
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GIAC REVERSE ENGINEERING MALWARE (GREM) PRACTICAL
V1.0

Submitted by Lance Mueller
October 22, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Statement of Purpose

3
Definitions

3
Malware

3
Viruses

3
Trojan Horse

4
Worm

4
Laboratory Setup

4
Hardware

4
Analysis tools & Software

4
WinHex

4
Md5Sum

5
Snort

5
Netstat

5
PEInfo

5
Ollydbg

5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Bintext

5
TCPView

6
Filemon

6
Regmon

6
TDImon

6
Regshot

6
Netcat

6
VMware Workstation

6
Properties of the Malware Specimen

9
Behavioral Analysis

14
Executing the malware

16
Port Information

17
Registry Information

19
File System Information

20
Operating Systems

21
Network Communications

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

21
Code Analysis

26
JTRAM.CONF

26
Port 2200

28
IRCD CHANNEL #MILS

30
Conclusion

31
Removal

31
References

33

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Statement of Purpose
The Internet has become an indispensable resource and common way of life to
many people in the world today. As technology has increased and the cost of
equipment and Internet connectivity has decreased, the number of households
and businesses online continues to grow each year.

As with many things in life, there are negative aspects associated with the
positive aspects of having so many people connected to the Internet, specifically
the number of targets available to malware authors. Even though technology has
advanced and global connectivity has increased, online education is still behind
the technology curve. Authors of malware take advantage of this lack of
education and the existence of computer weaknesses to create programs that
either do harm to a person’s computer or obtain control of that computer for
various reasons. According to a recent study done by the SANS Institute [1], an
unprotected newly installed operating system exposed to the Internet has
approximately 20 minutes to live before being attacked and infected with some
type of malware.

The purpose of this paper is to demonstrate how to dissect a sample piece of
malware and to explain its purpose and usage in order better understand how
malware operates and infiltrates our computers worldwide. Taking a two-step
approach I will perform a behavior analysis of the malware to better understand
how it behaves on the infected operating system. I will then perform a code
analysis of the malware to examine and better understand the malware
functionality, capability and operation.

Definitions

Malware
Malware is a term that has been coined from the words “Malicious
Software” and is used to describe software that has been produced for
the purpose destroying, disrupting or controlling a computer system
(Webopedia, http://www.webopedia.com/TERM/m/malware.html [2]).

Viruses
A virus is a piece of code or program that is loaded onto your computer
without your knowledge and performs some type of undesirable or
destructive action1. Most viruses have a replication mechanism that
causes the virus to spread or infect other computers or programs
(Webopedia, http://www.webopedia.com/TERM/v/virus.html [2]).

Trojan Horse
A Trojan horse is a program that masquerades as a legitimate program,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

but really performs some other type of action, commonly destructive
(Webopedia, http://www.webopedia.com/TERM/T/Trojan_horse.html [2]).

Worm
The term “worm” is use to refer to a virus or malware specimen that has a
self-replication mechanism that does not require any human interaction.
These types of viruses typically use system vulnerabilities or weak
security habits to propagate from one machine to the next (Webopedia,
http://www.webopedia.com/TERM/w/worm.html [2]).

Laboratory Setup
In order to properly and safely examine malware specimens in a controlled
laboratory environment, certain precautions should be taken in order to avoid
contamination of your lab equipment and provide control mechanisms that
ensure the malware specimen does not propagate outside of your lab
environment and begin communicating with other computers outside of your
control.

Hardware
The laboratory environment used for this malware analysis consists of one 2
GHz Intel based computer, with 2 GB of RAM, and an IDE 80 GB hard drive.
Since multiple VMware virtual machines were used a 19”” flat screen monitor
was used to provide more video real estate and the ability to organize the
various VMware machines across the screen.

Analysis tools & Software
Various software tools will be needed throughout the malware analysis and
were loaded onto the laboratory machine used for the analysis. The following
software tools were installed and utilized during the analysis of the malware.

WinHex [3]
Winhex is a shareware Hex Editor program that I used during the code
analysis phase to examine the contents in Hex and look for known
indicators of compressed files. The program also has a “calculate digest”
feature which can be used to calculate a hash for any file opened in the
hex editor.

Md5Sum [4]
Md5Sum is Win32 port of the UNIX md5 command line hash utility. From

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the command line, you can specify a filename and get the resulting Md5
hash from the contents of that file. I used this program during the initial
properties portion of the analysis to record the initial MD5 hash of the
malware. Additionally, I used it to verify the integrity of various
executables during the anaysis

Figure 1 -Example of MD5sum.exe

Snort [5]
Snort is an Intrusion Detection System (IDS), but also acts as a raw
packet capturing program. During the behavior stages of this analysis, I
used Snort to capture raw data packets being sent and received by the
malware to better understand its capabilities

Netstat [6]
Netstat is a executable included with various Windows installations and
is used to see the current network communication information. I used this
tool during the behavioral analysis to see and verify any communications
coming from or going to my test machine.

PEInfo [7]
PEInfo is a utility which analyzes an Executable program and provides
information about the executable such as the Portable Executable (PE)
header information.

Ollydbg [8]
During the code analysis phase, it was necessary to examine the actual
code as it exists in its compiled state. Additionally, it may become
necessary to watch the malware specimen operate at various states of
execution. Ollydbg is a disassembler and debugger that allows you to
examine executable programs and view the internal code structure.
Ollydbg can also display various variables and functions in real-time as
the program runs.

Bintext [9]
Bintext is a utility that will scan through a loaded file and extract
recognizable strings by pre-set filter settings. This tool was used during
the code analysis stage to extract recognizable commands or strings
such as domain names, IP addresses, passwords and usernames.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

TCPView [10]
TcpView is a utility by Sysinternals and is used to monitor port states and
conditions. This utility is used during the behavioral phase to see when
ports are used for communication and/or which ports are controlled by
the malware.

Filemon [10]
Filemon is a utility that monitors all file system access and during the
behavior stages was be used to monitor file system access by the
malware.

Regmon [10]
Regmon is a utility that monitors all registry access and was be used
during the behavior analysis to see what registry keys are being read
from, written to and created.

TDImon [10]
TDImon is a utility that monitors all network access and communications.
This utility was used during the behavioral stage. It does not capture the
actual network traffic payload, but does capture the header information
used during the communication in order to show what ports and IP
address are being accessed by various programs.

Regshot [11]
Regshot is another registry monitoring utility that takes a pre-malware
snapshot of the registry and then after executing the suspected malware
compares the state of the registry with the pre-execution state and reports
any differences. This utility was used during the behavioral analysis to
see the changes made to the registry.

Netcat [12]
Netcat is an open source tool originally written by Hobbit, which allows
you to establish raw TCP and UDP connections and send data from one
host to another. It can be used as a makeshift listener to capture data
being sent to a particular port. I used netcat during the behavioral stage to
transfer files from one guest machine to the other.

VMware Workstation [13]
In order to safely and thoroughly examine a malware specimen it was
necessary to observe the malware in action and actually infect a
computer’s operating system. In order to do this in the safest most
controlled environment possible, I used the VMware Workstation
Software for the behavioral analysis. I used the Microsoft Windows XP,
Service Pack 2 Operating System on my laboratory computer and then

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

utilized the VMware software to run a second version of Microsoft
Windows XP (guest) operating system. The Microsoft Windows XP
installation used as the guest “victim” machine was an unpatched version
of XP. In addition, a second VMware virtual machine containing RedHat
v. 9 Linux was initially used as a network monitoring tool and later as part
of the behavioral analysis. This Linux guest machine utilized the 2.4.20-8
Linux kernel.

The following diagram is an example of the analysis setup that I used in
the laboratory environment.

Figure 2 - Virtual machine and network setup

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Host-only networking was the used. Host-only mode isolated the virtual machine
(s) and limited the data communication on the virtual network to the virtual
machines and directly to the host. The host did not operate as a gateway and
forward the communication beyond the virtual Ethernet adapter. This
configuration ensured that any network communication created by the malware
was confined on the virtual network and was not allowed to travel outside of the
virtual network. The following network parameters were used:

Host - XP Operating System IP Address = 192.168.65.1
Guest – XP Operating System IP Address = 192.168.65.100
Guest – RedHat Linux IP address = 192.168.65.200

Additionally, the host machine was completely disconnected from any additional
network connections to ensure that all communications remained on the virtual
network. The built-in Microsoft Windows Firewall was also activated and
configured to deny all network communication from any host, including those on
the same subnet. This ensured that whatever propagation vector was being
used by the malware, it could not communicate with my Host operating system.

After installing the various VMware virtual machines and the associated tools
discussed above, I created several “snapshots” to save their current state.
VMware Workstation allows you to create “snapshots” of your virtual Operating
systems and then go back to that state at anytime. The “snapshot” feature
allowed me to begin the behavior analysis of a malware specimen and then go
back to a clean state and do it over and over again without having to spend time
reinstalling all the necessary tools or the operating system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 3 - Desktop screenshot of Windows virtual machine with tools preloaded and
ready for analysis

Properties of the Malware Specimen
For this analysis, I have obtained a malware specimen which is named
“msrll.exe”. I have transferred a copy of the malware specimen to my Guest
Windows XP virtual machine that I eventually infected with this malware. Using
the md5sum.exe tool I mentioned above, I calculated the MD5 hash value of this
executable.

Figure 4 - computing the MD5 hash value of the malware specimen using md5sum.exe

Additionally, I have noted the following file properties:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Name: msrll.exe
Logical Size: 41,984 bytes
Executable type: Windows PE executable (Windows 95, 98, 2000 & XP)
MD5 hash: 84ACFE96A98590813413122C12C11AAA

I examined the executable using the Winhex hex editor and the observed the
executable header, noting that it was a Windows PE executable:

Figure 5 - PE File Header

A closer examination of the header revealed that the executable was packed
using a real-time compressor named Aspack [14]. Executable compressors
(also referred to as packers) are commonly used by malware authors to assist in
avoiding detection by anti-virus software as well as making it more difficult to
reverse engineer. Some compressors actually make the executable larger even
though they are considered compressors. Aspack is a commonly used
executable compressor and can be easily detected by observing the text
“.aspack” in the Sections portion of the file’s header:

Figure 6 - Using PEInfo to examine the file properties

In order to properly analyze this executable during the code analysis later in this
document, the file needed to be uncompressed before it could be correctly read
and analyzed by a dissassembler. Since the file was in a compressed state, the
text fragments that are normally visible when using a utility such as BinText were
not visible in plain text. The file needed to be uncompressed in order to examine
any embedded readable strings. Since the malware had been identified as
being compressed with Aspack, an uncompressor was needed to properly
extract the malware back to its original state. A program named AspackDie [15]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

written by yoda was used to unpack the program compressed with a versions of
Aspack.

Figure 7 - Select the file you would like to unpack

Once the file to be unpacked is selected this utility will attempt to correctly
unpack the original malware and save it to the file named “unpacked.exe” in the
same directory as where the original is located. I renamed the unpacked version
to “mrsll.exe – unpacked.exe” and noted the following file attributes:

Name: msrll - unpacked.exe
Logical Size: 1,175,552 bytes
Executable type: Windows PE executable
MD5 hash: 2c39d6d0c7bd4da3e5b40948f7a9a0df

A tool named GT2 (GetType) by PHaX [16] was also used to analyze and
possibly determine the type of compressor or packer used on the executable. It
should be noted that this utility does not detect every type of compressor, but it
is a good starting point to help identify which compressor was used.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 8 - GT2.EXE used to help determine which packer was used

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Once successfully unpacked, I used BinText to examine any notable text
fragments in the compiled malware.

Figure 9 - Text fragments using BinText.exe

Numerous recognizable and important text fragments were located inside this
malware specimen. Many references to IRC and IRC commands, as well as a
registry key were located in the uncompressed executable.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Behavioral Analysis
To begin the behavioral analysis, I setup some monitoring utilities to begin
monitoring the file system, network and registry. I started Filemon, Regmon and
then paused them until just prior to the malware being executed. Once the
system monitoring tools were started, a registry snapshot was obtained using
Regshot so it can later be compared with the post malware registry to look for
changes.

Figure 10 - Virtual machine setup ready for malware infection

Before I infected the virtual machine with the malware, I started the network
monitoring tool on the second virtual machine so they could begin capturing all
network traffic.

Using snort, an open source Intrusion Detection System (IDS) written by Martin
Roesch [5], I began capturing all network traffic and saving the captured packets
to a text file for later review.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

I started Snort in packet capture mode using the following command:

snort –vd | tee /tmp/sniffer.log

This command puts the snort IDS system into packet dump mode (acts like a
simple packet capturing tool) and causes it to capture all packets at the
application level and saves the data into the sniffer.log file as well as displaying
it to standard out (console).

Figure 11 - Starting the snort packet capturing software on the second virtual machine

Before I started the monitoring tools and launched the malware executable, I
used the netstat command to get a list of listening ports and established
communications so I could use them to compare after infection. I saved this
information by piping it to a text file using the command:

“netstat –an > before-ports.txt”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 12 – “netstat –an” command to capture all open ports

As a good precaution, before I launched the malware I took the original
netstat.exe executable that is located in the c:\windows\system32 folder and
made a copy of it and named it netstat.backup.exe. Since I will want to use this
tool again after the malware has been executed I needed to ensure the malware
specimen did not alter or replace it with a modified version. I further safeguarded
this by using the md5sum utility and generated a MD5 hash of the original
netstat.exe and then compared the hash with the netstat.exe file whenever I
wanted to use it post infection.

md5sum c:\windows\system32\netstat.exe > C:\saved_md5
\netstat.txt

Executing the malware
Once I collected this preliminary information, I started the monitoring tools and
executed the malware. Upon executing the malware, I observed the mouse
pointer turn to an hourglass as if the system was busy. Approximately a second
later, the file I had originally clicked on (msrll.exe), disappeared off the virtual
machine desktop as if it had been deleted. After letting it execute for
approximately 30 seconds, I viewed the task manager and observed the
malware executable still running.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 13 - Task Manager on virtual machine showing malware still running

Port Information
Before I terminated the running malware, I used the “netstat –an” command
to again collect open ports and save it to a text file named after-ports.txt.
Examining the ports that were captured before the malware execution and the
post infection list, I could clearly see several ports that have been opened by the
malware.

Figure 14 - pre-infection port states .vs post-infection port states

I then used the TCPView tool by Sysinternals, which showed me the open ports
and the processes responsible for each port.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 15 - Fport.exe output

I observed two additional TCP ports appeared after I executed the malware. TCP
Port 113 & port 2200 were being help open by the “msrll.exe” program and this
information corroborated the information I previously collected with the netstat
command. I then terminated the malware process by killing it via the task
manager and paused all the monitoring tools

Registry Information
Using the Regshot tool, a second registry shapshot was taken and saved.
Examining the Regshot comparison revealed several added registry keys that
pertained to the execution of the malware. Specifically the registry key
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm was added.
Under this key several values were added. Looking at the live registry I saw that
a new service has been added under the “mfm” key.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 16 - Newly installed service caused by the malware

The service named “Rll enhanced drive” was added which will execute the
program named c:\windows\system32\mfm\msrll.exe upon system startup.

Windows Service Parameters [17]
DisplayName=Rll enhanced drive Name displayed in Services MMC
ErrorControl=2 Setting in case service fails to

start
ImagePath=c:\windows\system32\mfm\msrll.exe Program to execute when service

starts
ObjectName=LocalSystem Userspace this service will

operate in. This service will
execute with SYSTEM privileges.

Start=2 Execute at system startup
Type=120 (288 decimal) This is a system setting

designating what kind of process
this is

Due to the fact that the malware was installed as a service, with a Start
parameter of “2”, this malware will be started each time the system is restarted
regardless of whether anyone logs into the system or not. The malware is
installed as a system service that starts automatically upon the operating
system starting.

File System Information
The Regshot analysis also identified two files that were added into a folder
named C:\Windows\system32\mfm. Looking in that folder I located two new
files:

C:\WINDOWS\system32\mfm\jtram.conf
C:\WINDOWS\system32\mfm\msrll.exe

Examining the msrll.exe file, I observed it to be the same exact size as the
original malware I executed from the desktop. I then used the md5sum utility to
check the hash value for this executable.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 17 - Newly created folder named "MFM"

The MD5 hash matched the hash value of the original malware specimen I had
examined before I executed it. This verified that the malware copies itself into
this new folder under the system32 directory and is executed as a service each
time the system starts up.

I examined the second file created in the new folder named jtram.conf and found
it to be a simple text file with what appears to be obfuscated text strings. Further
code analysis will be needed to try and reveal these text strings.

Figure 18 - Newly created text file

Operating Systems
This malware was tested and successfully ran in Windows 95, 98, 2000 & XP.
Different behaviors were displayed in different operating systems and are noted
in the paragraphs below.

In Windows 2000 and Windows XP, the malware installs itself as a service as
described above. In Windows 95 & Windows 98, the malware installs itself as a
process which is invoked upon system startup by the “RUN” registry key. The
malware is installed into the c:\windows\system\mfm directory.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 19 - Malware installed on Windows 98 machine in registry

Network Communications
A review of the captured network traffic revealed the malware specimen
attempting to communication via the network. Several DNS requests were
attempted to a domain name of “collective7.zxy0.com”. This domain name
currently resolves to an IP address of: 193.136.99.11.

Figure 20 - Capture of DNS request

I then edited the “hosts” file on the infected Windows machine to include the
hostname of collective7.zxy0.com with an IP address of my virtual linux machine
located at 192.168.65.200. Upon rebooting the infected machine so the new
“hosts” file would take effect, I observed the malware attempt to connect to TCP
port 6667, which is commonly used for IRC traffic. The malware attempted three
consecutive connection attempts to destination port 6667, but since the linux
machine that the domain name of “collective7.zxy0.com” was pointed to did not
have port 667 open, ACK-RST’s were sent back to the malware (victim
machine), resetting the connection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 21 - attempted communication to port 6667 & reset

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

A few seconds later, the malware then tried to establish a connection to the
destination port of 9999 with the same result.

Figure 22 - attempted communication to port 9999 & reset

The malware then attempted to connect to destination port 8080, again with the
same result.

Figure 23 - attempted communication to port 8080 & reset

Since my Linux VMware machine was not yet configured to listen on port 6667,
9999 or 8080, there were just sequences of TCP SYN being sent to the Linux
machine which responded with TCP ACK RST packets because the port was
not open. To explore this communication a little further, I setup a Netcat listener
on the Linux machine (192.168.65.200) to listen on port 6667 and redirect all
input received into a text file. Using the command “nc –l –p 6667 > nc-
out.txt”, I was able to capture some data the malware attempted to send.

Figure 24 - Netcat listener on port 6667

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

I did the same for port 9999 with the following results:

Figure 25 - Netcat listener on port 9999

And for port 8080 the following results:

Figure 26 - Netcat listener on port 8080

Using the NetCat listener, I was able to capture what appears to be a username,
machine name and a nickname, although the values appear to be obfuscated
using some type of encryption or character replacement. The format of all three
data communication attempts is consistent with a login to an IRC server.

I then installed and started an IRC server on the virtual Linux machine in hopes
of discovering if in fact the malware would attempt to connect and join a
particular IRC chat room. Upon installing and starting the IRC server on port
6667 of the virtual Linux machine, the malware quickly connected and joined the
IRC server and went into a chat room named “#mils” and issued two
commands: MODE #mils & WHO #mils.

The malware had what appeared to be a random or obfuscated nickname
similar to the ones I had previously captured using the netcat listener.

Malware

Figure 27 - IRC channel "#MILS" that malware joined

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

I attempted to interact with the malware using several different commands,
some of which I found during the examination of the embedded text inside the
executable (listed below in Code Analysis), but could not get the malware to
respond to any of my commands. I attempted to establish a direct connect chat
(DCC) with the malware, but that also went unacknowledged.

Ana analysis of the network traffic when the malware connects to the IRC server
revealed that TCP port 113 on the victim machine is being used for AUTH/IDENT
purposes. The following data was captured upon the initial connection of the
malware to the IRCD server:

1099 , 6667 <- IRCD Server sent this data
1099 , 6667 : USERID : UNIX : RL <- Malware sent this data

Once the malware connected to the IRCD server, TCP port 113 closed and
remained closed until the malware disconnected from the IRCD. Once I
interrupted the connection to the IRCD, port 113 opened back up and remained
open until the malware was able to connect to the IRCD again.

I then began examining the other port on the infected machine which the
malware opened up, TCP port 2200 . Using the virtual Linux machine I used
netcat to connect to the infected XP machine on port 2200 and was able to
successfully connect. Upon connection, a limited prompt was displayed.

Figure 28 - Connection to port 2200 of infected machine

I entered several commands at the limited prompt but received no feedback or
response. This appears to be a BNC bounce or also known as an IRC proxy
which would allow a person to use this infected host as a proxy to connect to an
IRC server. Most BNC proxies are protected by passwords to protect them from
unauthorized connections.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Code Analysis

As mentioned in the section above during the preliminary examination of the
malware specimen, I was able to identify that the executable had been
compressed using AsPack. An analysis of the embedded strings, using BinText,
revealed numerous text fragments which appeared to be IRC commands.

?insmod
?rmmod
?lsmod
?ping
?smurf
?jolt
?clone
?clones
?login
?uptime
?reboot
?status
?jump
?nick

?dump
?md5p
?free
?update
?hostname
?!fif
?play
?copy
?move
?sums
?rmdir
?wget
?join
?akick

?mkdir
?exec
?kill
?killall
?crash
?sklist
?unset
?uattr
?dccsk
?killsk
?echo
?hush
?part

During the code analysis, I attempted to research and answer three specific
questions which arose from the behavior analysis:

1. What was contained in the text file named “jtram.conf”?
2. What purpose was TCP port 2200?
3. Could the malware be communicated with via the IRCD server

JTRAM.CONF
Using OllyDbg, I attached to the already running msrll.exe service and had it
disassemble the running code. I did a text search for the “jtram.conf” text and
located several location where this text appeared. I was able to locate the
portion pof the code which read the configuration file into memory upon starting.
Using breakpoints at this area, I was able to read the obfuscated text as it was
read from the “jtram.conf” text file and then unencrypted into memory.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 29 - OllyDbg windows showing unencrypted configuration string

In the above screen capture, you can see the obfuscated strings being read into
the Stack window and the unencrypted text also being displayed.

In the next screenshot, you can see the first line of text in the “jtram.conf” file
matches the first portion of the text being read into the read/unencrypt function
of the malware.

Figure 30 - First line "jtram.conf" file corresponds to text being unencrypted

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

After observing and documenting this function as it reads through the
“jtram.conf” file, the following text was found:

set bot.port 2200
set irc.quit
set servers collective7.zxy0.com,collective7.zxy0.com:9999!,

collective7.zxy0.com:8080"
set irc.chan #mils
set pass 1KZLPLKDf$W8kl8Jr1X8DOHZsmIp9qq0
set dcc.pass 1KZLPLKDf$55isA1ITvamR7bjAdBziX.

The file “jtram.conf” contains 6 lines of text, with three obfuscated text fragments
per line. This corresponds to the six configuration settings observed above as
well as the three parameters contained on each line; i.e. set, variable, value.

The last two parameters both appear to be MD5 hashes of passwords. The
password format matches those used by Unix/Linux, where the first portion is
the magic number, “1”, the second portion is the salt, “KZLPLKDf”, and the
third is the actual hash value of the password that was generated using the salt:
“55isA1ITvamR7bjAdBziX.”

Port 2200
In attempt to discover the features and purpose of TCP port 2200, I searched for
all the “strcmp” commands which could likely be used to compare two strings
together in order to recognize a command or password. At offset 40D5AB, I
located two parameters that were being compared and appeared to control the
initial login function on port 2200.

Figure 31 - strcmp function comparing parameters sent to port 2200

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Through trial and error, I was able to determine the malware was expecting two
parameters to be sent upon connecting to TCP port 2200. The first was used as
a username and the second is a password. The password that is expected is the
password that is stored in the “jtram.conf” file under the “set dcc.pass”
parameter.

By setting a breakpoint at offset 0040D5B0, I was able to pause program
execution and substitute a know password hash into the memory area, thus
having the malware authenticate against my password and recognize me as a
valid user.

Once authenticated, any text I typed I would get an echo reply similar to an IRC
channel:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Once I successfully bypassed this authentication step, I located the code
statement at offset 0040BBE9 which was responsible for testing whether a
correct password had been entered. I used a hex-editor to edit this offset and
change the Op code from a 74 (JE) to a 75 (JNZ) which allowed me to bypass
the password authentication each subsequent time I ran and connected to port
2200.

Once authenticated, I tried several different commands in this mode, but I was
unable to get the malware to display any different behavior other than echoing
the text back to me.

IRCD CHANNEL #MILS

Once the malware connected to the IRCD server and joined the #mils channel, it
remained dormant. I attempted to interact and provoke some type of response,
but no additional behavior was displayed by the malware. I also attempted to
locate the code section that received the text typed in the IRC channel to try and
learn some commands or login procedure, but none could be located.

Several references to various encryption algorithms were found embedded in
the executable. Along with the references to MD5, Blowfish, RSA, RC4, was a
reference to the Microsoft Crypto library.

Figure 32 - DLL Modules linked to malware

The above image shows the listed Executable Modules (DLLs) that the malware
depends on to execute. One of the listed DLLs is CRYPT32.DLL, which is the
Windows Crypto API. The text file named “jtram.conf” contained data which
appeared to be encrypted and obfuscated which is consistent with the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

encryption references found in the malware.

Conclusion

This malware specimen acts as an IRC bot which infects a victim computer and
installs in the C:\%WINDIR%\SYSTEM32\MFM folder. Once installed the
malware installs itself as a service which will cause the malware to execute
each time the system is started. If the malware is run by a user with
administrative privileges, the Malware runs in the local SYSTEM user space
which gives it full access to everything in the operating system.

Once installed, the malware attempts one of three connections to the domain
name of “collective7.zxy0.com”. If the host is available, the malware will attempt
to connect to an IRC server located at that address on one of three different
ports; 6667, 8080 or 9999. Once connected the malware assumes a NICK
which appears to be randomly generated or obfuscated in some manner. The
malware then joins the IRC channel of #MILS with no private key (password). It
is assumed that the malware remains in the IRC channel in a dormant state
until the correct authentication technique is used. If the malware becomes
disconnected, it will automatically reconnect when the network path becomes
available again.

As a final step to try and identify this malware specimen, I used Symantec Anti-
Virus to scan the packed version of this specimen and it was immediately
detected as “Backdoor.IRC.Bot”. Up-to-date virus signatures are required to
detect ever changing malware specimens such as this one. Network Associates
Inc. (NAI) Identifies this malware as “BackDoor-CGM Trojan”, and a reference
can be found here:

http://vil.nai.com/vil/content/v_126653.htm

Additional precautions that can be taken in order to minimize the impact of
malware such as this would involve installing personal firewall software which
would limit the incoming network traffic. In addition, if the computer did become
infected, the personal firewall software would limit the ability of the malware to
communicate outbound and establish a connection to the IRCD server which
acts as a control mechanism.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Removal
To uninstall this malware the following steps could be taken:

Windows 2000 & Windows XP
1. Click on Start->run and enter “services.msc”, then hit enter
2. Select the service named “Rll enhanced drive” and double click
3. Change the start-up option to “Manual”
4. Reboot the computer and upon rebooting navigate to c:\%WINDIR%

\system32\mfm\
5. Delete the files in this directory

Windows 95 & 98

1. Click on start -> run and enter regedit
2. Navigate to:
HKEY_LOCALMACHINE\Software\Microsoft\Windows\CurrentVersion\Run
3. Locate the key named “Rll enhanced drive”, and delete this key
4. Reboot the computer and navigate to c:\windows\system\mfm
5. Delete the files in this directory

It is apparent that this malware has many more capabilities and authentication
techniques which prevent persons other than the author from accessing its full
capabilities.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References

[1] - SANS Institute, Survival Time History, September 2004,
http://isc.sans.org/survivalhistory.php

[2] – Webopedia, Online Dictionary, September 2004,
http://www.webopedia.com

[3] – WinHex Editor, http://www.winhex.com

[4] – Md5sum, National Software Reference Library (NSRL),
http://www.nsrl.nist.gov/ftp/code/hash

[5]- Snort, Roesch, Martin, http://www.snort.org

[6] – Netstat, Microsoft Corporation, http://www.microsoft.com

[7] - PEInfo-, SK, http://www.geocities.com/s_k_s_k_s_kru/util.html#peinfo

[8] – OllyDbg, Oleh Yuschuk, http://home.t-online.de/home/Ollydbg

[9] – Bintext & Fport, Foundstone Inc., http://www.foundstone.com

[10] – TCPView, Filemon, Regmon & TDIMon, SysInternals,
http://www.sysinternals.com

[11] – Regshot, TiANWEi , http://regshot.yeah.net/

[12] – Netcat, GNU Netcat, http://netcat.sourceforge.net/

[13] –VMware Workstation, VMware, http://www.vmware.com

[14] – AsPack, AsPack Software, http://www.aspack.com/

[15] – AsPackDie, Yoda, http://mitglied.lycos.de/yoda2k/

[16] – GT2, PHaX, http://philip.helger.com/gt/p_gt2.htm

[17] – Windows Service Parameters, Windows IT PRO, September, 2004
http://www.win2000mag.com/Files/8723/table_01.html

