
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of
Malicious Traffic Based on NDIS Intermediate

Driver

GIAC (GREM) Gold Certification

Author: Lee ecurity.my Ling Chuan, lc.lee@cybers
Advisor: Antonios Atlasis

Accepted: 19th October 2010

Abstract
With the evolution of malware technology, modern malware often hide its malicious
behavior in various methods. One of the popular manners is to conceal the network
communication. This concealment technique poses obstacles to security
mechanisms which are used to detect malicious behaviors. In this paper, we give an
overview of the automated blocking malicious code technique, a new approach to
computer security via malicious software analysis and automatic blocking software.
In particular, this technique focuses on building a unified executable program
analysis platform and using it to provide novel solutions to a broad spectrum of
different security problems. We propose a technique for the Network Driver
Interface Specification (NDIS) integrate together with a unified malicious software
analysis platform. The NDIS model supports hybrid network transport NDIS drivers,
called NDIS intermediate drivers. This driver lies between transport driver and
NDIS driver. The advantage of using NDIS intermediate drivers is that it can see the
entire network traffic taking place on a system as the drivers lie between protocol
drivers and network drivers. By intercepting security‐related properties from
network traffic directly, this technique enables a principled, root cause based
approach to computer security, offering novel and effective solutions.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

2

Author Name, email@address

1. Introduction
Over the past years, the number of malicious programs developed for illegal

purpose has grown rapidly. The Monthly Malware Statistics, January 2011

(Zakorzhevsky, 2011) by Kaspersky Lab announced that there are over ten million

viruses in circulation, most developed in January 2011. In the past, malicious code has

been categorized neatly into different categories such as viruses, loggers or trojan horses

based upon functionality and attack vector. Today, the methods used by malware coders

to achieve their objectives have substantially evolved. Indeed, criminals are making

extensive use of malware to control computers and steal personal, confidential, or

otherwise proprietary information for either profit or for fun (Davis, Bodmer &

LeMasters, 2009). There are also some malicious codes that conceal the communication

pathway and avoid the detection from security protection mechanisms such as firewalls,

sniffers, antivirus programs, IDS systems etc (Hoglund & Butler, 2005).

In general, security mechanisms on Windows such as the above rely on the native

TCP/IP stack for network traffic related functions. However, Microsoft has imposed

restrictions on raw socket (Microsoft MSDN Library, 21 May 2011. TCP/IP Raw

Sockets), such as:

1. TCP data cannot be sent over a raw socket.

2. UDP datagram cannot spoof their source address over a raw socket

3. Raw sockets cannot make calls to the bind () function.

A raw socket is a socket that allows direct access to the headers of a network

frame. Naturally, the freedom to spoof frame information was abused by malware

developers. Hence, these restrictions have been imposed by Microsoft on Windows XP

SP2 and later version. The constraints placed on raw sockets are built into tcpip.sys and

tcpip6.sys drivers. The only solution that can circumvent the restrictions that places on

raw sockets is to roll a dedicated transport layer. This approach gives the authority to

control over the created packets. Thus, to see the entire network traffic taking place on a

system, rolling Network Driver Interface Specification (NDIS) protocol driver (Dhawan,

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

3

Author Name, email@address

1995) is the only solution on Windows, especially in Windows XP SP2, Microsoft Vista

and Windows 7. The NDIS is a library of functions that forms the upper sub layer of the

OSI data link layer (Stevens, 1994) and acts as an interface between level 3 network

protocol drivers and the hardware level MAC drivers (Stevens, 1996).

Table 1 shows the comparison between NDIS interface with Winsock Kernel

(WSK) and Winsock Interface (Microsoft MSDN Blog, 1 June 2011. Introduction to

Winsock Kernel). Winsock is a technical specification that defines a standard interface

between a Windows TCP/IP client application and TCP/IP protocol stack (Wright &

Stevens, 1995). The WSK operates in kernel mode and provides Transport Driver

Interface (TDI) client developers with a sockets-like programming model similar to those

supported in user-mode. The NDIS is a Windows specification as it is a kernel-mode

network driver that defines the routines network drivers should implement (Oney, 2003).

Interface Benefits Drawbacks
Winsock Easy to use, well documented Easier to track down

WSK Uses the existing TCP/IP stack
Not as easy to track down

More demanding and less forgiving
than Winsock
Must account for protocol-dependent
behaviour

NDIS
Offers the most control
Can spoof packets
Can bypass local firewall

Effort required to implement a new
TCP/IP stack
Switches may limit one MAC address
per port
Can be conspicuous in packet capture

Table 1: Comparison with NDIS, WSK and Winsock (Blunden, 2009)

Our approach is to integrate NDIS with a unified malicious software analysis

platform. The advantage of our technique is that we can monitor the entire network traffic

on the system, including network traffic passing through in kernel level. The work we

describe reflects the following contribution:

1. A description of NDIS Intermediate Driver and related programs and functions.

2. Motivated by our description, implementation of an NDIS Intermediate Driver

that can be used to supplement malware analysis and detection techniques.

3. Implementation and use of NDIS Intermediate Driver to test our technique against

sets of malware binary. Benefits observed by evaluating the results from testing

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

4

Author Name, email@address

include the following:

- NDIS has ability to capture the entire network traffic taking place on a

system at kernel level.

- NDIS Intermediate Driver can assist malware researcher in malware

analysis activity.

In this paper we address the architecture of the system to intercept and automate

blocking of malicious network traffic by using NDIS Intermediate driver method

(Microsoft MSDN Library, 20 May 2011. NDIS Intermediate Driver). The reason that we

choose NDIS intermediate driver is that it can capture all the packets passing through the

system, including network packets of user-level, as well as kernel-level which can bypass

local firewall. Our approach is to capture the entire network traffic packet and control it

in a real time manner. An output of the network traffic log file will be exported into a

user readable file where any fields in any headers protocols, can be displayed according

to the user’s preference.

2. NDIS PACKET Description
Host based network security software on Windows have made significant

advances in both technology and scope of deployment within the past few years. Despite

these advances, many challenges remain. One of the biggest challenges is that they are

relying on the support of the underlying Operating System for data gathering and

monitoring. However, the evolution of malware programs has proved that they are

capable to exploit this weakness. The capability to bypass virtually all commodity, host-

based firewall and intrusion detection system software in the market today has force

security researchers to seek new methods to detect and block the malicious codes; this is

the reason why security organizations decided to use NDIS Intermediate Driver as the

solution (Sparks, 2009).

Kaspersky Anti-Virus is one of the security products implemented the technology

of NDIS Intermediate Driver, although it allows its users to disable the Kaspersky Anti-

Virus NDIS Filter functions. However, disabling the NDIS Filtering function will cause

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

5 Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

Author Name, email@address

the Anti-Hacker/Firewall function not to perform packet filtering and malicious network

traffic will not be intercepted.

According to “Design and implementation of a personal firewall based on NDIS

Intermediate Drivers” (Chaokai, 2007), the current firewall technology on defending

against external network attacks and threats which deals with the packets under user

mode has a lot of limitation. The paper has proposed that the protection can be done

better by using NDIS intermediate driver.

The main function of NDIS packets, represented by NDIS_PACKET structure is

to ensure all network data can be sent to or from the network in a system. Prior sending

data on the network, a protocol driver allocates NDIS packets; filled with data and passed

to the next lower NDIS driver. On the contrary, some lowest level NIC drivers will

allocate packets to hold received data and pass it to higher layer drivers. There are

functions provided by NDIS for allocating and manipulating the substructures that form a

packet. A good description of the NDIS_PACKET structure can be found on PCAUSA

website (PCAUSA, 2011. NDIS_PACKET Discussion Part 1).

Figure 1: Multi-Buffer NDIS_PACKET Illustration (Sarin, 2008)

In general, each NDIS Packet is a Packet Descriptor, and it has a series of Buffer

Descriptors and NDIS_BUFFER (PCAUSA, 2011. NDIS_PACKET Discussion Part2).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

6

Author Name, email@address

The number of chained NDIS_BUFFER is depending on the size of the NDIS packet. If

the packet size is small, there will be only one chained NDIS_BUFFER and this buffer is

enough to describe the range of virtual memory that contains the complete packet data.

Figure 1 shows the NDIS_PACKET, which has two chained NDIS_BUFFER. The first

NDIS_BUFFER describes a range of virtual memory that contains the Ethernet header,

while the second NDIS_BUFFER describes the range of virtual memory that contains the

Ethernet payload. The content of a typical packet descriptor are as the following list:

1. Private areas for the miniport NIC driver and a protocol driver.

2. Flags associated with the packet, defined by a cooperating miniport(s) and

protocol driver(s).

3. Number of physical pages that contain the packet.

4. Total length of the packet..

5. Pointer to the first buffer descriptor that maps the first buffer in the packet.

The following list shows the contents of a typical buffer descriptor:

1. Starting virtual address of each buffer.

2. Buffer's byte offset into the page pointed to by the virtual address.

3. Total number of bytes in the buffer.

4. Pointer to the next buffer descriptor, if any.

5. Virtual range, possibly spanning more than one page that makes up the buffer

described by the buffer descriptor. These virtual pages map to physical memory.

The virtual range allocates the buffer described by the buffer descriptor. These virtual

pages will map to physical memory.

2.1 Principle of Sending Packet Data
The idea of the NDIS Intermediate Driver to implement models of capture and

detection of network packet system is based on the ability and capability to intercept the

entire network packet as it is the only route for network packet passes through. The

workflow of this system consists of the arrival of network packet from Transport Driver

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

7

Author Name, email@address

transmit a valid send packet

Interface TDI level to NDIS Intermediate Driver through registered MpSend function

(Divine, 2003), its initial classification, exportation of unidentified network samples to a

robot machine farm, and re-analysis using the results of malicious-code samples.

The series of NDIS send request functions, NdisSend1, NdisSendPacket1 and

NdisCoSendPacket1 forward a send request to the underlying driver. Sender using a

different function will send the packet contents in different ways, but we can analyse it in

the same principle. Thus, the system uses a modified NdisSend function to capture data

packets. The NdisSend function prototype is shown below:

 void NdisSend (
 OUT PNDIS_STATUS Status,
 IN NDIS_HANDLE NdisBindingHandle,

IN PNDIS_PACKET Packet
);

The second NdisSend parameter, NdisBindingHandle1 specifies the handles

which returned by NdisOpenAdapter1; these handles will identify the targeted NIC or the

virtual adapter of the next lower driver to which the caller is bound. The control code

points to an internal structure and the internal structure stored enough information from

the upper to lower driver which making the NDIS function to use the correlation function

for the next layer drive.

Figure 2 below displays an overview of the entire send request process in a NDIS

network driver stack. Starting with the top of the figure, which is the protocol driver, the

following are the two intermediate drivers and the bottom is miniport. Before NdisSend is

called, a protocol driver can set the flags in the private header which is only reserved for

use by the NDIS of the allocated packet descriptor. These flags specify caller-determined

information about the requested send operation which is not contained in the packet data.

The underlying NIC driver’s MiniportSend2 function is given the send flags as input

parameters. When an underlying driver that is serialized has insufficient resources to

, it has two alternatives option: First, its MiniportSend

1 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Refences.

2

 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Driver Upper‐Edge Functions.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

8 Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

Author Name, email@address

function can insert the packet into an internal queue and return

NDIS_STATUS_PENDING. The driver holds the packet queued until resources become

available and sends the packet when they are ready. Second, MiniportSend function can

simply return control with NDIS_STATUS_RESOURCES. The NDIS library holds such

a returned packet in an internal queue for resubmission to the serialized miniport driver.

The miniport driver can indicate its readiness to accept send packets later by calling

NdisMSendComplete3 or NdisMSendResourcesAvailable3. An NDIS Intermediate driver

must repackage incoming sends from higher level protocols in fresh packet descriptors

before passing such a send request to the underlying miniport driver with NdisSend.

Figure 2: NdisSend forwards a send request to the underlying driver (Microsoft

Corporation, 1999. Windows Driver Kit version 7600.16385.1.)

2.2 Principle of Receiving Packet Data
PtReceive and PtReceivePacket (Antognini & Divine, 2003) are the two mutually

exclusive functions in receiving packets from NDIS. Although different function used by

receiver will get the packet contents in different ways, the overall analysis work can be

Thus, the system uses a modified RtReceive function to done in the same principle.

3 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Reference.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

9

Author Name, email@address

capture data packets. RtReceive function prototype is shown below:

 PtReceive (
 IN NDIS_HANDLE ProtocolBindingContext,
 IN NDIS_HANDLE MacReceiveContext,
 IN PVOID HeaderBuffer,

IN UINT HeaderBufferSize,
IN PVOID LookAheadBuffer,
IN UNIT LookAheadBufferSize,
IN UINT PacketSize

);

The parameter of LookAheadBufferSize specifies the size in bytes of the

LookAheadBuffer. If the size of the network packet is smaller or equal to the parameter,

it indicates that the LookAheadBuffer contains all the information of the entire network.

The program code below shows the underlying driver that has been programmed to

obtain network packet.

Packet = NdisGetReceivedPacket4 (pAdapt->BindingHandle, MacReceiveContext);

According to the above code, if the parameter return value is null, it indicates that

the bottom level cannot provide a complete network packet. On the contrary, if the return

value is not null, it means that bottom level has provided a complete network packet.

The workflow of the system consists of the receiver of the network packet, its

initial classification, the exportation of unidentified samples to a robot machine farm and

the re-analysis if the malicious code pattern exists. This entire process occurs in a

pipelined fashion, as shown in Figure 3 below:

4 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Reference.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

10Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

Author Name, email@address

Figure 3: Flowchart of NDIS IM Driver Receive Network Packets (DriveDevelop Forum,

5

(Antognini & Divine, 2003) will be used to inform

2003. Passthru Send/Receive Operation Flowchart)

Starting with Step 1, miniport driver layer calls NdisMIndicateReceive or

NdisMEthIndicateReceive5 to inform Protocol Driver Layer that Miniport driver layer

received packets data. The PtReceive or PtReceivePacket function receives a complete

packet through NdisGetReceivedPacket function; in such a case,

NdisMIndicateReceivePacket5 will notify NDIS to call the corresponding upper

PtReceive routines. However, if an incomplete packet received by PtReceive or

PtReceivePacket function, NdisMEthIndicateReceive5 will notify NDIS. After the upper

protocol driver received a complete packet of data, NdisReturnPacket5 will be used to

notify NDIS. MPReturnPacket (Antognini & Divine, 2003) and NdisReturnPacket5

functions will be called to release the temporary packet and resource at miniport and

protocol layer. In the case of PtReceive/PtReceivePacket receive incomplete packet via

NdisGetReceivedPacket, if miniport layer receive the complete packet, miniport layer

will use NdisMEthIndicateReceiveComplete5 to notify NDIS, and PtReceiveComplete

 Protocol layer that complete packet

5 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Reference.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

11Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

Author Name, email@address

have been received. NdisTransferData6 function will forward a request to copy data

received at the miniport driver layer. If NDIS_STATUS_SUCCESS value returns, it

indicates that the requested data has been transferred. On the contrary, if

NDIS_STATUS_PENDING value returns, the request is being handled asynchronously.

After the miniport driver layer receives the complete packet, NdisTransferDataComplete6

function will be called. The overall process will complete if PtTransferDataComplete

(Antognini & Divine, 2003) is send from Miniport Driver Layer to Protocol Driver

Layer.

3. Interception and Blocking Architecture
The NDIS model supports hybrid network transport NDIS drivers, called NDIS

intermediate driver. The driver lies between transport drivers and NDIS drivers. To an

NDIS driver, an NDIS intermediate driver looks like a transport driver; to a transport

driver, an NDIS intermediate driver looks like an NDIS driver.

Figure 4: Interception and Blocking Architecture

In this section, we give an overview of the interception and blocking architecture

using NDIS intermediate driver. Figure 4 shows the flow chart for the interception and

blocking that have been developed. As shown in this figure, all incoming and outgoing

6 Microsoft MSDN Library (5 October 2010), especially chapter NDIS Library Function Reference.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

12

Author Name, email@address

network traffic of a system will be intercepted by NDIS Intermediate Driver. The

intercepted network packet will be passed to scanning and checking module and it will be

compared with a set of pre-defined malicious code or malware signature. If any of the

network traffic match with a signature, the detected network traffic will be blocked, while

the less of the network traffic will continue passing through the system.

As shown in Figure 4, all the network traffic is first intercepted by the

interception mechanism. In the process of interception, the entire network packets will

dump into a log file in hexadecimal format. The purpose of creating a log file is to see the

entire activities that are taking place. The scanning and checking mechanism will execute

pattern matching function. This function will compare the intercepted network traffic

with pre-defined unique signature strings where each unique string represents malicious

portion code signatures.

Knuth-Morris-Pratt (KMP) algorithm was used to observe when a mismatch

occurs. The KMP algorithm looks for the malicious code signature pattern in a left-to-

right order. It looks like the brute force algorithm but it shifts the pattern more

intelligently than the brute force algorithm. Consider an attempt at a left position l, that is

when the window is positioned on the text factor y[l ..l+m-1]. Assume that the first

mismatch occurs between x[i] and y[i+j] with 0 < i < m. Then, x[0 .. i-1] = y[l .. i+l-1] =u

and a = x[i] ≠ y[i+j]=b (Charras & Lecroq, 1997). When shifting, it is reasonable to

expect that a prefix v of the pattern matches some suffix of the portion u of the text.

Moreover, if we want to avoid another immediate mismatch, the character following the

prefix v in the pattern must be different from a. The longest such prefix v is called the

tagged border of u. This introduces the notation: let TT[i] be the length of the longest

border of x[0 ..i-1] followed by a character c different from x[i] and -1 if no such tagged

border exits, for 0 < i ≤m. Then, after a shift, the comparisons can resume between

character x[TT[i]] and y[i+j] without missing any occurrence of x in y. The value of

TT[0] is set to -1.

Appendix A illustrates the fragment code of this function. If the pattern matching

occurs, NDIS intermediate driver will immediately drop the interception network traffic.

STATUS_DROP function can be used to drop the network packet as shown below:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

13

Author Name, email@address

DbgPrint(“Signature Match Success”);
++j;
if(T[j]==’\0’)
{

DbgPrint(“myndis blocking – malicious traffic detected”);
return STATUS_DROP;

If none of the pattern is matched, network traffic will allow pass through of the

system.

To provide the NDIS Intermediate Driver with logging abilities whose reports

will be able to show details such as the source IP, source port, destination IP, destination

port, packet payload and the reason for the denial of a request if it exits, log files that

records network activities are essential. All the generated reports are in the form of XML

files linked to a style sheet that makes them easily viewed. Example of the log file can

refer to Figure 5. Our technique is based on method of creating an XML file in the driver

layer using ZwCreateFile function (Oney, 2003). However, both ZwReadFile and

ZwWriteFile function function (Oney, 2003) can be used to read and write files. Below

shows partially source code of log file created function.

RtlInitUnicodeString (&usname,L"\\SystemRoot\\System32\\LogFiles\\passthru.log");

InitializeObjectAttributes(&oa, &usname, OBJ_CASE_INSENSITIVE |

OBJ_KERNEL_HANDLE, NULL, NULL);

Status = ZwCreateFile(&hfile, GENERIC_WRITE, &oa, &iostatus, NULL,

FILE_ATTRIBUTE_NORMAL,

FILE_SHARE_READ, FILE_OVERWRITE_IF,

FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0);

In order to dump all network traffic and write into the log file, a program code as the

one shown below can be written:

ZwWriteFile(hfile, NULL, NULL, NULL, &iostatus, PrintContent, count, NULL, NULL);

Some device drivers and executive components create their own thread dedicated

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

14Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

Author Name, email@address

to process work at passive level; however, most of them use system worker thread

instead, which avoid the unnecessary scheduling and memory overhead associated with

having additional thread in the system. Our approach calls the executive functions,

ExQueueWorkItem function (Oney, 2003) to request a system worker thread’s services.

This function place a work item on a queue dispatcher object where the threads look for

work. Work items include a pointer to a routine and a parameter that the thread passes to

the routine when it processes the work item. The routine is implemented by the device

driver or executive component that requires passive-level execution.

Figure 5: Hexadecimal Log File

4. Case Study
We implemented a system for malicious network traffic interception and analysis

with the above component and technique. The experimental environment was the

following: two testing machines were selected, including a Web Server installed with

Apache and PHP and a machine used as a client with installed NDIS Intermediate Driver

(Microsoft MSDN Library, 27 May 2011. Passthru Ndis Intermediate Sample Driver).

In this case study, an Adobe Flash Player exploit (Down, 2008) was used to

exploit the testing machine. All incoming and outgoing network traffic was intercepted

by the NDIS intermediate driver. The signatures of the Adobe Flash Player exploit was

collected and put under the list of signature matching. Figure 6 shows the unique string

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

15Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

Author Name, email@address

for Adobe Flash Player exploit payload that has been selected. The selected signature is

“$1/1@1K1Q1t1z1”.

As discussed in the previous section, all intercepted network traffic was dumped

into a hexadecimal log file. Figure 5 shows the example of hexadecimal log file that

match with the malicious payload signature.

Figure 6: Unique String of Malicious Payload

After executing the NDIS Intermediate driver, all network packets passing

through the testing machine was intercepted. Pattern matching function will executed to

scan the intercepted network traffic if the Adobe Flash Player exploit payload matches.

The incoming network traffic created by the Adobe Flash Player exploit was detected and

the NDIS intermediate driver dropped the malicious network packet. Figure 7 shows the

dropping malicious network packet when the signature was found, indicated by the

“Signature Match Success” message.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

16Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

Author Name, email@address

Figure 7: Blocking Malicious Network Traffic Packets

5. Conclusions

Malware scanning engine is an essential malware protection tool for today’s

computer system. Many users use it as a first line of defense against various kinds of

network attacks and system threats. With the evolution of malware technology, attacking

victim’s computers is evolved into kernel mode. However, most personal scanning

engine only deals with the network packet under user mode, and cause a lot of limitation.

In order to provide better protection for the user, security prevention mechanisms need to

be done in kernel mode. This paper takes an in-depth look at the pervasive dynamic

security with interaction of IDS and Firewall concept using the NDIS Intermediate Driver

to achieve malicious network traffic capture and filtering. The method presented in this

paper is for the handling and analyzing the entire network traffic taking place on a

system. Our future work will focus on the study of architecture for string matching which

aims to optimize for speed and scalability.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

17

Author Name, email@address

6. References

Antognini, J. , & Divine, T. F. (2003). Extending The Microsoft PassThru NDIS

Intermediate Driver Part2: Two IP Address Blocking NDIS IM Drivers. Retrieved

24 May 2011, from wd-3 Web site: http://www.wd-

3.com/archive/ExtendingPassthru2.htm

Blunden, P. B. (2009). The Rootkit Arsenal: Escape and Evasion in the Dark Corners of

the System, Wordware Publishing Inc.

Chaokai, H. (2007). Design and Implementation of a Personal Firewall Based on NDIS

Intermediate Drivers. Eighth ACIS International Conference.

Charras, C., & Lecroq, T. (1997). Handbook of Exact String Matching Algorithms.

Computer Science Department and LITIS EA 4108, Faculty of Science University

of Rouen.

Davis, M. A., Bodmer, S., & LeMasters, A. (2009). Hacking Exposed Malware &

Rootkits: Malware & Rootkits Security Secrets & Solutions. McGraw Hill

Professional.

Dhawan, S. (1995). Networking Device Drivers. John Wiley & Sons Inc.

Divine, T. F. (2003). Extending The Microsoft PassThru NDIS Intermediate Driver

Part1: Adding a DeviceIoControl Interface. Retrieved 24 May 2011, from wd-3

Web site: http://www.wd-3.com/archive/ExtendingPassthru.htm

Dowd, M. (2008). Application-Specific Attacks: Leveraging the ActionScript Virtual

Machine. IBM Internet Security Systems.

DriveDevelop Forum (2003). Passthru Send/Receive Operation Flowchart. Retrieved

from DriverDevelop Forum Web site: http://bbs.driverdevelop.com/read.php?tid-

40727.html

Hoglund, G., & Butler, J. (2005). Rootkits: Subverting the Windows Kernel. Addison-

Wesley Professional.

Microsoft Corporation, 1999. Windows Driver Kit version 7600.16385.1.

PASSTHRU.SYS – Sample NDIS Intermediate Driver.

Microsoft MSDN Blog. Introduction to Winsock Kernel (WSK). Retrieved 1 June 2011,

from Microsoft MSDN Blog Web site:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

18

Author Name, email@address

http://blogs.msdn.com/b/wndp/archive/2006/02/24/538746.aspx

Microsoft MSDN Library. NDIS Intermediate Driver. Retrieved 20 May 2011, from

Microsoft MSDN Library Web site: http://msdn.microsoft.com/en-

us/library/ff557012(v=vs.85).aspx

Microsoft MSDN Library. Passthru Ndis Intermediate Sample Driver. Retrieve 27 May

2011 from Microsoft MSDN Library Web site: http://msdn.microsoft.com/en-

us/library/ff569982(v=vs.85).aspx

Microsoft MSDN Library. TCP/IP Raw Sockets. Retrieved 21 May 2011, from Microsoft

MSDN Library Web site: http://msdn.microsoft.com/en-

us/library/ms740548(v=vs.85).aspx

Oney, W. (2003). Programming the Microsoft Windows Driver Model. Microsoft Press.

PCAUSA (2011). NDIS_PACKET Discussion Part 1-NDIS Packet Data. Retrieved 24

May 2011, from PCAUSA Web site: http://www.ndis.com/ndis-

ndis5/ndispacket/ndispacket1.htm.

PCAUSA (2011). NDIS_PACKET Discussion Part 2-NDIS_PACKET Reserved Areas.

Retrieved 24 May 2011, from PCAUSA Web site: http://www.ndis.com/ndis-

ndis5/ndispacket/ndispacket2.htm

Sarin, A. (2008). NDIS – Part 1. Retrieved 27 May 2011, from Microsoft MSDN Web

site: http://blogs.msdn.com/b/ntdebugging/archive/2008/09/19/ndis-part-1.aspx

Sparks, S., Embleton, S., & Zhou, C. C. (2009). A chipset Level Network Backdoor:

Bypassing Host-Based Firewall&IDS. School of Electrical Engineering and

Computer Science University of Central Florida USA.

Stevens, W. R. (1994). TCP/IP Illustrated, Vol.1: The Protocol. Addison-Wesley

Professional Computing Series.

Stevens, W. R. (1996). TCP/IP Illustrated, Vol. 3: TCP for Transactions, HTTP, NNTP,

and the UNIX Domain Protocols. Addison-Wesley Professional.

Wright, G. R., & Stevens, W. R. (1995). TCP/IP Illustrated, Vol.2: The Implementation.

Addison-Wesley Professional.

Zakorzhevsky, V. (2011). Monthly Malware Statistic January 2011. Retrieved 21 May

2011, from securelist Web site:

http://www.securelist.com/en/analysis/204792159/Monthly_Malware_Statistics_J

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

19

Author Name, email@address

anuary_2011?print_mode=1

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

20

Author Name, email@address

7. Appendix A: Fragment Code Applied Knuth-Morris-
Pratt Algorithm

TT[0]=-1;

TT[1]=0;

p=2;

k=0;

while(T[p]!=’\0’){

if(T[p-1]==T[k]){

TT[p]=k+1;

k++;

p++;

}

else if (k>0){

k=TT[k];

}

else {

TT[p]=0;

p++;

k=0;

}

}

if(pPacketContent[34]==0&&pPacketContent[35]==80){

 DbgPrint(“Received Traffic Http Port 80”);

for(i=54;i<=DataOffset;i++){

 while(pPacketContent[i+j]!=’\0’&&T[j]!=’\0’){

 if(pPacketContent[i+j]==T[j]){

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Interception and Automating Blocking of Malicious Traffic Based on NDIS
Intermediate Driver

21

Author Name, email@address

 DbgPrint(“Signature Match Success”);

 ++j;

 if(T[j]==’\0’){

 DbgPrint(“myndis blocking – malicious traffic detected”);

 return STATUS_DROP;

 }

}

 else{

 i+=j-TT[j];

 if (j>0)

 j+=TT[j];

}

 }

}

 }

Last Updated: April 8th, 2014

Upcoming Training

SANS Security West 2014 San Diego, CA May 08, 2014 - May 17, 2014 Live Event

Mentor Session - FOR 610 Columbia, MD May 21, 2014 - Jul 23, 2014 Mentor

Digital Forensics & Incident Response Summit Austin, TX Jun 03, 2014 - Jun 10, 2014 Live Event

Community SANS Ottawa Ottawa, ON Jun 16, 2014 - Jun 21, 2014 Community SANS

SANSFIRE 2014 Baltimore, MD Jun 21, 2014 - Jun 30, 2014 Live Event

SANS vLive - FOR610: Reverse-Engineering Malware: Malware
Analysis Tools and Techniques

FOR610 - 201407, Jul 14, 2014 - Aug 20, 2014 vLive

SANS Virginia Beach 2014 Virginia Beach, VA Aug 18, 2014 - Aug 29, 2014 Live Event

SANS Baltimore 2014 Baltimore, MD Sep 22, 2014 - Sep 27, 2014 Live Event

SANS DFIR Prague 2014 Prague, Czech Republic Sep 29, 2014 - Oct 11, 2014 Live Event

SANS vLive - FOR610: Reverse-Engineering Malware: Malware
Analysis Tools and Techniques

FOR610 - 201410, Oct 13, 2014 - Nov 19, 2014 vLive

Community SANS Paris @ HSC - FOR610 (in French) Paris, France Nov 24, 2014 - Nov 28, 2014 Community SANS

SANS OnDemand Online Anytime Self Paced

SANS SelfStudy Books & MP3s Only Anytime Self Paced

