
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem


©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

GIAC Reverse Engineering Malware  
GREM Practical Assignment Version 1.0 

 
Reverse Engineering MSRLL.EXE 

 
Bryan Fendley 

 
December 2004 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

  

Table of Contents 
 
Abstract …………………………………………………………………….1 
 
Laboratory Setup ………………………………………………………….1 
  
Properties of the Malware Specimen    .…………………………………7 
  
Behavioral Analysis ………………………………………………………..9 
  
Code Analysis ……………………………………………………………..17 
  
Analysis Wrap-up    ……………………………………………………….23 
  
References   ……………………………………………………………….25



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 1 
 

Abstract 
This paper is the practical assignment necessary for the completion of the SANS 
ILOT Certificate in Reverse Engineering Malware. The paper will demonstrate 
the process of methodically analyzing a malware specimen in a controlled 
environment. The paper will demonstrate the methodology explained during the 
course as well as demonstrate an example testing environment and softwares 
that can be used during the analysis process.  Many of the programs used are 
free.  Some software is not free but trial versions are available. 
 
Section 1: Laboratory Setup 
The following is a description of the laboratory setup including networking, 
hardware, and software that I used during the course and for the analysis of the 
practical assignment in reverse engineering malware.  
 
Section 1.1 Operating Systems 
Operating systems used during my analysis included Microsoft Windows XP and 
Red Hat Linux 2.4.20-8.  The Linux operating system was used to run an IRC 
server and Telnet during this particular analysis to attempt to communicate and 
issue commands to the malware specimen.  Windows XP was used as a host 
environment for the malware.  Windows XP was also used as the operating 
system to host the VMWare virtual machines. 
 
Section 1.2 Network Configuration 
In order to insure safe handling of the malware specimen the network 
configuration for my analysis was self contained. VMWare was used to create 
and host virtual machines on a single computer, and to establish a virtual 
network in a dual homed host only environment in which VMWare provided 
DHCP services.  
 
I used VMWare workstation version 4.5.1 to run the following operating systems 
as guest operating systems in the emulated VMWare host only network. 
 
VMWare’s host only networking option helped in providing an isolated network.  
When VMWare is configured in host only mode the Virtual Operating Systems 
function as if on an isolated hub based network. 
 
VMWare provided DHCP services to the virtual operating systems with IP 
addresses assigned as follows: 
 
Virtual machine 1 was a Microsoft Windows XP version 2002 un-patched, IP 
address: 192.168.159.130. Virtual machine 2 was a Linux Red Hat image 
provided as part of the course, IP address: 192.168.159.137.  Figure 1-1 
illustrates the virtual network configuration used during the analysis of msrll.exe. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 2 
 

 
Figure1-1 Network Diagram 

 
VMWare was also very important because it gave me the ability to backup and 
restore full systems using the “snapshot” and “revert to snapshot features”.  This 
feature allowed me to execute and observe the malware repeatedly in a 
controlled environment.  
 
Section 1.3 Physical Configuration 
For the physical configuration of my analysis environment, I used two PCs 
connected to a single monitor and keyboard using a kvm switch.  This 
configuration allowed me to switch easily between my test environment and 
production environment, and helped to conserve space in my office. 

 
The first PC is my regular workstation and is connected to the internet.  I used it 
for research, tool downloading, report writing etc. during the analysis. 

  
The second PC used for analysis was a fully patched Intel Pentium III, 927 MHz 
processor with 512 MB RAM, running Microsoft Windows XP version 2002 with 
the firewall enabled to further protect the host OS from any malware that would 
be examined on the virtual OS and network.  In order to make sure no malware is 
able to escape into the wild, it is also very important that this system does not 
have access to your production network or the internet in any way.  

 
Both PCs and virtual OS have access to a printer via a parallel 4 port printer 
switch. I found it useful during analysis to be able to print from my production 
system and analysis system.  In order to transfer necessary files to my analysis 
machine, I used a CD and thumb drive. Figure 1-2 illustrates the physical 
configuration of my malware analysis lab. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 3 
 

 

 
Figure1-2 

 
Section 1.4 Three Phase Analysis Model 
During my analysis I used a three phase model to attempt to define 
characteristics of the malware specimen and to identify and control it’s behaviors 
in this order: property analysis, behavioral analysis, and code analysis. 
 
I configured my virtual Operating System that was to be infected with the 
following list of tools and then saved a “snap shot” using VMWare.  Since I was in 
the process of learning to do malware analysis, I used the "revert to snapshot" 
feature extensively in order to get back to a baseline. This particular process was 
extremely important and useful during my process of learning to use the tools for 
reverse engineering malware. 
 
Section 1.5 Tools Used for Property Analysis 
For the property analysis phase I used the command line utility MD5sum to 
uniquely identify the malware specimen by computing its MD5 hash. I also used 
Windows properties viewer to identify properties of the malware specimen such 
as size and creation date. 
 
Section 1.6 Tools Used for Behavioral Analysis 
In order to analyze the behavioral effects of the malware on the file system and 
registry, I used a program called InstallWatch Pro to create a log of changes 
made to the file system and registry during the installation of the malware 
specimen.  I also used a program called FileMon to monitor file changes during 
the installation of the malware specimen.  RegMon was another program 
package I used to monitor registry changes during the installation of the malware 
specimen.  I also used a program called RegShot to compare registry settings 
before and after the installation of the malware specimen.  Also used was 
AutoRuns a tool that will allow you to see processes set to start at windows start 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 4 
 

up.  AutoRuns will also allow you to easily navigate to the processes registry 
setting for editing.  The use of all of these tools may be unnecessary since some 
may provide similar results. Since I was in learning mode I wanted to try different 
tools. I also wanted to be able to compare results of similar tools for accuracy.  
 
In order to analyze the network behaviors of the malware specimen, I used the 
command line utility NetStat with the “-a” switch to list port status on the infected 
system before and after the execution of the malware specimen. I also used a 
program called TDIMon to monitor port changes during the installation of the 
malware specimen.  I used the Ethereal packet sniffing utility on my host OS to 
capture and analyze any packets sent by the malware specimen. 
 
In order to analyze the malware specimen’s behavior further I used Telnet a 
common terminal emulation program to try to communicate with the malware 
specimen. During my analysis I used Telnet to attempt to issue commands to the 
malware specimen. Since it is common for malware to use Internet Relay Chat 
channels to communicate, an IRC server (Internet Relay Chat server) was also 
used on my virtual Linux machine to try to communicate and issue commands to 
the malware specimen.  
 
Section 1.7 Tools Used for Code Analysis 
During Code analysis I used AspackDie to unpack the malware specimen. 
AspackDie is an unpacker for PE files which were compressed using any version 
of Aspack since Aspack 2000.  Aspack is a win32 executable file compressor 
utility used for reducing file size and protecting against reverse engineering. 
  
OllyDbg is a 32-bit assembler level analyzing debugger that runs on Microsoft 
Windows. I used it to examine the malware specimen’s code in order to attempt 
bypassing the malware specimen’s authentication and to attempt to issue 
commands to msrll.exe. 
 
BinText was the program I used to extract human readable strings from the 
malware specimen in its packed and unpacked versions.  These strings would 
provide me with action words and clues with their associated memory addresses 
that could be used during the code analysis phase.  
 
A program called LordPE was also used.  LordPE is a tool designed to assist in 
the viewing of PE files dumped from memory allowing them be analyzed and 
edited. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 5 
 

Section 2: Properties of the Malware Specimen 
I downloaded the file from the SANS website and transferred it to my analysis 
system via thumb drive.  I unzipped the file using WinZip and placed it at the root 
of C on my virtual Windows XP system.  
 
The name of the file was msrll.exe. To find out more details, I right clicked on the 
file and obtained the following details: Windows Application File, Size 41.0 kb, 
created May 10, 2004, at 4:29:54 p.m. indicating that the file was designed to run 
on a Windows operating system. 
 
My next step was to obtain the MD5sum of the Msrll.exe file using the command 
line tool MD5sum.exe.  As seen in figure 1-3 the MD5sum was equal to: 
84acfe96a98590813413122c12c11aaa.   
 

 
Figure 1-3 Md5sum of msrll.exe 

 
This provided me with a unique hash that would allow me to monitor if the file 
changes in any way during execution. 
 
I then used BinText to examine the malware executable for readable text strings. 
To do this I opened the BinText program and then under “file to scan” I browsed 
to C:\msrll.exe and pressed the “GO” button.  This produced a report of readable 
strings.  I found one useful text string.  As seen in figure 1-4, I could see that one 
string was “.aspack”. This told me that the executable was compressed using 
Aspack compression. I would later unpack this file and run BinText again to see 
more useful strings. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 6 
 

  

 
Figure1-4 BinText Results 

 
I then opened the msrll.exe file in Ollydbg and used the Ctrl N function to list all 
symbolic names. I again saw the string “aspack” as seen in figure 1-5, further 
verifying that msrll.exe was compressed using Aspack. 
 

 
Figure1-5 Symbolic Names with OllyDbg 

 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 7 
 

Note: in real world analysis, you would also want to consult anti-virus websites 
regarding the properties of a particular malware specimen.  Since I was looking 
to test my new skills, I purposefully skipped this process during this particular 
phase of my analysis. 
 
After viewing and recording the initial properties of the malware specimen, it was 
time to move on to the behavioral analysis phase. 
 
Section 3: Behavioral Analysis 
Using a program package called InstallWatch Pro 2.5, I installed msrll.exe by 
pressing InstallWatch Pro’s install button and browsing to the msrll.exe file that 
was located at the root of C on my Windows XP virtual system.  InstallWatch 
records changes made to your PC during program installation. According to 
InstallWatch, 5 files were added, 2 files deleted, 4 files updated, 27 registry 
entries added, 0 registry entries deleted, and 16 registry entries updated. Note: 
By using the snap shot feature within VMWare I was able to try this process more 
than once and received slightly varying results as far as the number of files and 
registry entries created, deleted, and modified.  Figure 3-1 shows the results of 
one attempt to capture changes using InstallWatch. 
 

 
Figure3-1 

 
By using InstallWatch I was able to see a folder named MFM 1 kb in size was 
created in the System 32 folder. The MFM folder contained 2 files: jtram.conf 2kb 
created on 11/19/2004 (the date of the analysis) and msrll.exe 42kb created 
5/10/2004 (a date prior to my analysis).  Figure 3-2 shows the InstallWatch report 
of added files. 
 
The file jtram.conf was located in the “mfm” folder along with the msrll.exe file.  I 
opened it with Windows notepad, but could not make out what it was. There were 
lots of numbers and letters in indistinguishable patterns.  I checked the properties 
of this file at later times during the analysis and it appeared that it was being 
modified. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 8 
 

 

 
Figure3-2  

 
To see if the file was modified in anyway I obtained the MD5sum of the newly 
created msrll.exe file using the command line tool MD5sum.exe.  The MD5sum 
matched the original msrll.exe file: 84acfe96a98590813413122c12c11aaa. 
 
After the msrll.exe was executed, I noticed that it had removed itself from its 
original location at the root of C as seen in figure 3-3. This was verified with 
InstallWatch and later with Filemon as seen in figure 3-4. 
 

 
Figure3-3 

 
 

 
Figure3-4 

  



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 9 
 

Using AutoRuns to show all services set to automatically start, I noticed there 
was now a listing for msrll.exe as seen in figure 3-5. 
 

 
Figure3-5 

 
While in AutoRuns I clicked the service listing for “mfm” as seen in figure 3-5.  I 
was able to easily get to the registry editor and view detailed listings for the newly 
created service as seen in figure 3-6. 
 

 
 

Figure 3-6 
 
As seen in figure 3-7, I now had a registry setting for msrll.exe to start as a 
service: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm 
with an image path pointed to C:\WINDOWS\System32\mfm\msrll.exe with a 
display name of “Rll enhanced drive” 
 

 
Figure3-7 

 
Next I used the following tools to confirm the results of InstallWatch Pro and 
AutoRuns. 
 
I used the “revert to snap shot feature” in VMWare to get back to a known good 
state. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 10 
 

I then used Regshot to take a picture of my registry before and after the install of 
msrll.exe.  Then using the compare feature of Regshot, I see that Regshot 
confirmed the findings of AutoRuns in regards to the registry setting for: 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm. RegShot 
was also helpful in providing results for files added and deleted as seen in figure 
3-8. 
 
Reg shot 
 
---------------------------------- 
Keys added:7 
---------------------------------- 
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm 
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Security 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security 
HKEY_USERS\S-1-5-21-448539723-1644491937-725345543-
1003\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\OpenSaveMRU\exe 
HKEY_USERS\S-1-5-21-448539723-1644491937-725345543-
1003\Software\Microsoft\Windows\ShellNoRoam\Bags\50 
HKEY_USERS\S-1-5-21-448539723-1644491937-725345543-
1003\Software\Microsoft\Windows\ShellNoRoam\Bags\50\Shell 
---------------------------------- 
Files added:6 
---------------------------------- 
C:\Documents and Settings\User1\Local Settings\Temp\JET2A.tmp 
C:\Documents and Settings\User1\Local Settings\Temp\Perflib_Perfdata_3a0.dat 
C:\WINDOWS\Prefetch\MSRLL.EXE-03966588.pf 
C:\WINDOWS\Prefetch\MSRLL.EXE-107BC400.pf 
C:\WINDOWS\system32\mfm\jtram.conf 
C:\WINDOWS\system32\mfm\msrll.exe 
---------------------------------- 
Files deleted:2 
---------------------------------- 
C:\Documents and Settings\User1\Local Settings\Temp\JET29.tmp 
C:\msrll.exe 
 

Figure3-8  
 
I again used the “revert to snap shot feature” in VMWare to get back to a known 
good state. Then I started the following applications and stopped their capture 
feature and cleared their logs: Filemon and TDImon. I started the capture feature 
on these utilities immediately before clicking on msrll.exe. Letting these programs 
run for about 30 seconds and stopping them, I then examined the results.  
Filemon supported my earlier findings of the “mfm” folder being created in the 
System32 directory as seen in figure 3-9, also supported were my earlier findings 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 11 
 

that the original msrll.exe file was removed from the root of the C drive were I 
had placed it, as can be seen in Figure 3-10.  
 

 
Figure3-9  

 

 
Figure3-10 

 
TDImon showed that msrll.exe had opened port 2200 and was listening as seen 
in figure 3-11. 
 

 
Figure 3-11 

 
Next I looked at how msrll.exe would interact with the network. Using Netstat with 
the “ –a” switch and TCPview, I was able to verify that the msrll.exe process was 
listening on port 2200 using Cavies as can be seen in figure 3-12 and in figure 3-
13 using Netstat.  This would be an avenue that I would later test with Telnet to 
see if msrll.exe would possibly accept remote commands on port 2200. 
 

 
Figure 3- 12 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 12 
 

 

 
Figure3-13 

 
Next I used my host system to telnet to the infected machine on port 2200 to try 
and initiate a response from the malware and was returned a “#”. From there I 
was unable to elicit any other responses.  
 
Using the “revert to snap shot” feature in VMWare, I set my system back to a 
known good state. I then used Ethereal on the host machine sniffing the VMWare 
virtual Ethernet adapter. I once again executed msrll.exe and I saw a dns query 
for collective7.zxy0.com as seen in figure 3-14. 
 

 
Figure3-14 

 
Using the “revert to snap shot” feature in VMWare, I set my system back to a 
known good state. 
 
As we had learned in class, in order to learn more about a malware specimen it 
would be necessary to mold the test environment in order to give the malware 
what it expects. So, next I changed the host file located on my Windows XP 
virtual system in the following location: C:\WINDOWS\SYSTEM32\DRIVERS\ETC, so 
that collective7.zxy0.com was associated with the IP address of my Linux virtual 
machine: 192.168.159.137 as seen in figure 3-15.  I then saved this configuration 
as a new VMWare snapshot. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 13 
 

 

 
   

Figure3-15  
 

After changing my host file I once again started my sniffer and restarted msrll.exe 
by using Windows task manager and then clicking on the msrll.exe executable in 
the SYSTEM32/mfm folder.  I then saw failed attempts by msrll.exe to connect to 
ports 9999, 8080, and 6667 on collective7.zxy0.com which for now was my Linux 
box. 
 
To further mold the test environment, my next step was to startup an IRC server. 
Using IRC-Hybrid the IRC server that was provided with the course as part of the 
Linux image, I started the IRC server located on my virtual Linux system by 
issuing the following commands: 

su – ircd 
./ircd 
exit  

ps –u ircd 
irc 

Then I used Ethereal on my host machine to sniff the VMWare virtual ethernet 
adapter for more information. I started the capture feature in Ethereal and 
launched msrll.exe in hopes of capturing more payloads from the packets.  The 
sniffer logs showed that msrll.exe was making an IRC request for channel “#mils” 
on port 6667 as seen in figure 3-16. The IRC user names looked as though they 
might be random.   



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 14 
 

 
Figure 3-16 

 
Then using my Linux box, I joined the channel #mils myself using IRC command 
“/join #mils”. 
 
Using the “revert to snap shot” feature in VMWare, I set my infected system back 
to a known good state and executed msrll.exe. 
 
I saw a user join the channel #mils named “hIsFbHxGu”. After about two minutes 
this connection was reset for some reason and another user joined named 
ZYqwcysWn. This user remained logged on during the time of my observation 
(approximately 15 minutes). This again confirmed that user names were possibly 
random. 
 
To further test the behavior of msrll.exe, I attempted to control it from the 
command line.  Msrll.exe could be started from the command line by typing msrll 
at the C:\Windows\system32\mfm prompt.  From the command line I used the 
Taskkill utility: Taskkill /F /IM msrll.exe and was able to end the msrll.exe 
process.  I also tried deleting the file from Windows Explorer but was denied 
access.  I could however end the msrll.exe process from Windows Task Manager 
and then delete the msrll.exe file. 

 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 15 
 

Section 4: Code Analysis 
I began my code analysis by looking for useful strings.  I knew that in order to 
see something useful I would need to unpack msrll.exe.  To do this I would use 
LordPE to dump the unpacked executable from memory. I Used LordPE to locate 
the already running msrll.exe process in LordPE’s path pane, I right clicked and 
choose “dump full” and saved the file. I then used BinText to open the file 
dumped from LordPE.  In its unpacked form, I was able to see many interesting 
strings: 

There were many strings that might prove useful, for the sake of brevity the 
following is a sampling of strings that might provide clues to the malware’s 
functionality: 

Possible Commands: ?ping, ?smurf, ?jolt, ?clones, ?clones, ?update, ?reboot, 
?status, ?jump, ?nick, ?echo, ?hush, ?wget, ?join, ?akick, ?part, ?dump, ?md5p, 
?free, ?update, ?hostname, ?!fif, ?play, ?copy, ?move, ?sums, ?rmdir, ?mkdir, 
?exec, ?kill, ?killall, ?crash, ?sklist, ?unset, ?uattr, ?dccsk, ?killsk 

Stings Indicating the Specimen Could be Possible Bot: bot.port 

IRC Version in Use: mIRC v6.12 Khaled  Mardam-Bey 

Use of IRC Channel: irc.chan 

IRC Channel: #mils 

Possible Version of Malware: m220 1.0 #2730 Mar 16 11:47:38 2004 

Interesting Strings to Look for Within the Code: %s bad pass from “%s”@%s, 
jtr.home, irc.pass, jtram.conf 

Possible Web Site of Owner or Creator: collective7.zxy0.com, 
collective7.zxy0.com:9999! , collective7.zxy0.com:8080 

Passwords Could Be Encrypted: Also listed were references to SSL and several 
encryption standards 

The strings I saw in addition to my previous behavioral observations led me to 
believe that msrll.exe might be some sort of password protected bot that used 
IRC to issue commands. 

With msrll.exe running I tried using Telnet and IRC to issue some of the 
commands extracted with BinText, but was unsuccessful.  It was likely that 
msrll.exe required some sort of successful authentication before accepting 
commands. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 16 
 

My next step was to try to gain some control over msrll.exe by looking deeper 
into the code and hopefully finding a way to authenticate to it in order to 
successfully issue some of the commands found within msrll.exe’s strings. 

To successfully gain control of msrll.exe I would need to be able to know a 
password or patch msrll.exe in a way that it would not need a password.  To do 
this I would need to pinpoint crucial instructions at the assembly code level.   
 
I learned from the course that passwords can often be found somewhere near a 
“strcmp” instruction, but the results of the comparison are enforced by the “JNZ” 
instruction.  My plan was to look for these clues and since I was not an expert at 
assembly code, I planned to bypass the authentication by replacing the “JNZ” 
instruction with the “NOP” (no operation; to do nothing) instructions using 
OllyDbg.  

BinText provided me with some interesting strings and their associated memory 
positions. I could use these memory positions as starting points during the 
investigation of the code. I would use Ollydbg to navigate to the memory 
locations and look for possible ways to control msrll.exe. I knew msrll.exe was 
compressed using Aspack, and this would make it difficult for Ollydbg to reveal 
useful information.  However there were a couple of options for viewing the code 
in an uncompressed format. 

The first option was to use an unpacker to create a new uncompressed version 
of msrll.exe. To uncompress msrll.exe, I obtained and successfully used a tool 
mentioned during the course called AspackDie. To use it, I unzipped the files to 
my program directory. Then browsed to the AspackDie folder, clicked on the 
AspackDie icon and in the proceeding dialogue box I provided the path to 
msrll.exe, and AspackDie successfully created an unpacked version of msrll.exe. 

I then used Ollydbg to open the unpacked file.  I scrolled down to the memory 
position: 0040BB52 that was associated with “% bad pass from “%s”@%s” string 
found with BinText.  From there I scrolled down a bit further until I was at memory 
location 0040BBD9.  There I saw the string “dcc.pass”.  It looked like this might 
be doing something so as seen in figure 4-1, I hit the space bar and filled it with 
NOPs.   



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 17 
 

 

Figure4-1  

When I tried to run the unpacked version of msrll.exe with Ollydbg I would get a 
message in the bottom right corner that the process had terminated.  It is 
possible that the unpacking process damaged the file. 

I spent a lot a time looking at the code in Ollydbg and familiarizing myself with its 
features.  By right clicking in OllyDbg’s CPU window and then choosing “search 
for all referenced text strings”, I was able to see that near memory location 
0040BB40 “dcc.pass” was a reference for “bot.port” at memory location 
0040BB49 as seen in figure 4-2.   

 

Figure4-2 

I chose this location in OllyDbg and then right clicked and chose the selection for 
“Follow in Disassembler” as seen in figure 4-3. Then looking in the OllyDbg’s 
dump pane, I then was able to see ASCII text mentioning port 2200 and 
something that looked like references to possible passwords after memory 
location 0040BDD9 as well as references to familiar clues found during my 
previous analysis.   



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 18 
 

 

Figure4-3 

 

Using OllyDbg, I once again right clicked and made the selection “search for” and 
chose “all referenced text strings”. I then saw references to “Pass” and what I 
had previously seen in the dump pane that looked like possible password clues 
at memory location 0040BDD9 as seen in Figure 4-4.  



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 19 
 

 

Figure4-4 

I wanted to be able to set some breakpoints at key locations and try to 
authenticate to the malware and trigger the breakpoints. The version of msrll.exe 
that I unpacked using AspackDie would not run, so I needed a different way to 
unpack the malware executable without damaging the file. 

To investigate further and produce an unpacked version of msrll.exe that would 
run I chose the following method.  First I made sure that the msrll.exe process 
was not running on the virtual system.  I then used Ollydbg to start the process 
by clicking “file open” and choosing the msrll.exe file.  I then chose the run option 
within Ollydbg. By doing this I was avoiding dumping the file.  Allowing Ollydbg to 
run msrll.exe let the malware unpack itself to memory.  I was now beginning my 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 20 
 

journey to look for memory position 0040BB52.  I pressed “Alt+M” while in 
Ollydbg to get to OllyDbg’s memory map. 

From there I located the first PE header. Then I chose the section that began 
with address 00401000.  I right clicked on this location and chose “Dump in 
CPU”.   

 

Figure4-5 

Below string “dcc.pass” at memory location 0040BBE7 I found “TEST EAX, 
EAX”. Thinking this might be some sort of string comparison for the password I 
pressed the space bar and filled the instruction with “NOP” instructions hoping 
this would force msrll.exe to bypass a possible authentication routine. This did 
not work. I also tried a lot of other things that were unsuccessful.  After much 
Trial and error, the following is what did work. 

In order to get everything back to a known good state, I reverted to my snapshot. 
I made sure msrll.exe was not running, I then opened msrll in OllyDbg. Next I 
clicked on the “TEST EAX, EAX” location and pressed F2 to set a breakpoint. I 
then restarted msrll.exe within OllyDbg by pressing Ctrl+F2 then pressing F9 to 
run msrll.exe within OllyDbg. Then using Telnet from my virtual Linux installation 
I attempted to login to the infected Windows machine on port 2200.  At the Telnet 
prompt, I typed the following commands found during my strings analysis: 
“?login” testuser" , press enter and “pass” enter.  This triggered the breakpoint 
that I had set within OllyDbg.  By looking at the Registers pane in OllyDbg I can 
see that the value of EAX is “00000000”. By selecting this value and right clicking 
and choosing “set to 1” then pressing F9 to continue running msrll.exe within 
OllyDbg, I was able to bypass msrll.exe’s telnet authentication.  I was now able to 
successfully type in commands at the telnet prompt and receive responses from 
msrll.exe. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 21 
 

The following is an example of some of the commands found using BinText and 
their results: 

?ps: listed all running processes on the infected machine 
?ping: <ip> <total secs> <p size> <delay> [port] 
?smurf:  <ip>  <p size> <duration> <delay> 
?jolt: <ip> <duration> <delay> 
?clone: ?clone: server[:port] amount 
?clones: ?clones: [NETWORK:all] <die:join:part:raw:msg> <”parm”> 
?login: used to login 
?uptime: shows uptime of the system and uptime of the bot 
?reboot: reboots the infected system 
?status: shows yes or no for service, user, inet connection, contype, reboot privs 
?nick: set an irc sock to perform ?nick command on 
?hush: set an irc sock to perform ?hush command on 
?join: set an irc sock to perform ?join command on 
?md5p: <pass> <salt> 
?free: ?free <cmd> 
?update: <url> <id> 
?hostname: host name of infected system 
?play: (null) somefile 
?sums: sums of files located within WINDOWS/SYSTEM32/mfm directory 
?mkdir: lets you create a directory in the WINDOWS/SYSTEM32/mfm directory 
?rmdir: lets you remove a directory in the WINDOWS/SYSTEM32/mfm directory 
?exec: executes the program specified  to run in the background 
?kill: when given the process id, ends the process 
 
I spent quit a bit of time trying to achieve control of msrll.exe via IRC, but was not 
successful. It is possible that via IRC I was not sending commands in the format 
that the malware would accept.  But during this time, one of the ways that I 
learned to use OllyDbg to investigate the malware specimen was to right click 
and search for all referenced text strings.  Once there, I right click and chose “Set 
Breakpoint on Every Command”.  Then press F9 to run the executable within 
OllyDbg.  You will hit a lot of break points, but this slow motion view of the 
executable can be very informative.  When you break in an area that is not of 
interest press F9 to continue running, if you break in an area that is of interest 
press F7 to single step through the code.   
  
Section 5: Analysis Wrap-up 
 
Section 5.1 Summary of Msrll.exe 
Msrll.exe exhibits behaviors that are often associated with malicious bots. 
Msrll.exe is designed to start each time Windows is started and connect to an 
IRC channel.  Although this particular malware does not attempt to disguise itself, 
as its process can be easily seen in Windows XP’s Task Manager, most users 
would not notice its presence. Msrll.exe listens and accepts commands on port 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 22 
 

2200 and connects to IRC channel #mils on port 6667. It appears that commands 
can be sent to msrll.exe via IRC on channel #mils and Telnet on port 2200 by the 
proper use of a pass key.  Commands found within the code of msrll.exe such as 
ping, smurf, crash, mkdir, etc. are indicative of DDos and hacker type behaviors 
such as illegal file storage or “owning” someone else’s computer.  
 
Based on my analysis, msrll.exe strongly resembles an IRC bot sometimes 
referred to as a zombie. Results found with BinText and OllyDbg point to 
commands that would allow the bot owner to control unsuspecting users 
Windows based system with msrll.exe. IRC provides a way for the hacker to 
control msrll.exe in a practically anonymous fashion.  It would be relatively easy 
for a hacker to control a compromised computer or computers without being 
detected.  By using Msrll.exe the hacker would not need to scan for open ports 
because msrll.exe will start during system startup, joining an IRC channel and 
await commands.  By having msrll.exe installed on many computers a person 
with bad intentions would have the ability to send commands to many computers 
simultaneously via IRC.  
       
Individuals interested in “owning” systems in such a way as to have a bot army 
awaiting commands via IRC, could include anybody with motive or desire to 
illegally deny service to an organizations web presence or disrupt network 
services through DDos attacks.   
 
Section 5.2 Additional Findings 
My next note brings up an important point regarding malware analysis. It is 
important to make notes when things happen.  My example comes from the fact 
that I used my browser to go to the web address “collective7.zxy0.com” when it 
was identified as a string using BinText.  At the time I saw a web page there that 
looked as though it was offering some type of email service, but unfortunately I 
didn’t make notes or a screenshot and on later visits I was not able to pull up a 
page.  I took the first part ”collective7” of the web address off and used my 
browser to go to this website address: zxy0.com, a derivative of the site 
“collective7.zxy0.com”. I saw a site that wasn’t necessarily incriminating, but 
intriguing.  The site made references to things such as: “you can’t get this shit in 
stores” and “feel free to paypal me if you like my software”. 
  
I looked at the source code for the webpage and under the meta tags I saw 
“home of m220-Beetlework”.  Possibly by coincidence one of the strings found 
within the code was: m220 1.0 #2730 Mar 16 11:47:38 2004    
 
Interestingly by typing in m220.exe into the Google search engine, I find some 
results at the TrendMicro anti-virus site.  TrendMicro discusses a backdoor with 
two executables an ftp server DTRAN.exe and a malicious IRC bot M220.exe. 
The descriptions given by TrendMicro seem to be similar to what I have found 
with msrll.exe.  Msrll.exe is mentioned in the TrendMicro article when TrendMicro 
identifies the creation of the mfm folder containing the msrll.exe file. 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 23 
 

In order to get the most out of my learning I did not do a web search for msrll.exe 
or run antivirus software against it. But at the end of my analysis when I did run a 
web search, it is interesting that a derivative of the web address that I found the 
msrll.exe using had an owner by the nickname m220-Beetlework and TrendMicro 
had an associated article involving the keyword msrll.exe and a malicious IRC 
bot labeled M220.exe. 
 
Section 5.3 Detecting Msrll.exe 
Running updated anti-virus software and a fully patched system will go a long 
way in keeping malicious programs such as msrll.exe off of your computer. It is 
also useful to be aware of and monitor the processes that normally run on your 
system.  Having a personal firewall could be useful in helping monitor incoming 
and outgoing traffic generated by malware like msrll.exe.  Network administrators 
should become familiar with IRC’s malicious uses and ports used due to its 
common association with malware.  
 
It is quite possible since communication is established from within, that your 
firewall will not help in protecting against IRC bots and antivirus software may not 
provide adequate protection due to the fact that malware writers can stay one 
step ahead of antivirus companies and create versions of malware that are not 
recognized by current antivirus signatures. 
  
The Netstat utility can be helpful in identifying IRC bots.  Since the most common 
IRC channels use port 6666 and 6667, and IRC often uses the Ident protocol 
running on port 113. Netstat can be used in the following way to help identify the 
use of these ports on a local system.  At the command line type the following 
commands and press enter:  
 
netstat –an | find “:6667” 
 
If you don’t have your own IRC session running it is possible that malware is 
trying to compromise your system via IRC if you see results similar to the 
following: 
  
TCP 192.168.159.130:1033  192.168.159.137:6667 ESTABLISHED 
 
To check for the Ident protocol use: nestat –an | find “:113” 
 
Other options might include network professionals monitoring for IRC traffic.  In 
our particular case with msrll.exe network professionals could monitor network 
traffic for packets containing #mils. 
 
Section 5.4 Removal of msrll.exe 
Removal of msrll.exe seemed to be relatively simple on my Windows XP system.  
First you will need to check and see if the msrll.exe process is running. If it is 
running it can be stopped by pressing CTRL + ALT + DEL.  Then you will be able 



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 24 
 

to browse to the “mfm” folder location and delete the folder.  This essentially 
stopped msrll.exe from running as it appears to have no failover mechanism. 
There was still a registry entry that you might like to clean up.  You can do this by 
clicking on Start, then Run and typing Regedit and enter.  This will bring up the 
registry editor.  Look for this path: 
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm and delete 
the entry.  Once completed restart your system and check to make sure your 
removal attempts were successful.   



©
 S

A
N

S 
In

st
itu

te
 2

00

   
   

   
   

   
   

   
   

   
   

   
   

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005                                                                                                                            Author retains full rights.

 25 
 

References 
 
Aspack. Vers. 1.32 Dec. 2004 <http://www.aspack.com/> 
 
AspackDie. Vers. 1.41 Nov. 2002 <http://scifi.pages.at/yoda9k/> 
 
AutoRuns. Vers. 6.1 Dec. 2004 
http://www.sysinternals.com/ntw2k/freeware/autoruns.shtml 
 
BinText. Vers. 3.00 Nov. 2000  
<http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subc
ontent=/resources/proddesc/bintext.htm> 
 
Ethereal. Vers. 0.10.8 Dec. 2004 <http://www.ethereal.com> 
 
Filemon. Vers. 6.12 Oct. 2004 
<http://www.sysinternals.com/ntw2k/source/Filemon.shtml> 
 
InstallWatch Pro. Vers. 2.5 May 2000 
<http://www.epsilonsquared.com/installwatch.htm> 
 
IRCd-Hybrid. Vers. 2.8/hybrid-6.3.1 June 2002 <http://www.ircd-hybrid.net> 
 
MD5sum. Nov. 1999 <http://www.gnu.org/software/textutils/textutils.html> 
 
LordPE.  Vers. 1.31 March 2002 
<http://mitglied.lycos.de/yoda2k/LordPE/info.htm> 
 
Ollydbg. Vers. 1.0.10.0 May 2004 <http://home.t-online.de/home/Ollydbg> 
 
Process Explorer. Vers. 8.61 Dec 2004 
<http://www.sysinternals.com/ntw2k/freeware/procexp.shtml> 
 
Regmon. Vers. 6.12 Aug. 2004 
<http://www.sysinternals.com/ntw2k/source/Regmon.shtml> 
 
Regshot. Vers. 1.61e5 Jan. 2003 
<http://www.pcworld.com/downloads/file_description/0,fid,19540,00.asp> 
 
TDImon. Vers. 1.01 July 2000 
<http://www.sysinternals.com/ntw2k/freeware/TDImon.shtml> 
 
VMWare Workstation. Vers. 4.5.1 March 2004 <http://www.vmware.com> 
 
 


