GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Fore
at http://www.giac.org/registration/grem

Interception and Automating Blocking of
Malicious Traffic Based on NDIS Intermediate
Driver

GIAC (GREM) Gold Certification

Author: Lee Ling Chuan, Ic.lee@cybersecurity.my
Advisor: Antonios Atlasis

Accepted: 19th October 2010

Abstract

With the evolution of malware technology, modern malware often hide its malicious
behavior in various methods. One of the popular manners is to conceal the network
communication. This concealment technique poses obstacles to security
mechanisms which are used to detect malicious behaviors. In this paper, we give an
overview of the automated blocking malicious code technique, a new approach to
computer security via malicious software analysis and automatic blocking software.
In particular, this technique focuses on building a unified executable program
analysis platform and using it to provide novel solutions to a broad spectrum of
different security problems. We propose a technique for the Network Driver
Interface Specification (NDIS) integrate together with a unified malicious software
analysis platform. The NDIS model supports hybrid network transport NDIS drivers,
called NDIS intermediate drivers. This driver lies between transport driver and
NDIS driver. The advantage of using NDIS intermediate drivers is that it can see the
entire network traffic taking place on a system as the drivers lie between protocol
drivers and network drivers. By intercepting security-related properties from
network traffic directly, this technique enables a principled, root cause based
approach to computer security, offering novel and effective solutions.

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 2
Intermediate Driver

1. Introduction

Over the past years, the number of malicious programs developed for illegal
purpose has grown rapidly. The Monthly Malware Statistics, January 2011
(Zakorzhevsky, 2011) by Kaspersky Lab announced that there are over ten million
viruses in circulation, most developed in January 2011. In the past, malicious code has
been categorized neatly into different categories such as viruses, loggers or trojan horses
based upon functionality and attack vector. Today, the methods used by malware coders
to achieve their objectives have substantially evolved. Indeed, criminals are making
extensive use of malware to control computers and steal personal, confidential, or
otherwise proprietary information for either profit or for fun (Davis, Bodmer &
LeMasters, 2009). There are also some malicious codes that conceal the communication
pathway and avoid the detection from security protection mechanisms such as firewalls,

sniffers, antivirus programs, IDS systems etc (Hoglund & Butler, 2005).

In general, security mechanisms on Windows such as the above rely on the native
TCP/IP stack for network traffic related functions. However, Microsoft has imposed
restrictions on raw socket (Microsoft MSDN Library, 21 May 2011. TCP/IP Raw

Sockets), such as:
1. TCP data cannot be sent over a raw socket.
2. UDP datagram cannot spoof their source address over a raw socket
3. Raw sockets cannot make calls to the bind () function.

A raw socket is a socket that allows direct access to the headers of a network
frame. Naturally, the freedom to spoof frame information was abused by malware
developers. Hence, these restrictions have been imposed by Microsoft on Windows XP
SP2 and later version. The constraints placed on raw sockets are built into tcpip.sys and
tcpip6.sys drivers. The only solution that can circumvent the restrictions that places on
raw sockets is to roll a dedicated transport layer. This approach gives the authority to
control over the created packets. Thus, to see the entire network traffic taking place on a

system, rolling Network Driver Interface Specification (NDIS) protocol driver (Dhawan,

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 3
Intermediate Driver

1995) is the only solution on Windows, especially in Windows XP SP2, Microsoft Vista

and Windows 7. The NDIS is a library of functions that forms the upper sub layer of the

OSI data link layer (Stevens, 1994) and acts as an interface between level 3 network

protocol drivers and the hardware level MAC drivers (Stevens, 1996).

Table 1 shows the comparison between NDIS interface with Winsock Kernel
(WSK) and Winsock Interface (Microsoft MSDN Blog, 1 June 2011. Introduction to
Winsock Kernel). Winsock is a technical specification that defines a standard interface
between a Windows TCP/IP client application and TCP/IP protocol stack (Wright &
Stevens, 1995). The WSK operates in kernel mode and provides Transport Driver
Interface (TDI) client developers with a sockets-like programming model similar to those
supported in user-mode. The NDIS is a Windows specification as it is a kernel-mode

network driver that defines the routines network drivers should implement (Oney, 2003).

Interface Benefits Drawbacks

Winsock | Easy to use, well documented Easier to track down

More demanding and less forgiving
Uses the existing TCP/IP stack than Winsock

WSK

Not as easy to track down Must account for protocol-dependent
behaviour
Effort required to implement a new
Offers the most control TCP/IP stack
NDIS Can spoof packets Switches may limit one MAC address
Can bypass local firewall per port

Can be conspicuous in packet capture

Table 1: Comparison with NDIS, WSK and Winsock (Blunden, 2009)

Our approach is to integrate NDIS with a unified malicious software analysis
platform. The advantage of our technique is that we can monitor the entire network traffic
on the system, including network traffic passing through in kernel level. The work we

describe reflects the following contribution:
1. A description of NDIS Intermediate Driver and related programs and functions.

2. Motivated by our description, implementation of an NDIS Intermediate Driver

that can be used to supplement malware analysis and detection techniques.

3. Implementation and use of NDIS Intermediate Driver to test our technique against

sets of malware binary. Benefits observed by evaluating the results from testing

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 4
Intermediate Driver

include the following:

- NDIS has ability to capture the entire network traffic taking place on a

system at kernel level.

- NDIS Intermediate Driver can assist malware researcher in malware

analysis activity.

In this paper we address the architecture of the system to intercept and automate
blocking of malicious network traffic by using NDIS Intermediate driver method
(Microsoft MSDN Library, 20 May 2011. NDIS Intermediate Driver). The reason that we
choose NDIS intermediate driver is that it can capture all the packets passing through the
system, including network packets of user-level, as well as kernel-level which can bypass
local firewall. Our approach is to capture the entire network traffic packet and control it
in a real time manner. An output of the network traffic log file will be exported into a
user readable file where any fields in any headers protocols, can be displayed according

to the user’s preference.

2. NDIS PACKET Description

Host based network security software on Windows have made significant
advances in both technology and scope of deployment within the past few years. Despite
these advances, many challenges remain. One of the biggest challenges is that they are
relying on the support of the underlying Operating System for data gathering and
monitoring. However, the evolution of malware programs has proved that they are
capable to exploit this weakness. The capability to bypass virtually all commodity, host-
based firewall and intrusion detection system software in the market today has force
security researchers to seek new methods to detect and block the malicious codes; this is
the reason why security organizations decided to use NDIS Intermediate Driver as the

solution (Sparks, 2009).

Kaspersky Anti-Virus is one of the security products implemented the technology
of NDIS Intermediate Driver, although it allows its users to disable the Kaspersky Anti-
Virus NDIS Filter functions. However, disabling the NDIS Filtering function will cause

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 5
Intermediate Driver
the Anti-Hacker/Firewall function not to perform packet filtering and malicious network

traffic will not be intercepted.

According to “Design and implementation of a personal firewall based on NDIS
Intermediate Drivers” (Chaokai, 2007), the current firewall technology on defending
against external network attacks and threats which deals with the packets under user
mode has a lot of limitation. The paper has proposed that the protection can be done

better by using NDIS intermediate driver.

The main function of NDIS packets, represented by NDIS PACKET structure is
to ensure all network data can be sent to or from the network in a system. Prior sending
data on the network, a protocol driver allocates NDIS packets; filled with data and passed
to the next lower NDIS driver. On the contrary, some lowest level NIC drivers will
allocate packets to hold received data and pass it to higher layer drivers. There are
functions provided by NDIS for allocating and manipulating the substructures that form a
packet. A good description of the NDIS PACKET structure can be found on PCAUSA
website (PCAUSA, 2011. NDIS PACKET Discussion Part 1).

Physical
Memory
Virtual

Buffers Memory

AV Ve Va Y Physical Page

StartVirtualAddress: pp !

ByvteOffset: :ﬁ Virtual Page Physical Page
ByvteCount: i
. il :
RSN i
Nextr n '

\ Physical Page

Physical Page
CKel Desc ! StartVirtunalAddress: p| 1
Flags: ByteOffset: v
PhysicalPageCount: ByteCount: \ 4 Virtual Page
TotalLength: PysicalPages| | K
FirstBuffer: p— —— — Next: p " I Virtual Page Physical Page

Figure 1: Multi-Buffer NDIS_PACKET Illustration (Sarin, 2008)
In general, each NDIS Packet is a Packet Descriptor, and it has a series of Buffer

Descriptors and NDIS BUFFER (PCAUSA, 2011. NDIS PACKET Discussion Part2).

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 6
Intermediate Driver

The number of chained NDIS BUFFER is depending on the size of the NDIS packet. If
the packet size is small, there will be only one chained NDIS BUFFER and this buffer is
enough to describe the range of virtual memory that contains the complete packet data.
Figure 1 shows the NDIS PACKET, which has two chained NDIS BUFFER. The first
NDIS BUFFER describes a range of virtual memory that contains the Ethernet header,
while the second NDIS BUFFER describes the range of virtual memory that contains the
Ethernet payload. The content of a typical packet descriptor are as the following list:

1. Private areas for the miniport NIC driver and a protocol driver.

2. Flags associated with the packet, defined by a cooperating miniport(s) and

protocol driver(s).

3. Number of physical pages that contain the packet.

4. Total length of the packet..

5. Pointer to the first buffer descriptor that maps the first buffer in the packet.
The following list shows the contents of a typical buffer descriptor:

1. Starting virtual address of each buffer.

2. Buffer's byte offset into the page pointed to by the virtual address.

3. Total number of bytes in the buffer.

4. Pointer to the next buffer descriptor, if any.

5. Virtual range, possibly spanning more than one page that makes up the buffer

described by the buffer descriptor. These virtual pages map to physical memory.

The virtual range allocates the buffer described by the buffer descriptor. These virtual

pages will map to physical memory.

2.1 Principle of Sending Packet Data

The idea of the NDIS Intermediate Driver to implement models of capture and
detection of network packet system is based on the ability and capability to intercept the
entire network packet as it is the only route for network packet passes through. The

workflow of this system consists of the arrival of network packet from Transport Driver

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 7
Intermediate Driver

Interface TDI level to NDIS Intermediate Driver through registered MpSend function

(Divine, 2003), its initial classification, exportation of unidentified network samples to a

robot machine farm, and re-analysis using the results of malicious-code samples.

The series of NDIS send request functions, NdisSend!, NdisSendPacket' and
NdisCoSendPacket' forward a send request to the underlying driver. Sender using a
different function will send the packet contents in different ways, but we can analyse it in
the same principle. Thus, the system uses a modified NdisSend function to capture data

packets. The NdisSend function prototype is shown below:

void NdisSend (
OUT PNDIS_STATUS Status,
IN NDIS_HANDLE NdisBindingHandle,
IN PNDIS_PACKET Packet

);

The second NdisSend parameter, NdisBindingHandle' specifies the handles
which returned by NdisOpenAdapter'; these handles will identify the targeted NIC or the
virtual adapter of the next lower driver to which the caller is bound. The control code
points to an internal structure and the internal structure stored enough information from
the upper to lower driver which making the NDIS function to use the correlation function

for the next layer drive.

Figure 2 below displays an overview of the entire send request process in a NDIS
network driver stack. Starting with the top of the figure, which is the protocol driver, the
following are the two intermediate drivers and the bottom is miniport. Before NdisSend is
called, a protocol driver can set the flags in the private header which is only reserved for
use by the NDIS of the allocated packet descriptor. These flags specify caller-determined
information about the requested send operation which is not contained in the packet data.
The underlying NIC driver’s MiniportSend® function is given the send flags as input
parameters. When an underlying driver that is serialized has insufficient resources to

transmit a valid send packet, it has two alternatives option: First, its MiniportSend

Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Refences.

2 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Driver Upper-Edge Functions.

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 8
Intermediate Driver

function can insert the packet into an internal queue and return
NDIS STATUS PENDING. The driver holds the packet queued until resources become
available and sends the packet when they are ready. Second, MiniportSend function can
simply return control with NDIS STATUS RESOURCES. The NDIS library holds such
a returned packet in an internal queue for resubmission to the serialized miniport driver.
The miniport driver can indicate its readiness to accept send packets later by calling
NdisMSendComplete’ or NdisMSendResourcesAvailable’. An NDIS Intermediate driver
must repackage incoming sends from higher level protocols in fresh packet descriptors

before passing such a send request to the underlying miniport driver with NdisSend.

Send Packet Handler is called
based on which oneis enabled in
Miniport characteristics
I MpSend I

—

—a

Send Packet Handler is called

| MiniportSend | based on which one is enabled in
! Binding Handle Miniport characteristics
I NdisSend I ____________ > I I'vipiend I
PR e
| MiniportSend | Send Packet Handler is called

based on which one is enabled in
Miniport characteristics

| NdisSend | ____________ > I MpSend I

=
MiniportSend complete
and the requestis
considered complete

Miniport|Intermediate Driver 2 [Intermediate Driver 1| Protocol Driver

Figure 2: NdisSend forwards a send request to the underlying driver (Microsoft

Corporation, 1999. Windows Driver Kit version 7600.16385.1.)

2.2 Principle of Receiving Packet Data

PtReceive and PtReceivePacket (Antognini & Divine, 2003) are the two mutually
exclusive functions in receiving packets from NDIS. Although different function used by
receiver will get the packet contents in different ways, the overall analysis work can be

done in the same principle. Thus, the system uses a modified RtReceive function to

3 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Reference.

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 9
Intermediate Driver

capture data packets. RtReceive function prototype is shown below:

PtReceive (
IN NDIS_HANDLE ProtocolBindingContext,
IN NDIS_HANDLE MacReceiveContext,
IN PVOID HeaderBuffer,
IN UINT HeaderBufferSize,
IN PVOID LookAheadBuffer,
IN UNIT LookAheadBufferSize,
IN UINT PacketSize
);

The parameter of LookAheadBufferSize specifies the size in bytes of the
LookAheadBuffer. If the size of the network packet is smaller or equal to the parameter,
it indicates that the LookAheadBuffer contains all the information of the entire network.
The program code below shows the underlying driver that has been programmed to

obtain network packet.

Packet = NdisGetReceivedPacket* (pAdapt->BindingHandle, MacReceiveContext);

According to the above code, if the parameter return value is null, it indicates that
the bottom level cannot provide a complete network packet. On the contrary, if the return

value is not null, it means that bottom level has provided a complete network packet.

The workflow of the system consists of the receiver of the network packet, its
initial classification, the exportation of unidentified samples to a robot machine farm and
the re-analysis if the malicious code pattern exists. This entire process occurs in a

pipelined fashion, as shown in Figure 3 below:

4 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Reference.

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 10
Intermediate Driver

Flowchart
Protocol driver layer

NdisRetumPacket

NdisTransferData

4 8 11
] Y
PtReceiveComplete MPTransfzrData
[[
1 5 6 9 10
] Y

NdisMIndicateReceive NdisMEthIndicate NdisTransferData
NdisMIndicateReceivePacket RecceiveComplete Complete
NdisMEthIndicateReceive

Miniport driver layer

Figure 3: Flowchart of NDIS IM Driver Receive Network Packets (DriveDevelop Forum,
2003. Passthru Send/Receive Operation Flowchart)

Starting with Step 1, miniport driver layer calls NdisMIndicateReceive’ or
NdisMEthIndicateReceive’ to inform Protocol Driver Layer that Miniport driver layer
received packets data. The PtReceive or PtReceivePacket function receives a complete
packet through NdisGetReceivedPacket function; in such a case,
NdisMIndicateReceivePacket’ will notify NDIS to call the corresponding upper
PtReceive routines. However, if an incomplete packet received by PtReceive or
PtReceivePacket function, NdisMEthIndicateReceive’ will notify NDIS. After the upper
protocol driver received a complete packet of data, NdisReturnPacket’ will be used to
notify NDIS. MPReturnPacket (Antognini & Divine, 2003) and NdisReturnPacket’
functions will be called to release the temporary packet and resource at miniport and
protocol layer. In the case of PtReceive/PtReceivePacket receive incomplete packet via
NdisGetReceivedPacket, if miniport layer receive the complete packet, miniport layer
will use NdisMEthIndicateReceiveComplete’ to notify NDIS, and PtReceiveComplete
(Antognini & Divine, 2003) will be used to inform Protocol layer that complete packet

5 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Reference.

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 11
Intermediate Driver

have been received. NdisTransferData® function will forward a request to copy data
received at the miniport driver layer. If NDIS STATUS SUCCESS value returns, it
indicates that the requested data has been transferred. On the contrary, if
NDIS STATUS PENDING value returns, the request is being handled asynchronously.
After the miniport driver layer receives the complete packet, NdisTransferDataComplete’
function will be called. The overall process will complete if PtTransferDataComplete
(Antognini & Divine, 2003) is send from Miniport Driver Layer to Protocol Driver
Layer.

3. Interception and Blocking Architecture

The NDIS model supports hybrid network transport NDIS drivers, called NDIS
intermediate driver. The driver lies between transport drivers and NDIS drivers. To an
NDIS driver, an NDIS intermediate driver looks like a transport driver; to a transport

driver, an NDIS intermediate driver looks like an NDIS driver.

Start —— Interception — Log File Created
. Malicious
NetworkTrafflc oS Code < Scanning & Checking
Blocking
. Detected
No
End - | Network Traffic Passing

Figure 4: Interception and Blocking Architecture
In this section, we give an overview of the interception and blocking architecture
using NDIS intermediate driver. Figure 4 shows the flow chart for the interception and

blocking that have been developed. As shown in this figure, all incoming and outgoing

6 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Reference.

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 12
Intermediate Driver
network traffic of a system will be intercepted by NDIS Intermediate Driver. The
intercepted network packet will be passed to scanning and checking module and it will be
compared with a set of pre-defined malicious code or malware signature. If any of the
network traffic match with a signature, the detected network traffic will be blocked, while

the less of the network traffic will continue passing through the system.

As shown in Figure 4, all the network traffic is first intercepted by the
interception mechanism. In the process of interception, the entire network packets will
dump into a log file in hexadecimal format. The purpose of creating a log file is to see the
entire activities that are taking place. The scanning and checking mechanism will execute
pattern matching function. This function will compare the intercepted network traffic
with pre-defined unique signature strings where each unique string represents malicious
portion code signatures.

Knuth-Morris-Pratt (KMP) algorithm was used to observe when a mismatch
occurs. The KMP algorithm looks for the malicious code signature pattern in a left-to-
right order. It looks like the brute force algorithm but it shifts the pattern more
intelligently than the brute force algorithm. Consider an attempt at a left position I, that is
when the window 1is positioned on the text factor y[l ..l+m-1]. Assume that the first
mismatch occurs between x[i] and y[i+j] with 0 <i<m. Then, x[0 .. i-1]=y[l .. i+]l-1] =u
and a = x[i] # y[i+j]=b (Charras & Lecroq, 1997). When shifting, it is reasonable to
expect that a prefix v of the pattern matches some suffix of the portion u of the text.
Moreover, if we want to avoid another immediate mismatch, the character following the
prefix v in the pattern must be different from a. The longest such prefix v is called the
tagged border of u. This introduces the notation: let TT[i] be the length of the longest
border of x[0 ..i-1] followed by a character ¢ different from x[i] and -1 if no such tagged
border exits, for 0 < i <m. Then, after a shift, the comparisons can resume between
character x[TT[i]] and y[i+j] without missing any occurrence of x in y. The value of
TT[O] is set to -1.

Appendix A illustrates the fragment code of this function. If the pattern matching
occurs, NDIS intermediate driver will immediately drop the interception network traffic.

STATUS DROP function can be used to drop the network packet as shown below:

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 13
Intermediate Driver

DbgPrint(“Signature Match Success™);
++j;

if(TH]=="\0")

{

DbgPrint(““myndis blocking — malicious traffic detected™);
return STATUS_DROP;

If none of the pattern is matched, network traffic will allow pass through of the
system.

To provide the NDIS Intermediate Driver with logging abilities whose reports
will be able to show details such as the source IP, source port, destination IP, destination
port, packet payload and the reason for the denial of a request if it exits, log files that
records network activities are essential. All the generated reports are in the form of XML
files linked to a style sheet that makes them easily viewed. Example of the log file can
refer to Figure 5. Our technique is based on method of creating an XML file in the driver
layer using ZwCreateFile function (Oney, 2003). However, both ZwReadFile and
ZwWriteFile function function (Oney, 2003) can be used to read and write files. Below

shows partially source code of log file created function.

RtlInitUnicodeString (&usname,L"\\SystemRoot\\System32\\LogFiles\\passthru.log");
InitializeObjectAttributes(&oa, &usname, OBJ_CASE_INSENSITIVE |
OBJ_KERNEL_HANDLE, NULL, NULL);
Status = ZwCreateFile(&hfile, GENERIC WRITE, &o0a, &iostatus, NULL,
FILE_ ATTRIBUTE_NORMAL,
FILE_SHARE_READ, FILE_ OVERWRITE_IF,
FILE_SYNCHRONOUS_10_NONALERT, NULL, 0);

In order to dump all network traffic and write into the log file, a program code as the

one shown below can be written:
ZwWriteFile(hfile, NULL, NULL, NULL, &iostatus, PrintContent, count, NULL, NULL);

Some device drivers and executive components create their own thread dedicated

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 14
Intermediate Driver
to process work at passive level;, however, most of them use system worker thread
instead, which avoid the unnecessary scheduling and memory overhead associated with
having additional thread in the system. Our approach calls the executive functions,
ExQueueWorkItem function (Oney, 2003) to request a system worker thread’s services.
This function place a work item on a queue dispatcher object where the threads look for
work. Work items include a pointer to a routine and a parameter that the thread passes to
the routine when it processes the work item. The routine is implemented by the device

driver or executive component that requires passive-level execution.

TIME: 2010-07-19 10-35-37

PROTOCOL:06

SRC_IP_ADDR:203.223.144.18

DEST_IP_ADDR:192,168.117.125

SRC_PORT:0080

DEST_PORT: 0439

PAYLOAD:

OeBcbeaffffoba5fcbhbsd 889308 38 O0FfF70 4 eBeceaff ffeh4dfc8d 18b 3 8b 30 8b 4e
3fI a4 8b4SFEFF70 4 eB6B e ff 8D A5TEBI60 4 (QBb 38040 4FF70 deBBed ffffohAdT

Sfcff30eB 18 B fEfF 8045 fc B9 0 alacdf 1 18b OFF70 4 eB Je o ff ff 8b4d fc 80 1 al ac 4f
ffffeh 38360 4 08b75 cB8bde 4fF70 deBef ef ff ff 8 h8I4l 4876 48de 48 38b7

Figure 5: Hexadecimal Log File

4. Case Study

We implemented a system for malicious network traffic interception and analysis
with the above component and technique. The experimental environment was the
following: two testing machines were selected, including a Web Server installed with
Apache and PHP and a machine used as a client with installed NDIS Intermediate Driver

(Microsoft MSDN Library, 27 May 2011. Passthru Ndis Intermediate Sample Driver).

In this case study, an Adobe Flash Player exploit (Down, 2008) was used to
exploit the testing machine. All incoming and outgoing network traffic was intercepted
by the NDIS intermediate driver. The signatures of the Adobe Flash Player exploit was

collected and put under the list of signature matching. Figure 6 shows the unique string

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 15
Intermediate Driver
for Adobe Flash Player exploit payload that has been selected. The selected signature is
“$1/1@1K1Q1tlz1”.

As discussed in the previous section, all intercepted network traffic was dumped
into a hexadecimal log file. Figure 5 shows the example of hexadecimal log file that

match with the malicious payload signature.

268 UINT DataOffset = 0 ; i]
25 UINT PhysicalbufferCount; H Hox Worshop - [virs e} [E

2 UINT BuiferCount; [Fle Edt Disk Options Took Window Heb .
271 PUCHAR pPacketContent = NULL: o L o
M chart tesPrinchut = WULL; FHEJRELC PV @ R ESLLED|EE |8 &
. nga??:;fmmr e Se«nSRERA | g e/ gl wad BEY W EE

8 UINT 4

26 UINT ke 00000F78|0000 0000 0000 0OOO 0000 000 0000 0000 0000 0000 D0OD{.. . vuvvriviviniinsens A
e PUCKAR Terds/101KigIEL21"s (0000FGE| 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000| .\ \vvvvrvrivvirviins
78 UINT totallength; 00000F&4 0000 0000 0000 000 0000 0000 D000 004D 7943 4552 S43A| o0vivviviiin MyCERT:
219 00000FBA 2056 6972 7573 2044 656D BFO0 5669 7275 7320 496E 6665| Virus Demo,Virus Infe
wf eyl 00000FDQ (6374 G96F GEOD GAOO BDAS B319 4000 508D 8506 1940 0050|ction.j.....0.B... .0,
T 00000FEG 6200 £B65 CB17 4000 FFDO 300 0000 0000 0000 0000 00CO3.....0

W //find the first one Nits Buffer, Then theough| [O0000FEC|0000 0000 0010 0000 C400 0000 1930 2D30 5030 5930 6530
/)it enly to $ind the firse node, faster way 1 {00001012|6D30 7430 7030 8030 9430 9630 AB30 AD3D BS30 C030 (630
%4 NdisQueryPacket (Packet, // NDIS PACKET 00001026 D030 D730 DE30 EB30 F330 FE30 0431 OE31 1431 pERDURAGEN
283 (PhysicalsuterCoust, // the nuber of physicd (0000103 |cHEFRIEPUEERMERIMERDY o531 9131 9931 AA31 BA31 931 |CHESH
286 tButfarCouns, // lov wany NDI8 BUFFER pacy (00001054 D131 DA31 EQ31 E631 EC31 FD3L 1832 (A30 CC3Z 3E32 4A32
27 i sBu fer, // will veruen che fivad [0000106A|SA32 6632 7F32 0932 9032 AE32 BF32 (532 E132 E732 F432
28 (TotalPackeslengch // a total lengch of chd (00001080|FC32 0633 0C33 1233 1B33 2133 2B33 3133 3833 4133 4733

289 1 000010965533 6933 7233 7633 8133 BA33 9033 9833 CD33 DB33 DE3]
250 000010AC |EB33 F433 0534 OF34 1634 1E34 2634 2E34 DAZ9 E139 EAY
21 NdisBuffer=Packet->Private, Heads 000010020000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00O
9 totallengeheFacket->Frivate, Totallength; 000010D6 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
233 N00OLOEE 0000 0000 0000 DOOD 000 DODO 0000 DOOO 000 000D 0000
254 status = HdishllocateNenorylichTag| cpPackeccod (1000110410000 0000 0000 0000 0000 0000 D000 0000 €000 000 0000
235F if(status !s NDIS STATUS SUCCESS)(0000111A|0000 0000 0000 00O 0000 DOOO 0000 OO0 0000 0000 OO0

Figure 6: Unique String of Malicious Payload
After executing the NDIS Intermediate driver, all network packets passing
through the testing machine was intercepted. Pattern matching function will executed to
scan the intercepted network traffic if the Adobe Flash Player exploit payload matches.
The incoming network traffic created by the Adobe Flash Player exploit was detected and
the NDIS intermediate driver dropped the malicious network packet. Figure 7 shows the
dropping malicious network packet when the signature was found, indicated by the

“Signature Match Success” message.

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 16
Intermediate Driver

Sl ARG IR {5 it 1192.168.1.fexpoit swi - Windows Intenet Explorer

. 9946.1630. .. Signature Hatch Failed -

9946 1630, .. Signature Match Failed ‘@, B hito: 192,168 1 1/erclot sof = R
199461630, . Signature Hatch Failed &) & i jeninn s
. 9946.1630. .. Signature Hatch Failed Fle ERR Vew Favorkes Tods Heb

L9946 1630, .. Signature Match Failed
. 9946, 1630. . . Signature Hatch Failed
. 9946 .1630. .. Signature Match Failed
. 9946.1630. .. Signature Match Failed
. 9946.1630. .. Signature Match Failed

99461630, W
. 9946.1630. . Signature Hatch Success
. 9946,1630. §. Signature Match Success
. 9946,1630. . Signature Hatch Success
9946 1630 | Signature Match Success
8946 1630 | Signature Match Success
99461630 §. Signature Match Success
L9946 1630, |. Signature Match Success
. 9946.1630. §. Signature Match Success
. 9946.1630. |. Signature Hatch Success
. 9946.1630. |. Signature Match Success
. 9946.1630. §. Signature Match Success
. 99461630, |. Signature Hatch Success
9946 1630 ||. Signature Match Success = o [e i

: 9946.1630. | nyndis blocking - nalicious !:mffl:ule

Figure 7: Blocking Malicious Network Traffic Packets

WA s et sut ' h

5. Conclusions

Malware scanning engine is an essential malware protection tool for today’s
computer system. Many users use it as a first line of defense against various kinds of
network attacks and system threats. With the evolution of malware technology, attacking
victim’s computers is evolved into kernel mode. However, most personal scanning
engine only deals with the network packet under user mode, and cause a lot of limitation.
In order to provide better protection for the user, security prevention mechanisms need to
be done in kernel mode. This paper takes an in-depth look at the pervasive dynamic
security with interaction of IDS and Firewall concept using the NDIS Intermediate Driver
to achieve malicious network traffic capture and filtering. The method presented in this
paper is for the handling and analyzing the entire network traffic taking place on a
system. Our future work will focus on the study of architecture for string matching which

aims to optimize for speed and scalability.

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 17
Intermediate Driver

6. References

Antognini, J. , & Divine, T. F. (2003). Extending The Microsoft PassThru NDIS
Intermediate Driver Part2: Two IP Address Blocking NDIS IM Drivers. Retrieved
24 May 2011, from wd-3 Web site: http://www.wd-
3.com/archive/ExtendingPassthru2.htm

Blunden, P. B. (2009). The Rootkit Arsenal: Escape and Evasion in the Dark Corners of
the System, Wordware Publishing Inc.

Chaokai, H. (2007). Design and Implementation of a Personal Firewall Based on NDIS
Intermediate Drivers. Eighth ACIS International Conference.

Charras, C., & Lecroq, T. (1997). Handbook of Exact String Matching Algorithms.
Computer Science Department and LITIS EA 4108, Faculty of Science University
of Rouen.

Davis, M. A., Bodmer, S., & LeMasters, A. (2009). Hacking Exposed Malware &
Rootkits: Malware & Rootkits Security Secrets & Solutions. McGraw Hill
Professional.

Dhawan, S. (1995). Networking Device Drivers. John Wiley & Sons Inc.

Divine, T. F. (2003). Extending The Microsoft PassThru NDIS Intermediate Driver
Partl: Adding a DeviceloControl Interface. Retrieved 24 May 2011, from wd-3
Web site: http://www.wd-3.com/archive/ExtendingPassthru.htm

Dowd, M. (2008). Application-Specific Attacks: Leveraging the ActionScript Virtual
Machine. IBM Internet Security Systems.

DriveDevelop Forum (2003). Passthru Send/Receive Operation Flowchart. Retrieved
from DriverDevelop Forum Web site: http://bbs.driverdevelop.com/read.php?tid-
40727.html

Hoglund, G., & Butler, J. (2005). Rootkits: Subverting the Windows Kernel. Addison-
Wesley Professional.

Microsoft Corporation, 1999. Windows Driver Kit version 7600.16385.1.
PASSTHRU.SYS — Sample NDIS Intermediate Driver.

Microsoft MSDN Blog. Introduction to Winsock Kernel (WSK). Retrieved 1 June 2011,
from Microsoft MSDN Blog Web site:

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 18
Intermediate Driver
http://blogs.msdn.com/b/wndp/archive/2006/02/24/538746.aspx

Microsoft MSDN Library. NDIS Intermediate Driver. Retrieved 20 May 2011, from
Microsoft MSDN Library Web site: http://msdn.microsoft.com/en-
us/library/ff557012(v=vs.85).aspx

Microsoft MSDN Library. Passthru Ndis Intermediate Sample Driver. Retrieve 27 May
2011 from Microsoft MSDN Library Web site: http://msdn.microsoft.com/en-
us/library/ff569982(v=vs.85).aspx

Microsoft MSDN Library. TCP/IP Raw Sockets. Retrieved 21 May 2011, from Microsoft
MSDN Library Web site: http://msdn.microsoft.com/en-
us/library/ms740548(v=vs.85).aspx

Oney, W. (2003). Programming the Microsoft Windows Driver Model. Microsoft Press.

PCAUSA (2011). NDIS_PACKET Discussion Part 1-NDIS Packet Data. Retrieved 24
May 2011, from PCAUSA Web site: http://www.ndis.com/ndis-
ndis5/ndispacket/ndispacket].htm.

PCAUSA (2011). NDIS_PACKET Discussion Part 2-NDIS PACKET Reserved Areas.
Retrieved 24 May 2011, from PCAUSA Web site: http://www.ndis.com/ndis-
ndis5/ndispacket/ndispacket2.htm

Sarin, A. (2008). NDIS — Part 1. Retrieved 27 May 2011, from Microsoft MSDN Web
site: http://blogs.msdn.com/b/ntdebugging/archive/2008/09/19/ndis-part-1.aspx

Sparks, S., Embleton, S., & Zhou, C. C. (2009). A chipset Level Network Backdoor:
Bypassing Host-Based Firewall&IDS. School of Electrical Engineering and
Computer Science University of Central Florida USA.

Stevens, W. R. (1994). TCP/IP Illustrated, Vol.1: The Protocol. Addison-Wesley
Professional Computing Series.

Stevens, W. R. (1996). TCP/IP Illustrated, Vol. 3: TCP for Transactions, HTTP, NNTP,
and the UNIX Domain Protocols. Addison-Wesley Professional.

Wright, G. R., & Stevens, W. R. (1995). TCP/IP Illustrated, Vol.2: The Implementation.
Addison-Wesley Professional.

Zakorzhevsky, V. (2011). Monthly Malware Statistic January 2011. Retrieved 21 May
2011, from securelist Web site:

http://www.securelist.com/en/analysis/204792159/Monthly Malware Statistics J

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 19
Intermediate Driver

anuary 2011?print_ mode=1

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 20
Intermediate Driver

7. Appendix A: Fragment Code Applied Knuth-Morris-
Pratt Algorithm

TT[0]=-1;

TT[1]=0;

p=2;

k=0;

while(T[p]!="\0"¥
if(T[p-1]==TIKI{

TT[p]=k+1;
k++;
p++;

}

else if (k>0){
k=TT[K];

}

else {
TT[p]=0;
p++;
k=0;

}

}
if(pPacketContent[34]==0&&pPacketContent[35]==80){
DbgPrint(““Received Traffic Http Port 80™);
for(i=54;i<=DataOffset;i++){
while(pPacketContent[i+j]!="\0’&&T[j]'="\0"){
if(pPacketContent[i+j]==T[j]){

Author Name, email@address

Interception and Automating Blocking of Malicious Traffic Based on NDIS | 21
Intermediate Driver

DbgPrint(““Signature Match Success™);
++j;
if(T[]1=="\0"){

DbgPrint(*“myndis blocking — malicious traffic detected™);

return STATUS _DROP;

}
}
else{
=TT
if (j>0)
J+=TT0L
}

Author Name, email@address

Last Updated: April 8th, 2014

Upcoming Training

CERTIFIED!

SANS Security West 2014 San Diego, CA May 08, 2014 - May 17, 2014 Live Event
Mentor Session - FOR 610 Columbia, MD May 21, 2014 - Jul 23, 2014 Mentor
Digital Forensics & Incident Response Summit Austin, TX Jun 03, 2014 - Jun 10, 2014 Live Event
Community SANS Ottawa Ottawa, ON Jun 16, 2014 - Jun 21, 2014 |Community SANS
SANSFIRE 2014 Baltimore, MD Jun 21, 2014 - Jun 30, 2014 Live Event
SANS vLive - FOR610: Reverse-Engineering Malware: Malware |FOR610 - 201407, Jul 14, 2014 - Aug 20, 2014 vLive
Analysis Tools and Techniques

SANS Virginia Beach 2014 Virginia Beach, VA Aug 18, 2014 - Aug 29, 2014 Live Event
SANS Baltimore 2014 Baltimore, MD Sep 22, 2014 - Sep 27, 2014 Live Event
SANS DFIR Prague 2014 Prague, Czech Republic | Sep 29, 2014 - Oct 11, 2014 Live Event
SANS vLive - FOR610: Reverse-Engineering Malware: Malware |FOR610 - 201410, Oct 13, 2014 - Nov 19, 2014 vLive

Analysis Tools and Techniques

Community SANS Paris @ HSC - FOR610 (in French)

Paris, France

Nov 24, 2014 - Nov 28, 2014

Community SANS

SANS OnDemand

Online

Anytime

Self Paced

SANS SelfStudy

Books & MP3s Only

Anytime

Self Paced

