
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

Global Reverse Engineering Malware Practical

MSRLL REM Analysis

Ankur Agarwal

6 December 2004

+=+=+=+=+=+= ATTENTION +=+=+=+=+=+=

ANY COORELATION OF ANY INFORMATION IN THIS PAPER TO ANY
EXISTING OR PLANNED COMMERCIAL, INDUSTRIAL, MILITARY,

GOVERNMENT, PUBLIC OR PRIVATE NETWORK IS PURELY
COINCIDENTAL.

+=+=+=+=+=+= ATTENTION +=+=+=+=+=+=

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
i

Table of Contents

Abstract .. 1
Laboratory Setup.. 2
Properties of the Malware Specimen.. 3
Behavioral Analysis .. 5
Code Analysis .. 11
Analysis Wrap-Up... 19
References... 21
Appendix A. msrll password encryptor .. 22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

Abstract

The purpose of this practical is to demonstrate the process that can be used in
reverse engineering malicious code. I would like to thank Lenny Zelster for
breakthrough research in this area. The approach taken in this practical involved
the following steps.

1. Setup a laboratory environment to isolate and study the malware
specimen.

2. Equip the laboratory with tools and instruments for examining the
malicious code.

3. Understand the behavior of the malware under controlled environments.
4. Understand the inner workings of the malware by using a disassembler

and debugger.
5. Discuss defensive measures and how malware can evade defenses.

In going through the process, I was impressed with the organizational energy
required to keep on-track. It would be easy to get deluged in volumes of data or
get side-tracked. Having a process enforces the structure necessary to record
observations, take accurate notes, and collect detailed data. The process allows
organizing the data so it can be referenced in support of a conclusion and
converge the analyses along high-probability paths. It is the process which
enables REM to be a palatable undertaking. It is hoped the REM professionals
will continue to improve the state of the science and incorporate the new
discoveries into the process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Laboratory Setup
The laboratory environment served 3 major purposes: (1) Contain the malware
within an isolated environment, (2) Control the environment so the malware
would reveal the full spectrum of its capability, and (3) Provide tools and
instruments for examining the malware. The laboratory setup described in Lenny
Zeltser’s GREM course was used. [LZ]

Laboratory Network - 192.168.79.0/24

 Virtual Laboratory Network

Windows XP Host
192.168.79.1

Linux
192.168.79.129

Windows XP
192.168.79.128

Figure 1

VMware was used to create the virtual lab shown in Figure 1. VMware
Workstation v 4.5.2 was installed on a Dell Latitude D800 1600 MHz Pentium M
with 512 MB RAM. A virtual machine library was on-hand from past research.
We ran 2 virtual machines within VMware: Red Hat Linux 7.0 and Windows XP
Professional SP1. Host-only network adapter installation was chosen within
VMware so the virtual network was entirely enclosed within the host machine. In
order to ensure complete isolation of the lab network, the VMware host’s
Ethernet cable was disconnected, as recommended by Lenny Zeltser’s course.
[LZ]

The general methodology used was two-phased: (1) Behavioral Analysis:
monitor the malware’s behavior externally as it interacts within its environment
and (2) Code Analysis: understand and alter the malware by reverse engineering
the malicious code.
For behavioral analysis, the recommended complement of system and network
monitoring tools were used. [LZ] System monitoring tools provided by
Sysinternals.com allowed monitoring disk, process, and registry activity. The
respective tools are FileMon [MR1], Process Explorer [MR2], and RegMon. [MR3]

TDIMon [MR4] allowed monitoring system TCP and UDP activity and additionally
tied network activity to responsible processes. To detect changes made to the
system by the malware, RegShot was used. RegShot allows “taking a baseline
of the pristine system, and comparing it to the system’s state after the malware

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

ran.” [LZ] Network monitoring was done with Ethereal v 0.10.6 [GC] running with
WinPcap 3.0. Ethereal was configured to promiscuously capture traffic on the
host-only interface. Using the VMware host-only network adapter improved
network monitoring performance – by excluding non-relevant traffic (on other
interfaces) – and improved detail – by allowing capture of the entire packet
including the payload.
Code analysis relied on a string utility, disassembler, and debugger. Since the
malware affected Windows OS, we needed to use Windows tools. The
respective tools are BinText [FS], IDA Pro [DR], and OllyDbg. [OY] Foundstone’s
BinText v 3.0 finds ASCII and Unicode strings in a file. DataRescue’s IDA Pro is
a GUI-based disassembler which was used to disassemble malware into
assembly instructions.
The whole proposition of reverse engineering is to understand the inner nature of
an executable in cases where the source code is not available. A debugger is
particularly useful tool for reverse engineering. OllyDbg is a freeware debugger
which allows stepping through a malware’s code. OllyDbg allows attaching to a
process running in memory. This makes it particularly useful in cases where a
program runs without user intervention – such as malicious code. The malicious
code was allowed to “startup natively” and interrupted with OllyDbg. Additionally,
OllyDbg allows modifying the malware by inserting our own instruction to replace
the original instruction. This was used for bypassing authentication as will be
discussed shortly.

Properties of the Malware Specimen
The msrll.exe executable was found to be a Windows executable by using the
Win2K Resource Kit Tool “exetype”. The exetype tool is the analogue to the
UNIX/Linux “file” utility.

Additionally, exetype identifies this executable will run on all Windows NT
platforms. The investigation did not verify if the executable ran on Win 95/98/ME.
The malware was found to move itself from the installed location to another
location, “C:\Windows\System32\mfm\”. The executable file, msrll.exe, in both
locations had the same MD5 hash and file size. Additionally, the executable
wrote a configuration file, jtram.conf, to the other location.

C:\Program Files\Win 2K Resource Kit>exetype.exe "c:\Documents and
Settings\jason\My Documents\Malware-MSRLL\msrll.exe"
File "c:\Documents and Settings\jason\My Documents\Malware-
MSRLL\msrll.exe" is of
 the following type:
 Windows NT
 Built for the Intel 80386 processor
 Runs under the Windows GUI subsystem

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

The jtram.conf was ASCII text but seemed to be protected with encryption.
Looking at the embedded strings in the executable did not find strings as
expected. BinText returned 185 strings most of which seemed gibberish. A
hypothesized reason for this was the presence of the ASPack identifier –
“.aspack”.

This seemed to indicate the executable was compressed with ASPack. Native
reversal was attempted by using AspackDie Auto-Unpacker from yoda. This
auto-unpacker claims to support PE files (EXE, DLL, etc.) which got compressed
by any Aspack version since Aspack 2000. We pointed AspackDie to the original
executable and to our delight it seemed to do the unpacking, storing the
unpacked files as “unpacked.ExE”.

This was confirmed by running the unpacked executable with success. BinText
scan of upacked.ExE found many more meaningful strings. The strings
revealed file names, registry keys, and presumably commands to control the
malware. Here are some presumptive command strings:

C:\Documents and Settings\jason\My Documents\Malware-MSRLL>"\Program
Files\Tools
\md5sum.exe" unpacked.ExE
73e7a1b71279724ebc11942459882f30 *unpacked.ExE

C:\Documents and Settings\jason\My Documents\Malware-MSRLL>dir
unpacked.ExE
12/06/2004 09:06 PM 1,175,552 unpacked.ExE

File pos Mem pos ID Text
======== ======= == ====

0000004D 0040004D 0 !This program cannot be run in DOS mode.
00000178 00400178 0 .text
000001A0 004001A0 0 .data
000001F0 004001F0 0 .idata
00000218 00400218 0 .aspack
00000240 00400240 0 .adata

C:\ Windows\System32\mfm>md5sum *
84acfe96a98590813413122c12c11aaa *msrll.exe
17c73f5657dbd9d7961ba26fa44a7179 *jtram.conf

C:\ Windows\System32\mfm>dir *
05/10/2004 04:29 PM 41,984 msrll.exe
12/03/2004 06:40 PM 1,084 jtram.conf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

Behavioral Analysis
The malware was introduced into the laboratory by installing it on the Windows
XP virtual machine. In preparation for running the malware, the system
monitoring tools were launched and “paused”. FileMon, Process Explorer, and
RegMon, and TDIMon were all paused with “Ctrl-E” shortcut. Additionally, a
RegShot snapshot was taken of the before state. The “before shot” was taken to
include all the files in “C:\”. Each “paused” tool was enabled and then BAM – the
malware executable, msrll.exe, was run. After 30 seconds, an “after shot” was
taken with RegShot. The compare option was selected and the RegShot report
was saved for later review. In the meantime, the executable was allowed to run
for 2 minutes. Process Explorer highlighted a new process called “msrll.exe”.
Both taskmgr.exe and Windows XP built-in function “tasklist” also showed the
process with the same process name and ID. Additionally, running tasklist with
the “/svc” switch revealed there was a service named “mfm” in the msrll.exe
process.

File pos Mem pos ID Text
======== ======= == ====

0000934E 0040934E 0 ?clone
00009355 00409355 0 ?clones
0000935D 0040935D 0 ?login
00009364 00409364 0 ?uptime
0000936C 0040936C 0 ?reboot
00009374 00409374 0 ?status
0000937C 0040937C 0 ?jump
00009382 00409382 0 ?nick
00009388 00409388 0 ?echo
0000938E 0040938E 0 ?hush
00009394 00409394 0 ?wget
0000939A 0040939A 0 ?join
000093A9 004093A9 0 ?akick
000093B0 004093B0 0 ?part
000093B6 004093B6 0 ?dump
000093C6 004093C6 0 ?md5p
000093CC 004093CC 0 ?free
000093D7 004093D7 0 ?update
000093DF 004093DF 0 ?hostname
000093EE 004093EE 0 ?!fif
000093FE 004093FE 0 ?play
00009404 00409404 0 ?copy
0000940A 0040940A 0 ?move
00009415 00409415 0 ?sums
00009423 00409423 0 ?rmdir
0000942A 0040942A 0 ?mkdir
00009436 00409436 0 ?exec
00009440 00409440 0 ?kill
00009446 00409446 0 ?killall
0000944F 0040944F 0 ?crash
0000946E 0040946E 0 ?sklist
00009476 00409476 0 ?unset
0000947D 0040947D 0 ?uattr
00009484 00409484 0 ?dccsk
00009490 00409490 0 ?killsk

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

This would be later confirmed by the services MMC console. The msrll.exe
process was killed with Process Explorer and the FileMon, RegMon, and TDIMon
reports were saved for review. RegMon detected several changes in file and
registry. Registry keys were added and registry values were changed under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ including:

Notice a new registry value has been added to a new registry key. The purpose
of this key is to automatically run the service and hence the msrll.exe when the
system reboots. The services MMC console confirms the “Rll enhanced drive”

Keys added:4

......
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security

Values added:18

......
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Type: 0x00000120
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Start: 0x00000002
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\ErrorControl: 0x00000002
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\ImagePath:
"C:\WINDOWS\System32\mfm\msrll.exe"
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\DisplayName: "Rll enhanced drive"
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\ObjectName: "LocalSystem"
......

C:\Documents and Settings\jason\My Documents\Malware-MSRLL>tasklist /svc

Image Name PID Services
========================= ====== ===
......
svchost.exe 1268 AudioSrv, Browser, CryptSvc, Dhcp, dmserver,
 ERSvc, EventSystem,
 FastUserSwitchingCompatibility, helpsvc,
 lanmanserver, lanmanworkstation, Messenger,
 Netman, Nla, Schedule, seclogon, SENS,
 ShellHWDetection, TermService, Themes,
 TrkWks, uploadmgr, W32Time, winmgmt,
 WmdmPmSp, wuauserv, WZCSVC
......
msrll.exe 540 mfm
VMwareService.exe 608 VMware Tools Service
cmd.exe 1636 N/A
wmiprvse.exe 1784 N/A
tasklist.exe 1908 N/A

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

service is setup to launch the msrll.exe automatically under the “LocalSystem”
account.
RegMon also detected file and folder additions and 1 file deletion:

This indicates the executable moves itself from the install location to the location,
“C:\Windows\system32\mfm”. In addition, the malware writes a configuration file
to the same location named “jtram.conf”. Looking at the jtram.conf, it is ASCII
but gibberish. None of the strings which are present in the configuration file were
found embedded in the executable by BinText. If the jtram.conf file is “extracted”
from the executable, this suggests the malware processes the strings through an
encryptor or encoder before writing to file.
RegMon reported the major changes made by the malware and as such provided
focus and direction to the subsequent steps of the investigation. However,
RegShot gives the resultant differences between before- and after- states and
does not provide information about the sequence of events that led to the end-
state. For this purpose, FileMon and RegMon were used. Additionally, in the
code analysis phase, RegMon and FileMon can be used in concert with the
debugger to see how an individual instruction exhibits itself as system
interactions.
FileMon and RegMon captured each filesystem and registry event after capturing
was enabled. Both tools provide a filtering function to include events which
match an include string and to exclude events which match an exclude string.
Due to the volume of events, the filtering function was useful in reducing the logs
to just the malware-related events. Over a 99% reduction was observed.
FileMon and RegMon results were consistent with RegShot results. Here are the
FileMon events which stood out.

Files added:4

C:\WINDOWS\Prefetch\MSRLL.EXE-03966588.pf
C:\WINDOWS\Prefetch\MSRLL.EXE-334C061A.pf
C:\WINDOWS\system32\mfm\jtram.conf
C:\WINDOWS\system32\mfm\msrll.exe

Files deleted:1

C:\Documents and Settings\jason\My Documents\Malware-MSRLL\msrll.exe

Folders added:3

C:\WINDOWS\system32\mfm
C:\WINDOWS\system32\mfm\.
C:\WINDOWS\system32\mfm\..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

The first event shows msrll.exe CREATE the configuration file and open it for
writing. The last event shows msrll.exe CLOSE the file. Notice the intervening
events indicate the malware took 24 WRITE operations in order to complete the
configuration file. In addition, 6 of these was the end-of-line character (carriage
return). Past research suggests the malware is fetching embedded key-value
pairs to write to the configuration file. Above FileMon activity suggests 9 such
pairs. This is something to keep in mind for the code analysis phase.
TDIMon shows the msrll.exe process opening port 2200 as it started and closing
port 2200 when the process was killed. This indicates the malware is able to
clean up to in order to evade network detection.

At this point, TDIMon did not reveal any outgoing connections.
The system monitoring tools provided several leads in the analysis. Next,
network activity was monitored using Ethereal. The infected machine was
rebooted and Ethereal was launched before the system powered on. The
Windows XP machine was allowed to stay at the login screen without any user
logging on. DNS activity was observed. Then login in was done and more of the
same DNS activity was observed. This suggests no user need be logged in for

1824 5:30:26 PM msrll.exe:1144 CREATE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Options: OverwriteIf
Access: All
2043 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 0 Length: 53
2066 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 53 Length: 53
2095 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 106 Length: 53
2096 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 159 Length: 1
2127 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 160 Length: 53
2148 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 213 Length: 53
2183 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 266 Length: 53
2184 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 319 Length: 1
2215 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 320 Length: 53
2238 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 373 Length: 53
2243 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 426 Length: 129
2244 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 555 Length: 1
2275 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 556 Length: 53
2296 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 609 Length: 53
2323 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 662 Length: 53
2324 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 715 Length: 1
2355 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 716 Length: 53
2384 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 769 Length: 53
2389 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 822 Length: 77
2390 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 899 Length: 1
2421 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 900 Length: 53
2442 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 953 Length: 53
2447 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 1006 Length: 77
2448 5:30:27 PM msrll.exe:1144 WRITE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS Offset: 1083 Length: 1
2449 5:30:27 PM msrll.exe:1144 CLOSE C:\WINDOWS\system32\mfm\jtram.conf SUCCESS

1 0.00000000 msrll.exe:1144 81109028 IRP_MJ_CREATE TCP:0.0.0.0:2200 SUCCESS
Address Open

......
154 137.62449948 msrll.exe:1144 FD59A428 TDI_DISASSOCIATE_ADDRESS TCP:0.0.0.0:2200 SUCCESS
162 137.62485009 msrll.exe:1144 81109028 IRP_MJ_CLEANUP TCP:0.0.0.0:2200 SUCCESS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

the “Rll enhanced drive” service to run. The msrll.exe process was allowed to
run for 2 minutes before it was killed. Here is an excerpt of the ethereal capture
which shows the DNS activity.

The infected machine is attempting to resolve the hostname
“collective7.zxy0.com”. So, we chose to redirerct the infected system to the
Linux VM by adding a host entry in the Win XP hosts file –
“C:\Windows\system32\drivers\etc\hosts”.

Again rebooting and launching Ethereal, we monitor the network activity. This
time we see the infected machine unsuccessfully attempting to access 3 ports.

Port 6667 is the well-know IRC port. Port 8080 is commonly used for HTTP.
And port 9999 is unknown. The malware may be using well-known ports or may
be accessing other services on these ports to throw us off. Also, it seems the
malware is cycling through the 3 ports in order.
Again, we mold the lab environment to the malware’s suiting. We launch an IRC
server on the Linux box and monitor network traffic. Ethereal capture shows the
infected machine connecting to the IRC server.

192.168.79.1289 collective7.zxy0.com

No. Time Source Destination Protocol Info
 1 0.000000 192.168.79.128 192.168.79.129 TCP 1036 > 8080 [SYN] Seq=0 Ack=0 Win=16384 Len=0
 2 0.000286 192.168.79.129 192.168.79.128 TCP 8080 > 1036 [RST, ACK] Seq=0 Ack=0 Win=0 Len=0
 3 0.366751 192.168.79.128 192.168.79.129 TCP 1036 > 8080 [SYN] Seq=0 Ack=0 Win=16384 Len=0
 4 0.367267 192.168.79.129 192.168.79.128 TCP 8080 > 1036 [RST, ACK] Seq=0 Ack=1 Win=0 Len=0
 5 0.927405 192.168.79.128 192.168.79.129 TCP 1036 > 8080 [SYN] Seq=0 Ack=0 Win=16384 Len=0
 6 0.927770 192.168.79.129 192.168.79.128 TCP 8080 > 1036 [RST, ACK] Seq=0 Ack=1 Win=0 Len=0

10 61.950627 192.168.79.128 192.168.79.129 TCP 1037 > 6667 [SYN] Seq=0 Ack=0 Win=16384 Len=0
11 61.950936 192.168.79.129 192.168.79.128 TCP 6667 > 1037 [RST, ACK] Seq=0 Ack=0 Win=0 Len=0
12 62.415938 192.168.79.128 192.168.79.129 TCP 1037 > 6667 [SYN] Seq=0 Ack=0 Win=16384 Len=0
13 62.416488 192.168.79.129 192.168.79.128 TCP 6667 > 1037 [RST, ACK] Seq=0 Ack=1 Win=0 Len=0
14 62.968119 192.168.79.128 192.168.79.129 TCP 1037 > 6667 [SYN] Seq=0 Ack=0 Win=16384 Len=0
15 62.968367 192.168.79.129 192.168.79.128 TCP 6667 > 1037 [RST, ACK] Seq=0 Ack=1 Win=0 Len=0
.
20 71.950627 192.168.79.128 192.168.79.129 TCP 1038 > 9999 [SYN] Seq=0 Ack=0 Win=16384 Len=0
21 71.950936 192.168.79.129 192.168.79.128 TCP 9999 > 1037 [RST, ACK] Seq=0 Ack=0 Win=0 Len=0
22 72.415938 192.168.79.128 192.168.79.129 TCP 1037 > 9999 [SYN] Seq=0 Ack=0 Win=16384 Len=0
23 72.416488 192.168.79.129 192.168.79.128 TCP 9999 > 1037 [RST, ACK] Seq=0 Ack=1 Win=0 Len=0
24 72.968119 192.168.79.128 192.168.79.129 TCP 1037 > 9999 [SYN] Seq=0 Ack=0 Win=16384 Len=0
25 72.968367 192.168.79.129 192.168.79.128 TCP 9999 > 1037 [RST, ACK] Seq=0 Ack=1 Win=0 Len=0

Frame 94 (80 bytes on wire, 80 bytes captured)
Ethernet II, Src: 00:0c:29:b0:22:e0, Dst: 00:50:56:c0:00:01
Internet Protocol, Src Addr: 192.168.79.128 (192.168.79.128), Dst Addr:
192.168.79.1 (192.168.79.1)
User Datagram Protocol, Src Port: 1026 (1026), Dst Port: domain (53)
Domain Name System (query)
 Transaction ID: 0x0004
 Flags: 0x0100 (Standard query)
 Questions: 1
 Answer RRs: 0
 Authority RRs: 0
 Additional RRs: 0
 Queries
 collective7.zxy0.com: type A, class inet

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

The malware connects using nickname “MeFlozQaf” and channel name “#mils”.
The malware is an IRC bot. During several runs it was observed the bot
randomly generates the IRC nickname but always joins the same channel. Also,
after the bot connected to the IRC server, no port 8080 or 9999 network activity
was observed.
Next, we investigated port 8080 and 9999 activity. Guessing HTTP, we started
Apache on the Linux VM listening on port 8080. The listening port setting can be
changed in the apache.conf file but Apache needs to be re-huped to honor the
new port setting. We still saw no 8080 traffic. So we decided to stop the IRC
server. Doing so, we observed port 8080 traffic, but it was not HTTP. The
Ethereal capture revealed the nature of the traffic. Ethereal allows decoding any
captured traffic as any supported protocol. This was useful in the present case
where traffic was using a non-standard port. So on a hunch, Ethereal was
instructed to decode port 8080 as IRC. This worked out concluding IRC was
being used. The same results were observed for port 9999.
There were 2 explanations proposed for the using several ports. It is possible
the malware is backing up the standard IRC port with the other 2 ports. In some
organizations’ firewalls, port 8080 is allowed outbound access under the guise of
HTTP. So this may have been an attempt to get around the firewall policy
blocking IRC. Or maybe the malware is allowing a “backdoor to the backdoor” by
providing privileged ports which not well-know IRC port numbers.
Lastly, we attempted telnet to the backdoor – port 2200. We got a login prompt,
“#:” but after supplying password and username/password the connection was
disconnected. There are several explanations. It is possible the backdoor is
running some other service such as SSH. Or maybe the backdoor requires a
specialized attacker-side backdoor client. Or maybe we just entered the wrong
password.
To make sure we had not overlooked any avenues of network monitoring, we
looked at the network connections on the infected machine using netstat.

No. Time Source Destination Protocol Info
6 0.102354 192.168.79.128 192.168.79.129 IRC Request
Internet Relay Chat
 Request Line: USER dFwal localhost 0 :vWHOidGcaSAysXKv
 Request Line: NICK MeFIozQaf

62 31.936228 192.168.79.128 192.168.79.129 IRC Request
Internet Relay Chat
 Request Line: JOIN #mils :

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

We were able to identify all listening and established connections which was
consistent with the network monitoring. Of course, at this stage we were far from
a comprehensive analysis so there maybe dormant backdoors or trojaned
network activity of which we did not have inkling. Although the IdentD port is not
shown as listening, Ethereal capture confirmed the bot responded to Ident
requests.

Code Analysis
As mentioned, the vanilla msrll.exe executable was packed using ASPack. Thus
far in the lab, the vanilla executable had been used. We killed the malware
process, reversed the packing, and launched the unpacked executable. The
same behavior was observed with the unpacked.ExE moving itself to the
“C:\Windows\system32\mfm\” location. However, the unpacked executable
retained the original filename of “msrll.exe” overwriting the existing file in that
location. Luckily for us, this confirmed that the auto-unpacker was successful
and enabled the code analysis phase. Also, it ensured all subsequent analyses
would use the unpacked executable which replaced the original executable.
Again, we examined unpacked.ExE for embedded strings. We were looking for
meaningful strings which may be able to focus the code analysis phase. In
particular, we were looking for hints of passwords and ways of communicating
with the malware through the known communication channels. The strings which
look like commands were mentioned before.
We joined the #mils IRC channel to try to establish initial contact with the bot.
We attempted a few of the commands, including “?login”, “?exec”, “?get”, “?put”
without any apparent success. Since initial contact through the IRC channel not
producing results, we directed our energy towards the backdoor.
In particular, we noticed an embedded string which gave indication of password
authentication.

So, we decided to take a closer look at the bot’s assembly to understand how the
bot was handling authentication. We honed in on the portion of the code which
contained the above embedded string. It seemed to us this portion of the code

0000BB52 0040BB52 0 %s bad pass from "%s"@%s

C:\Documents and Settings\jason\My Documents\Malware-MSRLL>netstat -a
Active Connections

 Proto Local Address Foreign Address State
 TCP xp_vmware_patch:epmap xp_vmware_patch:0 LISTENING
 TCP xp_vmware_patch:microsoft-ds xp_vmware_patch:0 LISTENING
 TCP xp_vmware_patch:1025 xp_vmware_patch:0 LISTENING
 TCP xp_vmware_patch:1078 xp_vmware_patch:0 LISTENING
 TCP xp_vmware_patch:1335 xp_vmware_patch:0 LISTENING
 TCP xp_vmware_patch:2200 xp_vmware_patch:0 LISTENING
 TCP xp_vmware_patch:5000 xp_vmware_patch:0 LISTENING
 TCP xp_vmware_patch:netbios-ssn xp_vmware_patch:0 LISTENING
 TCP xp_vmware_patch:1335 collective7.zxy0.com:8080 ESTABLISHED
 TCP xp_vmware_patch:2200 collective7.zxy0.com:1024 ESTABLISHED
 UDP xp_vmware_patch:microsoft-ds *:*
 UDP xp_vmware_patch:1026 *:*
 UDP xp_vmware_patch:1027 *:*
 UDP xp_vmware_patch:1900 *:*
 UDP xp_vmware_patch:netbios-ns *:*
 UDP xp_vmware_patch:netbios-dgm *:*
 UDP xp_vmware_patch:1900 *:*

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

must get branched to if the wrong password is supplied. Of course, this may be
an attempt by the malware author to throw us off track.

In order to validate the portion of code was being used for authentication, we
used OllyDbg to trace the process, setting a breakpoint at the highlighted
instruction. As mentioned, we used OllyDbg’s function to attach to the malware’s
process by selecting “msrll.exe” from the “Select process to attach” window. It
should be re-emphasize that OllyDbg was attaching to the unpacked executable
process and this executable was used for all subsequent analyses. Then, we set
about triggering the breakpoint by logging into the backdoor. The backdoor does
not prompt for a username/password. Using password only left the connection
hanging without any response client-side and without triggering the breakpoint.
Next we used username/password, by supplying a username at the “#:” prompt,
hitting enter, and supplying the password without a prompt, and pressing enter
again. OllyDbg interrupted execution at the highlighted instruction. The client-
side connection was still hanging, but this was due to the paused bot server-side
process. In the OllyDbg pane we saw the message being constructed as

bot.port bad pass from “iceman”@192.168.79.129

This seemed to indicate this portion of the code was authenticating the backdoor.
And it also seemed to indicate telnet was being served on the backdoor. We
pressed F8 to step through the rest of the portion and reached a few instructions
further down where the “shutdown” call was made to close the backdoor socket.
When this instruction was executed, the client telnet session was closed as
indicated below.

.text:0040BC5A loc_40BC5A: ; CODE XREF: sub_40BB6B+7E�j

.text:0040BC5A sub esp, 8

.text:0040BC5D push dword ptr [ebx+2064h]

.text:0040BC63 lea eax, [ebx+2004h]

.text:0040BC69 push eax

.text:0040BC6A push offset dword_40BB49

.text:0040BC6F push offset aSBadPassFromS@ ; "%s bad pass
from \"%s\"@%s"
.text:0040BC74 push 0
.text:0040BC76 push 20h
.text:0040BC78 call sub_40A589
.text:0040BC7D add esp, 14h
.text:0040BC80 push dword ptr [ebx+2064h]
.text:0040BC86 call free
.text:0040BC8B add esp, 8
.text:0040BC8E push 2 ; how
.text:0040BC90 push dword ptr [ebx] ; s
.text:0040BC92 call shutdown
.text:0040BC97 mov dword ptr [ebx+2064h], 0
.text:0040BCA1 add esp, 8
.text:0040BCA4 jmp short loc_40BCC2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

We had a plan in the making now. The plan was to trace back or trace forward
from the highlighted location to the location where the password comparison was
made. From this location, we could either bypass authentication or discover the
password from the trace.
A powerful charting feature of IDA Pro provided 2 major benefits for tracing.
Charting allowed us to identify the trace to the highlighted instruction without
having to step through each instruction. Also, charting allowed us to see if there
were multiple paths into or out of the highlighted location before we did the trace.
We used a powerful feature of IDA Pro which allows recursively charting each
reference to or from a module. This feature cannot be activated on an instruction
address, but must rather be activated on a label. This is done by right-clicking on
the label and selecting “Chart of xrefs to” or “Chart of xrefs from”.
First, paths “Chart of xrefs to”. The label, loc_40BC5A, a few lines above the
highlighted instruction was charted as shown below.

[root@localhost root]# telnet msrll 2200
Trying 192.168.79.128...
Connected to msrll.
Escape character is '^]'.
#:yoda
wrongpass
Connection closed by foreign host.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

The concerned label belongs to the blue-highlighted module sub_40BB6B. The
chart shows there is only 1 explicit reference from another module to the
concerned module. The chart shows a trace to the concerned module must
originate from the upstream module. One possibility is the upstream module
authenticates and calls the concerned module to signal bad password and
shutdown the connection.
Next, paths “out of”. This was done by right-clicking on the concerned label and
selecting “Chart of xrefs from”. The chart below shows references from the
concerned label to downstream modules.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

The paths out-of chart is more complicated than the paths into chart. One
possibility is the concerned module calls a downstream module to authenticate.
When the downstream module returns, the concerned module either shuts down
the connection or establishes an authenticated session.
A trick can be used to steer us in the right direction – i.e. backwards or forward.
Since the backdoor connection is a TCP socket, we would expect new
connections to be handled by the accept() system call. accept() establishes a
new TCP connection which is initiated by the client’s TCP SYN request.
Fortunately, for our sake, it turns out the entire malware assembly has a single
accept() call. This is located in the module which was charted 2 upstream from
the concerned module, sub_40D8CE. So backwards it is...
To be sure, this will be a trial-and-error plan, but using the charting technique
allows IDA Pro to do the heavy lifting and guides us down the right road.
Again, IDA Pro assists in tracing backwards by visually diagramming the program
control flow in the left hand column. Tracing backwards, we see there is only one
entry point into the concerned portion of code, which is within the same module
shown highlighted below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

This section of code immediately precedes the concerned section. Note that the
jump (jz) instruction depends on the success or failure of the instruction
immediately preceding it. The jump instruction in turn is the only entry point into
the concerned code and determines whether the “bad pass from” instruction is
reached. Most likely, the test instruction is involved in comparing the supplied
password to the correct password. We elect to patch the program in order to
bypass authentication. OllyDbg allows modifying executable code in memory.
We highlight the “jz” instruction in OllyDbg, press the space bar, and replace with
“NOP” so the jump is not taken. Here is what the “NOP” patch looks like.

Notice the 2 byte jz instruction got overwritten with 2 NOP instructions which
have the machine code 0x90. [IN] We try telnet to the backdoor again. The
results show any password will work now.

0040BBE7 |. 85C0 TEST EAX,EAX
0040BBE9 90 NOP
0040BBEA 90 NOP

.text:0040BBC9 loc_40BBC9: ; CODE XREF:
sub_40BB6B+26�j
.text:0040BBC9 test byte ptr [ebx+205Ch], 40h
.text:0040BBD0 jz loc_40BCA6
.text:0040BBD6 sub esp, 8
.text:0040BBD9 push offset dword_40BB40
.text:0040BBDE push edx
.text:0040BBDF call sub_405872
.text:0040BBE4 add esp, 10h
.text:0040BBE7 test eax, eax
.text:0040BBE9 jz short loc_40BC5A
.text:0040BBEB sub esp, 0Ch
.text:0040BBEE push 33Ch
.text:0040BBF3 call malloc
.text:0040BBF8 mov [ebp+var_C], eax
.text:0040BBFB cld
.text:0040BBFC mov ecx, 0CFh
.text:0040BC01 mov eax, 0
.text:0040BC06 mov edi, [ebp+var_C]
.text:0040BC09 rep stosd
.text:0040BC0B add esp, 8
.text:0040BC0E push dword ptr [ebx+2064h]
.text:0040BC14 push [ebp+var_C]
.text:0040BC17 call strcpy
.text:0040BC1C add esp, 4
.text:0040BC1F push dword ptr [ebx+2064h]
.text:0040BC25 call free
.text:0040BC2A mov dword ptr [ebx+2064h], 0
.text:0040BC34 mov eax, [ebp+var_C]
.text:0040BC37 mov dword ptr [eax+28h], 21h
.text:0040BC3E mov [ebx+2060h], eax
.text:0040BC44 mov dword ptr [ebx+2070h], offset
sub_4088F0
.text:0040BC4E mov dword ptr [ebx+205Ch], 2
.text:0040BC58 jmp short loc_40BCBF

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

Trying some commands, we receive confirmation that we are now
communicating with the bot. It should be noted that we have modified the code
in memory. We chose not to save the executable to disk. Instead, we found a
“legitimate” means to reset the password to any desired value once we have a
logged in on the backdoor. This is shown below by use of the “?md5p” and
“?set” command.
The commands we issued are highlighted. The rest is returned by the bot. The
“?set” command returns the configuration settings present in the bot. Notice,
there are 9 key-value pairs as previously surmised corresponding to the
jtram.conf file. Here we see the familiar settings: the executable binary name,
the backdoor port, the IRC servers, and the IRC channel defaults all as
encountered during our behavioral analysis. There are 2 password settings
which seem to store the password in similar structures. No help command was
discovered on the backdoor, so we poked at each command to discover what it
did. In some cases, issuing the command without any arguments elicited a
usage statement from the bot. This is shown for the “?md5p” command. This
seemed command seemed to be our ticket to understanding and changing
passwords. Next, trying this command with a password and salt, we see it
returned the same password structure as in the configuration settings.

[root@localhost GREM]# telnet msrll 2200
Trying 192.168.79.128...
Connected to msrll.
Escape character is '^]'.
#:iceman
wrongpass
?dir
12/04/2004 08:40 <DIR> .
12/04/2004 08:40 <DIR> ..
12/07/2004 13:04 1084 jtram.conf
12/04/2004 05:03 1175552 msrll.exe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

Putting it all together, we change the password as issued by the next command.
Just to be sure, we change the 2 password settings – dcc.pass and pass – to the
same value. Another “?set” (not shown) confirms all the settings have been
changed. At the same time, FileMon reports changes to jtram.conf indicating the
settings have been updated there as well. Without restarting the malware, we
are able to log in with the password “ankur” and any username. This confirms
the password change. Note we did not need to know the existing password to
change it.
Continuing our experiments, we now see whether we can communicate with the
bot via IRC. From poking around, we notice the “?op” command returned usage
requiring a password. We log in using the ircII client and join the #mils channel.
We try “op” as previous commands have not returned anything from the bot.

We get the message above and determine that the “/op” command did not
succeed.
We encountered a set of DoS commands which can be launched from the
malware against any target IP address. These commands were issued from the
backdoor connection, with the malware providing the following usage.

/op root ankur
*** Only few of mere mortals may try to enter the twilight zone

?set
set jtr.bin msrll.exe
set jtr.home mfm
set bot.port 2200
set jtr.id run5
set irc.quit
set servers
collective7.zxy0.com,collective7.zxy0.com:9999!,collective7.zxy0.com:8080
set irc.chan #mils
set pass 1KZLPLKDf$W8kl8Jr1X8DOHZsmIp9qq0
set dcc.pass 1KZLPLKDf$55isA1ITvamR7bjAdBziX.
?md5p
?md5p <pass> <salt>
?md5p ankur 2legit2quit
?md5p: $1$2legit2q$xFVKNw2Uka24q4LKgbR1u/
?set dcc.pass $1$2legit2q$xFVKNw2Uka24q4LKgbR1u/
?set pass $1$2legit2q$xFVKNw2Uka24q4LKgbR1u/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

Snort alerted us to the presence of these scans after we ran the command. It
seems the bot can be commandeered by its operator to be used as a reflector in
a DDoS attack.

Analysis Wrap-Up
In the analysis of msrll malware, it seems the path of least resistance provides
the greatest returns on time invested. For example, we had to decide what plan
to use to overcome the malware authentication. We could have traced deeper
into the code to discover the decrypted password or encryption algorithm.
Instead, we chose to patch and avoid getting into the nuances of the
authentication mechanism. This led to the discovery that the malware provides a
“user-interface” to change the password. Additionally, we were able to learn
something about the password structure. This knowledge can be used to brute
force crack the original passwords if desired. The password structure was found
to be the UNIX crypt() function used for “/etc/shadow” password encryption.
Additionally, the leading “1” and trailing “$” of the salt characterize this as the
glibc2 version of the crypt() function which returns up to 34 character output. The
glibc2 variant is based on the MD5 hash. Note the bot’s password structure is 34
characters long as well. To verify we implemented the password encryptor in C
on the Linux VM. The program is included in Appendix A.

Running the encryptor with our parameters for password and salt return the
identical password structure, verifying the implementation. This encryptor
combined with a English dictionary could be readily used to crack the bot
passwords. (Note: Programs using the glibc2 version of crypt() must be linked
with the –lcrypt. If using gcc, compile as follows:

[root@localhost crypt]# gcc -o msrllEncryptor msrllEncryptor.c –lcrypt

The example illustrates how the path of least resistance can be used to derive
results most quickly. If the plan had decided on delving into the assembly, the
complexity of the crypt() function in assembly representation may have been too
difficult to decipher. Sometimes it’s better to be lucky than smart.
The jtram.conf’s encryption scheme is different than the password’s. This was
not looked into.

?ping
?ping <ip> <total secs> <p size> <delay> [port]
?jolt
?jolt <ip> <duration> <delay>
?smurf
?smurf <ip> <p size> <duration> <delay>

root@localhost crypt]# ./msrllEncryptor ankur ‘$1$2legit2q$’
encPassword is $1$2legit2q$xFVKNw2Uka24q4LKgbR1u/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

This analysis should not be seen as a definitive analysis of the msrll malware.
We did not look into distribution mechanisms which the malware may use to
propagate to other machines. The malware does not seem to be self-replicating.
Most likely, some social engineering would be needed to infect a victim’s
computer such as enticing a user to click an email attachment or trojaning this
malware in some other download.
It seems the main purpose of the malware is to mobilize an army of zombies to
perform DDoS. The malware also has capability to provide a backdoor’ed
command prompt on the victim computer. This could be used as a springboard
by way of transitive trust into a private network. Although this malware proved
resilient to basic forensic analysis, it lacks the evasive capability which the
modern generation of malware exhibits. This includes encrypting
communications between the attacker and the bot to evade IDS, hiding itself to
forensic tools such as taskmgr.exe or ProcExp to evade system monitoring tools,
and providing morphing capability to evade Anti-Virus. The root kits and
Loadable Kernel Modules provide these capabilities.
We briefly touched on defensive measures and how malware can be changed to
evade defensive measures. McAfee VirusScan Enterprise 7.0 successfully
detected this bot as BackDoor-CGM. This was both the packed and unpacked
versions. McAfee does not complain about the jtram.conf file. We mutated the
bot in an attempt to evade McAfee. We used the msrll encryptor to generate new
passwords. We loaded the unpacked executable into Notepad and modified the
hard-coded passwords with the newly generated ones. This was a simple
replacement of 2 34-character strings but we wanted to make the modification
proper so the malware would run as usual. After making the changes, the file
was saved. The malware was confirmed to run as usual. And McAfee was no
longer able to detect it. This reveals the fragility of AV in detecting modified
code. We used manual methods to mutate the malware. However, automated
methods, such as Morphine, exist. These automated methods could be included
in future malware for the express purpose of evading AV detection. We imagine
the mythical, self-modifying superworm is not so far from reality.
Other defensive measures which might be used in identifying the msrll malware
include port scanning for know trojaned port. In this case the default port is 2200
but it is dynamically configurable by using the “?set” command from the backdoor
command prompt. A possible network signature is the “#:” command prompt.
This is not alterable at the user-level. The network signature detection in
conjunction with the trojan port scan would provide high accuracy and
substantially reduce false positive/negative rates. Some other network
signatures which could be loaded into IDS for msrll include, IRC traffic to non-
standard ports 8080 and 9999. This should set off alarms for subsequent
investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

References

[GC]

Combs, Gerald, et. al. Ethereal. 2004.
ftp://ftp.ethereal.com/pub/ethereal/win32/

 [DR]

DataRescue. IDA Pro v 4.6.0.785. 2003.
http://www.datarescue.com/idabase/overview.htm

[FS]

Foundstone. BinText v 3.0. 20 November 2000.
http://www.foundstone.com/resources/forensics.htm

[IN]

Intel Corporation. Intel Architecture Software Developer’s Manual,
Volume 2: Instruction Set Reference Manual. 22 March 2001.
http://developer.intel.com/design/pentium/manuals/243191.htm

 [MR1]

Russinovich, Mark and Bryce Cogswell. Filemon for Windows v 6.12. 13
October 2004. http://www.sysinternals.com/ntw2k/source/filemon.shtml

[MR2]

Russinovich, Mark. Process Explorer v 8.6. 3 December 2004.
http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

[MR3]

Russinovich, Mark and Bryce Cogswell. RegMon for Windows NT/9x v
6.12. 21 August 2004.http://www.sysinternals.com/ntw2k/freeware/regmon.shtml

[MR4]

Russinovich, Mark. TDIMon v 1.01. 29 July 2000.
http://www.sysinternals.com/ntw2k/freeware/tdimon.shtml

[OY]

Yuschuk, Oleh. OllyDbg v 1.1. 2004. http://home.t-
online.de/home/Ollydbg/

 [LZ]

Zeltser, Lenny. Reverse Engineering Malware: Tools & Techniques.
SANS Press, 2004.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

Appendix A. msrll password encryptor

// File: msrllEncryptor.c
// Author: Ankur Agarwal
// Date: 7 December 2004
// Description: msrll bot password encryption implementation
// Disclaimer:
/***
The software is distributed "as is", without warranty of any kind,
expressed or implied, including, but not limited to warranty of fitness
for any particular purpose. In no event will the Author be liable to
you for any special, incidental, indirect, consequential or any other
damages caused by the use, misuse, or the inability to use of the
software, including any lost profits or lost savings, even if Author
has been advised of the possibility of such damages.
**/

#define _XOPEN_SOURCE
#include <unistd.h>

int main(int argc, char **argv)
{
 char encPasswd[128];
 char *encPassword = encPasswd;

 encPassword = crypt(argv[1], argv[2]);
 printf("encPassword is %s\n", encPassword);
}

