
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Reverse Engineering
Malicious Code

GIAC Reverse Engineering Malware

Practical Assignment

Version 1.0

 Zekeria A. Sheikh
Las Vegas, October 2004

 Submitted: December 31, 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 2

Table of Contents
Abstract ... 3
Laboratory Setup .. 3

Hardware Resources .. 3
Networking Setup ... 4
Software Resources ... 5

Windows XP SP2..5
Windows 2000 ..5
Snort..5
Undernet-IRCU2 ...5
Ollydbg..5
Regmon...6
Filemon ...6
IDAPro ...6
TDIMon..6
LordPE ..6
RegShot ..6
MD5sum ..6
PEInfo..7
BinText..7
ASpackdie...7

Properties of the Malware Specimen ... 7
Type of File .. 7
Size of the File... 7
MD5 Hash of the File .. 8
Operating System it runs on ... 8
Strings Embedded into it ... 8

Behavioral Analysis .. 14
Monitoring file system access .. 14
Monitoring registry / configuration access ... 15
Monitoring / redirecting network connections.. 16
Monitoring Processes on the system... 18

Code Analysis ... 18
Unpacking the ASpacked executable... 18
Finding Authentication Method... 23

Analysis Wrap-UP ... 25
References... 33
Software Resources.. 33

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 3

Abstract
This paper will be discussing various methods and procedures used to analyze
an unknown Malware specimen. The goal is to analyze the specimen,
understand it, and finally control it. I will be using behavioral and code analysis
to determine the characteristics of the malware specimen. If the specimen
requires authentication to control or command it, I will attempt to extract the
password during code analysis. If the password could not be extracted from the
executable or if the password is encrypted, I will use the patching method to
bypass authentication. During analysis I will be using many different freely
available tools to identify and understand the unknown malware specimen. Tools
such as BinText, Snort, OllyDbg, Regmon, Filemon, IDAPro, TDIMon, LordPE,
RegShot, MD5sum, PEInfo, and ASPackDie will be used. Finally, after
controlling the malware, the different commands seen from extracted strings will
be tested and explained.

Laboratory Setup

Hardware Resources
Four desktop computers were used to setup my Laboratory instead of using
VMWare. The choice to use actual computers instead of virtual machines is due
To malware programmers checking for the use of virtual machine for analysis
and making the malware behave differently. The hardware configuration of these
computers is summarized in Table 1.1.

Table 1.1 – Malware Lab Configuration

Computer
Name

REM1 REM2 REM3 REM4

Processor PIII 850 MHz Celeron
500

Celeron 500 Celeron 500

Memory 128MB 128MB 128MB 128MB
O/S Windows XP SP2 Windows

2000
Redhat 9 Redhat 9

IP Address 192.168.1.1 192.168.1.2 192.168.1.3 192.168.1.4
Network Card 10/100 10/100 10/100 10/100
Application Ollydbg

Regmon
Filemon
IDA Pro
TDIMon, BinText
LordPE, PEinfo
RegShot
MD5sum

None

Snort IRC
HTTPD
FTPD
IRC Client

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 4

Each computer in my Reverse Engineering Malware (REM) lab was given a
sequential name: REM1, REM2, REM3, and REM4. I used REM1(the Pentium
III 850 MHz computer) for analysis. This is the computer that will be used to be
infected by the malware specimen. This computer also will have all the
necessary software utilities I need to do the analysis of the specimen. The
second computer I am using will have only windows 2000 installed. This
computer is going to be used to participate on a possible zombie computer. The
third computer has Redhat 9 and Snort installed on it. This computer will be
responsible only for gathering network traffic between the four computers in the
lab. The fourth computer is used as a service server. It will be running IRC, Web
and FTP servers. This computer will also run an IRC client.

Networking Setup
The lab network is configured as shown in Figure 1.1. It includes four Pentium
computers and a 10base-T hub. A hub instead of a switch is used so that the
network traffic is broadcasted to all the ports. REM3, the computer that is
running snort, is configured with one 10/100 network card. This network card is
running in promiscuous mode so it can capture all traffic on the wire. The
computers are configured for TCP/IP. They are configured with static IP address
as shown in table 1.1. These computers are entirely isolated from any other
networks. In addition to the setting mentioned above REM1, the computer that
will be infected is configured as follows:

IP Address: 192.168.1.1
 Subnet Mask: 255.255.255.0
 Default Gateway: 192.168.1.1
 Preferred DNS Server: 192.168.1.1
 Alternate DNS Server: 192.168.1.2

Figure 1.1 - REM Lab Configuration

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 5

Software Resources

Windows XP SP2
Windows XP is a 32 bit operating system developed by Microsoft Corporation.
This was used in REM1 which is the analysis computer. This installation is
patched with service pack 2. All the firewall functionality of the operating system
is disabled. More information about this Operating system can be found at
www.microsoft.com.

Windows 2000
Windows XP is a 32 bit operating system developed by Microsoft Corporation.
This computer is used for participation in a DDOS and to demonstrate that
multiple computers can be controlled by the specimen. This installation of the
operating system is not patched. More information about this Operating system
can be found at www.microsoft.com.

Snort
Snort is a light weight intrusion detection system developed by Marty Roesch. It
is capable of sniffing and logging real-time network traffic. This software can be
used in multiple different configurations. It has both a signature-based engine
and anomaly detection engine. This lab utilizes snort as packet sniffer. I used
snort to monitor the specimen’s network activity. Snort can be downloaded both
as source or binary at www.snort.org.

Undernet-IRCU2
I installed Undernet’s IRC daemon on REM4 to satisfy the requirement of the
specimen and to keep the lab isolated. This was done so that the specimen
does not join a public IRC server. The IRC server is capable of listening on any
port that the user defines. The configuration of the IRC daemon is performed
through the ircd.conf file. This IRC daemon can be downloaded form
http://prdownloads.sourceforge.net/undernet-
ircu/ircu2.10.11.07.tar.gz?download.

Ollydbg
“OllyDbg is a 32-bit assembler level analyzing debugger for Microsoft Windows.
Emphasis on binary code analysis makes it particularly useful in cases where
source is unavailable. It predicts contents of registers, recognizes procedures,
API calls, switches, tables, constants and strings, locates routines from object
files and libraries, allows custom labels and comments in disassembled code,
writes patches back to executable file and more. You can write your own plug-
ins - dynamic link libraries that attach to OllyDbg and provide new functions.
Plugins can insert entries into pop-up menus of OllyDbg windows, process
keyboard shortcuts, save data to .ini and .udd files and call more than 170
functions exported by OllyDbg.1” This software is free and can be downloaded at

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 6

http://downloads-zdnet.com.com/OllyDbg/3000-2383_2-10242634.html?tag=lst-
0-1

Regmon
This is a registry monitoring tool. Key creation, modification and deletion are
captured by Regmon. I used this tool to monitor the modification the specimen
made to the host computers registry. The utility works on multiple windows
platforms. This utility is free and can be downloaded from Sysinternals at
http://www.sysinternals.com/ntw2k/source/regmon.shtml.

Filemon
Filemon is a great utility that can show file activities. Filemon can monitor file
copying, deletion, and creation. I used Filemon to track what files the specimen
created or copied. This is a free utility and can be downloaded at
http://www.sysinternals.com/ntw2k/source/filemon.shtml.

IDAPro
IDAPro is a Windows and Linux based disassembler. I used this utility to
disassemble the specimen. It is very helpful when trying to find out the different
subroutine jumps. It also has strings when clicked will jump to the code where
the string is referenced. This is a commercial product, but a demo version is
available at http://www.datarescue.be/downloaddemo.htm.

TDIMon
TDIMon is a utility that monitors TCP and UDP activity. I used this utility to
determine if the infected machine is listening on a port. This is free software that
can be downloaded at http://www.sysinternals.com/ntw2k/freeware/tdimon.shtml.

LordPE
This tool is utilized to edit PE headers. This utility can also be used to dump
processes from memory to file. I utilized this software to find out the ImageBase
for the packed executable to determine the OPE (Original Point of Entry). This
utility can be downloaded from http://www.softpedia.com/progDownload/LordPE-
Download-29.html.

RegShot
RegShot is a registry comparison utility. I was able to determine what registry
modifications were made by the specimen. This allows you to take a snap shot
of the registry before and after the specimen is executed and then compares the
registry content and display the difference. This is a free utility that can be
downloaded at http://regshot.ist.md/

MD5sum
MD5sum is a utility used to determine a message digest (Hash value) of the
specimen before and after execution. This was done to verify that the specimen

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 7

did not change the executable after the execution of the file. MD5sum can be
found at http://www.weihenstephan.de/~syring/win32/UnxUtils.html.

PEInfo
PEInfo was developed by Tom Liston. This utility can be used to find out PE
header info, file size of an executable, embedded strings and some more
information. I also used this software to determine the size of the executable
specimen.

BinText
This utility extracts strings from an executable program. I used it to find out the
command the specimen used. This utility is free and can be downloaded from
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subco
ntent=/resources/freetools.htm.

ASpackdie
ASpackdie is a utility that enables you to unpack executables that have been
packed using ASpack. I used this utility as a second alternative to unpacking the
malicious executable. This is a very easy to use utility that can be downloaded at
http://www.woodmann.com/crackz/Unpackers/Aspdie.zip.

Properties of the Malware Specimen

The Malware specimen has many properties that are of interest. Type of the
malware file, size of the file, MD5 hash of the file, operating system it runs on,
and strings embedded into it are some of the properties of the malware listed
below.

Type of File
The malware specimen is Packed Executable. It is packed using software called
aspack. This software is used to compress and protect executables. The
method in which the malware specimen was packed was evident when the file is
opened using PEInfo and BinText. The string “!This program cannot be run in
DOS mode.” This is evident that the malware specimen is an executable
program.

Size of the File
The size of the malware specimen in a packed (compressed) state is 41984
bytes. This was determined by opening the file with PEInfo. See figure 2.1. The
size of the file can also be determined by windows explorer and looking at the
properties of the file.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 8

Figure 2.1 - PEInfo showing the size of packed executable

The size of the malware specimen after it has been unpacked using OllyDbg is
1182720 bytes as shown in figure 2.2.

Figure 2.2 PEInfo showing the size of unpacked executable

MD5 Hash of the File
MD5 hash verifies the integrity of a file. The MD5 hash of the malware specimen
was generated before and after execution to verify that the executable was not
modified. The MD5 hash of msrll.exe, the specimen, before the file was
executed is 84acfe96a98590813413122c12c11aaa. The MD5 hash of msrll.exe
after the file was executed is 84acfe96a98590813413122c12c11aaa which
shows that the file has not been modified by the malware specimen.

Operating System it runs on
This malware specimen runs on Microsoft Windows operating system. This can
be found out by opening the executable with PEInfo and expanding the Imports
tree. It shows that the executable references multiple dll files which are an
evidence of Microsoft Operating System.

Strings Embedded into it
I was able to extract the string embedded into the executable after I unpacked it
and opened it using BinText. Table 2.1 shows all the extracted strings.

!This program cannot be
run in DOS mode.

__%s__ Sh$I@ 7h*h@

.text __%s___ PShZP@ jtram.conf

.data NICK %s mode %s +o %s %s /t %s

.idata %s %s akick jtr.home

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 9

.aspack irc.chan mode %s +b %s %s %s\%s

.adata %s %s KICK %s %s %s: possibly failed: code %u

.newIID WHO %s irc.pre %s: possibly failed

?insmod PPhV,@ Set an irc sock to
preform %s command
on

%s: exec of %s failed err:
%u

?rmmod USERHOST %s Type u.exf

?lsmod logged into %s(%s) as %s %csklist Ph+j@

%s: <mod name> <$hE:@ to view current sockets,
then

Ph?j@

%s: mod list full PhR:@ %cdccsk jtr.id

%s: err: %u nick.pre <#> %s: <url> <id>

mod_init %s-%04u %s: dll loaded IREG

mod_free irc.user %s: %d CLON

%s: cannot init %s irc.usereal RhHY@ ICON

%s: %s loaded (%u) irc.real RhHY@ WCON

%s: mod allready loaded irc.pass said %s to %s #%u [fd:%u] %s:%u [%s%s]
last:%u

%s:%s err %u tsend(): connection to
%s:%u failed

usage: %s <target>
"text"

|\=> [n:%s fh:%s] (%s)

%s:%s not found USER %s localhost 0 :%s %s not on %s |---[%s] (%u) %s

%s: unloading %s NICK %s usage: %s <nick>
<chan>

| |-[%s%s] [%s]

[%u]: %s hinst:%x Ph <@ %s logged in |=> (%s) (%.8x)

unloading %s PRIVMSG Sh [@ B$PRhco@

%s: invalid_addr: %s trecv(): Disconnected from
%s err:%u

sys: %s bot: %s %s <pass> <salt>

%s%s [port] NOTICE preformance counter
not avail

%s <nick> <chan>

finished %s %s %s :%s usage: %s <cmd> PING %s

%s <ip> <port> <t_time>
<delay>

Ph}D@ %s free'd mIRC v6.12 Khaled
Mardam-Bey

sockopt: %u MODE %s -o+b %s *@%s unable to free %s VERSION %s

sendto err: %u C'PSWh 0h+\@ dcc.pass

sockraw: %u Sh'G@ later! temp add %s

syn: done MODE %s -bo %s %s unable to %s errno:%u $h%u@

%s <ip> <duration>
<delay>

Sh'G@ service:%c user:%s inet
connection:%c
contype:%s reboot
privs:%c

%s%u-%s

sendto: %u %s.key Ph@]@ %s opened (%u)

jolt2: done Ph'G@ %-5u %s %u bytes from %s in %u
seconds saved to %s

%s <ip> <p size>
<duration> <delay>

sk#%u %s is dead! %s: %s (%s %s): incomplete! %u
bytes

Err: %u s_check: %s dead?
pinging...

%s: somefile couldnt open %s err:%u

smurf done PING :ok PhHY@ (%s) %s: %s

PhV#@ s_check: send error to %s
disconnecting

host: %s ip: %s (%s) urlopen failed

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 10

&err: %u expect the worst capGetDriverDescriptio
nA

(%s): inetopen failed

?ping s_check: killing socket %s cpus:%u Whjv@

?smurf irc.knick WIN%s (u:%s)%s%s
mem:(%u/%u) %u%%
%s %s

Ph w@

?jolt jtr.%u%s.iso %s: %s (%u) no file name in %s

PONG :%s ison %s %s %s %s created

0h (@ servers %s bad args %s %s to %s Ok

%s!%s@%s s_check: trying %s 3hTg@ 3hI~@

%s!%s Ph9K@ akick %0.2u/%0.2u/%0.2u
%0.2u:%0.2u %15s %s

SVh=+@ PhkK@ %s[%u] %s %s (err: %u)

irc.nick ShtK@ %s removed ShHY@

NICK %s uYVh|K@ couldnt find %s err: %u

NETWORK= %s.mode %s added %s %s :ok

irc.pre MODE %s %s %s allready in list unable to %s %s (err: %u)

_%s__ ShRP@ usage: %s +/- <host> ShHY@

%-16s %s ?unset SSL_new $5FWhy

%-16s (%u.%u.%u.%u) ?uattr SSL_set_fd #4EVgx

[%s][%s] %s ?dccsk SSL_connect $5FWhy

closing %u [%s:%u] ?killsk SSL_write gN]HU

unable to close socket %u VERSION* SSL_read desired_keysize != NULL

using sock #%u %s:%u
(%s)

IDENT SSL_shutdown ctr.c

Invalid sock %ud %02uh %02um
%02us

SSL_free ctr != NULL

usage %s <socks #> %02uh %02um %02us SSL_CTX_free key != NULL

leaves %s %um %02us kernel32.dll count != NULL

:0 * * :%s jtram.conf QueryPerformanceCou
nter

ct != NULL

joins: %s jtr.* QueryPerformanceFreq
uency

pt != NULL

ACCEPT DiCHFc2ioiVmb3cb4zZ7z
WZH1oM=

RegisterServiceProcess ABCDEFGHIJKLMNOPQRS
TUVWXYZabcdefghijklmnop
qrstuvwxyz0123456789+/

resume conf_dump: wrote %u
lines

jtram.conf ?456789:;<=

err: %u get of %s incomplete at
%u bytes

irc.user !"#$%&'()*+,-./0123

DCC ACCEPT %s %s %s get of %s completed (%u
bytes), %u seconds %u
cps

%s : USERID : UNIX :
%s

base64.c

dcc_resume: cant find port
%s

error while writing to %s
(%u)

QUIT :FUCK %u outlen != NULL

dcc.dir chdir: %s -> %s (%u) Killed!? Arrg! [%u] out != NULL

%s\%s\%s\%s dcc_wait: get of %s from
%s timed out

QUIT :%s in != NULL

unable to open (%s): %u dcc_wait: closing [#%u]
%s:%u (%s)

SeShutdownPrivilege _ARGCHK '%s' failure on
line %d of file %s

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 11

resuming dcc from %s to
%s

%4s #%.2u %s %ucps
%u%% [sk#%u] %s

%s\%s crypt.c

DCC RESUME %s %s %u %u Send(s) %u Get(s)
(%u transfer(s) total)
UP:%ucps DOWN:%ucps
Total:%ucps

%s\%s\%s name != NULL

?clone PRQh0 Rll enhanced drive cipher != NULL

?clones send of %s incomplete at
%u bytes

software\microsoft\wind
ows\currentversion\run

hash != NULL

?login send of %s completed
(%u bytes), %u seconds
%u cps

/d "%s" prng != NULL

?uptime cant open %s (err:%u)
pwd:{%s}

< u& LibTomCrypt 0.83

?reboot DCC SEND %s %u %u
%u

./0123456789ABCDEF
GHIJKLMNOPQRSTUV
WXYZabcdefghijklmnop
qrstuvwxyz

Endianess: little (32-bit
words)

?status %s %s usage %s: server[:port]
amount

Clean stack: disabled

?jump %s exited with code %u %s: %s Ciphers built-in:

?nick %s\%s %s %s %s <PARAM> Blowfish

?echo %s: %s %s: [NETWORK|all] %s
<"parm"> ...

RC2

?hush exec: Error:%u pwd:%s
cmd:%s

USER %s localhost 0
:%s

RC5

?wget dcc.pass NICK %s RC6

?join bot.port PSVh Serpent

?akick %s bad pass from
"%s"@%s

md5.c Safer+

?part %s: connect from %s md != NULL Safer

?dump jtr.bin buf != NULL Rijndael

?md5p msrll.exe hash != NULL XTEA

?free jtr.home message digest Twofish

?update jtr.id abcdefghijklmnopqrstuv
wxyz

CAST5

?hostname irc.quit ABCDEFGHIJKLMNOP
QRSTUVWXYZabcdefg
hijklmnopqrstuvwxyz01
23456789

Noekeon

?!fif servers 1.23457E+79 Hashes built-in:

?play collective7.zxy0.com,colle
ctive7.zxy0.com:9999!,coll
ective7.zxy0.com:8080

sprng SHA-512

?copy irc.chan sprng.c SHA-384

?move #mils buf != NULL SHA-256

?sums 1KZLPLKDf$W8kl8Jr1X
8DOHZsmIp9qq0

rc6.c TIGER

?rmdir 1KZLPLKDf$55isA1ITv
amR7bjAdBziX.

skey != NULL SHA1

?mkdir SSL_get_error key != NULL MD5

?exec SSL_load_error_strings ct != NULL MD4

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 12

?kill SSL_library_init pt != NULL MD2

?killall SSLv3_client_method #4EVgx Block Chaining Modes:

?crash SSL_set_connect_state $5FWhy CFB

?sklist SSL_CTX_new #4EVgx OFB

CTR <die|join|part|raw|msg> GetTempPathA memset

PRNG: AdjustTokenPrivileges GetTickCount printf

Yarrow CloseServiceHandle GetVersionExA raise

SPRNG CreateServiceA GlobalMemoryStatus realloc

RC4 CryptAcquireContextA InitializeCriticalSection setvbuf

PK Algs: CryptGenRandom IsBadReadPtr signal

RSA CryptReleaseContext LeaveCriticalSection sprintf

DH GetUserNameA LoadLibraryA srand

ECC LookupPrivilegeValueA MoveFileA strcat

KR OpenProcessToken OpenProcess strchr

Compiler: OpenSCManagerA PeekNamedPipe strcmp

WIN32 platform detected. RegCloseKey Process32First strcpy

GCC compiler detected. RegCreateKeyExA Process32Next strerror

Various others: BASE64
MPI HMAC

RegSetValueExA QueryPerformanceFreq
uency

strncat

/dev/random RegisterServiceCtrlHandle
rA

ReadFile strncmp

Microsoft Base
Cryptographic Provider v1.0

SetServiceStatus ReleaseMutex strncpy

bits.c StartServiceCtrlDispatcher
A

RemoveDirectoryA strstr

buf != NULL AddAtomA SetConsoleCtrlHandler toupper

t9VWS CloseHandle SetCurrentDirectoryA ShellExecuteA

prng != NULL CopyFileA SetFilePointer DispatchMessageA

<"tx< tf< t CreateDirectoryA SetUnhandledException
Filter

ExitWindowsEx

< tV< t CreateFileA Sleep GetMessageA

< tJ< tF CreateMutexA TerminateProcess PeekMessageA

#NAME? CreatePipe WaitForSingleObject GetFileVersionInfoA

<ip> <total secs> <p size>
<delay>

CreateProcessA WriteFile VerQueryValueA

modem CreateToolhelp32Snapsh
ot

_itoa InternetCloseHandle

Lan DeleteFileA _stat InternetGetConnectedState

Proxy DuplicateHandle _strdup InternetOpenA

none EnterCriticalSection _stricmp InternetOpenUrlA

m220 1.0 #2730 Mar 16
11:47:38 2004

ExitProcess __getmainargs InternetReadFile

unable to %s %s (err: %u) ExitThread __p__environ WSAGetLastError

unable to kill %s (%u) FileTimeToSystemTime __p__fmode WSASocketA

%s killed (pid:%u) FindAtomA __set_app_type WSAStartup

AVICAP32.dll FindClose _beginthread __WSAFDIsSet

unable to kill %u (%u) FindFirstFileA _cexit accept

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 13

pid %u killed FindNextFileA _errno closesocket

error! FreeLibrary _fileno connect

ran ok GetAtomNameA _onexit gethostbyaddr

MODE %s +o %s GetCommandLineA _setmode gethostbyname

set %s %s GetCurrentDirectoryA _vsnprintf gethostname

Mozilla/4.0 GetCurrentProcess abort getsockname

Accept: */* GetCurrentThreadId atexit htonl

<DIR> GetExitCodeProcess clock htons

Could not copy %s to %s GetFileSize fclose inet_addr

%s copied to %s GetFullPathNameA fflush inet_ntoa

0123456789abcdef GetLastError fgets ioctlsocket

%s unset GetModuleFileNameA fopen listen

unable to unset %s GetModuleHandleA fprintf ntohl

(%s) %s GetProcAddress fread select

%s %s GetStartupInfoA fwrite sendto

libssl32.dll GetSystemDirectoryA malloc setsockopt

libeay32.dll GetSystemInfo memcpy shutdown

socket CryptReleaseContext IsBadReadPtr realloc

ADVAPI32.DLL GetUserNameA LeaveCriticalSection setvbuf

KERNEL32.dll LookupPrivilegeValueA LoadLibraryA signal

msvcrt.dll OpenProcessToken MoveFileA sprintf

msvcrt.dll OpenSCManagerA OpenProcess srand

SHELL32.DLL RegCloseKey PeekNamedPipe _mbscat

USER32.dll RegCreateKeyExA Process32First strchr

VERSION.dll RegSetValueExA Process32Next strcmp

WININET.DLL RegisterServiceCtrlHandle
rA

QueryPerformanceFreq
uency

_mbscpy

WS2_32.DLL SetServiceStatus ReadFile strerror

VirtualAlloc StartServiceCtrlDispatcher
A

ReleaseMutex strncat

VirtualFree kernel32.dll RemoveDirectoryA strncmp

kernel32.dll AddAtomA SetConsoleCtrlHandler strncpy

ExitProcess CloseHandle SetCurrentDirectoryA strstr

user32.dll CopyFileA SetFilePointer toupper

MessageBoxA CreateDirectoryA SetUnhandledException
Filter

shell32.dll

wsprintfA CreateFileA Sleep ShellExecuteA

LOADER ERROR CreateMutexA TerminateProcess USER32.dll

The procedure entry point
%s could not be located in
the dynamic link library %s

CreatePipe WaitForSingleObject DispatchMessageA

The ordinal %u could not
be located in the dynamic
link library %s

CreateProcessA WriteFile ExitWindowsEx

(08@P CreateToolhelp32Snapsh
ot

msvcrt.dll GetMessageA

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 14

D4l|M DeleteFileA _itoa PeekMessageA

;;F,s DuplicateHandle _stat version.dll

,;F0s EnterCriticalSection _mbsdup GetFileVersionInfoA

;F4s ExitProcess _strcmpi VerQueryValueA

D$$W3 ExitThread msvcrt.dll wininet.dll

kernel32.dll FileTimeToSystemTime __getmainargs InternetCloseHandle

GetProcAddress FindAtomA __p__environ InternetGetConnectedState

GetModuleHandleA FindClose __p__fmode InternetOpenA

LoadLibraryA FindFirstFileA __set_app_type InternetOpenUrlA

advapi32.dll FindNextFileA _beginthread InternetReadFile

msvcrt.dll FreeLibrary _cexit ws2_32.dll

msvcrt.dll GetAtomNameA _errno WSAGetLastError

shell32.dll GetCommandLineA _fileno WSASocketA

user32.dll GetCurrentDirectoryA _onexit WSAStartup

version.dll GetCurrentProcess _setmode __WSAFDIsSet

wininet.dll GetCurrentThreadId _vsnprintf accept

ws2_32.dll GetExitCodeProcess abort closesocket

AdjustTokenPrivileges GetFileSize atexit connect

_itoa GetFullPathNameA clock gethostbyaddr

__getmainargs GetLastError fclose gethostbyname

ShellExecuteA GetModuleFileNameA fflush gethostname

DispatchMessageA GetModuleHandleA fgets getsockname

GetFileVersionInfoA GetProcAddress fopen htonl

InternetCloseHandle GetStartupInfoA fprintf htons

WSAGetLastError GetSystemDirectoryA fread inet_addr

advapi32.dll GetSystemInfo fwrite inet_ntoa

AdjustTokenPrivileges GetTempPathA malloc ioctlsocket

CloseServiceHandle GetTickCount memcpy listen

CreateServiceA GetVersionExA memset htonl

CryptAcquireContextA GlobalMemoryStatus printf select

CryptGenRandom InitializeCriticalSection raise sendto

Table 2.1 – Strings embedded into msrll.exe

Behavioral Analysis
Before I started behavioral analysis, first I made a backup of registry and system
state files just incase the Malware specimen destroys the analysis workstation. I
started my analysis by first running Regshot and making a comparison of the
registry before and after the malware was run. I then ran Regmon, Filemon, and
TDIMon to log some of the activities the Malware performed. The findings are
explained in detail next.

Monitoring file system access
Examining Filemon reveled the malware specimen did the following:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 15

1. The specimen created a directory C:\windows\system32\mfm. Figure 3.1
shows excerpt from Filemon log.

Figure 3.1 – The specimen created C:\windows\system32\mfm directory

2. The specimen copied it self from desktop, where it was executed, to
C:\windows\system32\mfm directory.

3. The specimen deleted the copy of itself (msrll.exe) from the desktop. See
figure 3.2.

Figure 3.2 – The malware specimen deleted msrll.exe form desktop

4. The specimen opened and read a file jtram.conf often.

Monitoring registry / configuration access
To analyze what registry changes are made by the malware specimen, I first
used registry and file comparison tool called regshot. I ran regshot and took the
snapshot of the registry before the malware was run. I ran the malware and took
a second shot of the registry. The comparison of the two snapshots indicated
that the malware added 5 keys, added 22 values and modified 8 values. One
interesting key that was added was
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm. What
made this interesting is that the specimen ran as a service instead of a program
that ran when the operating system started. This service was named Rll
enhanced drive and was set to start automatically. I was able to verify this by
looking at the services as shown in Figure 3.3.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 16

Figure 3.3 – msrll.exe running as service

It seems that the programmer of this specimen is trying to hide the purpose of
this program by giving it a name that is associated with hard drive technology.
There were other keys that were added or modified that dealt with cryptography.

Monitoring / redirecting network connections
To monitor the network connections I used Snort with the following command line
statement: Snort –vd | tee /tmp/grem.log. I then ran the malware specimen and
observed the snort log. I was able to find that the infected host attempted
multiple DNS host name resolution with out any success. It was attempting to
resolve Collective7.zxy0.com. See Figure 3.4 below.

Figure 3.4 – Snort log showing the specimen attempting to connect to IRC
server

=+=

12/17-10:22:06.939599 192.168.1.1:1091 -> 192.168.1.2:53
UDP TTL:128 TOS:0x0 ID:51413 IpLen:20 DgmLen:66
Len: 38
9C 80 01 00 00 01 00 00 00 00 00 00 0B 63 6F 6C col
6C 65 63 74 69 76 65 37 04 7A 78 79 30 03 63 6F lective7.zxy0.co
6D 00 00 01 00 01 m.....

=+=

12/17-10:22:06.940792 192.168.1.2 -> 192.168.1.1
ICMP TTL:128 TOS:0x0 ID:52135 IpLen:20 DgmLen:56
Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE
** ORIGINAL DATAGRAM DUMP:
192.168.1.1:1091 -> 192.168.1.2:53
UDP TTL:128 TOS:0x0 ID:51413 IpLen:20 DgmLen:66
Len: 38
** END OF DUMP
00 00 00 00 45 00 00 42 C8 D5 00 00 80 11 EE 81 E..B........
C0 A8 01 01 C0 A8 01 02 04 43 00 35 00 2E 43 85 C.5..C.

=+=

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 17

My previous investigation of the Malware’s strings using BinText had identified
this domain of “Collective7.zxy0.com” (see Table 2.1). I added
Collective7.zxy0.com to the hosts file of the infected computer and resolved it to
192.168.1.4, which is my REM4 server that is running FTP, HTTP, and IRCD
services. After resolving the domain name to an IP address, the specimen
attempted to connect to the server using ports 8080, 9999, and 6667. In all
cases the server responded with ACK/RST as shown in figure 3.5.

Figure 3.5 – The specimen is connecting to an IRC server on port 6667

I configured the web server to listen on port 8080, since port 8080 is usually used
by web proxy servers. When the infected host attempted to connect to the server
using port 8080, it responded with an ACK/FIN. This indicated that the infected
host is not trying to connect to a web server via port 8080. I proceeded to modify
my IRC server configuration so that it listens on port 8080. The infected machine
was able to connect to the IRC server using port 8080. The snort logs also show
that the infected machine joined the #mils channel with a nick name of FniigYEru.
See figure 3.6 below.

The nick name is a randomly generated string which is typical for IRC bots. At
this time I came to a conclusion that the malware specimen is some type of an
IRC Bot. The Bot was also trying to connect to ports 9999 and 6777; therefore, I
configured the IRC server to listen on port 6667 to see if the Bot would behave
differently. I was able to connect to the IRC server and joined the same channel,
#mils. Once the Bot joined the IRC channel, I also joined the #mils channel
hopping to be able to control the Bot. I tried some of the commands that are
listed in table 2.1. I am assuming that the strings that start with “?” are the Bot
command. I tried most of these command, but the Bot did not respond.
Investigating the strings output, it was evident that the Bot might be using some
type of authentication. Some of the strings that clued me are: irc.pass, dcc.pass,
and “%s bad pass from "%s"@%s”.

=+

12/17-10:25:13.654471 192.168.1.1:3987 -> 192.168.1.4:6667
TCP TTL:128 TOS:0x0 ID:51424 IpLen:20 DgmLen:48 DF
******S* Seq: 0x73EC71F8 Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

12/17-10:25:13.654590 192.168.1.4:6667 -> 192.168.1.1:3987
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:40 DF
***A*R** Seq: 0x0 Ack: 0x73EC71F9 Win: 0x0 TcpLen: 20

=+

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 18

Figure 3.6 – The infected host joins an IRC channel

Monitoring Processes on the system
Examining the TDIMon logs, I discovered that the infected host is now listening
on ports 2200 and 113. Port 113 is used for Ident, but I was not sure why the
host was listening on port 2200. I confirmed this information by using “netstat -
an” command. I used telnet to find out if I could connect to the listing port. I used
the command “telnet 192.168.1.1 2200”, and I got a “#:” prompt. I tried some of
the commands that start with “?”, but I received no response.

Code Analysis

Unpacking the ASpacked executable
ASpack is a utility programmers use to compress executables. The presence of
“.aspack” in the BinText strings and output from PEinfo suggests that this
malware specimen was packed using ASpack. There are few methods available
to unpack an ASpacked executable. I used two techniques to verify that the
unpacking was successful. The first technique I used was the “ASpackDie “
software program. This is a very easy to use utility that can be downloaded at
http://www.woodmann.com/crackz/Unpackers/Aspdie.zip. The second
technique I used utilized a debugger called OllyDbg to unpack the Aspacked
executable. I was able to find a good tutorial on how to unpack Aspacked

=+
12/17-10:27:16.332789 192.168.1.1:3990 -> 192.168.1.4:6667
TCP TTL:128 TOS:0x0 ID:51432 IpLen:20 DgmLen:48 DF
******S* Seq: 0x9403E463 Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

12/17-10:27:16.332988 192.168.1.4:6667 -> 192.168.1.1:3990
TCP TTL:64 TOS:0x8 ID:0 IpLen:20 DgmLen:48 DF
***A**S* Seq: 0x800A7FCB Ack: 0x9403E464 Win: 0xB68 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

12/17-10:27:16.333118 192.168.1.1:3990 -> 192.168.1.4:6667
TCP TTL:128 TOS:0x0 ID:51433 IpLen:20 DgmLen:40 DF
A* Seq: 0x9403E464 Ack: 0x800A7FCC Win: 0xFFFF TcpLen: 20

=+
.
.Snip
.
=+
12/17-10:27:48.476224 192.168.1.1:3990 -> 192.168.1.4:6667
TCP TTL:128 TOS:0x0 ID:51446 IpLen:20 DgmLen:53 DF
AP Seq: 0x9403E4C1 Ack: 0x800A84BD Win: 0xFB0E TcpLen: 20
4A 4F 49 4E 20 23 6D 69 6C 73 20 3A 0A JOIN #mils :.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 19

executables at http://biw.rult.at/tuts/mupaspack.rar submitted by an individual
with the alias Mr-Geek.2 I opened OllyDbg and proceeded to open msrll.exe.
Immediately, an entry point alert message appeared, and I proceeded by clicking
OK. Assembly code of msrll.exe is displayed in Figure 4.1.

Figure 4.1 - msrll.exe as it appears in OllyDbg

Once msrll.exe is opened in OllyDbg, it is at the Entry Point of our packed
executable. As you can see in Figure 4.1, the entry point is at memory address
0051D001. The objective here is to find the original entry point of msrll.exe prior
to unpacking. When the executable was packed a code that unpacks it when it is
executed is appended to the beginning of the executable (msrll.exe). The current
entry point at memory address 0051D001 is where the unpacking routine begins.
Next, the breakpoint should be set for OllyDbg to stop executing the program
before it executes to the original code. To find the original entry point I pressed
F8, the step over function, which executed the current code and stepped to the
next instruction CALL msrll.0051D00A. At this point I noted the values of the
ESP register and EDI register located in the right-hand “Registors (FPU)”
window. The 7C910738, the EDI register value, is where the next breakpoint
should be set. Now, at the Registers pane, right-click on the value of the ESP,
0022FFC4, and click on Follow in Dump. See Figure 4.2.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 20

Figure 4.2 – Follow in dump.

Go to the dump pane, located at the left-bottom corner of OllyDbg, and highlight
the first four bytes of HEX dump (38 07 91 7C) as shown in Figure 4.3. These
four bytes are the EDI value reading it from right to left. Right click on the
highlighted HEX code and click on “Breakpoint” “Hardware, on access”
“Dword”.

Figure 4.3 – Set Breakpoint

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 21

Now that the breakpoint is set, all the code from the entry point up to the
breakpoint can be executed by pressing F9 or by clicking on debug and then
Run. I ran this segment of the malware’s code. The CPU pane should look like
figure 4.4. At this point we are nearing the OPE (Original Point of Entry). OPE is
the starting address of the malware before it was packed. Next, all the
commands up to the memory address 0051D3BF should be run one line at a
time by pressing F8. At the RETN instruction set, press F7 to trace into it.

Figure 4.4 – Getting close to OPE

Now we are at the OPE. See figure 4.5. The memory address 00401240 is the
OPE. The code shown in figure 4.5 is in machine code represented in HEX.

Figure 4.5 – OPE Found

The HEX code can be converted to assembly language by right clicking on the
body of the HEX code and press Analysis Analyze Code. This will convert
the HEX code to Assembly code as shown in Figure 4.6.

Figure 4.6 – Assembly Code

The next step is to dump the memory, which contains the unpacked code, to a
file using the OllyDump plug-in. Before we can do that we need to figure out the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 22

offset. The formula to find the offset is: Offset = OPE – ImageBase. We already
have the OPE value (Figure 4.5). Now we need to find out the ImageBase.
Using LordPE, the ImageBase is identified as seen in figure 4.7. In this case the
ImageBase is 0040000; therefore, the offset is 00401240 – 0040000 = 1240.

Figure 4.7 – Using LordPE to find ImageBase

To open OllyDump, click on plug-in and then OllyDump Dump Debugged
Process. This should look like figure 4.8. In most cases OllyDump will have the
correct offset value(specified in the Modify field). If not the value can be entered
where –>modify form entry is located. Make sure that the Rebuild Import check
box is selected, and click on “Dump” to dump the memory content to file.

Figure 4.8 OllyDump

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 23

Finding Authentication Method
The first step to finding the authentication method of the IRC Bot was loading the
unpacked version of msrll.exe in to a disassembler called IDApro. Using the
strings pane, I located the %s bad pass from \”%s\” @ %s string. It appears that
this is the error message that will be displayed by the Bot if a wrong password
was entered during authentication. I trace backwards to find out what instruction
set calls the subroutine that displayed the error for bad password. I found out
that the command “jz short loc_40BC5A” at memory location 0040BBE9 is
responsible for calling the subroutine that is called when wrong password is
entered. Figure 4.9 shows the assembly code responsible for authentication.
Figure 4.9 also shows that the subroutine at memory location 0040BBDF, call
Sub_405872, is responsible for comparing the user entered password to the hard
coded password. This is a good place to set a breakpoint in OllyDbg.

Figure 4.9 - Subroutine that executes when bad password is entered

Next, I opened msrll.exe, the version that was copied to
c:\windows\system32\mfm directory using OlldDbg. Located the memory
location 0040BBDF and set the breakpoint as shown in figure 4.10. I ran the
program by pressing F9 (Run) and waited until the Bot connected to the IRC
server and joined the #mils channel. I then joined the #mils channel with nick of
zack. I attempted to authenticate to the Bot by entering ?login badpass, but the
Bot did not respond. Next I tried ?login zack badpass, still no response from the
Bot.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 24

Figure 4.10 – Setting the Breakpoint

In frustration, I went back to the strings to see if I can find any more clues. I
noticed that there were two strings that refer to pass. The first one was irc.pass
and the send one was dcc.pass. The breakpoint I set dealt with dcc.pass and
not the irc.pass. I remembered that during behavioral analysis TDIMon reported
that the infected computer was listening on port 2200. I used telnet and tried to
connect to the infected machine on port 2200. I was able to receive a command
prompt “#:”. I used all the authentication methods I mentioned above. Each time
I try to authenticate, the code is doing comparison of my password to the hard
coded one. Since I set the breakpoint at the compare subroutine, the program
would pause while performing the compare. The register pane of OllyDbg would
show the two passwords being compared. It seems like I found the
authentication method for port 2200. See Figure 4.11. The user entered
password is hashed and compared to the hard coded password which is also
hashed. The person who wrote this Bot is trying very hard to keep the control of
the Bot. While running “John the Ripper” trying to crack the Bot password, I
decided to use the method of patching to get control of the IRC Bot.

Figure 4.11 – User entered password compared to hard coded password

The best way to bypass authentication if time is critical is to patch the program.3
Once the compare subroutine returns the results, it is checked to see if it is a
match. If it is not a match, then jump to a subroutine that would display “bad

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 25

pass”. If the compare results in a match, then execute the next instruction which
in turn authenticate the user. What can we do to bypass the “JE SHORT
msrll.0040BC5A”, no matter what the password? A good way of doing that is
replacing the “JE SHORT msrll.0040BC5A” instruction with “NOP” (no operation)
which does nothing. To replace the instruction with NOP, highlight the instruction
and press spacebar. A dialog box will appear with form field. Enter NOP in the
form field and press assemble. Once the above change is made, the user can
gain control of the Bot whether or not a good password is used. See figure 4.12.
After modifying the code I ran the program and connected to the infected host
using telnet on port 2200. At the prompt I typed “?id”, and I got a response from
the infected host with the computer information of the infected host. I now had
control over the Bot.

Figure 4.12 - Use NOP to bypass authentication

Analysis Wrap-UP

In the previous part control of the malicious specimen was achieved. The
specimen was identified as an IRC Bot. The owner of the Bot designed multiple
way of controlling the Bot. The two methods that seemed very clear are via
telnet and IRC client. I spent three weeks analyzing the assembly code to find a
way to patch and get authenticated via the IRC channel with no success. I also
tried to crack the hashed password using John the Ripper without any success.
As a last resort I downloaded Reverse-compiling tool called REC to reverse the
unpacked version of the executable to C code. The REC tool can be
downloaded at www.backerstreet.com/rec/rec.htm. Although the code was

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 26

human understandable, the authentication method used by the IRC channel was
complicated. I often broke the code trying to patch it and gain access. The only
way I could successfully control the Bot was through telnet to port 2200.

The infected host listens on port 2200 as discussed in the behavioral analysis
section. The Bot seems to have multiple powerful commands that the Bot
manager could use. I picked some of the command to discuss in detail. The
?clone command seems to duplicate itself. After using the ?clone command as
shown in figure 5.1, I executed netstat –an on the infected host and I was able to
see additional host listing on port 2200. I tried the ?clone command with different
IP address and port, but it did not work. The Bot just ignored the command.

Figure 5.1 – ?clone command

The ?set command is very useful command. It allows the Bot manager to
change which binary to run, the directory in which the executable should run
from, the Bot port, IRC servers to connect to, the IRC channel to connect to, and
passwords. I was able to change the password of one of the authentication
methods by issuing “set pass zack” command to zack as seen in figure 5.2.

Figure 5.2 - ?set command

The ?copy command works just like the DOS copy command and Linux cp
command. By issuing the command “?copy Source Destination” one can copy a

?set pass zack
set
(?login zack) set
?set
set jtr.bin msrll.exe
set jtr.home mfm
set bot.port 2200
set jtr.id run5
set irc.quit
set servers
collective7.zxy0.com,collective7.zxy0.com:9999!,collective7.zxy0.com:
8080
set irc.chan #mils
set pass zack
set dcc.pass 1KZLPLKDf$55isA1ITvamR7bjAdBziX.

?clone
usage ?clone: server[:port] amount
?clone 192.168.1.1:2200 1
*** bot.port: connect from 192.168.1.1
?clone 192.168.1.1:2200 5
*** bot.port: connect from 192.168.1.1
*** bot.port: connect from 192.168.1.1
*** bot.port: connect from 192.168.1.1
*** bot.port: connect from 192.168.1.1
*** bot.port: connect from 192.168.1.1

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 27

file from source to destination. A transcript of the ?copy command is listed in
figure 5.3. The ?move command works the same way as the ?copy command.

Figure 5.3 - ?copy command

The ?ps command works just as Linux ps command. It lists all the currently
running processes with their process ids. One can issue the ?kill <pid> to kill any
process identified by pid. Figure 5.4 shows example of the ?ps and ?kill
commands.

Figure 5.4 – ?ps and ?kill commands

The ?jolt command and ?smurf commands are the purpose of the Bot. I believe
that the developer’s purpose for the Bot was to perform DDOS to targeted host. I
tried the ?jolt command to see if in fact I cause a DOS to one of my lab
computers (REM2). I used the command “?jolt 192.168.1.2 10 1” while using
snort to log the traffic, and I was able to see a 200,000 bytes of data logged in

?ps
 0 [System Process]
 4 System
 536 smss.exe
 600 csrss.exe
 624 winlogon.exe
 668 services.exe
 680 lsass.exe
 832 svchost.exe
 928 svchost.exe
 1024 svchost.exe

.
Snip
.

 2748 msrll.exe
 3964 cmd.exe
 3160 notepad.exe
 1460 NOTEPAD.EXE
 3520 sol.exe
 2484 mspaint.exe
?kill 3520
pid 3520 killed
sol.exe exited with code 0

?copy
?copy jtram.conf jtram2.conf
jtram.conf copied to jtram2.conf
?dir
12/21/2004 05:30 <DIR> .
12/21/2004 05:30 <DIR> ..
12/21/2004 05:26 1060 jtram.conf
12/21/2004 05:26 1060 jtram2.conf
11/20/2004 17:58 1182720 msrll.exe

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 28

ten seconds. Figure 5.5 shows the ?jolt command I used and Figure 5.6 shows
an excerpt of the snort log.

Figure 5.5 - ?jolt and ?smurf commands

Figure 5.6 – Snort log generated by the ?jolt command

?jolt
?jolt <ip> <duration> <delay>
?jolt 192.168.1.2 10 1
jolt2: done
?jolt 192.168.1.2 60 1
?jolt2: done

?smurf
?smurf <ip> <p size> <duration> <delay>
?smurf 192.168.1.2 20 10 1
smurf done

12/20-21:35:06.168094 192.168.1.4:2096 -> 192.168.1.1:2200
TCP TTL:64 TOS:0x10 ID:45556 IpLen:20 DgmLen:76 DF
AP Seq: 0x2B25B249 Ack: 0xA4A8AC5D Win: 0x25B0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 176010291 17599800
3F 6A 6F 6C 74 20 31 39 32 2E 31 36 38 2E 31 2E ?jolt 192.168.1.
32 20 31 30 20 32 0D 0A 2 10 2..

=+=

12/20-21:35:06.170851 192.168.1.1 -> 192.168.1.2
ICMP TTL:255 TOS:0x0 ID:256 IpLen:20 DgmLen:28
Frag Offset: 0x1FFE Frag Size: 0x0008
08 00 F7 FF 00 00 00 00

=+=

12/20-21:35:06.174246 192.168.1.1 -> 192.168.1.2
ICMP TTL:255 TOS:0x0 ID:256 IpLen:20 DgmLen:28
Frag Offset: 0x1FFE Frag Size: 0x0008
08 00 F7 FF 00 00 00 00

=+=

12/20-21:35:06.184242 192.168.1.1 -> 192.168.1.2
ICMP TTL:255 TOS:0x0 ID:256 IpLen:20 DgmLen:28
Frag Offset: 0x1FFE Frag Size: 0x0008
08 00 F7 FF 00 00 00 00

=+=

12/20-21:35:06.194273 192.168.1.1 -> 192.168.1.2
ICMP TTL:255 TOS:0x0 ID:256 IpLen:20 DgmLen:28
Frag Offset: 0x1FFE Frag Size: 0x0008
08 00 F7 FF 00 00 00 00

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 29

The commands ?run and ?exec ran any given executable as a process. See
Figure 5.7. Although, the windows task manager shows that the programs are
running, there was no GUI available for the notepad and solitaire.

Figure 5.7 – Windows Task manager

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 30

Figure 5.8 - More Bot commands

Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.
#:?login zack
zack

?uptime
sys: 20d 07h 53m 04s bot: 32m 13s

?insmod
?insmod: <mod name>

?rmmod
?rmmod: <mod name>

?ismod
(?login zack) ?ismod

?clones
?clones: [NETWORK|all] <die|join|part|raw|msg> <"parm"> ...

?status
service:N user:Zack inet connection:Y contype: Lan reboot privs:Y

?jump

?nick
Set an irc sock to preform ?nick command on
 Type _.sklist_ to view current sockets, then _.dccsk_ <#>

?echo
(null)

?hush
Set an irc sock to preform ?hush command on
 Type _.sklist_ to view current sockets, then _.dccsk_ <#>

?wget
?wget jtram.conf
no file name in jtram.conf

?join
Set an irc sock to preform ?join command on
 Type _.sklist_ to view current sockets, then _.dccsk_ <#>

?akick

?part
Set an irc sock to preform ?part command on
 Type _.sklist_ to view current sockets, then _.dccsk_ <#>

?dump

?md5p
?md5p <pass> <salt>

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 31

Figure 5.9 – More Bot Commands

?free

?sums
jtram.conf 05400996e509679a5575e4175140e569
jtram2.conf 05400996e509679a5575e4175140e569
msrll.exe 298d1fbc2781b288913f8bf5a43f88f7

?mkdir zack
zack created

?move jtram2.conf zack\jtram2.conf
?move jtram2.conf to zack\jtram2.conf Ok
?dir
12/21/2004 05:34 <DIR> .
12/21/2004 05:34 <DIR> ..
12/21/2004 05:26 1060 jtram.conf
11/20/2004 17:58 1182720 msrll.exe
12/21/2004 05:34 <DIR> zack
?cd zack
C:\WINDOWS\system32\mfm\zack

?cd ..
C:\WINDOWS\system32\mfm

?cd zack
C:\WINDOWS\system32\mfm\zack

?del jtram2.conf
jtram2.conf removed

?cd ..
C:\WINDOWS\system32\mfm
?rmdir zack
?rmdir zack :ok

?exec
?exec notepad
?exec c:\windows\notepad.exe
?exec sol.exe

?sklist
 #1 [fd:356] collective7.zxy0.com:6667 [IRC _IATH_ IREG ICON RNL]
last:14
 |\=> [n:MBUGOrUfBSrQ fh:MBUGOrUfBSrQ!HTIETObi@192.168.1.1]
(UnderNet)
 |
 |---[#mils] (2) +
 | |-[MBUGOrUfBSrQ] [192.168.1.1]
 | |-[@zack] [192.168.1.4]
 #2 [fd:404] 192.168.1.4:0 [DCC ICON RNL] last:0
 |=> (?login zack) (00000021)
 #3 [fd:1396] 192.168.1.1:2200 [IRC CLON ICON RNL] last:267
 #4 [fd:1384] 192.168.1.1:0 [DCC ICON RNL] last:2516
 |=> (USER titBw localhost 0 :TKvyM) (00000021)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 32

The ?crash command crashed the infected machine, and I lost the telnet
connection to the Bot. I had to restart the infected host to gain control again.
The ?reboot command rebooted the infected host and displayed the later! And
Connection closed by foreign host messages as seen in figure 5.10.

Figure 5.10 – More Bot Commands

?unset

?uattr
Set an irc sock to preform ?uattr command on
 Type _.sklist_ to view current sockets, then _.dccsk_ <#>
?dccsk
usage ?dccsk <socks #>

?killsk
unable to close socket 4018072

?ping 192.168.1.2
?ping <ip> <total secs> <p size> <delay> [port]
?ping 192.168.1.2 5 10 2
finished 192.168.1.2

?crash
?uptime

?reboot
later!
Connection closed by foreign host.
[root@REM4 root]#

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 33

References

1 ZDNet Downloads. OllyDbg 1.09d. CNET Networks, Inc. 2004. URL:
http://downloads-zdnet.com.com/OllyDbg/3000-2383_2-10242634.html?tag=lst-
0-1

2

 Mr-Geek, How to unpack Aspack using Ollydbg. February 2004,
http://biw.rult.at/tuts/mupaspack.rar

3 Sans Institute and Lenny Zeltser, Reverse-Engineering Malware: Tools and
Techniqes. 2004

Software Resources
Windows XP SP2
www.microsoft.com.

Windows 2000
www.microsoft.com.

Snort
www.snort.org.

Undernet-IRCU2
http://prdownloads.sourceforge.net/undernet-
ircu/ircu2.10.11.07.tar.gz?download.

Ollydbg
“http://www.downloads-zdnet.com.com/3001-2383_2-10242634.html.

Regmon
http://www.sysinternals.com/ntw2k/source/regmon.shtml.

Filemon
http://www.sysinternals.com/ntw2k/source/filemon.shtml.

IDAPro
http://www.datarescue.be/downloaddemo.htm.

TDIMon
http://www.sysinternals.com/ntw2k/freeware/tdimon.shtml.

LordPE
http://www.softpedia.com/progDownload/LordPE-Download-29.html.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 34

RegShot
http://regshot.ist.md/

MD5sum
http://www.weihenstephan.de/~syring/win32/UnxUtils.html.

PEInfo
Could not find any reliable source other than the CD supplied in class.

BinText
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subco
ntent=/resources/freetools.htm

ASpackdie
http://www.woodmann.com/crackz/Unpackers/Aspdie.zip.

