux Redhat: http://www.linux.org/.
Ollydbg: http://home.t-online.de/home/Ollydbg/.
Ethereal: http://www.ethereal.com/.
SNORT: http://www.snort.org/.
Filemon: http://www.sysinternals.com/ntw2k/source/filemon.shtml.
RegMon: http://www.sysinternals.com/ntw2k/source/regmon.shtml.
TDIMon: http://www.sysinternals.com/ntw2k/freeware/tdimon.shtml.
LordPE: http://mitglied.lycos.de/yoda2k/LordPE/info.htm.
Regshot: http://regshot.ist.md/ however it was unavailable the last time I
checked. It can be found easy by a simple Google query.
Netcat: http://netcat.sourceforge.net.
Process Explorer: http://www.sysinternals.com/ntw2k/freeware/procexp.shtml.
PSkill: http://www.sysinternals.com/ntw2k/freeware/pskill.shtml.
MD5sum: http://www.gnu.org/software/textutils/textutils.html.

