
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

GIAC Reverse Engineering Malware (GREM)
Practical Assignment

Version 1.1 (added July 23, 2004)

Julia Hopkins
14/12/2004

Reverse Engineering “msrll.exe”

This paper is a description of the steps I took to reverse engineer a file called
msrll.exe. It begins with a description my laboratory setup. Then I give an account of

my behavioural and code analysis. Finally I discuss the implications of the
functionality of the malware and suggest ways of avoiding infection.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 2

CONTENTS

 Page
Laboratory Setup 3
Properties of Malware Specimen 4
Behavioural Analysis 5
Code Analysis 15
Analysis Wrap -up 22
References 24
Appendix A – Regshot and TDIMon output 25
Appendix B – Complete Bintext output 29
Appendix C – String Categories 44
Appendix D – OllyDbg screenshot 49
Appendix E - ADIPro Screenshot 50
Appendix F – IRC client screenshot 51

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 3

Laboratory Setup

My laboratory setup consist s of my host operating system and two virtual machines .
My phys ical host is a Sony Vaio Notebook, model SVGN -S1HP. It is never connected
to a production network. My host operating system is Microsoft Windows XP version
5.1.2600.1240 (Service Pack 2). On the host operating system I have installed
VMWare Works tation for Windows ver sion 4.5.2 build 88:48. I have used this
software to create my two virtual machines. The details are as follows: -

Virtual Machine 1: Microsoft Windows XP version 5.1.2600.1240 (Service Pack 2) ,
224MB RAM, max of 4GB HD (IDE), host-only NIC

Virtual Machine 2: Linux Red Hat 9 – the Virtual Machine provided on CDROM by
Lenny Zeltser during the course. “This Linux VMware machine was installed using
CDs that were created from Red Hat Linux 9 ISO images downloaded from the
http://www.redhat.com. Th is is a "minimal" installation that includes additional
packages useful for malware analysis.” ¹ The virtual machine has 64 MB RAM, a max
of 2GB HD, and a host-only NIC.

The diagram below shows the IP addresses of the host, the virtual network and the
two virtual ‘guest’ machines.

Virtual Laboratory Network: 192.168.46.0/24

Linux
Virtual “guest”
192.168.46.129

Windows XP
Virtual “guest”
192.168.46.128

Windows XP
Physical “host”

192.168.46.1

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 4

Properties of the Malware Specime n

The malware specimen is provided as a .zip file (msrll.zip). When unzipped with
Winzip it has the following properties: -

Name: msrll.exe
Type of file: msrll.exe is a Microsoft Windows executable file which has been
packed with ASPack. I obtained this information by running Bintext on msrll.exe (see
screen shots below) . Bintext is a tool which extracts embedded strings from
executables.

The string “!This program cannot be run in DOS mode” is commonly found in the first
sector of windows executable s and the string “.aspack” indicates that msrll.exe is
packed with ASPack. The Windows dll names and functions visible in the second
screen shot confirm that msr ll.exe is a Windows executable.

Size: 41,984 KB
MD5 Hash: 84acfe96a98590813413122c12c11aaa
Operating system it runs on: Windows XP and other MS Operating systems
Strings embedded into it: Most of the strings found by Bintext are obfuscated
because the malware is packed. However, the following screenshots show some
strings that are not obfuscated: -

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 5

Behavioural Analysis

I started my analysis of the malware specimen using behavioural analysis. When I
could go no further down a particular pat h of observation using this kind of analysis I
returned to the path later using code analysis. The following is a description of my
behavioural analysis: -

The first stage of my behavioural analysis involved the use of five system monit oring
tools to find out what would happen in the background if I ran the malicio us
executable on my Windows XP virtual machine . I also wanted to record any changes
that the running malicious executable made to the system :-

1. Regshot v1.61e5 Final - for changes to the Registry and file system
2. Filemon v 6.07 – for monitoring file access
3. Regmon v 6.06 – for monitoring registry access
4. TDIMon v 1.0 – for monitoring network activity
5. Microsoft Windows Task Manager version 5.1 – to view running processes

I began by using MS Windows Task Manager to familiarise myself with the processes
running on my Windows XP virtual machine.

Then I prepared Filemon, Regmon and TDImon for action on the Windows virtual
machine.

I took my first snapshot of the registry and the file system (C: \ and subdirectories)
using Regshot.

Then I started the capture function on each of the three monitoring tools and quickly
double clicked on the msrll.exe icon on my desktop to execute it.

I let it run for about forty seconds during which I noticed that a pr ocess called
msrll.exe appeared in Task Manager.

After the forty seconds I terminated the msrll.exe process from Task Manager.

Then I paused the capture function on the three monitoring tools before taking my
second snapshot with Regshot.

This is wha t I found:-

First of all, Task Manager showed that the malicious executable started a new
process with the same name as itself , msrll.exe .

I pressed the “compare” button in Regshot to compare the two snapshots taken in
the steps above. The output (see Appendix A) showed several very interesting
changes:-

A new key was created:
HKLM/SYSTEM/ControlSet 001/Services/mfm/Security

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 6

All changes to the HKLM/SYSTEM/ControlSet001 key also appeared under the
HKLM/SYSTEM/CurrentControlSet key. HKLM/SYSTEM/CurrentCont rolSet is a pointer to
whichever control set was used to boot the computer which was ControSet001 in this case.

In this key , a new service was added: -

HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\Security\Security:
01 00 14 80 90 00 00 00 9C 00 00 00 14 00 00 00 30 00 00 00 02 00 1C 00 01 00 00
00 02 80 14 00 FF 01 0F 00 01 01 00 00 00 00 00 01 00 00 00
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\Type:
0x00000120
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\Start:
0x00000002
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\ErrorControl:
0x00000002
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\ImagePath:
"C:\WINDOWS\system32 \mfm\msrll.exe"
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\DisplayName:
"Rll enhanced d rive"
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\ObjectName:
"LocalSystem"

The display name of the service is “Rll enhanced drive” but the underlying executable
(ImagePath) is C:\WINDOWS\system32\mfm\msrll.exe – the malicious executable.
The Start value is set to 2 which means that the service starts automatically when the
operating system is started. The ObjectName value is set to LocalSytem which
means that the service (msrll.exe) is run s with system privileges.

Interestingly, a new value wa s added to the Registry which tells Windows XP’s built
in firewall to enable msrll.exe for any source. In other words, the malware is
configuring the firewall to let it talk out:

HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \SharedAccess \Paramet
ers\FirewallPolicy\StandardProfile \AuthorizedApplications \List\C:\WINDOWS\system
32\mfm\msrll.exe: "C:\WINDOWS\system32\mfm\msrll.exe:*:Enabled:msrll"

Regshot shows that a new folder called mfm was created in C: \WINDOWS\system32
and that two new files were dropped into the mfm folder. The files are called
jtram.conf and msrll.exe. The malware also deleted itself from the desktop.

Incidentally, the following internet cache files were modified but I am uncertain
whether this has any significance.
C:\Documents and Settings \julia\Cookies\index.dat
C:\Documents and Settings \julia\Local Settings \History\History.IE5\index.dat
C:\Documents and Settings \julia\Local Settings \Temporary Internet
Files\Content.IE5 \index.dat

Quick Summary of Regshot findings

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 7

The malware creates two new files in C: \windows\system32\mfm. One of the files is
an exact copy of the original which I established by running MD5Sum on it to obtain
its hash value. The other is called jtram.conf , perhaps a configuration file for
msrll.exe. I opened it with notepad and below is a screenshot of what it contained: -

The contents of jtram.conf are a set of what look like18 encrypted values, all ending
in “= =” which is the “assignment” function in C . Six of them are assigned to what I
think is a NULL ch aracter, perhaps for initialisation. Fifteen of the values are 50
characters long. Two of the values are 74 characters long and one value is 126
characters long. I stopped and started msrll.exe several times and established that
jtram.conf contains a compl etely different set of values every time. The MD5 hash of
jtram.conf therefore changes each time the malware runs.

The malware also creates a new service c onfigured to run every time the computer
starts up. Its display name is “Rll enhanced drive ” but the underlying executable is
the malware itself, msrll.exe. The service runs with system privileges. The malware
also tells Windows XP Internet Connection F irewall to allow msrll.exe to “talk out”.
Finally, msrll.exe deletes itself from the place that it is executed from in the first
place.

Regmon offered nothing new. It did however confirm that the malware creates a
service called Rll enhanced drive and that it is actually created by services.exe
working on behalf of the malware.

Filemon showed the malware looking for various dll files in the location it was
executed from (the desktop in this case). When it c ouldn’t find them there it looked in
C:\Windows\system32 for them. Filemon confirmed all the file -related activity found
by Regshot. However, when these transactions were over, Filemon recorded further
activity:-

The malware persistently looked for a file called rsaenh.dll , a cryptographic service
provider, in the mfm folder. When it couldn’t find it there it looked for it in
C:\Windows\system32. It found it here and read from it. This indicates that the
malware uses encryption.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 8

Then it repeatedly attempt ed to open the path C:\dev\random. I knew that this
directory d idn’t exist on my system and considered that perhaps this folder existed on
the malware author’s computer when he was creating the malware and he forgot to
change the path before distributing his virus.

Each time the malware failed to open C:\dev\random, it opened jtram.conf and wrote
something to it. T hen it tried to access the folde r again. Eventually it gave up and
closed jtram.conf. This is obviously the point at which jtram.conf gets its contents but
where are they coming from if the malware can’t access C:/dev/random? Maybe they
are coming from the file that the malware spent som e time reading from just before
this step - rsaenh.dll.

 I tried creating th e c:\dev\random directory on my Windows VM and running Filemon
again to see what would happen. The malware behaved in exactly the same way as
before even though it was able to o pen the C: \dev\random folder this time.

However, I ran an internet search on C: \dev\random and discovered the probable
reason that the malware was trying to access this folder. It turns out that /dev/random
is a feature of the Linux kernel and of certain *BSD kernels. It is a character device
that provides you with “high quality, cryptographically strong , random data” 1. This
behaviour ties in with the previous observation of the malware opening rsaenh.dll, a
cryptographic service provider . Maybe rsaenh.ll ’s encryption process requires some
random input, or what is called a “salt” in encryption terms . It is unusual that the
author has included this capability in his code because behaviour so far indicates that
the Trojan is targeted at MS Windows operating systems. However, MS Windows
operating systems don’t support the dev/random device. Maybe the malware was
compiled on a Linux operating system. It is good news for me if the random aspect of
the author’s text obscuration plans doesn’t work!

TDImon revealed that msrll.exe is listening on TCP port s 2200 and 113 on all local ip
addresses (0.0.0.0:2200 and 0.0.0.0:113). TCP Port 113 is used for Ident requests.
When an IRC server receives a connection request it will typically send an Ident
request to the con necting client on TCP port 113 to establish the connecting user’s
identity. This is the first indication that the malware may be trying to connect to an
IRC server. In order to ensure a successful connection it needs to listen on port 113
to provide the ne cessary identification information to the irc server. TCP port 2200 is
not commonly used for anything in particular. Maybe it is being held open as a back
door to the infected computer .

TDImon also showed scvhost.exe making a DNS request from UDP port 10 42 (to
192.168.46.1:53).
The relevant lines from the TDIMon output log can be found in Appendix A.

Having seen that the malware is instigating some network traffic, I decided to capture
some packets using a sniffer located on my Linux virtual machine. I started Snort
v2.0.4 in promiscuous mode from the Linux v irtual machine and double -clicked on

1 EGD: The Ent ropy Gathering Daemon by Brian Warner - http://egd.sourceforge.net

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 9

the instance of msrll.exe that the malware created previously in
C:\Windows\system32\mfm. My findings were as follows: -

I saw DNS requests coming from the inf ected machine, confirming my TDImon
findings. The infected machine was trying to resolve a host called
collective7.zxy0.com :-

I also saw lots of network activity taking place between UDP port 137 on the infected
machine and UDP port 137 on the broadc ast ip address (192.168.46.255) and also
from UDP 138 on the infected machine to the broadcast address. I understand that
UDP port 138 is sometimes used in Netbios exploits but UDP ports 137, 138 and 139
are used by Windows to broadcast information relatin g to shares. I decided to
concentrate on the hostname that the malware is trying to resolve.

My next step was to mould my environment by allowing the malware to resolve the
hostname collective7.zxy0.com. I added an entry to the hosts file on my Windows X P
virtual machine (C:\Windows\system32\drivers\etc\hosts) to link collective7.zxy0.com
with my Linux virtual machine (192.168.46.129). Then I ran the sniffer again.

Now that the malware was able to resolve collective7.zxy0.com, some new network
activity began. First of all the malware tried to connect to TCP port 6667 on my Linux
virtual machine. However, each tim e the malware sent a “Synchroniz e” packet to port
6667, it received an “Acknowledge, Reset”. The malware also tried but failed to
connect to TCP ports 9999 and 8080 on the Linux virtual machine. It also received
“Resets” for these connection attempts.

Msrll.exe was trying to connect to TCP port 6667 on collective7.zxy0.com which I had
resolved to point to my Linux virtual machine. TCP port 6667 is typically associated
with IRC servers. So again I moulded my environment by setting up an irc server
(ircd) to listen on TCP port 6667 on my Linux virtual machine. I ran Snort again to
capture any changes in the malware’s behaviour.

This time the malwa re’s connection attempt to TCP port 6667 was successful . After
the completion of the three -way handshake, msrll.exe sent the following packet to the
irc server:-

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 10

Two keywords stood out in the ascii text – USER and NICK. This is the standard way
of logg ing on to an irc server. The malware (I may refer to the malware as a bot from
now on as that is the name given to malware that uses irc.) has provided an
obfuscated string of characters for its real name and another obfuscated string for its
nickname. Lat er monitoring showed that these strings change each time the bot
connects to the irc server so they must be randomly generated somehow . This goes
against my assumptions concerning calls to “dev/random” not working. Maybe the
malware has access to another r andom number generator.

The irc server replied to the above packet with the following packet: -

In order to identify the host, a connection was then made from TCP port 1027 on the
machine that the irc server is on to TCP port 113 on the infected machi ne. This was
the ident request that I had forseen. The packet contained the string “1092, 6667”
which as you can see from the screenshot above are the ports being used for the irc
connection on the respective machines. In reply, the windows virtual machine sent
the string “1092, 6667: USERID: UNIX: BwMsQZBNF. Again the text was obscured
but the irc server was satisfied, confirming with another packet that it had received
the ident response. Eventually, the irc server sent a long welcome message to the
infected machine, starting with the following :-

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 11

And ending with: -

The string, “RUXPhxXkq” which was the value of NICK in a previous packet appears
many times in the welcome message . In the last part of the welcome message we
see the string

“RUXPhxXkq=+BwMsQZBNF@192.168.46.128 ”

The irc server is associating the nickname with the USERID that it received in the
ident request earlier. This is standard irc behaviour.

The next packet showed the bot joining a channel called #mils on the irc server
(JOIN #mils :.) .

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 12

.

Unlike for the values for NICK, USER and USERID, #mils stayed the same each time
the bot connected to the irc server . The stop at the end of the packet means ‘new
line’.

The malware then checked the mode of the channel and the nicknames of those
currently present on the channel (MODE #mils.WHO #mils.) :-

Maybe it was storing these details for the author to pick up at a later date. Or maybe
it was comparing the results of these commands to predetermined criteria. It may on
the other hand, be looking for a particular nickname, maybe that of the author. If so, it
is possible that the nickname of the author is hard -coded into the bot’s source code.
The same goes for the mode of the channel. Perhaps the Trojan requires the channel
to be in a particular mode for some reason. I investigate this further in code analysis.

The irc server responded to these three commands with details of the malware user
only as there was no body else connected to the channel .

I assumed that the bot was connecting to the irc channel in order to receive
instructions from its author. So I connect ed to the channel myself to see if I could
communicate with the malware and therefore learn more about i t. I started an irc
client on the Linux virtual machine and logged in. At the prompt I typed “/JOIN #mils”
to join the channel. I also tried typing “ /JOIN #mils :” . I thought that the bot could be
using the colon character as a key for the channel (see Sn ort log screenshots
above).

When I joined the #mils channel (without a key) , the snort log showed the irc server
sending a notification of my appearance on the channel to the malware specim en on
the infected machine. This is standard behaviour for irc se rvers. However, it may be
worth intercepting this behaviour during code analysis to see if the malware does a
text comparison between the name of the new channel member and the name of the
author. This is something I could return to in my code analysis later:-

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 13

I tried out a few irc commands to see if I could get a response from the malware.
When I entered the command /NAMES , I found that someone called @sYAyBLAoY
was also logged on to the channel. The @ sign usually means that a user has
operator status on an irc channel. /WHOIS sYAyBLAoY got the following response: -

is DIQQNFWitA@192.168.46.128 (QaRdoJNJHZkdNLJkwR) on channels: @#mils
on irc server localhost.localdomain (IRC Server) sYAyBLAoY has been i dle 30 mins

It is obvious that this user is the bot as the ip address 192.168.46.128 is that of my
infected virtual machine . In this case the USERID the malware is using is
DIQQNFWitA. It has be en waiting for 30mins. Perhaps it i s waiting for a command .
The Snort logs showed some periodic “Ping-Pong” activity occurring over the irc
connection which can be attributed to the malware trying to keep the irc client alive ,
again showing that it is waiting for something .

I tried a few other commands without m uch success . It was time to unpack the
malware specime n and run Bintext on the unpacked version . Maybe the Bintext
output would contain a list of special commands for communicating with the malware
on the irc channel.

When I ran Bintext on msrll.exe at t he start of the analysis, one of the strings found
was “.aspack” wh ich indicated that the malware was packed with popular packer
ASPack. To save time in unpacking the executable I downloaded ASPackDie 2 from
the Internet. I pointed ASPackDie to a copy of ms rll.exe on my desktop and it
unpacked the malware to a file called “unpacked.exe”, also on my desktop. The first
thing I did was to run Bintext on it. A complete list of the embedded strings produced
by Bintext can be found in Appendix B.

I scoured the list for command -like strings that I could use to try to communicate with
the bot on the irc channel. There were a group of strings beginning with “?” which
looked like commands such as “?login”, “?status”, “?kill” .

Returning to the IRC session, I tried ou t some of the commands beginning with “?” on
the #mils channel. However, even though the malware instance was also present on
the channel, none of the commands had any affect whatsoever. I tried typing
commands with parameters such as ‘?login wrongpassword ’ to see if I would get an
error response from the Trojan but it still didn’t react. I used Snort to see if any
network activity occurred when I entered various commands but all I saw was the
trojan sending an Ack packet back to the irc server, acknowledg ing the command but
not doing anything with it.

2 ASPackDie v1.4.1 downloaded from http://mitglied.lycos.de/yoda2k/proggies.htm

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 14

Having failed to communicate with the bot on the irc server, I decided instead to
move on to analysing the behaviour of the malware regarding its connection attempts
to TCP ports 9999 and 8080. The malware tried to connect to these ports after it was
able to connect to what it thought was the collective7.zxy0.com host . I wasn’t sure
what services the malware was looking for on these ports so I ran NetCat as a
listener on each port in turn, starting with TCP port 9999. As an aside, it is worth
mentioning that if the malware manage d to connect to port 6667 on the
collective7.zxy0.com host then it no longer attempt ed to connect to TCP ports 9999
and 8080.

First of all I shut down the irc server and client that I had started on my Linux v irtual
machine. Then I set NetCat to listen on TCP port 9999 as follows: -

Netcat’s output showed the data that was sent to port 9999 by the malware. It looks
very much like another attempt to log on to an irc server. The USE R and NICK
keywords associated with irc connections are there but again their values look as if
they are encrypted /random. Later tests showed that the values for USER and NICK
changed every time. Maybe in the real world, there is an irc server listening on TCP
port 9999 on the collective7.zxy0.com host. I don’t have an irc server which listens on
this port so I moved on to examine TCP port 8080 connection attempts in the same
way.

The results are the same as those for port 9999. I will assume that an irc server has
been configured to listen on these ports on the collective7.zxy0.com.host as well as
on TCP port 6667 .

There is one more thing for me to look at in my behavioural analysis. One of the first
things I found out about the Trojan was that it was listening on TCP ports 113 and
2200. I established that port 113 was being used to listen for Ident requests and
made the assumption that TCP port 2200 was just a simple back door. I tried
telneting to TCP port 2200 on the infected machine from my Lin ux virtual machine
and was presented with the following window: -

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 15

I tried typing some simple commands but nothing worked. It is possible that this
backdoor was added by the author as an afterthought and maybe even to leave a
door open for other hackers to exploit.

Code Analysis

Having taken my behavioural analysis as far as I could, it was time to find out more
using code analysis. I ha d already performed some very basic code analysis by a)
running Bintext on the packed executable, b) unpacking the executable with
ASPackDie and c) running Bintext on the unpacked executable. The strings that I
obtained by running Bintext on the unpacked executable he lped me to speculate as
to what the Trojan was doing and allowed me to try out some commands on the ir c
channel . The full list of strings found by Bintext can be found in the Append ix B.
Throughout both my behavioural and code analysis I constantly referred back to the
strings that were found in the unpacked executable for ideas and clues. At the end of
my code analysis I speculate on further functionality of the malware using the
embedded strings as a guide.

My behavioural analysis ended at four brick walls which I list here: -

1. The Trojan connected to my irc server on port 6667 on host
collective7.zxy0. com and seem ed to be waiting for a command. However, I
couldn’t get it to respond to anything . I hoped to be able to establish with code
analysis whether or not:

a. The trojan would accept commands from anybody as long as the
command was entered correctly

b. it required certain criteria to be met in order to be able to respond to
commands e.g. the MODE of the channel needed to be set to
something special and/or a particular user had to be present on the
channel, i.e. the author.

2. The Trojan was listening on TCP p ort 2200 on the infected machine but again

wouldn’t respond to any commands I issue d to this port via a telnet session
from my Linux virtual machine. Maybe my code analysis would give me an
idea as to what the Trojan is expecting to receive on this port.

3. If the Trojan wasn’t able to connect to port 6667 on collective7.zxy0.com it

tried to connect to TCP ports 9999 and 8080. I put listeners on these ports on
my Linux virtual machine and recorded the Trojan connecting to them. The
Trojan seemed to be expect ing irc servers to be listening on these ports too. It
authenticated to them in exactly the same way as it did with my irc server on
port 6667. I could configure Honeyd to emulate an irc server listening on these
ports but there is little point in doing th is until I can get over my first brick wall .

4. There is also the fact that most of the communications coming from the Trojan

seem to be encrypted. As if that wasn’t enough the communication strings
also seem to be randomised. Many of the strings found by Bintext support this.
A full list of relevant strings can be found in Appendix C.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 16

The main focus of my code analysis is therefore working out how to communicate
with the Trojan.

The tools that I used were:
Bintext – to find embedded strings
IDAPro – to disassemble executable into assembly code
OllyDebug – to step through disassembled code
PEInfo – to view the malware’s imported files and functions and also its structure ,
Snort – to sniff packets off network

I thought that if I could locate one of the h ard-coded irc-like commands in the code of
the malware then I might be able to see how the malware expected to receive them ,
e.g. the format of the commands and any hard coded parameters such as
passwords.

Having already unpacked the malware specime n to the desktop, the next time I
double-clicked on the unpacked version, it overwrote the packed version of msrll.exe
in the C:\Windows\System32\mfm folder and deleted itself from the desktop. So, I
loaded the unpacked C: \Windows\system32\mfm\msrll.exe into IDAPro to
disassemble it and began my analysis by searching (Alt+T) the assembly code for
the ‘?login’ string .

However, IDAPro could n’t find “?login” . I tried searching for other irc-like command
strings e.g. ‘?status’ and ‘?kill’ but IDAPro couldn’t find t hose either. This didn’t make
sense. I checked out the list of Strings that IDAPro automatically generated on
loading msrll.exe but the irc-like command-strings weren’t there either. Bintext said
that the string was supposed to be at memory location 0040935D but in IDAPro the
addresses jumped from 00409345 to 004094B1. However, starting from 00409345
were a large group of dd (double word) declarations in hexadecimal.

I thought that maybe the hexadecimal equivalent of “?login” could be somewhere
amongst the declarations . Maybe the declarations themselves were referenced in the
code rather than their memory location. On converting a few of the declarations to
ascii I found that they were indeed a list of commands but it would take too long to
convert it all in order to find my ?login command. .

I switched to Hex View in IDAPro to see if I could shed any light on which of the dd
declarations contained the “?login” command (see screen shot below) .

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 17

On the right hand side are the ascii strings includin g “?login” and in the middle is the
equivalent hexadecimal. The hexadecimal equivalent of “?login” is “3F 6C 6F 67 69
6E” but it is split over two memory addresses, 00409350 and 00409360. Therefore I
would expect one of the dd declarations to contain “3F 6 C 6F” and another to contain
“67 68 6E”.

3F 6C 6F 67 69 6E
? L o G I N

However, in double word declarations the hexadecimal pairs are reversed as
follows:-.

6F 6C 3F 6E 69 67
O L ? N i G

Referring back to the dd declarations, one of the de clarations contains the first three
pairs:-
676F6C3Fh with and extra pair, 67 (“g”) at the start and the next dd declaration,
3F006E69h contains the pairs 6E and 69 with two extra pairs at the start . If I convert
these declarations back into hex I get “?l ogin.?”. The final character is part of the next
command.

I searched IDAPro to see if it could find any references to the first dd declaration
676F6C3Fh . No references were found for either of the dd declarations. A quick
browse through some of the cod e in IDAPro showed that dd declarations are often
referenced using ‘dword_memory location of declaration is at ’. I tried searching for
dword_409350 and also for dword_409345 but IDAPro found nothing.

I was unsuccessful in using IDAPro to locate calls to the “?login” command.

During my behavioural analysis I suggested that the Trojan may be testing to see if
certain criteria are met when it issues the MODE #mils and WHO #mils commands
after joining the channel. Related strings found by Bintext were “ WHO %s” at
address 00403778 , “%s logged in” at address 00405B88, “ MODE %s -o+b %s
*@%s” at address 00404711, “ MODE %s -bo %s %s ” at address 004047E7, “ MODE
%s %s” at address 0040505A, “ mode %s +o %s ” at address 004055A3 and at
address 004134B0, “ mode %s +b %s %s” at address 004055B8 and “_setmode” at
address 0051BCFA.

The “MODE” command is referred to several times in the code and in particular with
the attributes ‘o’ and ‘b’ which stand for ‘operator status’ and ‘ban’ respectively in irc -
speak. One the stri ngs above, “mode %s +o %s ”, could be used to give ‘operator
status’ to someone. An operator has special privileges on an irc channel. You can

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 18

only become an operator either by being the first person to join a channel or by being
given operator status by an other operator. Perhaps the Trojan gives operator status
to its master when the master joins. Or maybe it gives operator status to other
instances of the malware that join the channel. I should let the malware join the #mils
channel before I do in further analysis to make sure that it gets operator status.

Why would the Trojan want to ban or remove a ban from another channel member?
Maybe this will become clear on analysing the code.

Starting with the “WHO %s” string, Bintext said that it is locate d at 00403778.

 However, in IDAPro the addresses jump ed from 00403775 to 00403781. In between
were three dd (double word) declarations and a cross reference to a subroutine
(sub_403783+4C).

This is the same issue that I came across previously when searching for the “?login”
string.

The three dd declaration s were the hexadecimal values 25207325h , 48570A73h and
7325204Fh.

Hex 25 20 73 25 48 57 0A 73 73 25 20 4F
Asc % Space S % H W Line

Feed
S S % Space O

I changed the order of the hex values so that the first word of each 4-word value is at
the end of the 4-word value and the last word is at the start of the 4-word value.

Hex 25 73 20 25 73 0A 57 48 47 20 25 73
Asc % S Space % s Line

Feed
W H O Space % s

The “WHO %s” string is there . I have highlighted it in bold.

I examined the cross-referenced subroutine sub_403783+4C mentioned above and
found a reference to the memory location of the WHO %s string, dword_403775
(00403775 is the start of the dd declarations) :-

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 19

Not surprisingly, the string “MODE” is in the instruction above it. Looking at the above
code, it seems that both “MODE”, “WHO %s” and a few other values including the
value in the EAX register and the contents of what’s at memory address EBP + FF
(arg_4) are passed in to a subroutine at memory location 404481 (call sub_404481) . I
examined subroutine 404481 in ADIPro but could not really tell what was happening .
I then viewed the code with a debugger, Ollydbg in the hope of seeing some hard -
coded ascii values which the trojan may have been using for string comparisons . I
opened msrll.exe in OllyDbg and set breakpoints (F2) at the following positions: -
004037DB (the call to the subroutine), 004037E0 (the instruction after the subroutine)
and 00404481 (the first instructio n of the subroutine). The n I ran the malware (F9).
The malware stopped at the first breakpoint. The contents of memory address EBP +
arg_4 turned out to be the user id!nick@host combo for the Trojan that had joined the
irc channel with a colon in front and the string “JOIN #mils” at the end like this: -

":DwCyuDrDY!cZKN@192.168.46.128 JOIN :#mils"

I pressed F7 to step into the subroutine. I stepped through each line of the subroutine
(F8). The code calls subroutine 411D10 and continues. Then at instruction 411D3B
the code jumps to the address that is in the EAX register, which is 404491. Then at
4044C1 the code jumps a few instructions to address 4044DC (referred to as
msrll.004044DC which means that this code is part of the malware’s code rather than
part of a packaged dll file or some other program). At instruction 4044E2, the magic
address BAADFOOD is initialised with 0. The next jump is to 00404565. At address
404578, “USERHOST nQwRsDAiE” is printed to the screen of the irc server using
the function vsnp rintf from the msvcrt dll. A comparison is made at address 4045A4
and the next line of code jumps a few lines to 4045CA if the two values that were
compared were equal (JE SHORT msrll.004045CA). Each time I run the malware,
this jump is never taken because the comparison is successful. However, I can see
in Ollydbg that the lines of code being jumped are printing something to the screen:

I used OllyDbg to replace the compare function at 004045A4 with a NOP instruction
to stop the jump from taking place . This is called ‘patching’ and is done by selecting
the line of code and then pressing the space bar. Enter ‘NOP’ in the box, hit
Assemble and you will get the following. The change is only made to memory, not to
disk.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 20

Actually, the code turned o ut to be much less interesting than I thought. The malware
was just preparing the string USERHOST userid for printing to the irc server.
Moving on, the next thing of any significance that I saw was at instruction 00403845.
The userid part of the above str ing (“DwCyuDrDY”) was being copied into the
address 00 3D7300, the user!nick@host part of the string was being copied into
003D736D, the ip address (192.168.46.128) was being copied into 3D7C27 and
“#mils” was being cop ied into 3D78A8 . However, later debu gs showed that these
memory addresses change d with every run of the malware .

I gathered from the code that I had been following so far in OllyDbg that the malware
was simply preparing strings about itself for introducing itself to the irc server.
Nothing very exciting.

The furthest I got in following this path was to see the malware comparing the string
“001 ” with the following strings: “JOIN”, “QUIT”, “352”, “302”, “303”, “005”, “NICK”,
“PART”, “KICK”, “353”, “MODE”, “433” and “324”. It seemed to find a match with
“324” and exited the loop which was at address 00404233. This is something new.
The numbers seem to represent commands. What command could the string “001”
represent? Unfortunately, I was unable to establish using code analysis whether the
malware was checking to see if certain conditions were met after it joined the
channel.

Many of the strings found by Bintext were functions from various dlls that were
imported by the malware from the infected system. I used a tool called PEInfo to see
which dll files and which functions the malware was importing. Below you can see a
list of dll files that the trojan requires under ‘Imports’ on the left and on the right, a list
of functions that the selected dll file contains (I have selected ADVAPI32.dll in this
example) :-

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 21

Immediately, I recognise d some of the function names from my Bintext output,
including CryptGenRandom and CryptAcquireContextA. I believe that the malware
has even packaged up at least one whole program with itself. For example, i t is
unlikely that the malware would be able to find the LibTomCrypt program on an
infected computer so it seems to have packaged the whole program up with itself. I
went to the features page of LibTomCrypt on the WWW
(http://libtomcrypt.org/features.html) and practically every string from this page was
found by Bintext. What are the bets that the features page is the same as the readme
file that comes packaged with LibTomCrypt? It would be nice to be ab le to eliminate
these strings from the Bintext output to make analysis simpler.

Analysis Wrap -up

The capabilities of this specimen of malware are far -reaching. Infection takes place
through execution of the specimen on a MS Windows operating system an d it runs
with the privileges of the logged -in user which is SYSTEM in the case of most home
users. On infection it deletes itself from the place it was executed, it adjusts the
Registry so that it runs as a process each time the computer is started up and it
copies itself along with another file into a folder in the system path. It takes measures
to hide itself from the user such as using a fake display name in Services.

The specimen then opens a backdoor on TCP port 2200. Meanwhile it tries to
connect to a host called collective7.zxy0.com. If successful it tries to connect to an irc
server listening on port 6667 on that host . If it fails then it tries to connect to back -up
irc servers listening on ports 9999 and 8080. After connecting to port 6667 the
malware joins a channel called #mils and queries the irc server to find out the mode
of the channel and the names of other channel members. Then it waits. I believe that
it is waiting for commands from its master.

The malware has advanced encryption capa bilities, making use of various
cryptographic providers and random number generators. The userid and nickname it

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 22

provides to the irc server are randomly generated. Also, the malware writes several
long encrypted values to the jtram.conf file that it copied into the system path . Many
of the embedded strings produced by Bintext look as if they are encrypted as well as
function names and file names that indicate that encryption is being used (see
Appendix C for encryption/randomisation -related strings) .

Even though I failed to get the bot to react to any of my commands, the embedded
strings gave many clues as to what an attacker could use it for: -

Strings such as ‘jolt’, ‘syn’ and ‘smurf’ (see Appendix C, Attack-related strings)
indicate that the master coul d command the bot (and perhaps hundreds of other bots
at the same time) to launch various DoS attacks the victim machine or on a target
other than the victim machine.

Commands such as ‘?reboot’, ‘?crash’ and ‘?rmdir’ show that the bot can be used by
an attacker to cause trouble on the infected machine.

A selection of strings beginning with SSL e.g. SSL_connect show that the malware is
capable of talking over the WWW . Maybe it connects to a web site or web server to
receive instructions from its master o r maybe it can download files from a web server.
Strings such as “ urlopen failed ” and “ inetopen failed ” confirm that the malware can
communicate via the WWW.

There are many strings which contain ‘ddc’ which is a Direct -cient-to-client function in
IRC (see Appendix C - DCC and IRC Socket related strings). DCC is commonly used
to distribute malicious code to unsuspecting users. Perhaps the malware is using it
in this way too. It could use DCC to receive updates from its master or to send data
to its master.

The malware has all the capabilities needed to be a serious attack tool. It can be
modified and improved upon by its attacker , making it more dangerous and versatile.
It already has several built -in back-up components such as the connection attempts
to ports 9999 and 8080.

The Trojan is very difficult to authenticate to – I assume that a degree of
cryptanalysis would be necessary to establish the key required to be able to
communicate with the Trojan. That means that it has not been designed for use by
anyone who just happens upon it.

Depending on the infection rate, the #mils channel could be a meeting point for
thousands of bots identical to this one. The attacker would then have the capability to
launch a serious DoS attack on his adversary or on a commercial company or
website or on a government website and so on. This kind of malware is being used
more and more to conduct crimes of extortion. Basically, a criminal commands his
zombies (the thousands of bots that have gathered in his irc channel) to launch a
particular denial of service attack (e.g. jolt) against a company and refuses to stop it
until a large sum of money is transferred to an off -shore bank account. It is almost
impossible to track this type of attack back to its source because t he DoS attacks are
coming from unsuspecting users’ infected machines located all over the world.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 23

The string “% removed” was found by Bintext. This indicates that I may be able to
issue a command to the Trojan on the irc channel telling it to remove itself from the
machine it has infected. However, as I can’t authenticate to the Trojan, I would take
the following three steps to remove it from my system: -

1. Stop the msrll.exe process using Task Manager
2. Open up Services from Control Panel and locate the servic e called “Rll

enhanced drive”. Right click on the service and choose properties. Change the
Start-up type of the service from “Automatic” to “Disabled”. This is one step
towards stopping the malware from starting up automatically next time you
start up your computer. However, you also need to reverse the changes that
were made by the malware to your registry settings. Locate the following keys
in the Registry (use Regedit from a command prompt) and delete the whole of
the ‘mfm’ key:-

HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm

3. Delete the folder called ‘mfm’ from “C:/Windows/system32/”.

The main piece of advice that I would give to avoid an attack by this specimen would
be not to log on to your computer as System Administrator by default. This malware
specimen assumes the privileges of the logged in user. Only the users with System
privileges are able to make changes to the Registry. Therefore, if you were infected
by the Trojan whilst lo gged in as a standard user, the malware would be unable to
make the necessary changes to the Registry. That means that the service (Rll
Enhanced Drive) that causes the malware to run automatically each time the
computer is started up, is never created.
 Secondly, monitor your computer’s listening ports . Close any ports that are
open and listening unnecessarily. I did not find out exactly what TCP port 2200 is
used for in this particular case. However, closing it can only protect you further as
this port is not commonly used for anything else.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 24

References

Warner, Brian. “ EGD: The Entropy Gathering Daemon ”. SourceForge. Jul 25 2002.

Dec 27 2004.<http://egd.sourceforge.net >

Denis, Tom St. LibTomCrypt home page. 27 Dec 2004.< http://libtomcrypt.org >

Department of Physics, University of Hamburg web page . “Jolt”. Physnet Security

Tutorials. 27 Dec 2004. <http://www.physnet.uni-
hamburg.de/physnet/security/vulnerability/jolt.html >

Huegen, Craig A. “The latest in denial of service attacks: "smurfing"

description and information to minimize effects ”. Feb 8 2000. 27 Dec 2004.
<http://www.pentics.net/denial -of-service/white-papers/smurf.cgi>

Hyde, Randall. Art of Assembly . Webster homepage. 2000. 27 Dec 2004.

<http://webster.cs.ucr.edu >

Lay Networks web page. 2000. Computer Science Tutorials . 27 Dec 2004.
<http://www.laynetworks.com/assembly%20tutorials4.htm >

Tools

ASPackDie v1.4.1

Danilo, B. Sistemo website. 2003. Pro ggies web page.
<http://mitglied.lycos.de/yoda2k/proggies.htm >

Snort for Linux v2.0.4 , Bintext 3.0, IDAPro v4.6 Evaluation copy , Md5sum, PEInfo,
NetCat 1.10 for Unix, Ollydbg 1.10 for Windows , Regshot 1.61e5 Final for Windows ,
SysinternalsTDIMon v1.01 fo r Windows NT/2000/XP , Sysinternals Regmon v6.06 for
Windows NT/2000/XP , Sysinternals Filemon v6.06 for Windows NT/2000/XP , Winzip
9.0 evaluation copy, Red Hat Linux 9

Zeltser, Lenny. GREM. Reverse -Engineering Malware Tools and Techniques
Hands-On CDROM v9. Sans Press. 2004

VMWare Workstation 4.5.2 -8848 for Windows. < http://www.vmware.com/ >

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 25

Appendix A

REGSHOT LOG 1.61e5
Comments:
Datetime:2004/11/15 16:18:52 , 2004/11/15 16:20:46
Computer:XPSP2 , XPSP2
Username: ,

Keys added:4

HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\Security
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm\Security

Values added:21

HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \SharedAccess \Paramet
ers\FirewallPolicy\StandardProfile \AuthorizedApplications \List\C:\WINDOWS\system
32\mfm\msrll.exe: "C: \WINDOWS\system32\mfm\msrll.exe:*:Enabled:msrll"
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\Security\Security:
01 00 14 80 90 00 00 00 9C 00 00 00 14 00 00 00 30 00 00 00 02 00 1C 00 01 00 00
00 02 80 14 00 FF 01 0 F 00 01 01 00 00 00 00 00 01 00 00 00 00 02 00 60 00 04 00
00 00 00 00 14 00 FD 01 02 00 01 01 00 00 00 00 00 05 12 00 00 00 00 00 18 00 FF
01 0F 00 01 02 00 00 00 00 00 05 20 00 00 00 20 02 00 00 00 00 14 00 8D 01 02 00
01 01 00 00 00 00 00 05 0B 00 00 00 00 00 18 00 FD 01 02 00 01 02 00 00 00 00 00
05 20 00 00 00 23 02 00 00 01 01 00 00 00 00 00 05 12 00 00 00 01 01 00 00 00 00
00 05 12 00 00 00
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\Type: 0x00000120
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services\mfm\Start: 0x00000002
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\ErrorControl:
0x00000002
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\ImagePath:
"C:\WINDOWS\system32\mfm\msrll.exe"
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\DisplayName: "Rll
enhanced drive"
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \mfm\ObjectName:
"LocalSystem"
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\SharedAccess \Para
meters \FirewallPolicy \StandardProfile \AuthorizedApplications \List\C:\WINDOWS\syst
em32\mfm\msrll.exe: "C: \WINDOWS\system32\mfm\msrll.exe:*:Enabled:msrll"
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm\Security\Securi
ty: 01 00 14 80 90 00 00 00 9C 00 00 00 14 00 00 00 30 00 00 00 02 00 1C 00 01 00
00 00 02 80 14 00 FF 01 0F 00 01 01 00 00 00 00 00 01 00 00 00 00 02 00 60 00 04
00 00 00 00 00 14 00 FD 01 02 00 01 01 00 00 00 00 00 05 12 00 00 00 00 00 18 00
FF 01 0F 00 01 02 00 00 00 00 00 05 20 00 00 00 20 02 00 00 00 00 14 00 8D 01 02
00 01 01 00 00 00 00 00 05 0B 00 00 00 00 00 18 00 FD 01 02 00 01 02 00 00 00 00

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 26

00 05 20 00 00 00 23 02 00 00 01 01 00 00 00 00 00 05 12 00 00 00 01 01 00 00 00
00 00 05 12 00 00 00
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm\Type:
0x00000120
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm\Start:
0x00000002
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm\ErrorControl:
0x00000002
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm\ImagePath:
"C:\WINDOWS\system32\mfm\msrll.exe"
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm\DisplayName:
"Rll enhanced drive"
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\mfm\ObjectName:
"LocalSystem"
HKEY_USERS \.DEFAULT\Software\Microsoft\Windows\ShellNoRoam\MUICache\C:\
WINDOWS\system32\mfm\msrll.exe: "msrll"
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\Software\Microsoft \Windows\CurrentVersion \Explorer \UserAssist\{75048700-
EF1F-11D0-9888-006097DEACF9} \Count\HRZR_EHACNGU:P: \Qbphzragf naq
Frggvatf \whyvn\Qrfxgbc\zfeyy.rkr: 09 00 00 00 06 00 00 00 00 49 0C D6 2E CB C4
01
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\Software\Microsoft \Windows\ShellNoRoam \MUICache\C:\Documents and
Settings \julia\Desktop\msrll.exe: "msrll"
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\Software\Microsoft\Windows\ShellNoRoam \MUICache\C:\WINDOWS\system32
\mfm\msrll.exe: "msrll"
HKEY_USERS \S-1-5-
18\Software\Microsoft \Windows\ShellNoRoam\MUICache\C:\WINDOWS\system32\m
fm\msrll.exe: "msrll"

Values modified:7
------------- ---------------------
HKEY_LOCAL_MACHINE \SOFTWARE\Microsoft\Cryptography \RNG\Seed: 65 A8
FB 12 41 5C 75 3E A5 68 43 A3 5C E8 F8 BE DD 82 69 43 7D 90 C5 B8 58 EB EE
D5 5C DA B3 B7 A6 34 1C F0 BF AD 5C 26 91 0A 6A 31 85 C2 71 E6 DF 53 3B 8B
AE B6 C1 92 EE D0 0E 6C 95 C3 FB 1E 60 DC F5 F7 8D 74 DD 2E 55 8A 66 C2 D7
72 89 DD
HKEY_LOCAL_MACHINE \SOFTWARE\Microsoft\Cryptography \RNG\Seed: FC 3C
45 E1 6A 76 3D 95 39 26 8A F0 B9 3A 9B B3 82 F9 A6 CB F7 C5 6C 2F 4D 92 F0
2D AC 02 E3 15 74 56 B3 95 B7 18 0C 63 2E 88 B5 93 40 83 C5 F9 3C AD 71 26
BF 1A 7C 41 72 11 44 78 AF 56 FC 9C FF AA 90 FB 33 C3 AF 1E 95 36 F6 25 87
E7 09 34
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \SharedAccess \Epoch\E
poch: 0x000000D8
HKEY_LOCAL_MACHINE \SYSTEM\ControlSet001 \Services \SharedAccess\Epoch\E
poch: 0x000000DA
HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\SharedAccess \Epo
ch\Epoch: 0x000000D8

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 27

HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\SharedAccess \Epo
ch\Epoch: 0x000000DA
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\Software\Microsoft \Windows\CurrentVersion \Explorer \UserAssist\{75048700-
EF1F-11D0-9888-006097DEACF9} \Count\HRZR_EHACNGU: 09 00 00 00 DA 00 00
00 D0 4E 7D 62 2E CB C4 01
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\Software\Microsoft \Windows\CurrentVersion \Explorer \UserAssist\{75048700-
EF1F-11D0-9888-006097DEACF9} \Count\HRZR_EHACNGU: 09 00 00 00 DB 00 00
00 00 49 0C D6 2E CB C4 01
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\Software\Microsoft \Windows\CurrentVersion \Explorer \UserAssist\{75048700-
EF1F-11D0-9888-006097DEACF9} \Count\HRZR_HVFPHG: 09 00 00 00 52 00 00
00 D0 1F FE F7 2D CB C4 01
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\Software\Microsoft \Windows\CurrentVersion \Explorer \UserAssist\{75048700-
EF1F-11D0-9888-006097DEACF9} \Count\HRZR_HVFPHG: 09 00 00 00 53 00 00
00 80 5A D5 D5 2E CB C4 01
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\Software\Microsoft \Windows\CurrentVersion \Internet
Settings \Connections \SavedLegacySettings: 3C 00 00 00 2D 00 00 00 0 1 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 00 EF 51 F3 99 BB
C4 01 01 00 00 00 C0 A8 2E 80 00 00 00 00 00 00 00 00
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\Software\Microsoft \Windows\CurrentVersion \Internet
Settings\Connections \SavedLegacySettings: 3C 00 00 00 2E 00 00 00 01 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 00 EF 51 F3 99 BB
C4 01 01 00 00 00 C0 A8 2E 80 00 00 00 00 00 00 00 00
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\SessionInformation \ProgramCount: 0x00000004
HKEY_USERS \S-1-5-21-823518204-630328440-1417001333-
1003\SessionInformation \ProgramCount: 0x00000005

Files added:5

C:\WINDOWS\Prefetch \MSRLL.EXE-03966588.pf
C:\WINDOWS\Prefetch \MSRLL.EXE-326D2A8E.pf
C:\WINDOWS\Prefetch \RUNDLL32.EXE -46508B14.pf
C:\WINDOWS\system32\mfm\jtram.conf
C:\WINDOWS\system32\mfm\msrll.exe

Files deleted:1
----------------------------- -----
C:\Documents and Settings \julia\Desktop\msrll.exe

Files [attributes?] modified:8

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 28

C:\Documents and Settings \julia\Cookies\index.dat
C:\Documents and Settings \julia\Local Settings \History\History.IE5\index.dat
C:\Documents and Settings \julia\Local Settings \Temporary Internet
Files\Content.IE5 \index.dat
C:\Documents and Settings \julia\NTUSER.DAT.LOG
C:\WINDOWS\Prefetch \TASKMGR.EXE -20256C55.pf
C:\WINDOWS\system32\config\default.LOG
C:\WINDOWS\system32\config\software.LOG
C:\WINDOWS\system32\config\system.LOG

Folders added:3

C:\WINDOWS\system32\mfm
C:\WINDOWS\system32\mfm\.
C:\WINDOWS\system32\mfm\..

---------------- ------------------
Total changes:49

TDIMon logs

Msrll.exe setting a listener on port 2200

Msrll.exe setting a listener on port 113

Msrll.exe sending a udp packet to 192.168.46.1:53 (via svchost.exe)

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 29

Appendix B

Complete Bintext Output

File pos Mem pos ID Text
======== ======= == ====

0000004D 0040004D 0 !This program cannot be run in DOS mode.
00000088 00400088 0 [AspackDie!]
00000178 00400178 0 .text
000001A0 004001A0 0 .data
000001F0 004001F0 0 .idata
00000218 00400218 0 .aspack
00000240 00400240 0 .adata
00001326 00401326 0 ?insmod
0000132E 0040132E 0 ?rmmod
00001335 00401335 0 ?lsmod
00001399 00401399 0 %s: <mod name>
000013A8 004013A8 0 %s: mod list full
000013BA 004013BA 0 %s: err: %u
000013C6 004013C6 0 mod_init
000013CF 004013CF 0 mod_free
000013D8 004013D8 0 %s: cannot init %s
000013EB 004013EB 0 %s: %s loaded (%u)
000013FE 004013FE 0 %s: mod allready loaded
00001416 00401416 0 %s:%s err %u
000015B5 004015B5 0 %s:%s not found
000015C5 004015C5 0 %s: unloading %s
000016AE 004016AE 0 [%u] : %s hinst:%x
00001712 00401712 0 unloading %s
000017A0 004017A0 0 %s: invalid_addr: %s
000017B5 004017B5 0 %s%s [port]
000018E8 004018E8 0 finished %s
00001A40 00401A40 0 %s <ip> <port> <t_time> <delay>
00001B32 00401B32 0 sockopt: %u
00001B3E 00401B3E 0 sendto err: %u
00001B4D 00401B4D 0 sockraw: %u
00001B59 00401B59 0 syn: done
00001FBC 00401FBC 0 %s <ip> <duration> <delay>
00002096 00402096 0 sendto: %u
000020A2 004020A2 0 jolt2: done
00002260 00402260 0 %s <ip> <p size> <duration> <delay>
00002356 00402356 0 Err: %u
0000235E 0040235E 0 smurf done
00002567 00402567 0 PhV#@
000025DE 004025DE 0 &err: %u

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 30

00002753 00402753 0 ?ping
00002763 00402763 0 ?smurf
0000276A 0040276A 0 ?jolt
00002820 00402820 0 PONG :%s
0000283A 0040283A 0 0h (@
0000299D 0040299D 0 %s!%s@%s
00002B3D 00402B3D 0 %s!%s
00002BB6 00402BB6 0 SVh=+@
00002BD7 00402BD7 0 irc.nick
00002BE0 00402BE0 0 NICK %s
00002EEA 00402EEA 0 NETWORK=
00002FF8 00402FF8 0 irc.pre
000032CC 004032CC 0 _%s__
000032D2 004032D2 0 __%s__
000032D9 004032D9 0 __%s___
000032E1 004032E1 0 NICK %s
000032F0 004032F0 0 %s %s
000036B0 004036B0 0 irc.chan
00003775 00403775 0 %s %s
0000377B 0040377B 0 WHO %s
000037C8 004037C8 0 PPhV,@

File pos Mem pos ID Text
======== ======= == ====

00003A45 00403A45 0 USERHOST %s
00003A52 00403A52 0 logged into %s(%s) as %s
00003A97 00403A97 0 <$hE:@
00003ABB 00403ABB 0 PhR:@
00003B99 00403B99 0 nick.pre
00003BA2 00403BA2 0 %s -%04u
00003BAA 00403BAA 0 irc.user
00003BB3 00403BB3 0 irc.usereal
00003BBF 00403BBF 0 irc.real
00003BC8 00403BC8 0 irc.pass
00003BE0 00403BE0 0 tsend(): connection to % s:%u failed
00003C20 00403C20 0 USER %s localhost 0 :%s
00003C38 00403C38 0 NICK %s
00003DF5 00403DF5 0 Ph <@
000040BF 004040BF 0 PRIVMSG
00004100 00404100 0 trecv(): Disconnected from %s err:%u
0000446B 00404 46B 0 NOTICE
00004472 00404472 0 %s %s :%s
00004615 00404615 0 Ph}D@
00004711 00404711 0 MODE %s -o+b %s *@%s
00004798 00404798 0 C'PSWh
000047B4 004047B4 0 Sh'G@
000047E7 004047E7 0 MODE %s -bo %s %s
0000487B 0040487B 0 Sh'G@
00004924 00404924 0 %s.key

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 31

00004A63 00404A63 0 Ph'G@
00004AA8 00404AA8 0 sk#%u %s is dead!
00004ABA 00404ABA 0 s_check: %s dead? pinging...
00004AD7 00404AD7 0 PING :ok
00004B00 00404B00 0 s_check: send error to %s disconnecting
00004B28 00404B28 0 expect the worst
00004B39 00404B39 0 s_check: killing socket %s
00004B54 00404B54 0 irc.knick
00004B5E 00404B5E 0 jtr.%u%s.iso
00004B6B 00404B6B 0 ison %s
00004B74 00404B74 0 servers
00004B7C 00404B7C 0 s_check: trying %s
00004DAA 00404DAA 0 Ph9K@
00004ED5 00404ED5 0 PhkK@
00004F41 00404F41 0 ShtK@
00004FD8 00404FD8 0 uYVh| K@
00005052 00405052 0 %s.mode
0000505A 0040505A 0 MODE %s %s
00005078 00405078 0 ShRP@
000050DA 004050DA 0 Sh$I@
000051A8 004051A8 0 PShZP@
000055A3 004055A3 0 mode %s +o %s
000055B2 004055B2 0 akick
000055B8 004055B8 0 mode %s +b %s %s
000055CA 004055CA 0 KICK %s %s
00005760 00405760 0 irc.pre
00005781 00405781 0 Set an irc sock to preform %s command on
000057AB 004057AB 0 Type
000057B3 004057B 3 0 %csklist
000057BC 004057BC 0 to view current sockets, then
000057DC 004057DC 0 %cdccsk
000057E4 004057E4 0 <#>
000058B4 004058B4 0 %s: dll loaded
000058C3 004058C3 0 %s: %d
0000597B 0040597B 0 RhHY@

File pos Mem pos ID Text
======== ======= == ====

000059C6 004059C6 0 RhHY@
000059E1 004059E1 0 said %s to %s
000059EF 004059EF 0 usage: %s <target> "text"
00005A74 00405A74 0 %s not on %s
00005A81 00405A81 0 usage: %s <nick> <chan>
00005B20 00405B20 0 %s logged in
00005B87 00405B87 0 Sh [@
00005BA2 00405BA2 0 sys: %s bot: %s
00005BB2 00405BB2 0 preformance counter not avail
00005C2B 00405C2B 0 usage: %s <cmd>
00005C3B 00405C3B 0 %s free'd

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 32

00005C45 00405C45 0 unable to free %s
00005C6F 00405C6F 0 0h+ \@
00005CAD 00405CAD 0 later!
00005CB4 00405CB4 0 unable to %s errno:%u
00005D40 00405D40 0 service:%c user:%s inet connection:%c contype:%s
reboot privs:%c
00005E09 00405E09 0 Ph@]@
00005E23 00405E23 0 % -5u %s
00005F8F 00405F8F 0 %s: %s
00005F96 00405F96 0 %s: somefile
0000603F 0040603F 0 PhHY@
000060D4 004060D4 0 host: %s ip: %s
00006269 00406269 0 capGetDriverDescriptionA
00006292 00406292 0 cpus:%u
000062A0 004062A0 0 WIN%s (u:%s)%s%s mem:(%u/%u) %u%% %s %s
000065CB 004065CB 0 %s: %s (%u)
00006708 00406708 0 %s %s
00006754 00406754 0 %s bad args
000067BC 004067BC 0 3hTg@
000067DA 004067DA 0 akick
000067E8 004067E8 0 %s[%u] %s
000067F2 004067F2 0 %s removed
000067FD 004067FD 0 couldnt find %s
0000680D 0040680D 0 %s added
00006816 00406816 0 %s allready in list
0000682A 0040682A 0 usage: %s +/ - <host>
0000696F 0040696F 0 7h*h@
000069EB 004069EB 0 jtram.conf
000069F6 004069F6 0 %s /t %s
000069FF 004069FF 0 jtr.home
00006A08 00406A08 0 %s \%s
00006A0E 00406A0E 0 %s: possibly failed: code %u
00006A2B 00406A2B 0 %s: possibly failed
00006A3F 00406A3F 0 %s: exec of %s failed err: %u
00006A90 00406A90 0 u.exf
00006C2D 00406C2D 0 Ph+j@
00006C82 00406C82 0 Ph?j@
00006CBC 00406CBC 0 jtr.id
00006CC3 00406CC3 0 %s: <url> <id>
00006ED7 00406ED7 0 IREG
00006EDD 00406EDD 0 CLON
00006EE3 00406EE3 0 ICON
00006EF8 00406EF8 0 WCON
00006F40 00406F40 0 #%u [fd:%u] %s:%u [%s%s] last:%u
00006F63 00406F63 0 | \=> [n:%s fh:%s] (%s)
00006F82 00406F82 0 | ---[%s] (%u) %s
00006F96 00406F96 0 | |-[%s%s] [%s]
00006FAD 00406FAD 0 |=> (%s) (%.8x)
0000716E 0040716E 0 B$PRhco@
00007360 00407360 0 %s <pass> <salt>

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 33

File pos Mem pos ID Text
======== ======= == ====

000073C8 004073C8 0 %s <nick> < chan>
0000748B 0040748B 0 PING %s
000074C9 004074C9 0 mIRC v6.12 Khaled Mardam -Bey
000074E7 004074E7 0 VERSION %s
0000751C 0040751C 0 dcc.pass
00007525 00407525 0 temp add %s
000075BD 004075BD 0 $h%u@
0000766A 0040766A 0 %s%u -%s
00007675 00407675 0 %s opened (%u)
000076A0 004076A0 0 %u bytes from %s in %u seconds saved to %s
000076CB 004076CB 0 (%s %s): incomplete! %u bytes
000076E9 004076E9 0 couldnt open %s err:%u
00007700 00407700 0 (%s) %s: %s
0000770C 0040770C 0 (%s) urlopen failed
00007720 00407720 0 (%s): inetopen failed
00007798 00407798 0 Whjv@
00007B9D 00407B9D 0 Ph w@
00007BE4 00407BE4 0 no file n ame in %s
00007DDB 00407DDB 0 %s created
00007E49 00407E49 0 %s %s to %s Ok
00007E8F 00407E8F 0 3hI~@
00007EE0 00407EE0 0 %0.2u/%0.2u/%0.2u %0.2u:%0.2u %15s %s
00007F09 00407F09 0 %s (err: %u)
0000806B 0040 806B 0 ShHY@
00008085 00408085 0 err: %u
000080F8 004080F8 0 %s %s :ok
00008165 00408165 0 unable to %s %s (err: %u)
000081C3 004081C3 0 ShHY@
000081F5 004081F5 0 % -16s %s
00008200 00408200 0 % -16s (%u.%u.%u.%u)
00008489 00408489 0 [%s][%s] %s
00008595 00408595 0 closing %u [%s:%u]
000085A8 004085A8 0 unable to close socket %u
000087E2 004087E2 0 using sock #%u %s:%u (%s)
000087FD 004087FD 0 Invalid soc k
0000880B 0040880B 0 usage %s <socks #>
000088D7 004088D7 0 leaves %s
000088E1 004088E1 0 :0 * * :%s
00008A96 00408A96 0 joins: %s
00008B82 00408B82 0 ACCEPT
00008B89 00408B89 0 resume
00008B90 00408 B90 0 err: %u
00008B99 00408B99 0 DCC ACCEPT %s %s %s
00008BAE 00408BAE 0 dcc_resume: cant find port %s
00008BD1 00408BD1 0 dcc.dir
00008BD9 00408BD9 0 %s \%s\%s\%s

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 34

00008BE5 00408BE5 0 unable to open (%s): %u
00008BFD 00408BFD 0 resuming dcc from %s to %s
00008C19 00408C19 0 DCC RESUME %s %s %u
0000934E 0040934E 0 ?clone
00009355 00409355 0 ?clones
0000935D 0040935D 0 ?login
00009364 00409364 0 ?uptime
0000936C 0040936C 0 ?reboot
00009374 00409374 0 ?status
0000937C 0040937C 0 ?jump
00009382 00409382 0 ?nick
00009388 00409388 0 ?echo
0000938E 0040938E 0 ?hush
00009394 00409394 0 ?wget

File pos Mem pos ID Text
======== ======= == ====

0000939A 0040939A 0 ?join
000093A9 004093A9 0 ?akick
000093B0 004093B0 0 ?part
000093B6 004093B6 0 ?dump
000093C6 004093C6 0 ?md5p
000093CC 004093C C 0 ?free
000093D7 004093D7 0 ?update
000093DF 004093DF 0 ?hostname
000093EE 004093EE 0 ?!fif
000093FE 004093FE 0 ?play
00009404 00409404 0 ?copy
0000940A 0040940A 0 ?move
00009415 00409415 0 ?sums
00009423 00409423 0 ?rmdir
0000942A 0040942A 0 ?mkdir
00009436 00409436 0 ?exec
00009440 00409440 0 ?kill
00009446 00409446 0 ?killall
0000944F 0040944F 0 ?crash
0000946E 0040946E 0 ?sklist
00009476 00409476 0 ?unset
0000947D 0040947D 0 ?uattr
00009484 00409484 0 ?dccsk
00009490 00409490 0 ?killsk
00009499 00409499 0 VERSION*
000094AE 004094AE 0 IDENT
000096BE 004096BE 0 %ud %02uh %02um %02us
000096D4 004096D4 0 %02uh %02um %02us
000096E6 004096E6 0 %um %02us
000099E0 004099E0 0 jtram.conf
000099EB 004099EB 0 jtr.*
000099F5 004099F5 0 DiCHFc2ioiVmb3cb4zZ7zWZH1oM=

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 35

00009A16 0040 9A16 0 conf_dump: wrote %u lines
0000A270 0040A270 0 get of %s incomplete at %u bytes
0000A2B0 0040A2B0 0 get of %s completed (%u bytes), %u seconds %u cps
0000A2F0 0040A2F0 0 error while writing to %s (%u)
0000A65C 0040 A65C 0 chdir: %s -> %s (%u)
0000A750 0040A750 0 dcc_wait: get of %s from %s timed out
0000A790 0040A790 0 dcc_wait: closing [#%u] %s:%u (%s)
0000A9F0 0040A9F0 0 %4s #%.2u %s %ucps %u%% [sk#%u] %s
0000AA30 0040AA30 0 %u Send(s) %u Get(s) (%u transfer(s) total) UP:%ucps
DOWN:%ucps Total:%ucps
0000AC95 0040AC95 0 PRQh0
0000ACD0 0040ACD0 0 send of %s incomplete at %u bytes
0000AD10 0040AD10 0 send of %s completed (%u bytes), %u seconds %u
cps
0000AF50 0040AF50 0 cant open %s (err:%u) pwd:{%s}
0000AF70 0040AF70 0 DCC SEND %s %u %u %u
0000B751 0040B751 0 %s %s
0000B757 0040B757 0 %s exited with code %u
0000B76E 0040B76E 0 %s \%s
0000B774 0040B774 0 %s: %s
0000B77B 0040B77B 0 exec: Error:%u pwd:%s cmd:%s
0000BB40 0040BB40 0 dcc.pass
0000BB49 0040BB49 0 bot.port
0000BB52 0040BB52 0 %s bad pass from "%s"@%s
0000BCC9 0040BCC9 0 %s: connect from %s
0000BD33 0040BD33 0 jtr.bin
0000BD3B 0040BD3B 0 msrll.exe
0000BD45 0040BD45 0 jtr.home
0000BD57 0040BD57 0 jtr.id
0000BD63 0040BD63 0 irc.quit

File pos Mem pos ID Text
======== ======= == ====

0000BD6E 0040BD6E 0 servers
0000BD80 0040BD80 0
collective7.zxy0.com,collective7.zxy0.com:9999!,collective7.zxy0.com:8080
0000BDCA 0040BDCA 0 irc.chan
0000BDD3 0040BDD3 0 #mils
0000BDE0 0040BDE0 0 1KZLPLKDf$W8kl8J r1X8DOHZsmIp9qq0
0000BE20 0040BE20 0 1KZLPLKDf$55isA1ITvamR7bjAdBziX.
0000C02F 0040C02F 0 SSL_get_error
0000C03D 0040C03D 0 SSL_load_error_strings
0000C054 0040C054 0 SSL_library_init
0000C065 0040C065 0 SSLv3 _client_method
0000C079 0040C079 0 SSL_set_connect_state
0000C08F 0040C08F 0 SSL_CTX_new
0000C09B 0040C09B 0 SSL_new
0000C0A3 0040C0A3 0 SSL_set_fd
0000C0AE 0040C0AE 0 SSL_connect

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 36

0000C0BA 0040C0BA 0 SS L_write
0000C0C4 0040C0C4 0 SSL_read
0000C0CD 0040C0CD 0 SSL_shutdown
0000C0DA 0040C0DA 0 SSL_free
0000C0E3 0040C0E3 0 SSL_CTX_free
0000C263 0040C263 0 kernel32.dll
0000C270 0040C270 0 QueryPerformanceC ounter
0000C288 0040C288 0 QueryPerformanceFrequency
0000C2A2 0040C2A2 0 RegisterServiceProcess
0000C2B9 0040C2B9 0 jtram.conf
0000C5B1 0040C5B1 0 irc.user
0000C5BA 0040C5BA 0 %s : USERID : UNIX : %s
0000C6A4 0040C6A4 0 QUIT :FUCK %u
0000C742 0040C742 0 Killed!? Arrg! [%u]
0000C756 0040C756 0 QUIT :%s
0000C7E8 0040C7E8 0 SeShutdownPrivilege
0000C888 0040C888 0 %s \%s
0000C88E 0040C88E 0 %s \%s\%s
0000C897 0040 C897 0 Rll enhanced drive
0000C8C0 0040C8C0 0 software \microsoft \windows \currentversion \run
0000C8EE 0040C8EE 0 /d "%s"
0000CE3D 0040CE3D 0 < u&
0000D010 0040D010 0
./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopqrstuvwxyz
0000EA60 0040EA60 0 usage %s: server[:port] amount
0000EB33 0040EB33 0 %s: %s
0000EB3E 0040EB3E 0 %s %s %s <PARAM>
0000EB80 0040EB80 0 %s: [NETWORK|all] %s <"parm"> ...
0000EE20 0040EE20 0 USER %s localhost 0 :%s
0000EE38 0040EE38 0 NICK %s
0000EEE4 0040EEE4 0 PSVh
0000F140 0040F140 0 md5.c
0000F146 0040F146 0 md != NULL
0000F8F1 0040F8F1 0 buf != NULL
0000F99F 0040F99F 0 hash != NULL
0000FAC5 0040FAC5 0 message digest
0000FAD4 0040FAD4 0 abcdefghijklmnopqrstuvwxyz
0000FB00 0040FB00 0
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
0000FB40 0040FB40 0
12345678901234567890123456789012345678901 23456789012345678901234567
8901234567890
0000FCE0 0040FCE0 0 sprng
0000FD11 0040FD11 0 sprng.c
0000FD19 0040FD19 0 buf != NULL
0000FDBC 0040FDBC 0 rc6.c
0000FDC2 0040FDC2 0 skey != NULL
0000FDCF 0040FDCF 0 key != NULL
0000FFD1 0040FFD1 0 ct != NULL

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 37

File pos Mem pos ID Text
======== ======= == ====

0000FFDC 0040FFDC 0 pt != NULL
0001023E 0041023E 0 #4EVgx
00010256 00410256 0 $5FWhy
00010282 00410282 0 #4EVgx
0001029A 0041029A 0 $5FWhy
000102C6 004102C6 0 #4EVgx
000102DE 004102DE 0 $5FWhy
000102F8 004102F8 0 gN]HU
000103C3 004103C3 0 desired_keysize != NULL
00010430 00410430 0 ctr.c
00010436 00410436 0 ctr != NULL
00010442 00410442 0 key != NULL
0001044E 0041044E 0 count != NULL
00010546 00410546 0 ct != NULL
00010551 00410551 0 pt != NULL
000106F0 004106F0 0
ABCDEFGHIJKLMNOPQRSTUVWXYZabcd efghijklmnopqrstuvwxyz0123456789+/
0001077F 0041077F 0 ?456789:;<=
000107B7 004107B7 0 !"#$%&'()*+, -./0123
00010850 00410850 0 base64.c
00010859 00410859 0 outlen != NULL
00010868 00410868 0 out != NULL
00010874 00410874 0 in != NULL
00010B30 00410B30 0 _ARGCHK '%s' failure on line %d of file %s
00010B8B 00410B8B 0 crypt.c
00010B93 00410B93 0 name != NULL
00010D79 00410D79 0 cipher != NULL
00010E70 00410E70 0 hash != NULL
00010F7A 00410F7A 0 prng != NULL
000110F0 004110F0 0 LibTomCrypt 0.83
00011102 00411102 0 Endianess: little (32 -bit words)
00011123 00411123 0 Clean stack: disabled
00011139 00411139 0 Ciphers buil t-in:
0001114B 0041114B 0 Blowfish
00011157 00411157 0 RC2
0001115E 0041115E 0 RC5
00011165 00411165 0 RC6
0001116C 0041116C 0 Serpent
00011177 00411177 0 Safer+
00011181 00411181 0 Safer
0001118A 0041118A 0 Rijndael
00011196 00411196 0 XTEA
0001119E 0041119E 0 Twofish
000111AA 004111AA 0 CAST5
000111B3 004111B3 0 Noekeon
000111BF 004111BF 0 Hashes built -in:
000111D0 004111D0 0 SHA -512

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 38

000111DB 004111DB 0 SHA -384
000111E6 004111E6 0 SHA -256
000111F1 004111F1 0 TIGER
000111FA 004111FA 0 SHA1
00011202 00411202 0 MD5
00011209 00411209 0 MD4
00011210 00411210 0 MD2
00011218 00411218 0 Block Chaining Modes:
0001122E 0041122E 0 CFB
00011235 00411235 0 OFB
0001123C 0041123C 0 CTR
00011244 00411244 0 PRNG:
0001124A 0041124A 0 Yarrow
00011254 00411254 0 SPRNG

File pos Mem pos ID Text
======== ======= == ====

0001125D 0041125D 0 RC4
00011265 00411265 0 PK Algs:
0001126E 0041126E 0 RSA
00011275 00411275 0 DH
0001127B 0041127B 0 ECC
00011282 00411282 0 KR
00011289 00411289 0 Compiler:
00011293 00411293 0 WIN32 platform detected.
000112AF 004112AF 0 GCC compiler detected.
000112CA 004112CA 0 Various others: BASE64 MPI HMAC
00011313 00411313 0 /dev/random
00011430 00411430 0 Microsoft Base Cryptographic Provider v1.0
000114D2 004114D2 0 bits.c
000114D9 004114D9 0 buf != NULL
000114F6 004114F6 0 t9VWS
0001154A 0041154A 0 prng != NULL
00011832 00411832 0 <"tx< tf< t
00011846 00411846 0 < tV< t
00011852 00411852 0 < tJ< tF
00011A10 00411A10 0 -LIBGCCW32-EH-SJLJ-GTHR-MINGW32
000130B0 004130B0 0 <ip> <total secs> <p size> <delay>
00013350 00413350 0 modem
00013358 00413358 0 Lan
0001335E 0041335E 0 Proxy
0001336B 0041336B 0 none
00013390 00413390 0 m220 1.0 #2730 Mar 16 11:47:38 2004
000133D4 004133D4 0 unable to %s %s (err: %u)
00013420 00413420 0 unable to kill %s (%u)
00013437 00413437 0 %s killed (pid:%u)
00013470 00413470 0 AVICAP32.dll
0001347D 0041347D 0 unable to kill %u (%u)
00013494 00413494 0 pid %u killed

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 39

000134A2 004134A2 0 error!
000134A9 004134A9 0 ran ok
000134B0 004134B0 0 MODE %s +o %s
000134BF 004134BF 0 set %s %s
00013600 00413600 0 Mozilla/4.0
0001360C 0041360C 0 Accept: */*
0001361C 0041361C 0 <DIR>
0001362B 0041362B 0 Could not copy %s to %s
00013643 00413643 0 %s copied to %s
00013653 00413653 0 0123456789abcdef
00013664 00413664 0 %s unset
0001366D 0041366D 0 unable to unset %s
00013AD4 00413AD4 0 (%s) %s
00013ADD 00413ADD 0 %s %s
00013BA0 00413BA0 0 libssl32.dll
00013BAD 00413BAD 0 libeay32.dll
00013BE0 00413BE0 0 <die|join|part|raw|msg>
0011B67A 0051B67A 0 AdjustTokenPrivileges
0011B692 0051B692 0 CloseServiceHandle
0011B6AA 0051B6AA 0 CreateServiceA
0011B6BE 0051B6BE 0 CryptAcquireContextA
0011B6D6 0051B6D6 0 CryptGenRandom
0011B6EA 0051B6EA 0 CryptReleaseContext
0011B702 0051B702 0 GetUserNameA
0011B712 0051B712 0 LookupPrivilegeValueA
0011B72A 0051B72A 0 OpenProcessToken
0011B73E 0051B73E 0 OpenSCManagerA
0011B752 0051B752 0 RegCloseKey

File pos Mem pos ID Text
======== ======= == ====

0011B762 0051B762 0 RegCreateKeyExA
0011B776 0051B776 0 RegSetValueExA
0011B78A 0051B78A 0 RegisterServiceCtrlHandlerA
0011B7AA 0051B7AA 0 SetServiceStatus
0011B7BE 0051B7BE 0 StartServiceCtrlDispatcherA
0011B7DE 0051B7DE 0 AddAtomA
0011B7EA 0051B7EA 0 CloseHandle
0011B7FA 0051B7FA 0 CopyFileA
0011B806 0051B806 0 CreateDirectoryA
0011B81A 0051B81A 0 CreateFil eA
0011B82A 0051B82A 0 CreateMutexA
0011B83A 0051B83A 0 CreatePipe
0011B84A 0051B84A 0 CreateProcessA
0011B85E 0051B85E 0 CreateToolhelp32Snapshot
0011B87A 0051B87A 0 DeleteFileA
0011B88A 0051B88A 0 Dup licateHandle
0011B89E 0051B89E 0 EnterCriticalSection
0011B8B6 0051B8B6 0 ExitProcess

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 40

0011B8C6 0051B8C6 0 ExitThread
0011B8D6 0051B8D6 0 FileTimeToSystemTime
0011B8EE 0051B8EE 0 FindAtomA
0011B8FA 0051B8FA 0 FindClose
0011B906 0051B906 0 FindFirstFileA
0011B91A 0051B91A 0 FindNextFileA
0011B92A 0051B92A 0 FreeLibrary
0011B93A 0051B93A 0 GetAtomNameA
0011B94A 0051B94A 0 GetCommandLineA
0011B95E 0051B95E 0 GetCurrentDirectoryA
0011B976 0051B976 0 GetCurrentProcess
0011B98A 0051B98A 0 GetCurrentThreadId
0011B9A2 0051B9A2 0 GetExitCodeProcess
0011B9BA 0051B9BA 0 GetFileSize
0011B9CA 0051B9CA 0 GetFullPathNameA
0011B9DE 0051B9DE 0 GetLastError
0011B9EE 0051B9EE 0 GetModuleFileNameA
0011BA06 0051BA06 0 GetModuleHandleA
0011BA1A 0051BA1A 0 GetProcAddress
0011BA2E 0051BA2E 0 GetStartupInfoA
0011BA42 0051BA42 0 Get SystemDirectoryA
0011BA5A 0051BA5A 0 GetSystemInfo
0011BA6A 0051BA6A 0 GetTempPathA
0011BA7A 0051BA7A 0 GetTickCount
0011BA8A 0051BA8A 0 GetVersionExA
0011BA9A 0051BA9A 0 GlobalMemoryStatus
0011BAB2 0051BAB2 0 InitializeCriticalSection
0011BACE 0051BACE 0 IsBadReadPtr
0011BADE 0051BADE 0 LeaveCriticalSection
0011BAF6 0051BAF6 0 LoadLibraryA
0011BB06 0051BB06 0 MoveFileA
0011BB12 0051BB12 0 OpenProcess
0011BB22 0051BB22 0 PeekNamedPipe
0011BB32 0051BB32 0 Process32First
0011BB46 0051BB46 0 Process32Next
0011BB56 0051BB56 0 QueryPerformanceFrequency
0011BB72 0051BB72 0 ReadFile
0011BB7E 0051BB7E 0 ReleaseMutex
0011BB8E 0051BB8E 0 RemoveDirectoryA
0011BBA2 0051BBA2 0 SetConsoleCtrlHandler
0011BBBA 0051BBBA 0 SetCurrentDirectoryA
0011BBD2 0051BBD2 0 SetFilePointer

File pos Mem pos ID Text
======== ======= == ====

0011BBE6 0051BBE6 0 SetUnhandledExceptionFilter
0011BC06 0051BC06 0 Sleep
0011BC0E 0051BC0E 0 TerminateProcess
0011BC22 0051BC22 0 WaitForSingleObject

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 41

0011BC3A 0051BC3A 0 WriteFile
0011BC46 0051BC46 0 _itoa
0011BC4E 0051BC4E 0 _stat
0011BC56 0051BC56 0 _strdup
0011BC62 0051BC62 0 _stricmp
0011BC6E 0051BC6E 0 __getmainargs
0011BC7E 0051BC7E 0 __p__environ
0011BC8E 0051BC8E 0 __p__fmode
0011BC9E 0051BC9E 0 __set_app_type
0011BCB2 0051BCB2 0 _beginthread
0011BCC2 0051BCC2 0 _cexit
0011BCCE 0051BCCE 0 _errno
0011BCDA 0051BCDA 0 _fileno
0011BCEE 0051BCEE 0 _onexit
0011BCFA 0051BCFA 0 _setm ode
0011BD06 0051BD06 0 _vsnprintf
0011BD16 0051BD16 0 abort
0011BD1E 0051BD1E 0 atexit
0011BD32 0051BD32 0 clock
0011BD3A 0051BD3A 0 fclose
0011BD46 0051BD46 0 fflush
0011BD52 0051BD52 0 fgets
0011BD5A 0051BD5A 0 fopen
0011BD62 0051BD62 0 fprintf
0011BD6E 0051BD6E 0 fread
0011BD7E 0051BD7E 0 fwrite
0011BD8A 0051BD8A 0 malloc
0011BD96 0051BD96 0 memcpy
0011BDA2 0051BDA2 0 memset
0011BDAE 0051BDAE 0 printf
0011BDBA 0051BDBA 0 raise
0011BDCA 0051BDCA 0 realloc
0011BDD6 0051BDD6 0 setvbuf
0011BDE2 0051BDE2 0 signal
0011BDEE 0051BDEE 0 sprintf
0011BDFA 0051BDFA 0 srand
0011BE02 0051BE02 0 strcat
0011BE0E 0051BE0E 0 strchr
0011BE1A 0051BE1A 0 strcmp
0011BE26 0051BE26 0 strcpy
0011BE32 0051BE32 0 strerror
0011BE3E 0051BE3E 0 strncat
0011BE4A 0051BE4A 0 strncmp
0011BE56 0051BE56 0 strncpy
0011BE62 0051BE62 0 strstr
0011BE76 0051BE76 0 toupper
0011BE82 0051BE82 0 ShellExecuteA
0011BE92 0051BE92 0 DispatchMessageA
0011BEA6 0051BEA6 0 ExitWindowsEx
0011BEB6 0051BEB6 0 GetMessageA

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 42

0011BEC6 0051BEC6 0 PeekMessageA
0011BED6 0051BED6 0 GetFileVersionInfoA
0011BEEE 0051BEEE 0 VerQueryValueA
0011BF02 0051BF02 0 InternetCloseHandle
0011BF1A 0051BF1A 0 InternetGetConnectedSta te
0011BF36 0051BF36 0 InternetOpenA

File pos Mem pos ID Text
======== ======= == ====

0011BF46 0051BF46 0 InternetOpenUrlA
0011BF5A 0051BF5A 0 InternetReadFile
0011BF6E 0051BF6E 0 WSAGetLastError
0011BF82 0051BF82 0 WSASocketA
0011BF92 0051BF92 0 WSAStartup
0011BFA2 0051BFA2 0 __WSAFDIsSet
0011BFB2 0051BFB2 0 accept
0011BFC6 0051BFC6 0 closesocket
0011BFD6 0051BFD6 0 connect
0011BFE2 0051BFE2 0 gethostbyaddr
0011BFF2 0051BFF2 0 gethostbyname
0011C002 0051C002 0 gethostname
0011C012 0051C012 0 getsockname
0011C022 0051C022 0 htonl
0011C02A 0051C02A 0 htons
0011C032 0051C032 0 inet_addr
0011C03E 0051C03E 0 inet_ntoa
0011C04A 0051C04A 0 ioctlsocket
0011C05A 0051C05A 0 listen
0011C066 0051C066 0 ntohl
0011C076 0051C076 0 select
0011C08A 0051C08A 0 sendto
0011C096 0051C096 0 setsoc kopt
0011C0A6 0051C0A6 0 shutdown
0011C0B2 0051C0B2 0 socket
0011C0FC 0051C0FC 0 ADVAPI32.DLL
0011C1FC 0051C1FC 0 KERNEL32.dll
0011C21C 0051C21C 0 msvcrt.dll
0011C2E0 0051C2E0 0 msvcrt.dll
0011C2F0 00 51C2F0 0 SHELL32.DLL
0011C30C 0051C30C 0 USER32.dll
0011C320 0051C320 0 VERSION.dll
0011C340 0051C340 0 WININET.DLL
0011C3B4 0051C3B4 0 WS2_32.DLL
0011D071 0051D071 0 VirtualAlloc
0011D07E 0051D07E 0 VirtualFree
0011D441 0051D441 0 kernel32.dll
0011D44E 0051D44E 0 ExitProcess
0011D45A 0051D45A 0 user32.dll
0011D465 0051D465 0 MessageBoxA

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 43

0011D471 0051D471 0 wsprintfA
0011D47B 0051D47B 0 LOADER ERROR
0011D488 0051D488 0 The procedure entry point %s could not be located in
the dynamic link library %s
0011D4D9 0051D4D9 0 The ordinal %u could not be located in the dynamic
link library %s
0011D6E6 0051D6E6 0 (08@P
0011D874 0051D874 0 D4l|M
0011D9C0 0051D9C0 0 ;;F,s
0011D9CF 0051D9CF 0 ,;F0s
0011D9DB 0051D9DB 0 ;F4s
0011DCB5 0051DCB5 0 D$$W3
0011DF6C 0051DF6C 0 kernel32.dll
0011DF7B 0051DF7B 0 GetProcAddress
0011DF8C 0051DF8C 0 GetModuleHandleA
0011DF9F 0051DF9F 0 LoadLibraryA
0011E074 0051E074 0 advapi32.dll
0011E081 0051E081 0 msvcrt.dll
0011E08C 0051E08C 0 msvcrt.dll
0011E097 0051E097 0 shell32.dll
0011E0A3 0051E0A3 0 user32.dll
0011E0AE 0051E0AE 0 version.dll

File pos Mem pos ID Text
======== ======= == ====

0011E0BA 0051E0BA 0 wininet.dll
0011E0C6 0051E0C6 0 ws2_32.dll
0011E113 0051E113 0 Adj ustTokenPrivileges
0011E12B 0051E12B 0 _itoa
0011E133 0051E133 0 __getmainargs
0011E143 0051E143 0 ShellExecuteA
0011E153 0051E153 0 DispatchMessageA
0011E166 0051E166 0 GetFileVersionInfoA
0011E17C 0051E17C 0 InternetCloseHandle
0011E192 0051E192 0 WSAGetLastError

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 44

Appendix C

Encryption/Randomisation -related strings

String Description

%s <pass><salt>

a salt is usually a couple of random characters that
are used by an encryption r outine to randomise the
output.

/dev/random

“this is a little character device that gives you
random numbers when you read it.” Many
encryption routines “use this device to seed a
secure random number generator” 3. However, it is
not present on MS Operati ng systems.

DiCHFc2ioiVmb3cb4zZ7zWZH
1oM=

a hard-coded string that looks as if it is encrypted or
maybe it is a key used by the encryption routine.

“1KZLPLKDf$W8kl8Jr1X8D
OHZsmIp9qq0”

“1KZLPLKDf$55isA1ITvam
R7bjAdBziX.”

More hard-coded strings that se em to be encrypted.
Interestingly the first part of each string is the same
- 1KZLPLKDf$ - also, the dollar signs seem to
split the string up into sections.

./0123456789ABCDEFGHIJKL
MNOPQRSTUVWXYZabcdefg

hijklmnopqrstuvwxyz

This and similar strings coul d be used as part of the
encryption routine.

sprng, sprng.c A set of libraries for scalable and portable
pseudorandom number generators.

rc6.c An encryption algorithm
skey, key, desired_keysize

crypt.c, cipher, hash
LibTomCrypt 0.83,
Endianess: lit tle (32-bit words)
Clean stack: disabled
Ciphers built -in:
 Blowfish
 RC2
 RC5
 RC6
 Serpent
 Safer+
 Safer

A “cryptographic toolkit that provides developers
with a vast array of well known published block
ciphers, one-way hash functions, chaining modes,
pseudo-random number generators, public -key
cryptography and a plethora of other routines.” 4 I
found so many strings relating to this program that I
believe that LibTomCrypt is packaged up with the
malware.

3 http://egd.sourceforge.net , EGD: The Entropy Gathering Daemon b y Brian Warner
4 http://libtomcrypt.org/features.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 45

 Rijndael
 XTEA
 Twofish
 CAST5
 Noekeon
Hashes built -in:
 SHA-512
 SHA-384
 SHA-256
 TIGER
 SHA1
 MD5
 MD4
 MD2
Block Chaining Modes:
 CFB
 OFB
 CTR
 Yarrow
 SPRNG
 RC4
PK Algs:
 RSA
 ECC
Compiler:
 WIN32 platform detected.
 GCC compiler detected.
Various others: BASE64 MPI
HMAC

Microsoft Base Cryptographic
Provider v1.0

A Cryptographic Service Provider is an independent
software module that performs cryptography
algorithms for authentication, encoding and
encryption. This one comes with Internet Explorer
3.0 or later.

CryptAcquireContextA
CryptGenRandom

CryptReleaseContext

These three functions belong to ADVAPI32.dll. This
dll name can also be found in the strings.

Attack-related strings

String Description

jolt2: done,

Jolt is the name of a DoS attack which affects
Windows 95 and NT machines. 5 “The attack sends
very large, fragmented ICMP packets to a target

5 http://www.physnet.uni -hamburg.de/physnet/security/vulnerability/jolt.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 46

machine.” The packets “are fragmented in such a
way that the target machine is unable to
reassemble them for use.”

smurf done, ?smurf

A Smurf attack is a network level attack against
hosts.6 An attacker sends a large amount of ICMP
traffic to a broadcast address, spoofing its source
address to look like its coming from the victim. All
the hosts on the network (that receive the ping)
respond to the victim, causing a denial of service.

syn: done

A Syn attack is when an attacker sends lots of
Synchronization packets to a victim, saturating the
network and causing a denial of service.

?reboot, ?rmdir
?mkdir, ?crash
?sklist, ?dccsk

?killsk

A selection of what could be irc commands which
look as if they could cause some trouble.

SSL-related strings

String Description
SSL_get_error
SSL_load_error_strings
SSL_library_init
SSLv3_client_method
SSL_set_connect_state
SSL_CTX_ new
SSL_new
SSL_set_fd
SSL_connect
SSL_write
SSL_read
SSL_shutdown
SSL_free
SSL_CTX_free

SSL is Secure Sockets Layer. It is used for secure
communication via the WWW. Maybe the malware
is able to access a web server to receive
instructions or maybe downlo ad files or updates.

DCC and IRC Socket-related strings

String Description

“dcc_wait: get of %s from %s
timed out”
“dcc_wait: closing [#%u]

DCC is Direct -Client-to-Client. You can send an
receive files over IRC with this function. You can
also chat directly, privately and securely to

6 http://www.pentics.net/denial -of-service/white -papers/smurf.cgi

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 47

%s:%u (%s)”
“%u Send(s) %u Get(s) (%u
transfer(s) total) UP:%ucps
DOWN:%ucps Total:%ucps”
“send of %s incomplet e at %u
bytes”
“send of %s completed (%u
bytes), %u seconds %u cps”
“cant open %s (err:%u)
pwd:{%s}”
“DCC SEND %s %u %u %u”
“dcc.pass”
?dccsk
DCC ACCEPT %s %s %s

dcc_resume: cant find port %s
dcc.dir
%s\%s\%s\%s
unable to open (%s): %u
resuming dcc from % s to %s
DCC RESUME %s %s %u

someone on IRC. It does not use chat channels to
transmit information, rather it fo rms a direct link
between two users.

The strings found by Bintext indicate the Trojan has
the capability to transferdata. There may also be a
password involved (“dcc.pass”). Maybe the malware
is using port 2200 to receive data from the attacker.

Set an irc sock to preform %s
command on
 Type
%csklist
 to view current sockets, then
%cdccsk

Strings related to attacker updating the malware specimen

String Description

?insmod
?rmmod
?lsmod
%s: <mod name>
%s: mod list full
mod_init
mod_free
%s: %s loaded (%u)
%s: mod allready loaded
%s: unloading %s
%s:%s not found
finished %s

The attacker may use these commands to check to
see if the malware specimen already has a
particular module. The attacker may be able to
upload a module if necessary or remo ve a module.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 48

Appendix D

List of irc commands found in OllyDbg, including ?login

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 49

Appendix E

ADIPro ScreenShots

Subroutine 404481

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 50

Appendix F

IRC screen shots

