
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

LABORATORY SETUP

The laboratory is set up on a sole laptop system. The system is a Dell Latitude,
Intel Pentium III-850 MHz with 528 MBs of Ram. The host operating system is
Windows 2000 with Service Pack 4 and is current with all patches. No other
program other than the operating system and the tools used in the analysis are
installed. The purpose of this system is to host 2 operating systems in a virtual
environment in order to analyze the code.

I will be using the VMware Workstation 4.05 build-6030 upon which are installed
two operating systems.

The first operating system installed is Windows 2000 with Service Pack 3. The
system has been apportioned 192 MBs of RAM as well as 3 GBs of hard drive
space. Networking on this virtual machine has been setup as Host-only and
connects when powered on. The IP address is 192.168.234.128. In this system,
various analysis tools have been installed, however I will explain these in more
detail at the end of this section. The purpose of this virtual system is to be used
as a victim and to be infected with the code to be studied. Please note that
throughout the analysis, I will refer to this system as the “Virtual Host” or the
“Infected Host”.

The second operating system installed is Red Hat Linux 9.0. This virtual system
is command line only and was obtained from the REM CD that came with the
course. The system has been apportioned 64 MBs of RAM and is installed as
disk file upon the C drive of the host system. Networking has been setup as
Host-only and connects when powered on. The IP address is 192.168.234.130.
The purpose of this system is to monitor the network traffic that may be sent by
the code and to provide services that may be needed. Throughout the analysis,
I will refer to this system as the “Virtual Linux” system.

There is another benefit to using a Linux machine in this virtual environment. If
necessary, additional instances of Linux can be started by pressing the [ALT] key
and one of the [F] keys. For example, a second console can be started by
holding [ALT] and then pressing [F2].

It should be noted that VMware also includes a virtual DHCP server
(192.168.234.254) and a virtual DNS Server (192.168.234.1) to provide
networking services.

The laboratory has been installed on a cleanly formatted hard drive. Before
installing the VMware system, the host operating system was updated with the
latest Microsoft patches. After these patches were downloaded and installed, the
machine was disconnected from the network before proceeding further. Due to
the fact that this analysis will examine live malicious code, this system will not be
connected to any network. Below is a diagram of the setup used.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Below are the tools that I will be using with the analysis which are installed
on the “Infected Host”:

BinText v 3.0: A small utility capable of extracting text such as ASCII, Unicode
and other strings from a file. This tool will be used to examine the code in the
initial analysis in order to gather information. It works by scanning the binary for
ASCI characters. The results of the scan can give valuable clues about the
capabilities of the code. 1

Filemon v6.07: This is an application that monitors and displays all file system
activity on a system in real-time. This tool is used when the code is first
executed and can detail what the code opens, reads, writes and deletes as well
as timestamp each activity. 2

OLLYDBG 1.10: This program is a 32-bit assembler level analyzing debugger
for Windows. This program is very useful for performing binary code analysis
and will be used during code analysis. This is the ‘microscope’ for examining at
the byte level the inner workings of the code on the infected system.
Furthermore, this tool has the ability to modify or tweak the code as well as
stepping through the complicated procedures. 3

Regmon v6.06: This is a registry-monitoring tool and logs which applications are
accessing the registry as well as which keys are being used. This program will
be used when analyzing the behavior of the code on the infected system and
shows how it interacts with the registry. 4

Regshot v1.61e5 final: This utility allows the user to take ‘before’ and ‘after’
snapshots of the registry and specified folders. The results are then compared to
detect differences between the two. Furthermore, the program can be configured

 1

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

to monitor file creation within key system folders. The program is used while
studying the behavior of the code on the infected system and answers the
questions “What did this code do in the registry?” and “What file or folder did this
code create?”. 5

TDIMon v1.0: This is an application that allows TCP and UDP activity to be
monitored on the local system. If the code performs any network activity, this
tool will log and timestamp details of the code’s activity. This will be used on the
infected virtual host during behavior analysis. 6

Md5sum.exe: This is a freeware program used to take the fingerprint of a file by
calculating its md5 checksum. This is an open source, command-line tool and
will be used to verify that the code has not been modified in any way. It will be
used again later in the analysis process to verify that the code has not changed
or morphed itself. 7

Below are the tools that I will be using with the analysis which are installed
on the Virtual RedHat Linux system:

Netcat: This program is a feature-rich networking utility that can accept and
forward traffic on designated ports, tunnel traffic, as well as to conduct remote
scanning. This tool will be used during behavior analysis to listen on ports on the
virtual Linux system. Doing so will aid the analysis by capturing data that may be
sent from the infected host. 8

SNORT: This program is a highly configurable intrusion detection system and
will be used when analyzing the code’s behavior. Snort works by capturing all
traffic on a network and will display and or save that data. It can be further
configured to examine network traffic and alert whenever it detects a pattern
recognized by one of Snort’s rules. 9
.

PROPERTIES OF MALWARE SPECIMEN

The file that I will analyze was obtained from SANS and was zipped in a file
called ‘msrll.zip’. Once unzipped, the file was an executable with an ‘.exe’
extension named ‘msrll.exe’. The file size is 41,984 bytes.

The next step to take is to calculate the MD5 hash of the file. The purpose of the
hash is to detect if the file changes or modifies itself. If the MD5 hash remains
the same, then we know that code has not changed. To get the MD5 hash, I ran
this command at the command prompt on the Virtual Host:
C:\>md5sum msrll.exe command
84acfe96a98590813413122c12c11aaa *msrll.exe results

Next, I used the BinText program to extract strings from the file using the default
settings. To use BinText, double click on the program, then browse to the file
and click ‘Open’. Next, we will leave the ‘Filter’ tab at its default settings and
simply click go. Below I’ve included the notable strings minus the chaff.

 2

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

File pos Mem pos ID Text
======== ======= == ====
0000004D 0040004D 0 !This program cannot be run in DOS mode.
00000178 00400178 0 .text
000001A0 004001A0 0 .data
000001F0 004001F0 0 .idata
00000218 00400218 0 .aspack
00000240 00400240 0 .adata
00009271 0051D071 0 VirtualAlloc
0000927E 0051D07E 0 VirtualFree
00009641 0051D441 0 kernel32.dll
0000964E 0051D44E 0 ExitProcess
0000965A 0051D45A 0 user32.dll
00009665 0051D465 0 MessageBoxA
00009671 0051D471 0 wsprintfA
0000967B 0051D47B 0 LOADER ERROR
00009688 0051D488 0 The procedure entry point %s could not be located
in the dynamic link library %s
000096D9 0051D4D9 0 The ordinal %u could not be located in the dynamic
link library %s
0000A16C 0051DF6C 0 kernel32.dll
0000A17B 0051DF7B 0 GetProcAddress
0000A18C 0051DF8C 0 GetModuleHandleA
0000A19F 0051DF9F 0 LoadLibraryA
0000A274 0051E074 0 advapi32.dll
0000A281 0051E081 0 msvcrt.dll
0000A28C 0051E08C 0 msvcrt.dll
0000A297 0051E097 0 shell32.dll
0000A2A3 0051E0A3 0 user32.dll
0000A2AE 0051E0AE 0 version.dll
0000A2BA 0051E0BA 0 wininet.dll
0000A2C6 0051E0C6 0 ws2_32.dll
0000A313 0051E113 0 AdjustTokenPrivileges
0000A32B 0051E12B 0 _itoa
0000A333 0051E133 0 __getmainargs
0000A343 0051E143 0 ShellExecuteA
0000A353 0051E153 0 DispatchMessageA
0000A366 0051E166 0 GetFileVersionInfoA
0000A37C 0051E17C 0 InternetCloseHandle
0000A392 0051E192 0 WSAGetLastError

Looking at the results of the BinText results, it appears that the code runs on the
windows platform. Notice that there are several references to .dll files that only
are used on the windows platform such as “user32.dll” 10 and “shell32.dll” 11.

The code appears to use Aspack for packing since it is referenced in line
00000218. Aspack is a win32 executable file compressor and will work on files
that will be used on Windows platforms.12 The possibility that this code uses

 3

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Aspack is further affirmation that this code is designed to run on Windows
platforms.

The references at lines 0000A281 and 0000A28C indicates how the code was
written. ‘Msvcrt.dll’ is a runtime library used in C++ programming, indicative that
the code was written in the C programming language. 13

BEHAVIORAL ANALYSIS

Monitoring file system access
The first step that I take is to make a snapshot of the virtual Windows 2000
system using the VMware program. That way, I have a clean working state that I
can revert back to in order to undo what the malicious code has done. The next
step I took was to make a snapshot of the registry as well as the ‘C:\WINNT’ and
‘C:\’ directories using the Regshot tool. This is the ‘before’ picture and it is done
immediately before executing the code on the Virtual Host. To do this, double-
click Regshot, enter “C:\WinNT” into the “Scan dir” text box, and then browse and
setup the “Output path”. I prefer to view the results as a HTML document and
have selected the appropriate radio button. Finally, click the “1st shot” button to
take the before picture.

Now that the environment has been set, I executed the code and let it run for
about 30 seconds. The first thing that I noticed is that once I executed the code,
the ‘msrll.exe’ file disappeared from my desktop where it was saved. The second
thing that I noticed is that the code runs in the Process section of the Task
Manager under the same name.

I stopped the code in the task manager window and performed the second shot
of the registry and system folders by clicking the “2nd shot” button in Regshot.
Next I compared the files by clicking the “compare” button and exported the
results as ‘msrllRegShot.htm’ and saved the file.

 4

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

The results showed that there were a total of 67 total changes; however, for the
sake of brevity I will note the more significant changes.

Values added:20

Code created a new service called “Rll enhanced drive” and associated it with the “msrll.exe”. This service
will be started when the system is started.
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ImagePath:
"C:\WINNT\System32\mfm\msrll.exe"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\DisplayName: "Rll enhanced drive"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ObjectName: "LocalSystem"
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\ImagePath:
"C:\WINNT\System32\mfm\msrll.exe"
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\DisplayName: "Rll enhanced drive"
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\ObjectName: "LocalSystem"

Values modified:32
Files added:2

C:\WINNT\system32\mfm\jtram.conf Code created a new file
C:\WINNT\system32\mfm\msrll.exe Code copied itself to new folder
Files [attributes?] modified:4

C:\WINNT\system32\config\software
C:\WINNT\system32\config\software.LOG
C:\WINNT\system32\config\system
C:\WINNT\system32\config\SYSTEM.ALT
Folders added:3

C:\WINNT\system32\mfm Code created a new folder
C:\WINNT\system32\mfm\.
C:\WINNT\system32\mfm\..
Total changes:67

I noticed that the code copied itself into the newly created
‘C:\WINNT\system32\mfm’ folder. The first question that I have is if whether or
not the new copy is an exact replica or did it morph in any way. The second
question is what exactly is in the ‘jtram.conf’ file.

I quickly ran the test again, ensuring first that I reverted back to the clean state of
the laboratory by pressing the “Revert” button of the VMware console. Once
again, when executed the code disappeared from the desktop and was moved
into the ‘C:\WINNT\system32\mfm’ folder. Using the md5sum utility, I verified
that the file is indeed an exact copy by comparing the md5 checksum.

Next, I took a peek at the ‘jtram.conf’ using notepad and it appears that the
contents are encrypted and are not in plain text. Nothing stood out as being
significant that would indicate what was in the file. Here is a small sample:

sf8RAGx3zDX3mu8iQ7vwtIdpeEqNAjka5x/ZzadmtYW1hH1A+w==

In order to monitor file access by the code, I prepared the laboratory environment
again by reverting to the clean snapshot of the virtual machine and starting the
Filemon program. Once the program was running, I cleared the logs and
immediately double-clicked on the code. I allowed the code to run for 30

 5

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

seconds and then paused the logging feature of Filemon. A look at the logs
reveals the following details:

The code accesses the following files on the system: usp10.dll, ws2_32.dll, and
WS2HELP.DLL. Then it creates the folder ‘c:\winnt\system32\mfm’ and copies
itself to it. Information is then updated in the software.log and it then accesses
shell32.dll. The code then opens clbcatq.dll, cscui.dll, cscdll.dll, msi.dll, reopens
msrll.exe in the new location, opens libssl32.dll, jtram.conf, msafd.dll,
wshtcpip.dll, index.dat, rasman.dll, tapi32.dll, rtutils.dll, sensapi.dll, rsabase.dll,
serenv.dll, crypt32.dll, and msasn1.dll.

The file jtram.conf is opened and written to several times. I also noticed that the
code several times tries to open ‘c:\dev\random’ that doesn’t exist. That type of
file normally appears on a UNIX based system and is a random number
generator that can be used for cryptographic purposes. I have included a snippet
of the results from Filemon.

89 1:20:05 PM msrll.exe:464 CREATE C:\WINNT\System32\mfm SUCCESS
Options: Create Directory Access: All
129 1:20:05 PM msrll.exe:464 WRITE C:\WINNT\System32\mfm\msrll.exe
SUCCESS Offset: 0 Length: 41984
459 1:20:22 PM msrll.exe:116 CREATE C:\WINNT\system32\mfm\jtram.conf
SUCCESS Options: OverwriteIf Access: All
622 1:20:22 PM msrll.exe:116 WRITE C:\WINNT\system32\mfm\jtram.conf
SUCCESS Offset: 0 Length: 53
633 1:20:22 PM msrll.exe:116 WRITE C:\WINNT\system32\mfm\jtram.conf
SUCCESS Offset: 53 Length: 53
648 1:20:22 PM msrll.exe:116 WRITE C:\WINNT\system32\mfm\jtram.conf
SUCCESS Offset: 106 Length: 53

Monitoring registry access
To monitor access to the registry, I reverted back to the original configuration of
the Windows 2000 virtual machine using VMware’s ‘revert’ command. Next I
prepared the Regmon program by starting it and clearing (CTRL + x) the logs. I
immediately ran the executable code and let it run for 30 seconds. The results of
the regmon.log file are as follows:

The regmon.log confirms that that the code added several keys which confirmed
the results of the Regshot program. The code added a key to the registry that
allowed the Trojan to restart when the computer boots up as a service called “Rll
enhanced drive”.

879 4.10308768 services.exe:212 SetValue
HKLM\System\CurrentControlSet\Services\mfm\ImagePath SUCCESS
 "C:\WINNT\System32\mfm\msrll.exe"
880 4.10317568 services.exe:212 SetValue
HKLM\System\CurrentControlSet\Services\mfm\DisplayName SUCCESS "Rll enhanced drive"

 6

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

 I rebooted the virtual machine and confirmed that a new service with that name
was running by checking the “Services” list in “Computer Management”. Also
noted was that once the system was rebooted, the “Rll enhanced drive” service is
automatically restarted. It also locks the msrll.exe file as it is run to keep it from
being manually shut down.

Monitoring network connections
I ran the test again in order to determine what this code does with regards to the
virtual network, however this time before I did it I performed the “netstat –an”
command and took note of the ports that were open. After the test, I ran the
command again and noted that there was a difference. These lines were added
to the results.
TCP 0.0.0.0:113 0.0.0.0:0 LISTENING
TCP 0.0.0.0:2200 0.0.0.0:0 LISTENING

It looks like the code is now listening on TCP ports 113 and 2200. TCP Port 113
is the identity authentication server that would probably be used by the system to
identify connecting systems with a service called “IDENT”. According to RFC
1413 14, this protocol is used to determine the identity of a user on a particular
TCP connection.

It is unknown what port 2200 is at this time, but it is indicative that the code
opened up a backdoor on the system.

I also captured the traffic from the virtual Linux system by logging in as root and
starting snort to capture the traffic using the following command:
 snort –vd | tee /tmp/sniff.log

 7

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

This command says to run the snort command in verbose mode (-v) and dump (-
d) the application layer data and pipe it to a file in the ‘tmp’ directory named
‘sniff.log’.

Examining this log, I can see that the infected host (192.168.234.128) began
immediately querying the DNS server for the IP address of host
‘collective7.zxy0.com’. There was a reply from the virtual server (192.168.234.1)
that there was no information for that hostname.
11/17-02:50:01.037020 192.168.234.128:1067 -> 192.168.234.1:53
UDP TTL:128 TOS:0x0 ID:699 IpLen:20 DgmLen:66
Len: 38
00 01 01 00 00 01 00 00 00 00 00 00 0B 63 6F 6C col
6C 65 63 74 69 76 65 37 04 7A 78 79 30 03 63 6F lective7.zxy0.co
6D 00 00 01 00 01 m.....

Using the TDIMon tool, I confirmed that these activities took place and further
confirmed that it was “msrll.exe” as opposed to another service that sent this
traffic. To use the TDImon program, double click TDImon shortcut. You can
filter (CTRL+L) what traffic that you want to catch. When ready to begin the
capture, clear (CTRL+x) the log and start the capture (CTRL+ e).
9 0.83396214 msrll.exe:920813E0DE8 TDI_SET_EVENT_HANDLER
 TCP:0.0.0.0:2200
110 3.07633540 services.exe:21281530328 TDI_SEND_DATAGRAM
 UDP:0.0.0.0:1062 192.168.234.1:53
112 3.07696062 services.exe:21281530328 TDI_SEND_DATAGRAM
 UDP:0.0.0.0:1062 192.168.234.1:53
129 3.14521259msrll.exe:920 81534E48 TDI_SET_EVENT_HANDLER
 TCP:0.0.0.0:113

I reverted back to the clean state and then added to the hosts file on the virtual
host machine an entry to redirect all traffic for 'collective7.zxy0.com' to the Linux
system, which is 192.168.234.130. I then pinged the hostname to make sure
that it resolved to the Linux box.

192.168.234.130 collective7.zxy0.com added to the end of “hosts” file

The hosts file is located at c:\winnt\system32\drivers\etc. It is a file that was used
extensively before DNS to resolve IP addresses with domain names. This
worked until the number of domains grew to the point that the hosts file became
too cumbersome to maintain giving rise to DNS servers. On small networks, a
hosts file can be useful for mapping IP addresses to specific systems. 15

I ran the code again and monitored it using snort on the Linux machine, running
the same command as before. This time there was a new activity. The code
began trying to connect to the Linux machine on port 6667. This is indicative that
the code is looking for an IRC server16. IRC stands for Internet Relay Chat and is
highly popular in the hacker community as a chatting tool that allows users to
chat in various channels. 17

 8

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

I also detected a couple of interesting packets that should be noted. Not only
was the code trying to connect to port 6667 on the Linux machine, it also was
attempting to connect on TCP ports 8080 and 9999.
11/25-23:19:37.819353 192.168.234.128:1025 -> 192.168.234.130:6667
TCP TTL:128 TOS:0x0 ID:15 IpLen:20 DgmLen:48 DF
******S* Seq: 0x44A3CBDB Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

11/26-02:19:28.816895 192.168.234.128:1064 -> 192.168.234.130:8080
TCP TTL:128 TOS:0x0 ID:697 IpLen:20 DgmLen:48 DF
******S* Seq: 0x15AE1B92 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

11/26-02:18:07.964892 192.168.234.128:1063 -> 192.168.234.130:9999
TCP TTL:128 TOS:0x0 ID:691 IpLen:20 DgmLen:48 DF
******S* Seq: 0x14D4FA13 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

Once again, I used VMware's useful ‘revert’ feature to return it to a clean state.
On the Linux virtual system, I started the IRC server using the following
commands:
 [root@localhost root]# su - ircd
 [ircd@localhost ircd]$./ircd
 [ircd@localhost ircd]$ exit
 [root@localhost root]# ps –u ircd
 PID TTY TIME CMD
 1655 ? 00:00:00 ircd
 [root@localhost root]# irc

The ‘su’ command is to run a shell with substitute user and group IDs. The ‘ps’
command is to list the process status and of course, ‘irc’ is to run the IRC server.

Next, in order to find out why the code was attempting to connect to ports 8080
and 9999, I started 2 more instances of the virtual Linux system using the key
commands ‘[ALT] – F2’ and ‘[ALT] – F3’ respectfully.

On the second Linux console, I setup Netcat to listen on port 8080 and output the
results to the screen using the following command:
 nc –p 8080 –l –n

This command says to use the Netcat program (nc) to listen (-l) on port (-p) 8080
and to not (-n) resolve the hostnames.

On the third Linux console, I setup Netcat to listen on port 9999 and output the
results to the screen using the following command:
 nc –p 9999 –l –n

 9

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

I started a fourth Linux console ([ALT] – F4) and set the system to run Snort
using the same command that I described earlier.

Now I’m ready to run the test again. I modified the host file on the Windows 2000
virtual system to redirect traffic destined for 'collective7.zxy0.com' to the virtual
Linux system. I double-clicked ‘msrll.exe’ to run the code, however this time I will
allow the code to continue running.

I noticed immediately that the code began its work. Watching the snort output, I
saw that the code joined the IRC server in the '#mils' channel using the name
“CIlfgVjmO”. Because of the amount of traffic involved in joining an IRC channel,
for the sake of brevity, I am only including a small portion of the snort logs that
shows the infected host has logged on:
11/30-06:31:38.275148 192.168.234.130:6667 -> 192.168.234.128:1065
TCP TTL:64 TOS:0x0 ID:5035 IpLen:20 DgmLen:212 DF
AP Seq: 0xA9E17423 Ack: 0x16B6F872 Win: 0x16D0 TcpLen: 20
3A 43 49 6C 66 67 56 6A 6D 4F 21 77 6D 63 40 31 :CIlfgVjmO!wmc@1
39 32 2E 31 36 38 2E 32 33 34 2E 31 32 38 20 4A 92.168.234.128 J
4F 49 4E 20 3A 23 6D 69 6C 73 0D 0A 3A 6C 6F 63 OIN :#mils..:loc
61 6C 68 6F 73 74 2E 6C 6F 63 61 6C 64 6F 6D 61 alhost.localdoma
69 6E 20 33 35 33 20 43 49 6C 66 67 56 6A 6D 4F in 353 CIlfgVjmO
20 3D 20 23 6D 69 6C 73 20 3A 43 49 6C 66 67 56 = #mils :CIlfgV
6A 6D 4F 20 72 6F 6F 74 20 0D 0A 3A 6C 6F 63 61 jmO root ..:loca
6C 68 6F 73 74 2E 6C 6F 63 61 6C 64 6F 6D 61 69 lhost.localdomai
6E 20 33 36 36 20 43 49 6C 66 67 56 6A 6D 4F 20 n 366 CIlfgVjmO
23 6D 69 6C 73 20 3A 45 6E 64 20 6F 66 20 2F 4E #mils :End of /N
41 4D 45 53 20 6C 69 73 74 2E 0D 0A AMES list...

Netcat captured the following data from port 8080:
USER vewZOXgfPnWks localhost 0:gjhrRDAoHyTtDLbmAZWTOnJCEgilLJOjcWOjnXJTg
NICK uCvSxgIkKBO

Below is the log from snort:
11/30-06:29:32.580315 192.168.234.128:1064 -> 192.168.234.130:8080
TCP TTL:128 TOS:0x0 ID:708 IpLen:20 DgmLen:131 DF
AP Seq: 0x1571CC5C Ack: 0xA3F37A22 Win: 0x4470 TcpLen: 20
55 53 45 52 20 76 65 77 5A 4F 58 67 66 50 6E 57 USER vewZOXgfPnW
6B 73 20 6C 6F 63 61 6C 68 6F 73 74 20 30 20 3A ks localhost 0 :
67 6A 68 72 52 44 41 6F 48 79 54 74 44 4C 62 6D gjhrRDAoHyTtDLbm
41 5A 57 54 4F 6E 4A 43 45 67 69 6C 4C 4A 4F 6A AZWTOnJCEgilLJOj
63 57 4F 6A 6E 58 4A 54 67 0A 4E 49 43 4B 20 75 cWOjnXJTg.NICK u
43 76 53 78 67 49 6B 4B 42 4F 0A CvSxgIkKBO.

And from port 9999:
USER cXrCTuqGWKQQ localhost 0 :OqrDQXDzxKfqMvdoOLWdiDPzTq
NICK LIppDdAniYir

 10

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Below is the log from snort:
11/30-06:28:30.585884 192.168.234.128:1063 -> 192.168.234.130:9999
TCP TTL:128 TOS:0x0 ID:697 IpLen:20 DgmLen:116 DF
AP Seq: 0x1498C77B Ack: 0x9FF634CC Win: 0x4470 TcpLen: 20
55 53 45 52 20 63 58 72 43 54 75 71 47 57 4B 51 USER cXrCTuqGWKQ
51 20 6C 6F 63 61 6C 68 6F 73 74 20 30 20 3A 4F Q localhost 0 :O
71 72 44 51 58 44 7A 78 4B 66 71 4D 76 64 6F 4F qrDQXDzxKfqMvdoO
4C 57 64 69 44 50 7A 54 71 0A 4E 49 43 4B 20 4C LWdiDPzTq.NICK L
49 70 70 44 64 41 6E 69 59 69 72 0A IppDdAniYir.

I quickly joined the #mils channel as root by using the command ‘/join’ and
performed the ‘/names’ command. This command will list all the users who are
in the room. The results were:
/join #mils command to join the #mils chat room
*** root (~root@127.0.0.1) has joined channel #mils root joins channel
*** #mils 1103717105 channel joined and timestamp
/names
Pub: #mils name of public roomCilfgVjmO root current users in room

Note: the timestamp is in Unix Time, which is the number of seconds since Jan
1, 1970 at 12:00 am. 18

I tried various techniques to communicate with the code using various IRC
commands, however I was unable to gain a response. The data that was sent to
ports 9999 and 8080 appear to be more nicks and user names for the IRC
channel.

I haven’t forgotten how the code opened up an apparent backdoor on the host
machine. I performed various attempts to connect to the infected system by
using telnet and ftp commands from the Linux system, however I was unable to
completely connect. As a last resort, I attempted to connect by using the netcat
program and received an error.

[root@localhost root]# nc –v 192.168.234.128 2200 command
192.168.234.128: inverse host lookup failed: Host name lookup failure
(UNKNOWN) [192.168.234.128] 2200 (?) open

The command is “nc” and it is to display connection information (-v) when
connecting to 192.168.234.128 on port 2200. 19

Lacking additional information, I am unable to further analyze the code’s
behavior.

CODE ANALYSIS

I used the BinText program earlier and detected that the code was packed with
“Aspack”. My curiosity got the better side of me and I decided to search and see

 11

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

if I could locate an unpacker for this particular code. Using the Google search
engine, I stumbled upon a website that contained a plethora of various unpacking
utilities.20 After some trial and error, I found that the utility called ‘AspackDie
1.3d’ unpacked ‘msrll.exe’ without any errors into a file called ‘unpacked.ExE’. I
used the following command:
 C:\>AspackDie msrll.exe unpacked.ExE

Now that I had the code unpacked, I renamed the unpacked version to msrll.exe
and replaced the original packed msrll.exe at c:\winnt\system32\mfm. I decided
to use BinText again to see if I can harvest more information from the code. The
results were astounding and I detected several interesting items that weren’t
noticed before. I saved the search results into a text file called ‘strings.txt’ for
further review. There are 13 pages of strings, therefore I will only comment on
the interesting snippets of information.

These items are modules used in Linux in installing, unloading, and listing
modules. This code appears to be inserted into this code to provide Linux-like
capabilities on the infected system.
00001326 00401326 0 ?insmod
0000132E 0040132E 0 ?rmmod
00001335 00401335 0 ?lsmod

This is further affirmation that the code is to use modules on the infected system.
00001399 00401399 0 %s: <mod name>
000013A8 004013A8 0 %s: mod list full
000013BA 004013BA 0 %s: err: %u
000013C6 004013C6 0 mod_init
000013CF 004013CF 0 mod_free
000013D8 004013D8 0 %s: cannot init %s
000013EB 004013EB 0 %s: %s loaded (%u)
000013FE 004013FE 0 %s: mod allready loaded
00001416 00401416 0 %s:%s err %u
000015B5 004015B5 0 %s:%s not found
000015C5 004015C5 0 %s: unloading %s

This indicates that this code could be used as a zombie. A zombie is a controlled
computer that can be used to perform ‘Distributed Denial of Service (DDoS)
attacks. The ‘?ping’ may be a reference to the “Ping of Death” attack. The ‘?jolt’
may be a reference to a similar attack called the 'Jolt Attack'. The ‘?smurf’ may
be a reference to another popular attack called the 'Smurf Attack'. 21

00002753 00402753 0 ?ping
00002763 00402763 0 ?smurf
0000276A 0040276A 0 ?jolt

This is interesting; this is exactly what the code forwarded to the Linux machine
on ports 9999 and 8080.
00003C20 00403C20 0 USER %s localhost 0 :%s

 12

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

00003C38 00403C38 0 NICK %s

This is the first reference to the ‘jtram.conf’ filed that was detected being placed
into the ‘c:\winnt\mfm\’ file on the infected host.
000069EB 004069EB 0 jtram.conf

This appears to be the part of the code that contains the IRC bot. “mIRC” is a
popular IRC tool that is freely available. 22
000074C9 004074C9 0 mIRC v6.12 Khaled Mardam-Bey

These appear to be the commands that can be used to control the bot. I notice
that some of these commands such as ‘?clone’ and ‘?!fif’ don’t appear to be
typical ‘mIRC’ commands. These could be commands created by the
programmer to provide added functionality to the bot. The ‘?exec’ command
could be used to remotely execute files on the infected system.
0000934E 0040934E 0 ?clone
00009355 00409355 0 ?clones
0000935D 0040935D 0 ?login
00009364 00409364 0 ?uptime
0000936C 0040936C 0 ?reboot
00009374 00409374 0 ?status
0000937C 0040937C 0 ?jump
00009382 00409382 0 ?nick
00009388 00409388 0 ?echo
0000938E 0040938E 0 ?hush
00009394 00409394 0 ?wget
0000939A 0040939A 0 ?join
000093A9 004093A9 0 ?akick
000093B0 004093B0 0 ?part
000093B6 004093B6 0 ?dump
000093C6 004093C6 0 ?md5p
000093CC 004093CC 0 ?free
000093D7 004093D7 0 ?update
000093DF 004093DF 0 ?hostname
000093EE 004093EE 0 ?!fif
000093FE 004093FE 0 ?play
00009404 00409404 0 ?copy
0000940A 0040940A 0 ?move
00009415 00409415 0 ?sums
00009423 00409423 0 ?rmdir
0000942A 0040942A 0 ?mkdir
00009436 00409436 0 ?exec
00009440 00409440 0 ?kill
00009446 00409446 0 ?killall
0000944F 0040944F 0 ?crash
0000946E 0040946E 0 ?sklist
00009476 00409476 0 ?unset

 13

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

0000947D 0040947D 0 ?uattr
00009484 00409484 0 ?dccsk
00009490 00409490 0 ?killsk

This is another reference to the ‘jtram.conf’ file and it appears that this is the part
of the code that is used when writing to the file.
000099E0 004099E0 0 jtram.conf
000099EB 004099EB 0 jtr.*
000099F5 004099F5 0 DiCHFc2ioiVmb3cb4zZ7zWZH1oM=
00009A16 00409A16 0 conf_dump: wrote %u lines

This is interesting. The ‘bot.port’ could be referencing the backdoor that was
established on TCP port 2200 on the infected system. Notice that ‘bad pass’
could be the code that is used when a bad password from a remote system is
used when attempting to connect. If I was able to at least discover the proper
logon procedure to the backdoor, it may be possible to reverse engineer and
discover the correct password using the Ollydbg utility.
0000BB40 0040BB40 0 dcc.pass
0000BB49 0040BB49 0 bot.port
0000BB52 0040BB52 0 %s bad pass from "%s"@%s
0000BCC9 0040BCC9 0 %s: connect from %s

Now it is easy to see that this is the section of the code that determines what
servers this particular bot will attempt to connect to. We can also see that that it
will try to connect to ports 9999 and 8080. I do notice, however that there is an
exclamation point after ‘9999’.
0000BD6E 0040BD6E 0 servers
0000BD80 0040BD80 0
collective7.zxy0.com,collective7.zxy0.com:9999!,collective7.zxy0.com:8080
0000BDCA 0040BDCA 0 irc.chan
0000BDD3 0040BDD3 0 #mils

This may be the section of code that may be the logon and quitting procedures
for the backdoor. I attempted the logon several times with this format and was
unable to get a response.
0000C5BA 0040C5BA 0 %s : USERID : UNIX : %s
0000C6A4 0040C6A4 0 QUIT :FUCK %u
0000C742 0040C742 0 Killed!? Arrg! [%u]
0000C756 0040C756 0 QUIT :%s

This is the name of the service that starts up automatically when the infected
system reboots.
0000C897 0040C897 0 Rll enhanced drive

Finally, there are references to various types of hashing mechanisms, ciphers
and encryption tools. I will only include a few here:
0000F140 0040F140 0 md5.c

 14

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

0000FDBC 0040FDBC 0 rc6.c
0001114B 0041114B 0 Blowfish
00011157 00411157 0 RC2
0001115E 0041115E 0 RC5
00011165 00411165 0 RC6
0001116C 0041116C 0 Serpent
000111D0 004111D0 0 SHA-512
000111DB 004111DB 0 SHA-384
000111E6 004111E6 0 SHA-256
000111F1 004111F1 0 TIGER
0001124A 0041124A 0 Yarrow
00011254 00411254 0 SPRNG

Now is the time to use Ollydbg to show the internal workings of the code as it is
run. To begin the process, I start the Ollydbg program. Next, I need to open the
file [F3], browse to the executable code and select “Open”. The code is now
exposed and is possible to examine how it works.

The first thing that I want to examine is what is in the jtram.conf. The file is
referenced on line 004099E0; however, a few lines after on lines 004099F5 and
00409A05 these ASCII characters are referenced:

 DiCHFc2ioiVmb3cb4zZ7zWZH1oM=

This may be an encryption key to what is put into the jtram.conf. To confirm, I
need to bypass this line as the code writes to jtram.conf. In the main window, I
browse to the location using the scroll bar and locate the reference at line
00409A05. Next I right-click on the line select “Binary” and then “Fill with 00’s”.
Hopefully when the code attempts to encrypt the contents for the jtram.conf file,
the encryption will not work because the key will be nothing but 00’s.

The next step is to delete the jtram.conf file in c:\winnt\system32\mfm folder and
then restart the code [CTRL + F2] and then selecting “Yes”. A few moments
later, I noticed a fresh copy of jtram.conf suddenly appears in the
c:\winnt\system32\mfm folder. I open it up with notepad and found several
references to “collective7.zxy0.com”. Furthermore, I detected that that as long as
the code is running, jtram.conf is rewritten at least once an hour.

Next, I detected the reference in the code that specifies the port that is to be
opened as a backdoor. I searched [Ctrl + B] for the binary ASCII string “2200”
and landed on 0040BD52. To verify that this is the port, I changed the string to
say “2201” instead. Right click on the line Binary edit. Then change the
ASCII to 2201. I then stopped and restarted the code [CTRL-F2]. Moments
later, I ran the netstat –an on the commandline of the infected host and saw that
indeed a backdoor was now open on port 2201.

ANALYSIS WRAP UP

 15

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Codes capability

This code appears to be a bot that once executed, installs an IRC client that
connects to a predefined IRC server. The code then opens a backdoor on TCP
port 2200 that can allow a malicious user with the password to connect.

Once installed and connected to a remote IRC server, a malicious user can
control the infected system as a type of ‘zombie’. In the IRC realm, zombies are
considered as property by hackers and can be the platforms in which Distributed
Denial of Service (DDoS) attacks can be launched. The fact that there were
strings associated with DDOS attacks (smurf, jolt, ping) in the code, it is most
likely that this code fits within that category.

Defensive measures

There are several defensive measures that can be used to avoid getting this bot
in the first place.

1. Always utilize an antivirus program, especially with systems that have
access to the Internet. It is important to note, that antivirus programs
should be kept up to date with the latest antivirus definitions. Simply
installing the program will alone not do the trick as to numerous viruses
and malicious codes are discovered everyday.

2. Be very cautious when downloading a file from an unknown source. Many
seemingly harmless programs may contain a Trojan horse.

3. It is imperative to utilize firewalls. A properly configured firewall could
have kept this bot from opening a backdoor or at the very least, alerted the
system user. A properly configured firewall could have also kept the
infected system from connecting out to a remote IRC server on TCP port
6667.

Use a Snort rule to detect the code

Alert tcp $HOME_NET any -> any 6667 (msg:”Possible IRC access
(JOIN)”; flow:to_server,established; content:”JOIN”; classtype:misc-
attack; sid:1000001; rev:7; tag:session,30,seconds;)
To explain how this rule works goes beyond the scope of this analysis. At its
basics this rule is looking for TCP traffic in either direction to port 6667 with the
keyword “JOIN”. Any network traffic that meets these criteria could either be
legitimate IRC traffic, if IRC programs are allowed on the network, or it could be
an IRC bot. There is no guarantee that IRC Trojans and bots would use TCP
port 6667, but in this analysis, it is clear that msrll.exe does. Chris Hanna has
more information related to IRC bots and snort rules in his practical for the
GSEC. 23

Manually remove the code from the system

1. Start the system in safe mode. 24

 16

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

2. Browse to the c:\winnt\system32\mfm and delete msrll.exe and jtram.conf.
3. Remove the “mfm” folder from c:\winnt\system32.
4. Remove the following values from the registry:

a. Click Start Run
b. Type “regedit”
c. Navigate to the following keys and perform the following actions:

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm
 In the left pane, right click and delete the “mfm” folder.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm
 In the left pane, right click and delete the “mfm” folder.

REFERENCES

1 Foundstone, Inc. Strategic Security. “Free Tools”. 2003 – 2005. URL:
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subco
ntent=/resources/proddesc/bintext.htm

2 Russinovich, Mark, and Bryce Cogswell. “Utilities”. Sysinternals Freeware.
December 2004. URL: http://www.sysinternals.com/ntw2k/utilities.shtml

3 Yuschuk, Oleh. “OllyDgb v1.10”. 2000 – 2004. URL: http://home.t-
online.de/home/Ollydbg/.

4 Russinovich, Mark, and Bryce Cogswell. “Utilities”. Sysinternals Freeware.
December 2004. URL: http://www.sysinternals.com/ntw2k/utilities.shtml

5 Webattack. “RegShot download and review – monitor for registry changes
from SnapFiles”. 1997 – 2004. URL: http://www.snapfiles.com/get/regshot.html

6 Russinovich, Mark, and Bryce Cogswell. “Utilities”. Sysinternals Freeware.
December 2004. URL: http://www.sysinternals.com/ntw2k/utilities.shtml

7 Etree.org. “etree.org | md5sum”. 1998 – 2002. URL:
http://www.etree.org/md5com.html

8 Giacobbi, Giovanni. “The GNU Netcat – Official homepage”. 2004. URL:
http://netcat.sourceforge.net/

9 Caswell, Brian, and Marty Roesch. “Snort.org”. Sourcefire, Inc. 2005. URL:
http://www.snort.org/

10 “user32 – user32.dll – DLL Information”. Uniblue Systems. 2000 – 2004.
URL: http://www.liutilities.com/products/wintaskspro/dlllibrary/user32/

11 “shell32 – shell32.dll – DLL Information”. Uniblue Systems. 2000 – 2004.
URL: http://www.liutilities.com/products/wintaskspro/dlllibrary/shell32/

 17

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

12 “Aspack Software – Best Choice Compression and Protection Tools for
Software Developers”. Aspack Software. 2004. URL: http://www.aspack.com/

13 “The DLL zone – MSVCRT.DLL”. The DLL Zone. 1998. URL:
http://www.fortunecity.com/skyscraper/fortune/570/msvcrt.html

14 St. Johns, M. “RFC 1413 (rfc1413) – Identification Protocol”. US Department
of Defense. February 1993. URL: http://www.faqs.org/rfcs/rfc1413.html

15 “Simple DNS Plus”. JH Software. 1999 – 2004. URL:
http://www.jhsoft.com/help/index.html?df_hostsfile.htm

16 http://www.iana.org/assignments/port-numbers. Internet Corporation for
Assigned Names and Numbers. 2004. URL:
http://www.iana.org/assignments/port-numbers

17 Oikarinen, J, and D. Reed. “RFC1459, Internet Relay Chat Protocol”. May
1993. URL: http://rfc.net/rfc1459.html

18 Fogt, Robert. “Online Conversion – Unix time conversion”.
OnlineConversion.Com. 1997 – 2002. URL:
http://www.onlineconversion.com/unix_time.htm

19 Armstrong, Tom. “Netcat – The TCP/IP Swiss Army Knife”. February 2001.
URL: http://m.nu/program/util/netcat/netcat.html

20 “Aaron’s Homepage”. URL: http://www.exetools.com/unpackers.htm

21 “Denial of Service or Nuke Attacks”. IRCHELP.ORG. 2004. URL:
http://www.irchelp.org/irchelp/nuke/info.html.

22 “Vonck, Tjerk. “mIRC – An Internet Relay Chat program”. MIRC Co. 1995 –
2004. URL: www.mirc.com.

23 Hanna, Christopher W. “Using Snort to Detect Rogue IRC Bot Programs”.
GSEC Practical Version 1.4c. October 8, 2004. URL:
http://www.giac.org/practical/GSEC/Chris_Hanna_GSEC.pdf

24 “Starting your computer in Safe mode”. Symantec. November 8, 2004. URL:
http://service1.symantec.com/SUPPORT/tsgeninfo.nsf/docid/2001052409420406
?OpenDocument&src=sec_doc_nam

 18

