
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Reverse Engineering of an Unknown Malware

Abstract: Reverse engineer an unknown piece of malware using strict
methodology and industry standard tools. This process reveals the internals of
the malware and how it may be used. I determine the following characteristics as
detailed in my findings.

James Shewmaker

GREM Practical v1.0

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Introduction

Presented with an msrll.zip file that contains a piece of unknown malware, I
analyze the malware to determine use and purpose from the behavior and
contents. The examination begins from a cursory analysis of the file, followed by
a behavior analysis, and finally with a code level analysis.

Laboratory Setup

I use a compact but expandable system for analysis. It is set up for maximum
flexibility and minimum collateral damage. The following include:

Host Environment

Shuttle xPC model SN41G2
Windows XP Pro
DVD-ROM
3.5”floppy
Athlon 2100+
512 MB RAM
160 GB Western Digital WD1600JB
120 GB Samsung SV1204H

VMware Guests

FreeBSD 4.7-RELEASE
Windows 98 Second Edition
Windows XP Pro SP1

Description

This small form-factor PC is portable and expandable, which is why I chose it
over any laptop. It also includes a legacy RS-232 serial port (uncommon on
recent consumer hardware). This serial port is handy for logging on to a server
with a serial connection instead of using a network connection. This machine’s
features include typical onboard network, dual video adapters, PCI slot, USB 2.0,
and IEEE 1394 (firewire). The DVD-ROM currently uses the 5.25”bay, but it
may be removed for imaging drives easily.

To isolate any behavior and possible damage I use VMware’s Workstation1. I
have multiple VMware images for testing: Windows 98 Second Edition, Windows
XP Professional, and FreeBSD 4.7. An original version is archived, and ready to
update with the latest patches available. If for some reason I want to try an
original version, I can use the archived image instead.

1 VMware workstation product information and trial download:
http://www.vmware.com/products/desktop/ws_features.html

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

The 160 GB drive is formatted NTFS and is used for the Windows XP host
operating system, as well as storage for the VMware images. The 120 GB drive
has wiped by the command dd if=/dev/zero of=/dev/hdc which copies a zero
bit over each one on the drive. It is then formatted with ext2fs using default
settings. This 120 GB drive is only used for working storage during imaging and
mounting of images during testing.

For this analysis, I installed useful ports and software utilities (see Table 1)
before moving the virtual machine to the host only network.

VMware Workstation on the host computer uses a virtual switch in Host-Only
Mode to allow the target server and both test clients to communicate in an
isolated environment. The clients also use a gateway of 192.168.242.2, but the
host is not configured as a gateway. Internet addresses are assigned by the
VMware’s DHCP server and represented in Figure 1.

To move log files and the specimen to the environment, I temporarily plug the
host XP machine into a live hub (while still clean), and download the specimen to
the host onto the desktop. Any new files needed, and any interaction between
the host and the guest machines will be used via the physical floppy drive, if only
for the convenience of not adding network activity to the lab environment. After
downloading of the specimen to the host computer, the network cable is
completely removed to keep the lab as isolated as possible.

Figure 1

FreeBSD Image

The FreeBSD image provides a comfortable environment to begin analysis of a
system or software2. I also use this image for any server side needs and for
monitoring the virtual network. A generic kernel was used and all third party
software is installed from the /usr/ports system. Appendix A contains the

2 Instructions for obtaining, installing, and using the ports system with FreeBSD is available at
http://www.freebsd.org/handbook/

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

output of the dmesg command, which shows what hardware was detected by the
init process upon boot.

Software Version Platform Description
BIND8 8.3.6 FreeBSD commonly used DNS server
BitchX 1.1 FreeBSD commonly used IRC client
ircd-hybrid 7.0.2 FreeBSD commonly used IRC server
nmap 3.77 FreeBSD utility to scan the network

netcat 1.10_2 FreeBSD utility to read and write
data across the network

openssl 0.9.7e_1 FreeBSD opensource toolkit for SSL

snort 2.2.0 FreeBSD utilty for network intrusion
detection and sniffing

unzip 5.51
FreeBSD
and
Windows

utility to extract from .ZIP
files

Filemon 6.12 Windows utility to monitor file
activity

IDAPro 4.52 Windows disassembler for executable
files

Ollydbg 1.10 Windows debugger for executable files

Ollydmp 2.21b Windows plug-in to dump a process to
file

Regmon 6.12 Windows utility to monitor registry
activity

TDImon 1.01 Windows utility to monitor network
activity

VMware
Workstation 4.52 Windows virtual machine engine to

isolate the test environment

Table 1

Windows XP Pro Image

The primary testing image I use is a Windows XP Professional Service Pack 1
installation. I installed Regmon, Filemon, and TDImon from Sysinternals3. These
utilities can monitor various aspects of the testing image as it changes. For
binary analysis, I have installed Ollydbg4 for debugging. In the code analysis I
also make use of Ollydump, a plug-in for Ollydbg that allows me to dump process
to a file. All defaults were used when installing. A list of hardware and drivers
used on this machine is included in Appendix A.

Windows 98 Second Edition Image

The secondary test image is a Windows 98 Second Edition image patched to the
latest, with the same software installed as the Windows XP image. This image is
handy to test for different behavior that I may find on an older system. This

3 These and many other useful tools are available at
http://www.sysinternals.com/ntw2k/utilities.shtml
4 The Ollydbg homepage is at http://home.t-online.de/home/Ollydbg/

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

image is less useful for debugging than Windows XP, as there are less known
anti-debugging tricks5. As with the other guest operating systems, the System
hardware listing, is included in Appendix A.

Properties of the Malware Specimen

I begin the analysis in the FreeBSD virtual machine, so I can examine the binary
file in a comfortable and clean environment. First, I format a standard floppy,
copy the binary file to the floppy, and move the write-protect tab to the read-only
setting. This extra precaution helps me keep the original file intact while testing
with different machines.

Now that I have the file on a floppy, I enable the floppy drive for the virtual
machine, boot up the FreeBSD virtual machine, and put the floppy in my virtual
lab’s floppy drive. Once I login, I mount the floppy read-only, then copy and
verify the binary file. I also run the file command on the zip file and its contents
to ensure the files match their extensions. Figure 2 shows the commands and
their results. It appears to be a Microsoft Windows Portable Executable file. One
thing I see immediately that the file size did not change much while zipped, so it
is likely that the file is compressed or encrypted in someway already.

Figure 2

As nothing appears out of the ordinary, I examine this file with the strings
command to pull out any labels or other human readable strings of characters. If
I find an interesting string, I can use that information to analyze the file in further
detail. Potentially interesting ones are included below. During the code analysis
I uncover more strings, which are included in Appendix B. Also during the code

5 Červeň, p 96

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

analysis, I find that this binary is packed with Aspack to both compress and hide
the actual code.

!This program cannot be run in DOS mode.
VirtualAlloc
VirtualFree
kernel32.dll
ExitProcess
user32.dll
MessageBoxA
wsprintfA
LOADER ERROR
The procedure entry point %s could not be located in the dynamic link
library %s
The ordinal %u could not be located in the dynamic link library %s
kernel32.dll
GetProcAddress
GetModuleHandleA
LoadLibraryA
advapi32.dll
msvcrt.dll
msvcrt.dll
shell32.dll
user32.dll
version.dll
wininet.dll
ws2_32.dll
AdjustTokenPrivileges
_itoa
__getmainargs
ShellExecuteA
DispatchMessageA
GetFileVersionInfoA
InternetCloseHandle
WSAGetLastError

These strings extracted from the malware tell me very little about our specimen.
The dll references hint at what I should expect from the malware, though they
seem fairly generic. The potentially interesting strings are in Table 2 below.

File Purpose

Advapi32.dll Access the registry

Msvcrt.dll Microsoft C Runtime Library

shell32.dll Command interface

wininet.dll Win32 Internet library

ws2_32.dll Win32 socket library version 2

Table 2

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

The key file properties of our msrll.exe malware are:
 File type: MS Windows Aspack Executable Program

 Size: 41,984 bytes

 Md5sum: 84acfe96a98590813413122c12c11aaa

Behavioral Analysis

To examine the behavior of this binary, I use my Windows XP virtual machine. I
use Regmon, Filemon, and TDImon tools from Sysinternals to analyze the
registry, file, and network activity respectively. These utilities start logging
automatically, and I save their output to a floppy by clicking on the floppy icon.
These logs files are then saved independently of the machine so I can revert to a
clean state without losing my logs.

I place the msrll.exe on the virtual machine in the C:\SPECIMEN\ folder via
another standard floppy. I use the cmd command prompt to run the file with the
full path. This allows for command-line arguments and watching for any output to
the console.

To minimize polluting the logs with access of the other monitoring tools, I create
a snapshot before executing the malware and running each test independently.
Although this results in different process ID numbers, I can focus on the process
itself instead of the monitoring tools tracking themselves.

On the FreeBSD server, I create a logging folder to isolate all snort logging in
/usr/local/test/mal-01/. I start a snort process with the following command to
records any network traffic and highlight known traffic signatures.

sort –vd –l /usr/local/test/mal-01/ | tee /usr/local/test/mal-01.log

The –v flag enables verbose mode, the –vd flag enables headers and application
data6 and the –l flag7 logs to the new directory. Then the standard output is
piped through the tee command to display the standard output to the screen as
well as the mal-01.log file. This will provide a complete log of the network traffic,
when TDImon only shows connection information of the host it is running on.

6 Snort sniffing mode flags described at http://www.snort.org/docs/snort_manual/node4.html
7 Snort logging flag described at http://www.snort.org/docs/snort_manual/node5.html

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Registry Activity

Regmon shows a large amount of activity, so I will focus on the key areas. The
first item that catches my eye is the creation of a service, highlighted below at
time offset 2.16355542 in Figure 3. Windows XP uses services to run on the
system level independent of any active user.

Figure 3

In Figure 4, I see the first msrll.exe process (process ID =760) start a second
copy of itself (process ID=252).

Figure 4

I also see what appears to be enumeration of Internet settings. This could be a
natural side effect of typical network traffic. Highlighted below in Figure 5, I see
Internet cache entries being set by the new msrll process.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 5

I also see this process examine network settings in the registry. Figure 6 shows
the new process checking DNS client settings then successfully finding the
hostname.

Figure 6

I see that the malware creates registry entries appropriate to run as a service
C:\WINOWS\System32\mfm\msrll.exe. The registry activity of the malware shows
network activity. I also see that two msrll.exe processes access the registry.
There may be more registry activity depending on the use of the process, but
without more information on its behavior I will not be able to trigger it.

File Activity

Filemon records the creation of the C:\WINDOWS\SYSTEM32\MFM\ directory and
creates a new msrll.exe file in Figure 7. Sometimes malware will hide as a
legitimate system process as a disguise8. This malware is probably pretending
to be a service related to MFM standard hard drives, the precursor to IDE9.

8 Skoudis, p. 257
9 A summary of likely uses of the malware’s disguise is at
http://kb.indiana.edu/data/adlt.html?cust=4074217.7239.131

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 7

Filemon displays where the original process deletes itself then confirms it is
unavailable by trying to read from the file (Figure 8).

Figure 8

A C:\WINDOWS\System32\mfm\jtram.conf file is created, and I see more dll activity
in Figure 8. Access to rasadhlp.dll and rsaenh.dll is also shown. This
activity is significant because a normal executable would list its library use in an
imports table and our strings output showed different libraries.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 9

After quite a bit of rsaenh.dll use, I see where data is being written to this new
file in Figure 10. The C:\dev\random OPEN entries may be significant as well,
since it repeatedly tries and fails.

Figure 10

The msrll.exe file activity included creation of the C:\WINDOWS\System32\mfm\
directory, creation of a new msrll.exe and jtram.conf files, dll usage, and
C:\dev\random open attempts.

Network Activity

I monitor network activity with snort on the FreeBSD machine and TDImon on the
Windows machine. Running TDImon ensures I see at least connection
information of any network traffic on the client machine. Snort is used to gather
all content of the packets as well as the header information.

One of the first things I see with TDImon is the malware opens a local port for
listening. Figure 11 shows the necessary network changes involved while
deploying this server on port 2200.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 11

A DNS request and another service listening on port 113 (Figure 12), which is
typically used for IDENT servers to identify which user on the system is
connecting.

Figure 12

Snort captures the DNS requests: collective7.zxy0.com and
collective7.zxy0.test.com. The appending of test.com is the natural
progression of the DNS resolver. The Windows XP machine has a domain of
test.com, so it tests to see if the hostname was intended to be in the local
domain.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 13

I add the alias of 192.168.242.201 to the FreeBSD network adapter by running
/sbin/ifconfig lnc0 alias 192.168.242.201 netmask 255.255.255.255. I
create a zone file for zxy0.com in /etc/namedb/zxy0.txt and edit
/etc/namedb/named.boot to load the new zone file. I create the bare minimum
zone and add an address record for collective7 to point to this new IP address.
After restarting my DNS process with killall –HUP named and reverting the
Windows XP machine back to the clean state, I run the malware again to see
what it tries to do with the DNS information.

Figure 14 shows TDImon recording the successful DNS lookup and tries to
connect to port 6667 on the 192.168.242.201 IP address. This is a commonly
used IRC port number, and IRC is a typical component of many malware
samples.

Figure 14

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

I launch a basic configuration of ircd-hybrid on the FreeBSD machine and start
the malware process again. I also connect with a command line IRC client
named BitchX to my new IRC server for observation as the user malobserv
(commands are shown in Figure 15). The flags used are -c channel, -H host, -p
port, -n nickname.

Figure 15

The client once again tries to connect to port 6667 and is successful, and I also
see the use of port 113 as the IDENT lookup on XP machine. The client’s name
appears random and it joins the #mils channel (see Figure 16 below).

Figure 16

The client only sends WHO and PING after the JOIN #mils command in Figure
17, as is normal when an initial IRC connection is made. It appears that the
client is fully connected and waiting for the next step.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 17

The client will join the #mils channel if I am already on the channel, but it seems
to not respond to anything typed into the chat or with a private message (ie: /msg
YgjMSRcZT). As I have ran out of clues to follow, and the monitoring tools have
not uncovered any new ground I try to connect to the malware’s service on port
2200.

When I connect a telnet client to its server on port 2200, I only get a prompt of #=
and any attempts to send non-whitespace data result only in disconnection after
the second whitespace. Trying to communicate with the new user on my ircd-
hybrid server also has no response.

I generally observed the same behavior on the Windows 98 system. The
differences were minimal, namely the use of C:\WINDOWS\System\mfm\jtram.con
as the configuration which follows Windows 98 practices. Since Windows 98
does not have services in the same way that XP does, the malware sets a
registry value (shown in Figure 18 below) to run the
C:\WINDOWS\System\mfm\msrll.exe file on startup.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 18

Now that I have watched individual behavior, I run the malware on both Windows
clients. Neither client shows any different behavior when multiple copies are
connected. I will continue the behavior analysis during the code analysis
process.

I attempt to determine the services listening on the ports by running nmap from
the FreeBSD server. Nmap is a great tool that can help identify machines and
services over the network. I run nmap with the flags -sV for scan and verify
services, -p 1- for scanning ports one and above, followed by the IP address of
the client machine. In Figure 19, nmap was unable to determine the service
listening on port 2200, calls the port 113 service “auth?”and correctly determines
that the MAC address is in the range assigned to VMware. Port 139 is standard
for Windows networking (SMB).

Figure 19

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

So far the malware has demonstrated the typical backdoor behavior of opening
up a listening port. It also behaves like a Trojan where it attempts to
masquerade as a RLL driver in the local services. To uncover any new info in
our lab environment, I will have to combine the behavior analysis with analyzing
the code of this malware.

Code Analysis

My code analysis process takes advantage of the monitoring tools I have already
used, but now in conjunction with my debugger. I can run a procedure and
observe the behavior immediately. This method quickly isolates the observed
behavior to a certain part of the malware. I also insert comments into Ollydbg (by
pressing the “;”key) as I see interesting information or anything that might be a
procedure call. Even if I do not understand a part of the code, I at least label it so
that I know at least I have seen the code before. I can peek ahead at a call or
jump by selecting the instruction and pressing Enter then return to the paused
instruction by pressing the * key. These simple steps help maintain an organized
analysis.

Another important factor in this code analysis is that I keep the monitoring
footprint to minimum impact. I use breakpoints sparingly and only run the
monitoring tools when I am ready to observe that procedure. This removes a
large number of anti-debugging and anti-disassembly tricks from complicating the
analysis. However, it is still possible to check the Windows Registry or physical
files if the software is not active, so I still prefer to animate through the malware
code. Ollydbg provides Ctrl+F7 and Ctrl+F8 to animate into and animate over
instructions respectively, which can be interrupted with a key press if I would like
to pause at the current command. With these analysis concepts in mind, I begin
to analyze the malware’s internal code.

Initially I see that the compressed malware is only a few bytes more than the
zipped file, which usually indicates that the internal file is already compressed or
encrypted in some way. The strings output did not yield any connection
information, so the malware must have at least that portion of itself hidden. I will
step through the initial lines of code to gain a deeper understanding.

To step through the malware for code analysis I use Ollydbg. I open Ollydbg,
select File then Open and select C:\specimen\msrll.exe. Ollydbg displays an
abnormal entry point warning, shown in Figure 20.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 20

This warning means the executable does not start at a standard entry point. To
view the malware’s layout, I select View then Memory. I highlight the “.aspack”
section (Figure 21) and begin an online search for “aspack”.

Figure 21

I find and try eight different unpackers in an effort to decode this malware.
Eventually I was able to use “AspackDie 1.1”to unpack it10 and attempt to open
the file with Ollydbg. Unfortunately, Ollydbg will not load this unpacked malware.

In order to continue the code analysis, I unpack the code manually using Ollydbg
and the Ollydump plug-in. I see from Figure 21 the PE header of the msrll file

10 A list of utilities to unpack files protected with aspack is at
http://www.exetools.com/unpackers.htm

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

starts at address x40000; this information will be necessary when we dump the
unpacked file later.

Ollydbg initializes and places me at 0x51D001, which is what the memory map
said was the entry point. I step once into the first instruction (PUSHAD) of the file
by pressing F7. Now the next instruction is a function call. Since the file is
packed, this call is likely the beginning of the unpack routine, so that the file can
run normally when executed.

To see the malware unpacked, I need to pause the program after the unpack
routine, but just before running the original program.11 In the Registers windows, I
select ESP with the mouse, right-click, and select Follow in Dump (Figure 22).

Figure 22

Now that Ollydbg has moved the Dump window to the new address
(x0022FFA4), I select the first four bytes and right click, selecting Breakpoint,
“Hardware, on access”, and Dword (show in Figure 23). Now the program will
break when the program reads these four bytes, which should be the first
instruction of the program after this unpacking business.

11 CrackZ confirms our OEP assumption quoting the Aspack author at
http://www.woodmann.com/crackz/Packers.htm#aspack_asprotect

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 23

To execute to the breakpoint, I press F9. It breaks at address x51D3B0. I
should be passing the unpacking code and nearing the start of the original msrll,
now that my breakpoint has been triggered. I step into the jump and two more
commands before Ollydbg stops on a "DB 6A" at x401240 (See Figure 24).

Figure 24

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 25

Since I am currently in the data section of the file, Ollydbg does not try to
interpret the bytes into assembly, so I force it to analyze the code with another
right-click menu from the first instruction (Figure 25 above). Now Ollydbg
displays useful assembly code of what must be the original msrll program. A
side by side comparison of the unanalyzed and analyzed code is in Figure 26.
This address of x4101240 must be the original entry point (OEP).

Figure 26

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

I can save my progress so far by dumping this unpacked code into a file. I use a
plug-in for Ollydbg called Ollydump12. Ollydump automatically places my current
instruction (EIP) in the OEP offset, and I save the dump to
C:\specimen\unpacked_msrll.exe. I use Ollydbg’s command on this new file,
which reveals more intriguing items to watch while debugging, such as “PASS”,
“smurf,”and “jolt2.”The complete strings output of this unpacked file is included
in Appendix B.

Now I continue to animate through the code, pausing and adding comments to
subroutines as I encounter them. This is a long process but is the easiest way to
find interesting items without making assumptions and possibly missing
something important.

The loop beginning at x4118AE checks the full path of the executable. I see at
x40BE66 that it starts building the string "mfm" which must be where the
msrll.exe file is copied to the C:\WINDOWS\System32\mfm\ directory and the
jtram.conf file is created (see Figure 26 below).

Figure 27

Also in Figure 27, I see the malware create a new copy of the file in this new
folder. The malware runs the new copy and terminates the original copy. My first

12 Ollydump and other Ollydbg plug-ins are available at
http://ollydbg.win32asmcommunity.net/stuph/

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

impression of the /d command flag is to delete a file, in this case the original
malware. Figure 28 shows deletion, execution, and exit of the current process.

Figure 28

Since I was not tracing through this new file, it runs outside of the debugger as
normal, resulting in the jtram.conf file. I would like to see this file getting created,
so I close the debugger, delete it, and open C:\WINDOWS\System32\mfm\msrll.exe
in Ollydbg. Now I will have to repeat the manual unpacking again, since this new
file was copied from the original specimen executable.

After animating over the file until I see references to this file, I see it create an
empty jtram.conf file at x409FD5 (see Figure 29). A little later, I see where the
malware starts writing to the file, after some encryption of the data.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 29

The string used for encryption is stored in the ESI register, which contains
DiCHFc2ioiVmb3cb4zZ7zWZH1oM= as a key. This key is used repeatedly to encode
each of the settings (see stack area in the bottom right of Figure 30).

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 30

The two password strings look like md5 hashes, similar to what would be used
on a Unix like system. I noticed the similarity of the first characters were similar
to a shadow password file I examined recently, so I created a sample shadow
password file with these passwords, ran a password cracking program known as
“john.”I run the cracker on a separate machine while I proceed with the analysis
hoping that it will uncover a password.

The unencrypted jtram.conf is displayed in Figure 31. This information was
gathered by watching the stack before each line was encrypted. Now that I have
all the settings, I do not need to decrypt the file outside of the malware process
by reproducing the decryption functionality. The dcc.pass reference is likely
related to irc’s dcc command, used for sending and receiving files.

Figure 31

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

I look through the rest of the code and find a few references that hint at the
malware’s capabilities. I see a few printf-formatted strings with IRC syntax, as
seen below in Figure 32 (also seen in Appendix B).

Figure 32

In Figure 33, I see the string “smurf done”which sounds like a reference to a
smurf attack13. A smurf attack is a special form of Denial of Service attack. A
Denial of Service attack is designed to exhaust resources of the target14.

13 Smurf attacks are a type of Denial of Service attack. For a full description on smurf attacks,
see http://www.nordu.net/articles/smurf.html
14 Skoudis, p. 121

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 33

To isolate the precise moment where the malware reads any input from any port,
I set a breakpoint at addresses at two places I see a call to the ws2_32.dll recv
function, x40DD22 and x40E70D. Setting the hardware breakpoints on access in
the dump window as I have done previously should trigger the breakpoints.
Unfortunately, when sending data to either port 2200 or to the irc client, neither
breakpoint is triggered. This could mean that there is another way to receive
traffic or that there is an anti-debugging feature that disrupts the breakpoint.

Without running the process normally then breaking at the network input time, it
is difficult to learn more about the authentication of the malware irc client or
server on port 2200. Tracing and stepping to these points are unsuccessful:
timeouts in network traffic from slowing the process down.

Taking a second look at the strings output of the unpacked malware, I see that
parts of the code were taken from LibTomCrypt 0.83 and mIRC v6.12 (see
Appendix B). There is also what appears to be a command listing, shown partly
in Figure 34 below.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Figure 34

The code analysis was integral to learning about the capabilities of the malware.
I would not have been able to see these features without being able to step into
the code and unpack the malware. The unpacked strings results show that the
malware is intended to send and receive files, run a program, listen as a service,
and communicate via IRC.

Summary

This malware is an IRC server and client. The specimen has an IRC client that
connects to collective7.zxy0.com and its own IRC server on port 2200. It has
an IDENT server running on port 113 to respond to client authorization attempts
typical in IRC usage. There is a reference of smurf and jolt processes, so it also
appears to have a Denial of Service attack component.

The configuration file’s password settings look to be standard md5 hashes,
typical of a Unix like /etc/passwd file, but after 24 full days of using the john
cracker program on a Pentium 4 2.4 GHz FreeBSD 4.10-STABLE server as the

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

only user process, no password match was found for the pass or dcc.pass
values.

The dcc.pass setting implies that the client can be used for sending and
retrieving files via the dcc functionality in IRC. This could be used to mine email
address, financial information, or any other type of data stored in files on the
victim.

Removal of the tool is easiest by booting into Safe Mode, keeping the process
from running automatically. If the system is Windows 98 or earlier, remove the
HKLM/Software/Microsoft/Windows/CurrentVersion/Run/Rll enhanced drive
registry value. In other Windows systems, delete the entire
HKLM/System/CurrentControlSet/Services/mfm key and reboot. To delete the
actual files, remove the entire C:\WINDOWS\System\mfm\ or
C:\WINDOWS\System32\mfm\ directory.

An egress proxy restricting outgoing IRC use would significantly limit the damage
spread by this malware. Machines that do not protect their registry from
unauthorized changes should be locked down to ensure they would not
automatically run this malware. Many brands of antivirus products will also
detect this and similar malware, even though they would not qualify as a virus.

A major weakness of the msrll.exe malware is it depends on name resolution to
communicate. To thwart use of compromised victims, local DNS servers could
redirect requests for the zxy0.com domain elsewhere.

The malware uses standard security and networking Windows libraries. The
functionality appears to be built up so that the malware behaves practically the
same on older versions of Windows as it does on the latest ones. The flexibility
of the IRC file transfer and control would be valuable to any villain.

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

REFERENCES

“Aaron's Homepage.”20 Nov. 2004. <http://www.exetools.com/unpackers.htm>

Čereň, Pavol. Crackproof Your Software. San Francisco: No Starch Press, 2002.

CrackZ. “Packers & Unpackers.”06 May 2004. 20 Dec. 2004.
<http://www.woodmann.com/crackz/Packers.htm#aspack_asprotect>

“FreeBSD Handbook.”2004. The FreeBSD Project. 20 Nov. 2004.
<http://www.freebsd.org/handbook/>

“For the PC, what are the differences between MFM, RLL, IDE, EIDE, ATA,
ESDI, and SCSI hard drives?”2005. The Trustees of Indiana University. 11 Nov.
2004. <http://kb.indiana.edu/data/adlt.html?cust=4074217.7239.131>

“Ollydbg stuph.”Win32ASM Community. 10 Jun. 2004.
<http://ollydbg.win32asmcommunity.net/stuph/>

“Preventing Smurf Attacks.”Nordunet Information Service. 20 Nov. 2004.
<http://www.nordu.net/articles/smurf.html>

“Products -- VMware Workstation 4.5.”2004. VMware. 15 Nov. 2004
<http://www.vmware.com/products/desktop/ws_features.html>

Roesh, Martin and Chris Green. “SnortUsers Manual 2.2.0.”2003. 20 Nov. 2004.
<http://www.snort.org/docs/snort_manual/snort_manual.html>

Russinovich, Mark and Bryce Cogswell. “Sysinternals Freeware - Utilities for
Windows NT and Windows 2000.”15 Nov. 2004
<http://www.sysinternals.com/ntw2k/utilities.shtml>

Skoudis, Ed with Lenny Zeltser. Malware: Fighting Malicious Code. Upper Saddle
River: Pretence Hall, 2004

Yuschuk, Oleh. “OllyDbg v1.10.”08 Jun. 2004. 15 Nov. 2004. <http://home.t-
online.de/home/Ollydbg/>

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Appendix A –System Configurations

Guest FreeBSD Environment

Copyright (c) 1992-2002 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994

The Regents of the University of California. All rights reserved.
FreeBSD 4.7-RELEASE #0: Wed Oct 9 15:08:34 GMT 2002

root@builder.freebsdmall.com:/usr/obj/usr/src/sys/GENERIC
Timecounter "i8254" frequency 1193182 Hz
CPU: AMD Athlon(tm) XP 2100+ (1730.25-MHz 686-class CPU)
Origin = "AuthenticAMD" Id = 0x681 Stepping = 1

Features=0x383fbff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR,PGE,MCA,CMOV,PAT,PSE3
6,MMX,FXSR,SSE>
AMD Features=0xc0400000<AMIE,DSP,3DNow!>

real memory = 100663296 (98304K bytes)
avail memory = 92639232 (90468K bytes)
Preloaded elf kernel "kernel" at 0xc050f000.
md0: Malloc disk
Using $PIR table, 9 entries at 0xc00fdf30
npx0: <math processor> on motherboard
npx0: INT 16 interface
pcib0: <Intel 82443BX (440 BX) host to PCI bridge> on motherboard
pci0: <PCI bus> on pcib0
pcib1: <Intel 82443BX (440 BX) PCI-PCI (AGP) bridge> at device 1.0 on pci0
pci1: <PCI bus> on pcib1
isab0: <Intel 82371AB PCI to ISA bridge> at device 7.0 on pci0
isa0: <ISA bus> on isab0
atapci0: <Intel PIIX4 ATA33 controller> port 0x1050-0x105f at device 7.1 on pci0
ata0: at 0x1f0 irq 14 on atapci0
ata1: at 0x170 irq 15 on atapci0
uhci0: <Intel 82371AB/EB (PIIX4) USB controller> port 0x1060-0x107f irq 9 at device 7.2
on pci0
usb0: <Intel 82371AB/EB (PIIX4) USB controller> on uhci0
usb0: USB revision 1.0
uhub0: Intel UHCI root hub, class 9/0, rev 1.00/1.00, addr 1
uhub0: 2 ports with 2 removable, self powered
chip1: <Intel 82371AB Power management controller> port 0x1040-0x104f at device 7.3 on
pci0
pci0: <VGA-compatible display device> at 15.0
bt0: <Buslogic Multi-Master SCSI Host Adapter> port 0x1440-0x145f mem 0xf8000000-
0xf800001f irq 11 at device 16.0 on pci0
bt0: BT-958 FW Rev. 5.07B Ultra Wide SCSI Host Adapter, SCSI ID 7, 192 CCBs
lnc0: <PCNet/PCI Ethernet adapter> port 0x1080-0x10ff irq 10 at device 17.0 on pci0
lnc0: PCnet-PCI II address 00:0c:29:28:c2:5d
lnc0: driver is using old-style compatibility shims
pci0: <unknown card> (vendor=0x1274, dev=0x1371) at 18.0 irq 9
orm0: <Option ROMs> at iomem 0xc0000-0xc7fff,0xc8000-0xc8fff,0xdc000-0xdffff,0xe4000-
0xe7fff on isa0
fdc0: <Intel 82077 or clone> at port 0x3f0-0x3f5,0x3f7 irq 6 drq 2 on isa0
fdc0: FIFO enabled, 8 bytes threshold
fd0: <1440-KB 3.5" drive> on fdc0 drive 0
atkbdc0: <Keyboard controller (i8042)> at port 0x60,0x64 on isa0
atkbd0: <AT Keyboard> flags 0x1 irq 1 on atkbdc0
kbd0 at atkbd0
psm0: failed to get data.
psm0: <PS/2 Mouse> irq 12 on atkbdc0
psm0: model IntelliMouse, device ID 3
vga0: <Generic ISA VGA> at port 0x3c0-0x3df iomem 0xa0000-0xbffff on isa0
sc0: <System console> at flags 0x100 on isa0
sc0: VGA <16 virtual consoles, flags=0x300>
sio0 at port 0x3f8-0x3ff irq 4 flags 0x10 on isa0
sio0: type 16550A
sio1 at port 0x2f8-0x2ff irq 3 on isa0
sio1: type 16550A

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

ppc0: <Parallel port> at port 0x378-0x37f irq 7 on isa0
ppc0: Generic chipset (NIBBLE-only) in COMPATIBLE mode
plip0: <PLIP network interface> on ppbus0
lpt0: <Printer> on ppbus0
lpt0: Interrupt-driven port
ppi0: <Parallel I/O> on ppbus0
ad0: 4095MB <VMware Virtual IDE Hard Drive> [8322/16/63] at ata0-master UDMA33
acd0: DVD-ROM <VMware Virtual IDE CDROM Drive> at ata1-master PIO4
Waiting 15 seconds for SCSI devices to settle
Mounting root from ufs:/dev/ad0s1a

Guest Windows XP Environment

Resource Summary Report - Page: 1

******************** SYSTEM SUMMARY ********************

Windows Version: Windows 5.1 Service Pack 1 (Build 2600)
Registered Owner: Jim Shewmaker
Registered Organization:
Computer Name: TESTXP
Machine Type: AT/AT COMPATIBLE
System BIOS Version: PTLTD - 6040000
System BIOS Date: 04/21/04
Processor Type: x86 Family 6 Model 8 Stepping 1
Processor Vendor: AuthenticAMD
Number of Processors: 1
Physical Memory: 224 MB

******************** DISK DRIVE INFO ********************

Drive A:
Type: 3.5" 1.44MB floppy disk drive
Total Space: 1,474,560 bytes
Heads: 2
Cylinders: 80
Sectors Per Track: 18
Bytes Per Sector: 512

Drive C:
Type: Fixed disk drive
Total Space: 10,725,732,352 bytes
Free Space: 9,234,546,688 bytes
Heads: 255
Cylinders: 1305
Sectors Per Track: 63
Bytes Per Sector: 512

Drive D:
Type: CD-ROM drive
Total Space: 654,311,424 bytes

******************** IRQ SUMMARY ********************

IRQ Usage Summary:
(ISA) 0 System timer
(ISA) 1 Standard 101/102-Key or Microsoft Natural PS/2 Keyboard
(ISA) 3 Communications Port (COM2)
(ISA) 4 Communications Port (COM1)
(ISA) 6 Standard floppy disk controller
(ISA) 8 System CMOS/real time clock
(ISA) 9 Microsoft ACPI-Compliant System
*(PCI) 11 SCSI Controller
(ISA) 12 PS/2 Compatible Mouse
(ISA) 14 Primary IDE Channel
(ISA) 15 Secondary IDE Channel
(PCI) 18 AMD PCNET Family PCI Ethernet Adapter
(PCI) 19 Intel(r) 82371AB/EB PCI to USB Universal Host Controller

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

(PCI) 19 Creative AudioPCI (ES1371,ES1373) (WDM)

******************** DMA USAGE SUMMARY ********************

DMA Usage Summary:

Resource Summary Report - Page: 2

2 Standard floppy disk controller
4 Direct memory access controller

******************** MEMORY SUMMARY ********************

Memory Usage Summary:
[000A0000 - 000BFFFF] PCI bus
[000A0000 - 000BFFFF] VgaSave

[000CC000 - 000CFFFF] PCI bus
[000D0000 - 000D3FFF] PCI bus
[000D4000 - 000D7FFF] PCI bus
[000D8000 - 000DBFFF] PCI bus
[000E0000 - 000E3FFF] PCI bus
[0E000000 - FFDFFFFF] PCI bus
*[F4000000 - F400001F] SCSI Controller
*[F5000000 - F5FFFFFF] Video Controller (VGA Compatible)
*[F6000000 - F6FFFFFF] Video Controller (VGA Compatible)

******************** IO PORT SUMMARY ********************

I/O Ports Usage Summary:
[00000000 - 00000CF7] PCI bus
[00000000 - 0000000F] Direct memory access controller
[00000010 - 0000001F] Motherboard resources
[00000020 - 00000021] EISA programmable interrupt controller
[00000024 - 00000025] Motherboard resources
[00000028 - 00000029] Motherboard resources
[0000002C - 0000002D] Motherboard resources
[00000030 - 00000031] Motherboard resources
[00000034 - 00000035] Motherboard resources
[00000038 - 00000039] Motherboard resources
[0000003C - 0000003D] Motherboard resources
[00000040 - 00000043] System timer
[00000050 - 00000053] Motherboard resources
[00000060 - 00000060] Standard 101/102-Key or Microsoft Natural PS/2 Keyb
[00000061 - 00000061] System speaker
[00000064 - 00000064] Standard 101/102-Key or Microsoft Natural PS/2 Keyb
[00000070 - 00000071] System CMOS/real time clock
[00000072 - 00000077] Motherboard resources
[00000080 - 00000080] Motherboard resources
[00000081 - 0000008F] Direct memory access controller
[00000090 - 0000009F] Motherboard resources
[000000A0 - 000000A1] EISA programmable interrupt controller
[000000A4 - 000000A5] Motherboard resources
[000000A8 - 000000A9] Motherboard resources
[000000AC - 000000AD] Motherboard resources
[000000B0 - 000000B5] Motherboard resources
[000000B8 - 000000B9] Motherboard resources
[000000BC - 000000BD] Motherboard resources
[000000C0 - 000000DF] Direct memory access controller
[00000170 - 00000177] Secondary IDE Channel
[000001CE - 000001CF] VgaSave
[000001F0 - 000001F7] Primary IDE Channel
[00000200 - 00000207] Game Port for Creative
[00000274 - 00000277] ISAPNP Read Data Port
[00000279 - 00000279] ISAPNP Read Data Port
[000002E8 - 000002EF] VgaSave
[000002F8 - 000002FF] Communications Port (COM2)

Resource Summary Report - Page: 3

[00000376 - 00000376] Secondary IDE Channel
[00000378 - 0000037F] Printer Port (LPT1)

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

[000003B0 - 000003BB] VgaSave
[000003C0 - 000003DF] VgaSave
[000003F0 - 000003F5] Standard floppy disk controller
[000003F6 - 000003F6] Primary IDE Channel
[000003F7 - 000003F7] Standard floppy disk controller
[000003F8 - 000003FF] Communications Port (COM1)
[000004D0 - 000004D1] EISA programmable interrupt controller
[00000A79 - 00000A79] ISAPNP Read Data Port

[00000D00 - 0000FFFF] PCI bus
[00001000 - 0000103F] Motherboard resources
[00001040 - 0000104F] Motherboard resources
[00001050 - 0000105F] Intel(r) 82371AB/EB PCI Bus Master IDE Controller
[00001060 - 0000107F] Intel(r) 82371AB/EB PCI to USB Universal Host Contr
[00001080 - 000010FF] AMD PCNET Family PCI Ethernet Adapter
[00001400 - 0000143F] Creative AudioPCI (ES1371,ES1373) (WDM)
*[00001440 - 0000145F] SCSI Controller
*[00001460 - 0000146F] Video Controller (VGA Compatible)

Guest Windows 98SE Environment

Resource Summary Report - Page: 1

******************** SYSTEM SUMMARY ********************

Windows version: 4.10.2222
Computer Name: Unknown
System BUS Type: ISA
BIOS Name: Unknown
BIOS Date: 04/21/04
BIOS Version: EPP revision 9.00
Machine Type: IBM PC/AT
Processor Vendor: AuthenticAMD
Processor Type: AMD Athlon(tm) XP 2100+
Math Co-processor: Present
Registered Owner: James Shewmaker
Registered Company: bluenotch

******************** IRQ SUMMARY ********************

IRQ Usage Summary:
00 - System timer
01 - Standard 101/102-Key or Microsoft Natural Keyboard
02 - EISA programmable interrupt controller
03 - Communications Port (COM2)
04 - Communications Port (COM1)
05 - Printer Port (LPT1)
06 - Standard Floppy Disk Controller
07 - AMD PCNET Family Ethernet Adapter (PCI-ISA)
07 - ACPI IRQ Holder for PCI IRQ Steering
08 - System CMOS/real time clock
09 - ACPI IRQ Holder for PCI IRQ Steering
09 - SCI IRQ used by ACPI bus
09 - Intel 82371AB/EB PCI to USB Universal Host Controller
11 - ACPI IRQ Holder for PCI IRQ Steering
11 - BusLogic MultiMaster PCI SCSI Host Adapters
12 - VMware Pointing Device
13 - Numeric data processor
14 - Primary IDE controller (dual fifo)
14 - Intel 82371AB/EB PCI Bus Master IDE Controller
15 - Secondary IDE controller (dual fifo)
15 - Intel 82371AB/EB PCI Bus Master IDE Controller

******************** IO PORT SUMMARY ********************

I/O Port Usage Summary:
0000h-000Fh - Direct memory access controller
0010h-001Fh - Motherboard resources
0020h-0021h - EISA programmable interrupt controller

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

0024h-0025h - Motherboard resources
0028h-0029h - Motherboard resources
002Ch-002Dh - Motherboard resources
0030h-0031h - Motherboard resources
0034h-0035h - Motherboard resources
0038h-0039h - Motherboard resources
003Ch-003Dh - Motherboard resources
0040h-0043h - System timer
0050h-0053h - Motherboard resources
0060h-0060h - Standard 101/102-Key or Microsoft Natural Keyboard
0061h-0061h - System speaker

System Resource Report - Page: 2

0064h-0064h - Standard 101/102-Key or Microsoft Natural Keyboard
0070h-0071h - System CMOS/real time clock
0072h-0077h - Motherboard resources
0080h-0080h - Motherboard resources
0081h-008Fh - Direct memory access controller
0090h-009Fh - Motherboard resources
00A0h-00A1h - EISA programmable interrupt controller
00A4h-00A5h - Motherboard resources
00A8h-00A9h - Motherboard resources
00ACh-00ADh - Motherboard resources
00B0h-00B5h - Motherboard resources
00B8h-00B9h - Motherboard resources
00BCh-00BDh - Motherboard resources
00C0h-00DFh - Direct memory access controller
00F0h-00FFh - Numeric data processor
0170h-0177h - Intel 82371AB/EB PCI Bus Master IDE Controller
0170h-0177h - Secondary IDE controller (dual fifo)
01F0h-01F7h - Primary IDE controller (dual fifo)
01F0h-01F7h - Intel 82371AB/EB PCI Bus Master IDE Controller
02F8h-02FFh - Communications Port (COM2)
0376h-0376h - Secondary IDE controller (dual fifo)
0376h-0376h - Intel 82371AB/EB PCI Bus Master IDE Controller
0378h-037Fh - Printer Port (LPT1)
03B0h-03BBh - VMware SVGA II
03C0h-03DFh - VMware SVGA II
03F0h-03F5h - Standard Floppy Disk Controller
03F6h-03F6h - Intel 82371AB/EB PCI Bus Master IDE Controller
03F6h-03F6h - Primary IDE controller (dual fifo)
03F7h-03F7h - Standard Floppy Disk Controller
03F8h-03FFh - Communications Port (COM1)
04D0h-04D1h - EISA programmable interrupt controller
0CF8h-0CFFh - PCI bus
1000h-103Fh - Motherboard resources
1040h-104Fh - Motherboard resources
1050h-1057h - Primary IDE controller (dual fifo)
1050h-105Fh - Intel 82371AB/EB PCI Bus Master IDE Controller
1058h-105Fh - Secondary IDE controller (dual fifo)
1060h-107Fh - Intel 82371AB/EB PCI to USB Universal Host Controller
1080h-108Fh - VMware SVGA II
10A0h-10BFh - BusLogic MultiMaster PCI SCSI Host Adapters
1400h-147Fh - AMD PCNET Family Ethernet Adapter (PCI-ISA)

******************** UPPER MEMORY USAGE SUMMARY ********************

Memory Usage Summary:
000A0000h-000AFFFFh - VMware SVGA II
000B0000h-000BFFFFh - VMware SVGA II
000C0000h-000C7FFFh - VMware SVGA II
000C8000h-000C8FFFh - AMD PCNET Family Ethernet Adapter (PCI-ISA)
03000000h-03007FFFh - VMware SVGA II
F8000000h-FBFFFFFFh - Intel 82443BX Pentium(r) II Processor to PCI bridge (
FC000000h-FCFFFFFFh - VMware SVGA II
FD000000h-FDFFFFFFh - VMware SVGA II
FE000000h-FE00001Fh - BusLogic MultiMaster PCI SCSI Host Adapters

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

Appendix B –Strings in Unpacked Malware

[^_]
?insmod
?rmmod
?lsmod
=t0A
%s: <mod name>
%s: mod list full
%s: err: %u
mod_init
mod_free
%s: cannot init %s
%s: %s loaded (%u)
%s: mod allready loaded
%s:%s err %u
[^_]
%s:%s not found
%s: unloading %s
[^_]
[%u]: %s hinst:%x
[^_]
unloading %s
%s: invalid_addr: %s
%s%s [port]
[^_]
finished %s
F Pj
[^_]
%s <ip> <port> <t_time> <delay>
[^_]
sockopt: %u
sendto err: %u
sockraw: %u
syn: done
F Pj
F Pj
F Pj
[^_]
%s <ip> <duration> <delay>
[^_]
sendto: %u
jolt2: done
F Pj
[^_]
%s <ip> <p size> <duration> <delay>
hi#@
7h`"@
[^_]
Err: %u
smurf done
Pj h
PhV#@
h^#@
[^_]
&err: %u
G Pj
[^_]
?ping
?udp
?syn
?smurf
?jolt
PONG :%s
0h (@
[^_]
[^_]
%s!%s@%s
%PSh

[^_]
%s!%s
; u
SVh=+@
[^_]
irc.nick
NICK %s
MODE
hV,@
=P1A
[^_]
NETWORK=
[^_]
[^_]
irc.pre
[^_]
%s__
__%s
%s``
_%s`
_%s__
__%s__
__%s___
NICK %s
NICK
%s %s
[^_]
[^_]
;&uJ
j'SV
[^_]
[^_]
irc.chan
WSj
[^_]
%s %s
WHO %s
PPhV,@
hu7@
[^_]
USERHOST %s
logged into %s(%s) as %s
<$hE:@
PhR:@
[^_]
j%VW
[^_]
nick.pre
%s-%04u
irc.user
irc.usereal
irc.real
irc.pass
tsend(): connection to %s:%u failed
USER %s localhost 0 :%s
NICK %s
Ph <@
[^_]
8:u:
: t;
[^_]
PING
PRIVMSG
JOIN
QUIT
PART
KICK

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

trecv(): Disconnected from %s err:%u
=P2A
[^_]
[^_]
NOTICE
%s %s :%s
hrD@
Ph}D@
[^_]
MODE %s -o+b %s *@%s
C'PSWh
Sh'G@
[^_]
MODE %s -bo %s %s
CmPW
Sh'G@
[^_]
[^_]
%s.key
h$I@
Ph'G@
[^_]
sk#%u %s is dead!
s_check: %s dead? pinging...
PING :ok
s_check: send error to %s disconnecting
expect the worst
s_check: killing socket %s
irc.knick
jtr.%u%s.iso
ison %s
servers
s_check: trying %s
h(K@
Ph9K@
hTK@
h^K@
PhkK@
ShtK@
8:u.
uYVh|K@
hA<@
[^_]
%s.mode
MODE %s %s
ShRP@
Sh$I@
PShZP@
[^_]
[^_]
hP3A
hX3A
h^3A
hf3A
h<R@
hk3A
[^_]
[^_]
mode %s +o %s
akick
mode %s +b %s %s
KICK %s %s
[^_]
irc.pre
Set an irc sock to preform %s command on
Type

%csklist
to view current sockets, then
%cdccsk
<#>
Ph`W@

%s: dll loaded
%s: %d
[^_]
hA<@
RhHY@
RhHY@
said %s to %s
usage: %s <target> "text"
hHY@
[^_]
%s not on %s
usage: %s <nick> <chan>
htZ@
[^_]
PASS
%s logged in
Sh [@
sys: %s bot: %s
preformance counter not avail
usage: %s <cmd>
%s free'd
unable to free %s
0h+\@
RSVj
later!
unable to %s errno:%u
service:%c user:%s inet connection:%c
contype:%s reboot privs:%c
Ph@]@
kill
%-5u %s
h#^@
[^_]
%s: %s
%s: somefile
PhHY@
[^_]
host: %s ip: %s
C Ph
capGetDriverDescriptionA
XP++
cpus:%u
CAM
WIN%s (u:%s)%s%s mem:(%u/%u) %u%% %s %s
hp4A
hib@
=l4A
=l4A
hh4A
=l4A
5d4A
[^_]
open
%s: %s (%u)
[^_]
[^_]
NICK
%s %s
%s bad args
3hTg@
[^_]
akick
KICK
%s[%u] %s
%s removed
couldnt find %s
%s added
%s allready in list
usage: %s +/- <host>
8-u0
8+uN

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

7h*h@
h?h@
[^_]
jtram.conf
%s /t %s
jtr.home
%s\%s
%s: possibly failed: code %u
%s: possibly failed
%s: exec of %s failed err: %u
u.exf
Ph+j@
Ph?j@
[^_]
jtr.id
%s: <url> <id>
h]j@
[^_]
[^_]
hyn@
IRC
DCC
DATH
IATH
IREG
CLON
ICON
RNL
RBN
WSN
WCON
LSN
SSL
S>S
#%u [fd:%u] %s:%u [%s%s] last:%u
|\=> [n:%s fh:%s] (%s)
|
|---[%s] (%u) %s
| |-[%s%s] [%s]
|=> (%s) (%.8x)

h@o@
B$PRhco@
=p5A
h}o@
F'PV
[^_]
%s <pass> <salt>
3h`s@
[^_]
%s <nick> <chan>
!%s!
h5t@
PING %s
mIRC v6.12 Khaled Mardam-Bey
VERSION %s
dcc.pass
temp add %s
$h%u@
[^_]
[^_]
%s%u-%s
%s opened (%u)
%u bytes from %s in %u seconds saved to
%s
(%s %s): incomplete! %u bytes
couldnt open %s err:%u
(%s) %s: %s
(%s) urlopen failed
(%s): inetopen failed
Whjv@
hrv@

hGY@
Ph w@
[^_]
no file name in %s
h6w@
[^_]
[^_]
%s created
[^_]
%s %s to %s Ok
3hI~@
[^_]
%0.2u/%0.2u/%0.2u %0.2u:%0.2u %15s %s
%s (err: %u)
[^_]
ShHY@
err: %u
%s %s :ok
[^_]
unable to %s %s (err: %u)
ShHY@
[^_]
%-16s %s
%-16s (%u.%u.%u.%u)
[^_]
hHY@
[%s][%s] %s
[^_]
closing %u [%s:%u]
unable to close socket %u
[^_]
[^_]
using sock #%u %s:%u (%s)
Invalid sock
usage %s <socks #>
leaves %s
:0 * * :%s
hHY@
[^_]
joins: %s
chat
ACCEPT
resume
err: %u
DCC ACCEPT %s %s %s
dcc_resume: cant find port %s
send
dcc.dir
%s\%s\%s\%s
unable to open (%s): %u
resuming dcc from %s to %s
DCC RESUME %s %s %u
[^_]
h iA
h iA
[^_]
?ssl
?clone
?clones
?login
?uptime
?reboot
?status
?jump
?nick
?echo
?hush
?wget
?join
?aop
?akick

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

?part
?dump
?set
?die
?md5p
?free
?raw
?update
?hostname
?fif
?!fif
?del
?pwd
?play
?copy
?move
?dir
?sums
?rmdir
?mkdir
?run
?exec
?kill
?killall
?crash
?dcc
?get
?say
?msg
?sklist
?unset
?uattr
?dccsk
?con
?killsk
VERSION*
PING
IDENT
[^_]
%ud %02uh %02um %02us
%02uh %02um %02us
%um %02us
[^_]
[^_]
[^_]
[^_]
jtram.conf
jtr.*
DiCHFc2ioiVmb3cb4zZ7zWZH1oM=
conf_dump: wrote %u lines
[^_]
[^_]
> u
[^_]
get of %s incomplete at %u bytes
get of %s completed (%u bytes), %u
seconds %u cps
error while writing to %s (%u)
[^_]
chdir: %s -> %s (%u)
,Ph\
dcc_wait: get of %s from %s timed out
dcc_wait: closing [#%u] %s:%u (%s)
PRhP
[^_]
SEND
%4s #%.2u %s %ucps %u%% [sk#%u] %s
%u Send(s) %u Get(s) (%u transfer(s)
total) UP:%ucps DOWN:%ucps Total:%ucps
PRQh0
[^_]

send of %s incomplete at %u bytes
send of %s completed (%u bytes), %u
seconds %u cps
cant open %s (err:%u) pwd:{%s}
DCC SEND %s %u %u %u
$Sho
[^_]
[^_]
[^_]
%s %s
%s exited with code %u
%s\%s
%s: %s
exec: Error:%u pwd:%s cmd:%s
[^_]
dcc.pass
bot.port
%s bad pass from "%s"@%s
%s: connect from %s
h0;A
jtr.bin
msrll.exe
jtr.home
2200
jtr.id
run5
irc.quit
servers
collective7.zxy0.com,collective7.zxy0.com
:9999!,collective7.zxy0.com:8080
irc.chan
#mils
pass
1KZLPLKDf$W8kl8Jr1X8DOHZsmIp9qq0
1KZLPLKDf$55isA1ITvamR7bjAdBziX.
m220
=P;A
SSL_get_error
SSL_load_error_strings
SSL_library_init
SSLv3_client_method
SSL_set_connect_state
SSL_CTX_new
SSL_new
SSL_set_fd
SSL_connect
SSL_write
SSL_read
SSL_shutdown
SSL_free
SSL_CTX_free
kernel32.dll
QueryPerformanceCounter
QueryPerformanceFrequency
RegisterServiceProcess
jtram.conf
[^_]
irc.user
%s : USERID : UNIX : %s
QUIT :FUCK %u
Killed!? Arrg! [%u]
QUIT :%s
SeShutdownPrivilege
%s\%s
%s\%s\%s
Rll enhanced drive
software\microsoft\windows\currentversion
\run
/d "%s"
open
WSVh

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

[^_]
[^_]
>*uj
>*uY
>*t!
< u&
[^_]
-N;u
[^_]
./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabc
defghijklmnopqrstuvwxyz
IQhx
8$t+
IQRS
IQRS
5pSA
IQRS
5pSA
IQRS
5pSA
5pSA
[^_]
IQhx
[^_]
[^_]
Ph~f
[^_]
Ph~f
[^_]
=,;A
=(;A
[^_]
[^_]
= ;A
[^_]
[^_]
[^_]
[^_]
usage %s: server[:port] amount
[^_]
%s: %s
%s %s %s <PARAM>
JOIN
PART
%s: [NETWORK|all] %s <"parm"> ...
[^_]
USER %s localhost 0 :%s
NICK %s
PSVh
[^_]
md5.c
md != NULL
QZ^&
[^_]
j*h@
buf != NULL
[^_]
hash != NULL
[^_]
message digest
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmno
pqrstuvwxyz0123456789
12345678901234567890123456789012345678901
234567890123456789012345678901234567890
iw&a
ki}|
RZ/1
IQRS
[^_]
sprng

sprng.c
buf != NULL
rc6.c
skey != NULL
key != NULL
[^_]
ct != NULL
pt != NULL
[^_]
+0+x
[^_]
#4EVgx
$5FWhy
#4EVgx
$5FWhy
#4EVgx
$5FWhy
gN]HU
[^_]
desired_keysize != NULL
ctr.c
ctr != NULL
key != NULL
count != NULL
[^_]
ct != NULL
pt != NULL
[^_]
j)h0
j(h0
j'h0
WVSS
[^_]
jMh0
jLh0
jKh0
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmno
pqrstuvwxyz0123456789+/
?456789:;<=
!"#$%&'()*+,-./0123
base64.c
outlen != NULL
out != NULL
in != NULL
WVSP
[^_]
@A;E
j)hP
j(hP
j'hP
[^_]
jVhP
jUhP
jThP
_ARGCHK '%s' failure on line %d of file
%s
crypt.c
name != NULL
[^_]
[^_]
[^_]
[^_]
cipher != NULL
WVSV
[^_]
hash != NULL
WVSW
[^_]
WVSP
[^_]
prng != NULL

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

WVSP
[^_]
WVSP
[^_]
LibTomCrypt 0.83
Endianess: little (32-bit words)
Clean stack: disabled
Ciphers built-in:

Blowfish
RC2
RC5
RC6
Serpent
Safer+
Safer
Rijndael
XTEA
Twofish
CAST5
Noekeon

Hashes built-in:
SHA-512
SHA-384
SHA-256
TIGER
SHA1
MD5
MD4
MD2

Block Chaining Modes:
CFB
OFB
CTR

PRNG:
Yarrow
SPRNG
RC4

PK Algs:
RSA
DH
ECC
KR

Compiler:
WIN32 platform detected.
GCC compiler detected.

Various others: BASE64 MPI HMAC
/dev/random
[^_]
Microsoft Base Cryptographic Provider
v1.0
bits.c
buf != NULL
t9VWS
[^_]
prng != NULL
[^_]
<"tx< tf< t
< tV< t
< tJ< tF
-LIBGCCW32-EH-SJLJ-GTHR-MINGW32
Q4_]
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
WVSQ
[^_]

,[^_]
uE;}
<ip> <total secs> <p size> <delay>
modem
Lan
Proxy
??
none
m220 1.0 #2730 Mar 16 11:47:38 2004
unable to %s %s (err: %u)
unable to kill %s (%u)
%s killed (pid:%u)
AVICAP32.dll
unable to kill %u (%u)
pid %u killed
error!
ran ok
MODE %s +o %s
set %s %s
Mozilla/4.0
Accept: */*
<DIR>
Could not copy %s to %s
%s copied to %s
0123456789abcdef
%s unset
unable to unset %s
(%s) %s
%s %s
libssl32.dll
libeay32.dll
<die|join|part|raw|msg>
AdjustTokenPrivileges
CloseServiceHandle
CreateServiceA
CryptAcquireContextA
CryptGenRandom
CryptReleaseContext
GetUserNameA
LookupPrivilegeValueA
OpenProcessToken
OpenSCManagerA
RegCloseKey
RegCreateKeyExA
RegSetValueExA
RegisterServiceCtrlHandlerA
SetServiceStatus
StartServiceCtrlDispatcherA
AddAtomA
CloseHandle
CopyFileA
CreateDirectoryA
CreateFileA
CreateMutexA
CreatePipe
CreateProcessA
CreateToolhelp32Snapshot
DeleteFileA
DuplicateHandle
EnterCriticalSection
ExitProcess
ExitThread
FileTimeToSystemTime
FindAtomA
FindClose
FindFirstFileA
FindNextFileA
FreeLibrary
GetAtomNameA
GetCommandLineA
GetCurrentDirectoryA

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

GetCurrentProcess
GetCurrentThreadId
GetExitCodeProcess
GetFileSize
GetFullPathNameA
GetLastError
GetModuleFileNameA
GetModuleHandleA
GetProcAddress
GetStartupInfoA
GetSystemDirectoryA
GetSystemInfo
GetTempPathA
GetTickCount
GetVersionExA
GlobalMemoryStatus
InitializeCriticalSection
IsBadReadPtr
LeaveCriticalSection
LoadLibraryA
MoveFileA
OpenProcess
PeekNamedPipe
Process32First
Process32Next
QueryPerformanceFrequency
ReadFile
ReleaseMutex
RemoveDirectoryA
SetConsoleCtrlHandler
SetCurrentDirectoryA
SetFilePointer
SetUnhandledExceptionFilter
Sleep
TerminateProcess
WaitForSingleObject
WriteFile
_itoa
_stat
_strdup
_stricmp
__getmainargs
__p__environ
__p__fmode
__set_app_type
_beginthread
_cexit
_errno
_fileno
_iob
_onexit
_setmode
_vsnprintf
abort
atexit
atoi
clock
fclose
fflush
fgets
fopen
fprintf
fread
free
fwrite
malloc
memcpy
memset
printf
raise
rand

realloc
setvbuf
signal
sprintf
srand
strcat
strchr
strcmp
strcpy
strerror
strncat
strncmp
strncpy
strstr
time
toupper
ShellExecuteA
DispatchMessageA
ExitWindowsEx
GetMessageA
PeekMessageA
GetFileVersionInfoA
VerQueryValueA
InternetCloseHandle
InternetGetConnectedState
InternetOpenA
InternetOpenUrlA
InternetReadFile
WSAGetLastError
WSASocketA
WSAStartup
__WSAFDIsSet
accept
bind
closesocket
connect
gethostbyaddr
gethostbyname
gethostname
getsockname
htonl
htons
inet_addr
inet_ntoa
ioctlsocket
listen
ntohl
recv
select
send
sendto
setsockopt
shutdown
socket
ADVAPI32.DLL
KERNEL32.dll
msvcrt.dll
msvcrt.dll
SHELL32.DLL
USER32.dll
VERSION.dll
WININET.DLL
WS2_32.DLL
]^SP
]kSW
VirtualAlloc
VirtualFree
PQVS
t.x,
[^YX
kernel32.dll

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

ExitProcess
user32.dll
MessageBoxA
wsprintfA
LOADER ERROR
The procedure entry point %s could not be
located in the dynamic link library %s
The ordinal %u could not be located in
the dynamic link library %s
(08@P`p
|$,3
T$ v
(C@;
t$h3
D4l|M
_^]2
;;F,s
,;F0s
;F4s
;F8s
0>@D
_^][
T4$F
`u(j
L4#H
L4$F
_^][
_^][
_^][
D$$W3
0"@D
5>@D
D$ %
;|$(
8_^]
_^]2
kernel32.dll
GetProcAddress
GetModuleHandleA
LoadLibraryA
advapi32.dll
msvcrt.dll
msvcrt.dll
shell32.dll
user32.dll
version.dll
wininet.dll
ws2_32.dll
AdjustTokenPrivileges
_itoa
__getmainargs
ShellExecuteA
DispatchMessageA
GetFileVersionInfoA
InternetCloseHandle
WSAGetLastError
advapi32.dll
AdjustTokenPrivileges
CloseServiceHandle
CreateServiceA
CryptAcquireContextA
CryptGenRandom
CryptReleaseContext
GetUserNameA
LookupPrivilegeValueA
OpenProcessToken
OpenSCManagerA
RegCloseKey
RegCreateKeyExA
RegSetValueExA
RegisterServiceCtrlHandlerA

SetServiceStatus
StartServiceCtrlDispatcherA
kernel32.dll
AddAtomA
CloseHandle
CopyFileA
CreateDirectoryA
CreateFileA
CreateMutexA
CreatePipe
CreateProcessA
CreateToolhelp32Snapshot
DeleteFileA
DuplicateHandle
EnterCriticalSection
ExitProcess
ExitThread
FileTimeToSystemTime
FindAtomA
FindClose
FindFirstFileA
FindNextFileA
FreeLibrary
GetAtomNameA
GetCommandLineA
GetCurrentDirectoryA
GetCurrentProcess
GetCurrentThreadId
GetExitCodeProcess
GetFileSize
GetFullPathNameA
GetLastError
GetModuleFileNameA
GetModuleHandleA
GetProcAddress
GetStartupInfoA
GetSystemDirectoryA
GetSystemInfo
GetTempPathA
GetTickCount
GetVersionExA
GlobalMemoryStatus
InitializeCriticalSection
IsBadReadPtr
LeaveCriticalSection
LoadLibraryA
MoveFileA
OpenProcess
PeekNamedPipe
Process32First
Process32Next
QueryPerformanceFrequency
ReadFile
ReleaseMutex
RemoveDirectoryA
SetConsoleCtrlHandler
SetCurrentDirectoryA
SetFilePointer
SetUnhandledExceptionFilter
Sleep
TerminateProcess
WaitForSingleObject
WriteFile
msvcrt.dll
_itoa
_stat
_mbsdup
_strcmpi
msvcrt.dll
__getmainargs
__p__environ

© SANS In
sti

tu
te

20
05

, A
uth

or
 re

tai
ns f

ull r
igh

ts.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, Author retains full rights.

__p__fmode
__set_app_type
_beginthread
_cexit
_errno
_fileno
_iob
_onexit
_setmode
_vsnprintf
abort
atexit
atoi
clock
fclose
fflush
fgets
fopen
fprintf
fread
free
fwrite
malloc
memcpy
memset
printf
raise
rand
realloc
setvbuf
signal
sprintf
srand
_mbscat
strchr
strcmp
_mbscpy
strerror
strncat
strncmp
strncpy
strstr
time
toupper

shell32.dll
ShellExecuteA
USER32.dll
DispatchMessageA
ExitWindowsEx
GetMessageA
PeekMessageA
version.dll
GetFileVersionInfoA
VerQueryValueA
wininet.dll
InternetCloseHandle
InternetGetConnectedState
InternetOpenA
InternetOpenUrlA
InternetReadFile
ws2_32.dll
WSAGetLastError
WSASocketA
WSAStartup
__WSAFDIsSet
accept
bind
closesocket
connect
gethostbyaddr
gethostbyname
gethostname
getsockname
htonl
htons
inet_addr
inet_ntoa
ioctlsocket
listen
htonl
recv
select
send
sendto
setsockopt
shutdown
socket

