
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Reverse Engineering
of msrll.exe

GIAC Reverse Engineering
Malware (GREM)

Practical Assignment
Version 1.0

Submitted by: Erlend Garberg
02 December 2004

Abstract:
Behavioral analysis and code analysis are used

to learn about the capabilities of the malware
specimen msrll.exe. The specimen is using

AsPack compression and MD5 passwords to
make analysis harder.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
2

Erlend Garberg <GREM 1.0 Practical

Table of Contents

Introduction 2
Laboratory Setup 2

Hardware 2
Networking 2
Software resources 3

Properties of the Malware Specimen 4
Type of file and size 4
MD5 hash 5
Operating systems 5
Embedded strings 6

Behavioral Analysis 7
Findings 7
Molding the laboratory environment 11

DNS 11
IRC Port 6667 11
Port 9999 and 8080 12

Code Analysis 13
Unpacking 13
Disassembly 14

Patching to change MD5 passwords 15
Finding Capabilites 17

Analysis Wrap-Up 18
Capabilities 18
Potential Users 18
Defence 18

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Erlend Garberg <GREM 1.0 Practical

List of Figures

Figure 1 - Network infrastructure 2
Figure 2 - PEInfo 4
Figure 3 - IDA Pro 5
Figure 4 - md5sum 5
Figure 5 - Operating System version from PEInfo 6
Figure 6 - BinText 7
Figure 7 - Service added 8
Figure 8 - jtram.conf 9
Figure 9 - snort dns 10
Figure 10 - identd is running on port 113 10
Figure 11 - backdoor? 10
Figure 12 - Starting ircd 11
Figure 13 - Process Explorer 12
Figure 14 - irc 12
Figure 15 - Port 9999 and 8080 13
Figure 16 - Extracting msrll.exe with AspackDie 13
Figure 17 - configuration 15
Figure 18 - Authentication routine? 16
Figure 19 – login 16

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

Erlend Garberg GREM 1.0 Practical

Introduction

This is the Practical Assignment for GIAC Reverse Engineering Malware. I thank
Lenny Zeltser for an informative course.

Laboratory Setup

This section describes the laboratory setup used in this assignment.

Hardware

My host computer for the laboratory setup is an Intel Pentium IV 3GHZ with
1GB RAM running Windows XP SP2. Two virtual machines were set up with
VmWare, one Red Hat Linux 9.0 and one Windows XP SP2.

Networking

For the networking part of the laboratory setup, I follow the recommendations
from the course material and use VmWare host-only networking. This provides
isolation; communication is only possible between virtual machines (VM) and
host, virtual machines cannot reach machines not on the laboratory network.
The network infrastructure is illustrated in Figure 1.

Laboratory Network - 192.168..129.0/24

Host - Windows XP
192.168.129.1

Virtual Machine - Windows XP
192.168.129.128

Virtual Machine - Redhat 9.0
192.168.129.129

Figure 1 - Network infrastructure

The DHCP server in VmWare provides IP-addresses for the virtual machines.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

Erlend Garberg GREM 1.0 Practical

Software resources

The following software is used in the analysis:

Name Description How/Where used
WinZip Does File Extraction. Extracting of malware.
NetCat Network Swiss Army Knife. Connecting to backdoor of

malware and faking services
for the malware to connect to.

VmWare Emulator for Intel hardware.
Makes it possible to run
many virtual computers
simultaneously on one
workstation.

Running multiple machines in
the lab and for enforcing
system isolation.

MD5sum Checksum application. Creating checksum of
malware specimen.

FileMon Logs access to files. Finding files accessed by the
malware specimen.

RegMon Logs access to registry. Finding registry keys accessed
by the malware specimen.

TDIMon Logs network connections. Finding network connections
opened by the malware
specimen.

RegShot Snapshots file system and
registry.

Finding differences in file
system and registry
before/after running the
malware specimen.

BinText Finds strings embedded in a
binary file.

Finding strings in the malware
specimen.

IDA Pro Interactive Disassembler Disassembly and debugging
of the malware specimen.

PEInfo PE file info Finding type of file, size, OS
etc of the malware specimen.

AsPackDie Extracts executables packed
with AsPack

Uncompressing the malware
specimen.

Snort Packet sniffer Packet sniffing
ircd Internet Relay Chat Server Analyzing network

connections to port 6667 from
the malware specimen.

Process
Explorer

Shows Process Detail Getting summary of process
resources.

passwd Sets Linux MD5 password Making MD5 password

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

Erlend Garberg GREM 1.0 Practical

Properties of the Malware Specimen
Using the shared folders of Vmware (Read-Only), I transfer the malware
specimen (msrll.zip) to the Windows VM. On the VM, the specimen is unpacked
to C:\malware\msrll.exe.

Type of file and size

To find the file type of msrll.exe, I open it in PEInfo and IDA Pro. As shown in
Figure 2 the file is an executable file of size 41984 bytes. As shown in Figure 3,
the message from IDA Pro at startup indicates that the executable is
packed/compressed. This means that it will be harder to analyze, because it
needs to be unpacked before Code Analysis can take place.

Figure 2 – PEInfo

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

Erlend Garberg GREM 1.0 Practical

Figure 3 - IDA Pro

MD5 hash

To make an md5 hash I use the application md5sum. As shown in Figure 4 the
file has the checksum 84acfe96a98590813413122c12c11aaa.

Figure 4 - md5sum

Operating systems

As shown in Figure 5, the OperatingSystemVersion field in the PE-header of the
executable is set to 4.00, which corresponds to Windows NT 4.0. That means
that the executable will run on Windows versions newer than or equal to
Windows NT 4.0. The file is a Win32 executable.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

Erlend Garberg GREM 1.0 Practical

Figure 5 - Operating System version from PEInfo

Embedded strings

I use BinText to extract strings embedded into the malware specimen. This is
shown in Figure 6. The strings give no info about the executable since it is
compressed. An exception is the PE section names, but those can also be
found with PEInfo.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

Erlend Garberg GREM 1.0 Practical

Figure 6 - BinText

Behavioral Analysis

I begin the behavioral analysis with starting monitoring tools:
I start RegMon, FileMon and TDIMon•
I take a snapshot of the system with RegShot•

I then launch msrll.exe and let it run for about 30 seconds. Afterwards I kill it with
the task manager. Finally I pause the monitoring tools.

Findings

I notice the following events after disregarding changes to files and registry keys
that are not related to the malware specimen:

The following files are added:
C:\WINDOWS\system32\mfm\jtram.conf
C:\WINDOWS\system32\mfm\msrll.exe

The following files are deleted:
C:\malware\msrll.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

Erlend Garberg GREM 1.0 Practical

The following registry keys are added:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security

The following registry values are added:
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Security\Security: 01
00 14 80 90 00 00 00 9C 00 00 00 14 00 00 00 30 00 00 00 02 00 1C 00 01 00 00 00 02
80 14 00 FF 01 0F 00 01 01 00 00 00 00 00 01 00 00 00 00 02 00 60 00 04 00 00 00 00
00 14 00 FD 01 02 00 01 01 00 00 00 00 00 05 12 00 00 00 00 00 18 00 FF 01 0F 00 01
02 00 00 00 00 00 05 20 00 00 00 20 02 00 00 00 00 14 00 8D 01 02 00 01 01 00 00 00
00 00 05 0B 00 00 00 00 00 18 00 FD 01 02 00 01 02 00 00 00 00 00 05 20 00 00 00 23
02 00 00 01 01 00 00 00 00 00 05 12 00 00 00 01 01 00 00 00 00 00 05 12 00 00 00
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Type: 0x00000120
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Start: 0x00000002
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ErrorControl:
0x00000002
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ImagePath:
"C:\WINDOWS\system32\mfm\msrll.exe"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\DisplayName: "Rll
enhanced drive"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ObjectName:
"LocalSystem"

In other words, msrll.exe copies itself to C:\windows\system32\mfm\, deletes
itself from the former location (C:\malware), and creates a new Windows
Service for the executable in C:\windows\system32\mfm. As shown in Figure 7,
the new service is set to start automatically at boot, but is not started yet.

Figure 7 - Service added

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

Erlend Garberg GREM 1.0 Practical

The checksum for the copied file is:
84acfe96a98590813413122c12c11aaa *msrll.exe
This is the same as the original C:\malware\msrll.exe had. This shows that the
copy is identical to the original file.

From the filename, C:\WINDOWS\system32\mfm\jtram.conf seems to be a
configuration file for the malware specimen. The file seems to be encrypted, so
no information can be gained from it. (See Figure 8)

Figure 8 - jtram.conf

The following interesting information shows up in TDIMon:
15.81876495 msrll.exe:1032 819C8480 IRP_MJ_CREATE TCP:0.0.0.0:2200

SUCCESS Address Open
22.08134972 svchost.exe:1036 819C9A38 TDI_SEND_DATAGRAM

UDP:0.0.0.0:1025 192.168.129.1:53 SUCCESS Length:38
22.09424913 msrll.exe:1032 81AACEA0 IRP_MJ_CREATE TCP:0.0.0.0:113

SUCCESS Address Open

Msrll.exe listens on TCP-port 2200 and 113. It also connects to 192.168.129.1
on UDP-port 53.

In this stage of the analysis I assume that port 2200 is a backdoor and that port
113 is used for an ident daemon. The use of an ident daemon indicates that
msrll.exe wants to connect to IRC; because many IRC servers require that the
clients run identd to be allowed to connect.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

Erlend Garberg GREM 1.0 Practical

The connection to port 192.168.129.1 on UDP-port 53 is probably an attempt to
resolve a domain name, since port 53 belongs to DNS and 192.168.129.1 is set
as DNS server on the Windows VM. To find which domain name that is
attempted resolved, I launch snort on the Linux VM with the following command
line and relaunch msrll.exe.

snort –vd –l /root/log

With snort I discover that msrll.exe attempts to resolve collective7.zxy0.com.
(See Figure 9)

Figure 9 - snort dns

I telnet to port 2200 and 113 on the Windows VM to gain more information about
the services running there.

Figure 10 - identd is running on port 113

Figure 11 - backdoor?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

Erlend Garberg GREM 1.0 Practical

Figure 10 confirms that identd is running.
Figure 11 shows that some kind of backdoor is running on port 2200, but
doesn’t give any more information.

Molding the laboratory environment

DNS

To advance the analysis process it’s now needed to change the laboratory
environment. I begin with redirecting traffic for collective7.zxy0.com to the Linux
VM. Entering 192.168.129.129 as the address for collective7.zxy0.com in
C:\Windows\system32\drivers\etc\hosts does this.

7.21099330 msrll.exe:1632 818F6678 TDI_CONNECT TCP:0.0.0.0:1091
192.168.129.128:6667 CONNECTION_REFUSED-150 .

44.58069392 msrll.exe:372 818D00B0 TDI_CONNECT TCP:0.0.0.0:1102
192.168.129.129:9999 CONNECTION_REFUSED

74.79998100 msrll.exe:372 818DB1C0 TDI_CONNECT TCP:0.0.0.0:1103
192.168.129.129:8080 CANCELLED

The redirection of network traffic to the Linux VM shows that msrll.exe tries to
connect to port 6667, 9999 and 8080 on collective7.zxy0.com. Port 6667
indicates an IRC connection.

IRC Port 6667

To continue the analysis, I launch an IRC server on the Linux VM.

Figure 12 - Starting ircd

I then restart msrll.exe. Process Explorer shows that msrll.exe has established a
connection with port 6667 on the linux VM.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

Erlend Garberg GREM 1.0 Practical

Figure 13 - Process Explorer

I launch an IRC client on the Linux VM and lists all created channels with the
/list command. A channel #mils has been created. I join this channel and list all
clients there with the command /who #mils. This is shown in Figure 14.

Figure 14 - irc

The malware specimen is joined as tlrKlMLgH on the channel. The nickname
seems to be randomly generated, and repeated connections show that the
nickname changes each time. I try to talk to the process to find commands, but
to no avail.

Port 9999 and 8080

To find out what msrll.exe expects on port 9999 and 8080, I launch NetCat on

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

Erlend Garberg GREM 1.0 Practical

the Linux VM with the command “nc –l –p 8080” and “nc –l –p 9999”. Then I
restart msrll.exe. The ircd is stopped. As shown in Figure 15, msrll.exe expects
an IRC server on port 9999 and 8080.

Figure 15 - Port 9999 and 8080

At this stage in the reverse engineering process behavioral analysis doesn’t
seem to give any more information about the malware specimen. I therefore
proceed with code analysis.

Code Analysis

Before I can disassemble and debug the binary, I need to unpack it.

Unpacking

Earlier in the analysis I established that the malware specimen was encrypted
or compressed. Before code analysis can take place the malware specimen
need to be unpacked/decrypted.

The aspack segment in the file indicates that the executable was packed with
AsPack. Because of this, I try to extract the executable with the application
AsPackDie, which was downloaded from
http://scifi.pages.at/yoda9k/files/AspackDie141.zip.
AsPackDie was able to extract the executable successfully, as shown in Figure
16.

Figure 16 - Extracting msrll.exe with AspackDie

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

Erlend Garberg GREM 1.0 Practical

Running the new unpacked executable shows that the unpacking worked; the
malware specimen is acting exactly like before.
I can then proceed with disassembly and debugging.

First I check if there are any interesting strings in the executable with BinText
now that it is unpacked. The following strings seems to be potential commands
to control the malware:

0000934E 0040934E 0 ?clone
00009355 00409355 0 ?clones
0000935D 0040935D 0 ?login
00009364 00409364 0 ?uptime
0000936C 0040936C 0 ?reboot
00009374 00409374 0 ?status
0000937C 0040937C 0 ?jump
00009382 00409382 0 ?nick
00009388 00409388 0 ?echo
0000938E 0040938E 0 ?hush
00009394 00409394 0 ?wget
0000939A 0040939A 0 ?join
000093A9 004093A9 0 ?akick
000093B0 004093B0 0 ?part
000093B6 004093B6 0 ?dump
000093C6 004093C6 0 ?md5p
000093CC 004093CC 0 ?free
000093D7 004093D7 0 ?update
000093DF 004093DF 0 ?hostname
000093EE 004093EE 0 ?!fif
000093FE 004093FE 0 ?play
00009404 00409404 0 ?copy
0000940A 0040940A 0 ?move
00009415 00409415 0 ?sums
00009423 00409423 0 ?rmdir
0000942A 0040942A 0 ?mkdir
00009436 00409436 0 ?exec
00009440 00409440 0 ?kill
00009446 00409446 0 ?killall
0000944F 0040944F 0 ?crash
0000946E 0040946E 0 ?sklist
00009476 00409476 0 ?unset
0000947D 0040947D 0 ?uattr
00009484 00409484 0 ?dccsk
00009490 00409490 0 ?killsk

I try to control the bot with the strings that BinText gave, but there is still no

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

Erlend Garberg GREM 1.0 Practical

response.

Disassembly

I proceed with disassembly in IDA Pro.

Address 40BDE0 seems to contain a MD5 hashed password. (String begins
with 1) This can be seen in Figure 17.

Figure 17 - configuration

A different password is located at address 40BE20. Since the passwords are
MD5, the passwords to be used while authenticating won’t be found in the
binary file. I then have several options, I can find the authentication routine and
patch it to always return true, or I can generate my own MD5 password and
replace the original ones. I choose to replace the passwords.

Patching to change MD5 passwords

I open msrll.exe in a hex editor and locate the addresses 40BDE0 and 40BE20. I
then replace the original MD5 strings with the string
“1Ec0wBmCq$1P9cBkJQWQqpsiQNeuqGT.”, which I generated with
‘passwd’ on a linux machine. The corresponding password is “!Nanoics”.

The assembly snippet in Figure 18 is probably part of the authentication
procedure. From the “%s logged in” part, I deduct that the authentication
process uses a username in addition to a password.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

Erlend Garberg GREM 1.0 Practical

Figure 18 - Authentication routine?

After changing the password I proceed with trying to login to the backdoor. I use
NetCat to connect to the Windows VM on port 2200. Then I try to authenticate
with an arbitrary username and the password “!Nanoics”. The login is
successful, the malware responds to the command “?hostname” and “?exec”.
This is shown in Figure 19.

Figure 19 – login

Finding Capabilites

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

Erlend Garberg GREM 1.0 Practical

To get an overview of the bots capabilities, I tested all the potential commands
found earlier. To save space, I will not use screenshots in this part. The results
are presented in the following table:

Command Action
?clone Make clones on ircserver
?clones Control clones (say/join/part)
?uptime show uptime of system and bot
?reboot Reboot the computer
?status show status information about the bot
?jump Probably change to next ircserver
?nick Change nickname on irc
?echo print argument
?hush unknown
?wget get file from ftp/http
?join join channel on irc
?akick kick host from irc?
?part part channel on irc
?dump unknown
?md5p compute md5 password
?free unknown
?update update Trojan from URL ?
?hostname Print hostname
?play play audio file on infected host?
?copy Copy file
?move Move file
?sums Show checksums for msrll.exe and config file
?rmdir Delete directory
?mkdir Make directory
?exec Execute program
?kill Kill process
?killall Kill all processes?
?crash Crash computer?
?sklist List active network sockets
?unset unknown
?killsk Kill socket?
?ping Pingflood target
?smurf Smurf-attack target
?jolt Unknown attack on target

With that I conclude the code analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

Erlend Garberg GREM 1.0 Practical

Analysis Wrap-Up

In this section I will summarize the findings in my analysis.

Capabilities

The malware specimen is capable of installing itself to a system directory,
adding itself as a legal-looking service and connecting to IRC to wait for
instructions from an attacker. It looks like it is intended to be part of a botnet
belonging to the attacker. Based on the built in commands for attack, an
attacker can use such a botnet for distributed denial of service attacks targeting
sites on the Internet. In addition, the malware specimen can be controlled via a
backdoor on port 2000. The attacker can easily update the Trojan software with
the built in “?update“ command.

Potential Users

Potential users for this program could be script kiddies wanting to build a botnet
for DDOS attacks.

Defence

To eliminate current infections of msrll.exe, it would be enough to kill the
msrll.exe process, delete C:\windows\system32\mfm\msrll.exe and remove the
NT service. To prevent future infections, it could be possible to build a signature
from the malware specimen which can be added to antivirus scanners. It could
also be possible to use a firewall that could filter away IRC traffic based on layer
7 (application data) instead of fixed service ports.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

Erlend Garberg GREM 1.0 Practical

References

Zeltser, Lenny. Reverse-Engineering Malware. Volume 1-4. SANS Press, Jun
04, 2004.

