GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

XtremeRAT — WHEN UNICODE BREAKS

GIAC GREM Gold Certification

Author: Harri Sylvander, harri@sylvander.net

Advisor: Richard Carbone

Accepted: March XX, 2015

Abstract

XtremeRAT is a commonly abused remote administration tool that is prevalent in
the Middle East; prevalent to the degree that it is not uncommon to find at least one
active RAT in a network on any given incident response engagement. The tool is
readily available to anyone with a desire to build one on their own. Availability
means that the RAT is being employed for nefarious purposes by adversaries
ranging from those who do not fully comprehend the consequences of their actions,
to advanced threat actors that care less about legal aspects and more about the
objectives of their respective missions. One of the tools provided by XtremeRAT to
aid in achieving these goals is a built-in Unicode keylogging capability; however,
there are situations when the logging fails, resulting in incomprehensible keylogs.
The data, or parts thereof, that are captured in these logs can still be recovered, and
it is vital to the defender to understand what data has potentially been stolen. The
objective of this paper is to shed light on the challenges posed in extracting useful
information from the logs when non-Latin character sets, specifically Arabic, are
used, and to publish an author-developed tool that can aid in decoding the broken
parts of extracted keylogs.

XtremeRAT — When Unicode Breaks ‘ 2

1. An Introduction to the RAT’s Nest

The past few years have been turbulent in the Middle East and North Africa. This
turbulence manifested itself as the “Arab Spring”, which began in December 2010 in
Tunisia, and spread through many of the nations in the region. The ensuing conflicts have

played a part in many cyber realm attacks as well.

Regional conflicts, whether Arab-Israeli, Shi’a-Sunni sectarian violence, or other
ideological or political differences (e.g. Western, and specifically US influence in the
region), are at the heart of many attacks in this region. The largest portion, 45%, of the
attacks observed in Middle East and North Africa (MENA) are hacktivism related,
followed by cybercrime at 40%, and a significant 15% is associated with cyber-warfare

type attacks including espionage. (Hamid, T., 2013)

Specially crafted malware, used by both sides in the ongoing high-tech, invisible
war, are the exception to the norm. When these kinds of highly specialized tools
(malware) are employed, and ultimately uncovered, they have a tendency to be high
profile events that occupy headlines. These events are not created by the less skilled
regional attackers; they are the ones that are ready to exploit the newsworthiness of the
events in social engineering attacks, tricking unsuspecting users into opening exploit
code-laden documents or executing malicious programs that purport to contain

information relevant to the current event.

The result of a successful social engineering attack, such as the ones described
above, will many times result in one of the regionally most prevalent RATs: DarkComet,
njRAT, or XtremeRAT, being installed on the victim’s system. (FireEye, 2014) All of the

aforementioned RATs are publicly available and customizable by a potential attacker.

XtremeRAT has been used by various groups and against diverse targets in the
Middle East and abroad. (Villeneuve, N., Moran, N. & Haq, T., 2013) (Villeneuve, N.,
2012) While some of these targets have been diverse enough to make it difficult to

establish, at least with any level of certainty, the intent and goals of the attackers, there is

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks ‘ 3

also evidence that some campaigns have specifically targeted Syrian anti-government

groups. (Hypponen, M., 2012)

RATS tend to be associated with some level of targeted activity due to the
additional level of effort required by the attacker to control individual systems. However,
in early 2014, FireEye released an article indicating that the majority of XtremeRAT
activity is related to traditional cybercrime. There, it is used to distribute spam, which
ultimately leads to the download of a more traditional banking Trojan such as Zeus.

(Villeneuve, N. & Bennet, J. T., 2014)

Whether in the hands of hacktivists, cybercriminals, or threat groups with political
motives, there are plenty of tools to choose from. Using commodity tools may offer a
level of protection for more advanced attackers by allowing them to blend in with other

actors.

1.1. Arabic Localization

Basic Arabic consists of 28 letters. In everyday use, Arabic is written omitting short
vowels, and only long vowels are explicitly written. This removes the need for typing
diacritics above or below the preceding consonant in a syllable; however, subtle changes
in vowels can change the meaning of the word, which means the reader must have a fair
understanding of the language. While this may sound confusing and may render the
language incomprehensible, consider the oft-used abbreviations of words in messaging
using mobile devices: “txt”, “msg”, and others. The concept is more or less the same, and
while a single word may be ambiguous, context often removes that ambiguity. (Smart, J.

& Altorfer, F., 2010)

In addition, there is no distinction between upper and lower case characters, so if
one wishes, all required diacritics can be generated by applying modifier keys. This
means that standard keyboards are more than capable of accommodating the required

character set for producing standard Arabic text.

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks ‘ 4

There are differences in layouts that need to be taken into account when
considering mappings of keys to the resulting character being represented. Depending on
the locale and the exact physical layout of the keyboard, mappings can vary fairly
significantly, e.g. Microsoft has three defined Arabic keyboard layouts: Arabic (101),
Arabic (102), and Arabiz (102) AZERTY. (Microsoft Developer Network [MSDN], n.d.-
a) The proof of concept code included in “Appendix A: xtrat_log _fixer.rb - Fixing

Broken Keylogs” is created for one such layout that is commonly used in Arab countries.

~«! @ [# |8 (% |©~ |& |* |[() | |+ |e—
NN 2 3 4 5 6 7 9 0 - = Backspace
- # 2 - \ N - ¢

= Y X > <]l
Bt (Sl S IO (N U S S N [[[N
Caps Lock | . p [] K\' i - ¢ / " Enter
4 ol € e e o It 8 |y |«
Shift ~ I Yol T , . ¢ |shift

S s 5o Y s s 2 b | ®

Ctrl x; Alt Alt Gr m’; Menu | Ctrl

Figure 1: Common Arabic layout for a PC keyboard (Source: Wikimedia Commons).

To establish which languages and keyboard layouts are available for a user profile
on a system, an analyst can look for configured Input Locales in the registry. An Input
Locale defines the input language and how that language is being entered into the system.
All available keyboard layouts on a system are defined by the registry key
“HKLM\SYSTEM\ControlSet001\Control\Keyboard Layouts”, but for the purpose of
identifying potential languages configured by users, focus needs to be shifted to user
registry hives. The registry key, “HKCU\Keyboard Layout\Preload”, shown in Figure 2

defines available locales.

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 5

r@ Registry Editor =@ = |

File Edit View Favorites Help

»

48 Computer

| HKEY_CLASSES_ROOT A 25 (Defautt REG 7

Name Type Data

(value not set)

e . HKEY_CURRENT_USER
- |, AppEvents
. Console

REG_SZ 00000409

REG_SZ

00003801

© 2015 The SANS Institute

b ., Control Panel

. Environment

bl EUDC
) Identities

4. Keyboard Layout
- |1 Preload

-\ Substitutes

|| 4 1 r

Computer\HKEY_CURRENT_USER\Keyboard Layout\Preload

h y
|

Figure 2: Preload key showing two configured LCIDs: 409 English US and 3801 Arabic UAE.

If a configured locale does not have its own unique keyboard layout or the system
is configured to use a keyboard layout other than the default one, a mapping of the Locale
ID (LCID) to keyboard layout is stored in “HKCU\Keyboard Layout\Substitutes”. This is
the case for all Arabic locales except for Arabic Saudi_Arabia (LCID “0x0401”"), which
defaults to the Arabic 101 keyboard layout, represented by the hexadecimal value
“0x00000401”. For example, if Arabic UAE (LCID “0x3801”) is configured, the data
“0x00003801” is stored in one of “Preload” key’s values to represent this fact. Since
there is no unique keyboard layout for the locale — it uses the same Arabic 101 layout as
Arabic_Saudi_Arabia — the configured keyboard layout will be mapped in the
“Substitutes” key, as shown in Figure 3. The “Substitutes” key contains the value

“0x00003801”, and the data, “0x00000401”, of that value represents the configured

keyboard layout.
7 ~
Q’ Registry Editor IM[
| File Edit View Favorites Help
h"?) Computer || Name Type Data
b - HKEY_CLASSES ROOT L1 o) efautty REG_SZ (value not set)
4+ HKEV_CURRENT_USER 26100003801 REG_SZ 00000401
[~ . AppEvents
|, Console
>~ . Control Panel
- | Environment
1>~ by EUDC
[~ | Identities
4l Keyboard Layout
.. Preload
. Substitutes [o = 0
Computer\HKEY_CURRENT_USER\Keyboard Layout\Substitutes
\ 4

Figure 3: Substitutes key showing mapping of LCID to keyboard layout.

Harri Sylvander, harri@sylvander.net

Author retains full rights.

XtremeRAT — When Unicode Breaks | 6

The data contained in the values of the “Preload” key are hexadecimal values that
need to be interpreted to reveal the actual configured languages. The interpretation is
possible by mapping LCIDs to their respective Locales, e.g. Arabic_Saudi_Arabia, using
a table available on MSDN (MSDN, n.d.-b). Below in Table 1 is an excerpt containing
the Arabic LCID:Input Locale combinations in the following table from MSDN.

Table 1: Default Arabic LCID:Input Locale combinations in XP/2003 (MSDN, n.d.-c).

vmuvguage

combinations ‘hollection

Locale LCIDHex Valid Locale ID:InputLocale

Arabic_Saudi_Arabia 0401 0409:00000409, Complex Script
0401:00000401

Arabic_Iraq 0801 0409:00000409, Complex Script
0801:00000401

Arabic_Egypt 0c01 0409:00000409, Complex Script
0c01:00000401

Arabic_Libya 1001 040c:0000040c, Complex Script
1001:00020401

Arabic_Algeria 1401 040c:0000040c, Complex Script
1401:00020401

Arabic_Morocco 1801 040c:0000040c, Complex Script
1801:00020401

Arabic_Tunisia 1c01 040c:0000040c, Complex Script
1c01:00020401

Arabic_Oman 2001 0409:00000409, Complex Script
2001:00000401

Arabic_Yemen 2401 0409:00000409, Complex Script
2401:00000401

Arabic_Syria 2801 0409:00000409, Complex Script
2801:00000401

Arabic_Jordan 2c01 0409:00000409, Complex Script
2¢01:00000401

Arabic_Lebanon 3001 0409:00000409, Complex Script
3001:00000401

Arabic_Kuwait 3401 0409:00000409, Complex Script
3401:00000401

Arabic_UAE 3801 0409:00000409, Complex Script
3801:00000401

Arabic_Bahrain 3c01 0409:00000409, Complex Script
3¢01:00000401

Arabic_Qatar 4001 0409:00000409, Complex Script
4001:00000401

“0409:00000409” is the Locale ID:Input Locale representation for US English,

which is used as a default Input Locale in non-English locales.

Harri Sylvander, harri@sylvander.net

© 2015 The SANS Institute

Author retains full rights.

XtremeRAT — When Unicode Breaks ‘ 7

By extracting the LCIDs, an analyst can determine what input languages were
available on a system at the time of acquisition. One quick and convenient way to do this
is using Metasploit’s Rex Module. Rex::Registry removes any dependencies on the
Windows API, which makes processing registry hives using Ruby feasible across

multiple platforms. (Perry, B., 2012)

Having the LCID information available is essential to properly decode some of the
data logged by XtremeRAT in specific circumstances; these specifics will be discussed in

the next section.

2. Dissecting the RAT
2.1. XtremeRAT’s capabilities

XtremeRAT is a versatile piece of code. The versions that were analyzed for this
document are 3.6 and 3.7. The former version was included due to the availability of its
source code, and the latter to make sure that the latest functionality, at the time of writing,

was covered.

As with many remote administration tools (RAT), XtremeRAT provides basic
capabilities such as executing programs and uploading and downloading files; however,
these are far from a complete list, as can be seen in the screenshots shown below in

Figure 4 and Figure 5.
Most of the functions and server options are self-explanatory and do not warrant an

in-depth analysis. However, the one component that is of special interest, even if it is not

unique to XtremeRAT in anyway, is the keylogger.

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 8

&) Server Options 4 [j Process Manager
Run command % Window Manager
Download and execute ;3} Service Manager
,9 Open web page Reqistry manager
Il send files and execute 7} Clipboard manager
Password [Installed Programs
(% Search files ﬂ Device list
-2 Search words in keylogger logs Q Deskkop capture
i Proxy »| =) Webcam Capture
%" Ping @ Audio capture
Il pownload keylogger logs q Active Ports
5 Thumbs Command Prompt
B selecta notify image "‘ Miscellaneous
82 cHat
* Open download Folder 2] Keyloager
=1 Open keylogger folder &% msn
= Open images folder » a Geolocalizador
i Plugins 4

Figure 4: XtremeRAT 3.7 Functions.

N)
‘?.} Functions >

X unestal

Run command g Reconnect
Download and execute fiD] Change group

& Open web page @ Rename

Il send files and execute Q) Restart

% Password &S Disable

(=% Search files ’;‘4 Update server P
2] Search words in keylogaer logs @ server Settings

‘] Proxy >

" Ping

ﬂ,ﬂ Download keylogger logs

= Thumbs

& Select a notify image

* Open download folder
! Open keylogger folder
=4 open images Folder 4

Figure 5: XtremeRAT 3.7 Server Options.

As can be seen in the drop-down menu screenshots presented above, the client
portion of the RAT provides the capability of searching keylogs for specific keywords,
downloading keylogger logs, and browsing keylogger files on the server. Keylogging
capabilities can be configured in the RAT during the build phase, as shown in Figure 6.

Harri Sylvander, harri@sylvander.net

© 2015 The SANS Institute Author retains full rights.

Xtreme RAT 3.7 [Online servers (0)]
File Options Languages About

XtremeRAT — When Unicode Breaks

EEX

Xtreme RAT 3.7
Create server
Active Keylogger

[[JDelete [Backspace, Ctrl, Shift, ...]

[[] send logs using FTP
FTP Address: l ‘

User Name: l ‘

Folder name: [‘

FTP Password: ‘

Leave biank If you want o record all keystrokes:

@R b &

Send logs every:

Register keys only if the words below exist in the active window. Eg (hotmail, gmail, windowslive): [

Maximum 10 words

r data

Minutes:

“

N

.

Version: 3.7 Online servers: 0 Language: English

Active ports: [80][81] [82]

Figure 6: Configuring keylogger component during XtremeRAT 3.7 build.

2.2. XtremeRAT’s keylogger
2.2.1. Decoding and analyzing

|9

XtremeRAT stores the keylog data in a trivially decodable format. Nart Villeneuve

and James Bennett have documented some of the deficiencies in the encryption employed

by XtremeRAT on FireEye’s blog. (Villeneuve, N. & Bennet, J. T., 2014) Furthermore,

Bennett has released tools to decrypt known variants’ configuration files as well as

keylogger logs. The tools are available for download from GitHub

(https://github.com/fireeye/tools/tree/master/malware/Xtreme%20RAT).

Examining a keylog file created by XtremeRAT in a hex editor or some other

viewer that outputs the hexadecimal representation of the data contained therein, it

becomes clear that the encryption scheme used is not very complex, as seen in Figure 7.

Harri Sylvander, harri@sylvander.net

© 2015 The SANS Institute

Author retains full rights.

XtremeRAT — When Unicode Breaks | 10

0000000: aafe 0400 0al@ 0400 Pal® 5800 2100 2700 Xotots
0000010: 3000 3800 3000 0700 1400 0100 7500 1e0@0
0000020: 3000 2c@0 39500 3a00 3200 3200 3000 2700
0000030: 7500 0100 3000 2600 2100 7500 1300 3a00
0000040: 2700 3800 7500 7800 7500 0200 3c00 3beo
0000050: 3100 3200 2200 2600 7500 1c00® 3boo 2100
0000060: 3000 2700 3bo0 3000 2100 7500 1000 2400
0000070: 2500 3900 3a00 2700 3000 2700 7500 7800
0000080: 7800 7800 7500 6400 6700 7a00 6700 6c@0
0000090: 7a00 6700 6500 6400 6100 7500 6400 6700
00000ad: 6600 6300 6700 6100 6400 7500 1400 1800

N X O ~-CO®
s s = = = = o = =
c N
. ..

N X O -
C e owe
O A -9 X e

Qo o -cCc c —-N
R
[~

«0.
Figure 7: K;ayl(‘)g‘de‘lt‘a of downloaded XtreméR‘AT‘é.‘?—showing siéni}icar;t amount of null-byte values.

The null-bytes, i.e. hexadecimal value “0x00”, that can be seen repeating for every
second byte in the keylog file presented above, indicate the possibility of Unicode data
being logged and possibly a one or two byte XOR scheme being used.

Any character that can be represented with a single byte will have a null-byte as the
second byte in its Unicode representation. Performing a XOR operation on this null-byte
using a key X will result in the same value, X, immediately exposing the key. Clearly this
has not been done, or the second byte of each Unicode character is more or less static.
And, the XOR key used resulted in that character being represented as “0x00” — not a

very likely scenario.

The source code of XtremeRAT 3.6 reveals that the author specifically excludes
null-bytes, carriage returns, and newlines from the XOR encoding. In Pascal, these
characters can be represented by “#0”, “#10”, and “#13”, respectively, as shown in the

following figure:

procedure EnDecryptKeylogger(Str: pWideChar; StrLength: int64);
var
i: integer;
c: widechar;
begin
for i := @ to StrLength do
begin
¢ := WideChar(ord(Str[i]) xor $55);
if (Str([i] <> #13) and
(Str[i] <> #10) and
(Str[i] <> #0) and
(c <= #13) and
(c <= #10) and
(c <> #0) then
Str[i] := c;
end;
end;

Figure 8: Source code of XtremeRAT 3.6 showing exclusion of characters from XOR encoding.

Harri Sylvander, harri@sylvander.net

© 2015 The SANS Institute Author retains full rights.

XtremeRAT — When Unicode Breaks | 11

This matches what was seen in IDA Pro during the analysis of the downloaded

version, as depicted in Figure 9 below.

2 E—

[~]
loc_C8290F:
mov cx, [eax+edxx2]
Xor cx, 55h
mou si, [eaxtedxx2]
cmp si, ODh
jz short loc_C82941
F
@ ra =
cmp si, ©Ah
jz short loc_C82941
T
@ ea
test si, si
jz short loc_C82941
F.
@ ea =
cmp cx, ODh
jz short loc_C82941
|
A 4
@ ra =
cmp cx, 0Ah
jz short loc_C82941
|
A 4
@ ea 3
test cx, cXx
jz short loc_C82941
L
~ |
@ ea =
‘ mov [eax+edxx2], cx
vy leF
[~]
loc_C82941 :
inc edx
dec edi
jnz short loc_C8290F
S | [
Yy

IE A i
I
Figure 9: IDA Pro disassembly of XOR encoding loop in XtremeRAT 3.7.

Many samples in the wild share XOR-keys used for encoding keylog data. James
Bennett’s xtrat_decrypt_keylog.py, available from the GitHub repository referred to
earlier in this section, includes some of the commonly encountered XOR-keys. If an
attacker changes the XOR-key, the tool will no longer properly decode keylog data.
Fortunately, discovering the new key, and including it in the tool is not an overly
complex procedure. The article, “Tools for Examining XOR Obfuscation for Malware

Analysis”, hosted on SANS Digital Forensics and Incident Response blog, provides

Harri Sylvander, harri@sylvander.net

© 2015 The SANS Institute Author retains full rights.

XtremeRAT — When Unicode Breaks | 12

multiple tools for analyzing XOR encoded data and finding possible keys for decoding.
(Zeltser, L., 2013)

One thing to note is that any tool that searches for a known ASCII string will fail,
since the stored data is Unicode. A quick workaround is stripping out the null-bytes from
the file, but keep in mind that this will break any wide characters that may be included in
the data. In addition, the output may become a mix of unprintable binary characters and

ASCILI.

On most UNIX systems, stripping out null-bytes can be accomplished by issuing

the following command:

$ LC_ALL=C tr -d “\@’ < unicode_keylog.dat > keylog.dat

Without the “LC_ALL=C”, the reader may encounter “tr: [llegal byte sequence”
errors, as “tr” is expecting non-binary data. The resulting file will be stripped of null-

bytes and will be susceptible to XOR-analysis using one of the tools referred to earlier.

The recommended way to ensure nothing is lost in the decoding process is adding a
bit of logic to verify if the second byte is a null byte or if the character being decoded is a
wide character. This is what xtrat _decrypt keylog.py does; however, it will still be
necessary to find the key that decodes the wide characters. The problem can be reduced
to finding the second half of a two-byte key, if the first byte is found using the destructive

method described above.

One quick way to find the first byte is to strip the null-bytes and then look for
artifacts that are expected in the keylog. XtremeRAT identifies so-called “deadkeys” that
have been pressed by denoting the name of the key in brackets, e.g. “[Backspace]”,
“[Delete]”, and “[Right Alt]”. Alternatively, XtremeRAT logs the title of the active
window in order to give context to logged data, which means the logs are bound to have

entries that contain words such as “Internet”, “Explorer”, “Firefox”, “Word”, “Excel”,

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 13

and any others that may be appropriate for the computing environment whence the

keylog was extracted from.

Some versions of XtremeRAT prepend a few bytes to the keylog data file that can
be used to identify potential keylog files. The analyzed XtremeRAT source code reveals

this clearly, as can be seen in the figure below:

if PrimeiraVez = True then

begin
TempStr := #13#10;
WriteFile(KeyloggerFile, TempStr[1], Length(TempStr) * 2, c, nil);
WriteFile(KeyloggerFile, TempStr[1], Length(TempStr) * 2, c, nil);

TempStr := ' —— ';
WriteFile(KeyloggerFile, TempStr[1], Length(TempStr) * 2, c, nil);

ShowTime(Hora);
WriteFile(KeyloggerFile, Hora, StrLen(Hora) * 2, c, nil);

TempStr := #13#10;
WriteFile(KeyloggerFile, TempStr[1], Length(TempStr) * 2, c, nil);
end;

Figure 10: XtremeRAT 3.6 keylogger source code showing 'magic bytes' of a keylog file.

“Primiera Vez”, seen at the top of the code in Figure 10, is Portuguese for “first
time”, which suggests that the code will be run when the file is initially created. In
Pascal, prepending an integer with a “#” is equivalent to the character of the ordinal, e.g.
“#13” is equivalent to carriage return, and “#10” is equivalent to newline (i.e. “#13#10”

is what is often represented as “\r\n” in other languages).

However, this bit of code does not explain how the “OxAA 0xFE”, seen at offset 0
in the keylog file shown in Figure 7, gets there; in fact, the source code in Figure 11
clearly shows that the “header” will consist of “OxFF OXxFE”. These two bytes get written
to a file defined by the variable “KeyloggerFile”.

The analyzed source code does shed some light on how these bytes are generated,
but no definitive explanation for the difference observed in the code and the actual keylog
data was discovered. It is worth nothing that the source code (see Figure 11 below) and

binary versions differed, which may be the reason behind the discrepancy.

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 14

procedure StartKey;
var
s: pWideChar;
Header: array [0..1] of byte;
c: cardinal;
Size: int64;
i: integer;

begin
StopKey;
PrimeiraVez := True;
s := 'XtremeKeylogger';

if KeyObject <= @ then KeyObject := TMyObjectCreate(s, @KeyWindowProc);
ShowWindow(KeyObject, SW_HIDE);

SetFileAttributesW(KeyloggerFileName, FILE_ATTRIBUTE_NORMAL);
KeyloggerFile := CreateFileW(KeyloggerFileName,

GENERIC_READ + GENERIC_WRITE,

FILE_SHARE_READ + FILE_SHARE_WRITE,

nil,

OPEN_ALWAYS,

9,
0);
if KeyloggerFile = INVALID_HANDLE_VALUE then Exit;

Size := GetFileSize(KeyloggerFile, 0);
if Size = @ then
begin
header[@] := $FF;
header[1] := $FE;
WriteFile(KeyloggerFile, Header, SizeOf(Header), c, nil);
EmBranco := True;
end else EmBranco := False;

SetFileAttributesW(KeyloggerFileName, FILE_ATTRIBUTE_READONLY + FILE_ATTRIBUTE_HIDDEN + FILE_ATTRIBUTE_SYSTEM);
SetFilePointer(KeyloggerFile, ©, nil, FILE_END);

Figure 11: XtremeRAT 3.6 source code showing magic bytes OxFF OxFE.

XtremeRAT samples recovered from the wild have used different “magic bytes”,
and XOR-keys used for encoding have varied between analyzed samples. Anyone that
has access to the XtremeRAT source code, which is available on the Internet, can modify

these, making such changes an expected occurrence.

2.2.2. Deficiencies in the keylogger

Anyone that has analyzed XtremeRAT’s keylogs extracted from an environment
where multi-byte Unicode character sets are in use may have discovered that even after
“successful” decoding, portions of the logs contain seemingly random strings. This
“random data” stems from the fact that the keylogger fails to properly map captured scan

codes to the correct character representation under specific circumstances.
A scan code is a device-independent identifier assigned to each key on the

keyboard. When the user presses a key, a scan code is generated. This scan code needs to

be converted into something meaningful, like the character that the person typing on the

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 15

keyboard intended to create by pressing that given key. To achieve this, the scan key is
interpreted by the keyboard driver and mapped to a virtual-key code using what is known
as a VK_MAP — virtual-key map. The VK_MAP defines the aforementioned intent,
giving the keypress its actual purpose. Once the translation has been done, a message
with the scan code, mapped virtual-key code, and any other relevant information gets

placed in the system message queue. (MSDN, n.d.-e)

To illustrate the above, assume the input language of a Windows system where the
XtremeRAT server is running is set to Arabic. The scan code generated when pressing
the “A”-key on a standard QWERTY-keyboard is “0Ox1E” (MSDN, n.d.-f). This should in
turn normally generate the character “=”, as defined by the VK_MAP in use at the time
of the key being pressed; however, on occasion, this will be logged as “a” by
XtremeRAT. The issue was originally discovered when analyzing keylog data submitted

via form fields using recent versions of Internet Explorer.

Further analysis of the anomalous behavior described above suggested that this
occurs only in the context of a few applications. Any time keylog data manifested itself
as the Latin character set representation of the sequence of keys pressed, instead of the
expected Arabic words, the title of the window logged suggested a relationship to Internet
Explorer, or a component thereof. For instance, using the example above, the letter “a”

was written to the log file, not “(¥” as was expected.

The components that make up much of Internet Explorer’s functionality can be
easily reused, due to its Component Object Model (COM) based architecture.
ShDocVw.dll provides required functionality of a browser, e.g. navigation and history;
while MSHTML.dIl - commonly referred to by its codename “Trident” — is responsible
for parsing and rendering HTML and CSS, without the added browser capabilities. These
two commonly reused components allow developers to extend their applications with
functionality present in a modern browser, negating the need to re-implement everything.
This modularity and component reuse was also the likely source of the observed

anomalous behavior.

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 16

The image below shows the various components that make up Microsoft Internet
Explorer, including ShDocVw.dll and MSHTML.d!l mentioned earlier. Each rectangle
represents a coherent, modular entity that provides a subset of the browser’s
functionality. Since the anomalous behavior seemed to be application specific and related
to component reuse, any component imported into all of the misbehaving applications

also defined the probable scope of the problem being analyzed.

BrowseUl.dIl
(User Interface)

Figure 12: Internet Explorer architecture (Source: Wikimedia. Soumyasch, 2008).

Internet Explorer 6 on Windows XP SP3 32-bit behaved “correctly” in the sense
that it logged Arabic when Arabic was input into text fields. On Windows 7 SP1 systems,
both 32-bit and 64-bit versions, using Internet Explorer 8 and 10, the data was incorrectly
logged as Latin characters. Other native applications that were tested seemed to log data

as expected, i.e. Arabic in Arabic, English in English.

Harri Sylvander, harri@sylvander.net

© 2015 The SANS Institute Author retains full rights.

XtremeRAT — When Unicode Breaks | 17

Tests with Chrome and Firefox resulted in the expected behavior for both Windows
XP SP3 32-bit; tests on Windows 7 SP1 32-bit and 64-bit further narrowed down the
issue to Internet Explorer, or a component thereof. Furthermore, in Internet Explorer, the
issue only seemed to present itself in cases where data was typed into a HTML form
field, and not for example when inputting text in the browser’s URL field. This suggested
that the problem stemmed from the “Trident” rendering engine component of Internet

Explorer.

Wikipedia provides a list of some software that uses the “Trident” engine for
rendering HTML (http://en.wikipedia.org/wiki/Trident %28layout engine%29). Two
browsers from this list, Avant and Sleipnir, were selected for further testing in order to
verify if the behavior was consistent with what was observed while analyzing keylog data
captured in Internet Explorer form fields. Tests confirmed that both of these browsers had
the same issue, i.e. different characters were captured in the keylogs than what was

actually being typed into and represented in the form fields.

Below, screenshots of testing clearly demonstrate the differences in the logged and
expected data for the various browsers. Before showing the incorrect behavior, an
example, generated using [E6 on Windows XP SP3 32-bit (WinXPSP3x32) and Firefox
21 on Windows 7 SP1 32-bit (Win7SP1x32), of the expected behavior should be

reviewed.

Note that the HTML text area form field, with Arabic at the bottom of the page,
does not contain proper Arabic. It does read “Arabic” in proper Arabic, but the following
script is a sequence of keypresses that would result in “textarea” on a standard
QWERTY-keyboard. The screenshots are intended to highlight the issue with the data
that was logged from specific applications by XtremeRAT.

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 18

‘A XtremeRAT Keylogger Test Form - Microsoft Internet Explorer EJ@|®
File Edit View Favorites Tools Help ‘z"

@Back = <_) B @ “h /‘ﬁ Search \"‘/ﬂ? Favarites 8\ L;iv f,\'. 7

&] hitp:{fexample. camfindex. html VI Go Links

Address

A
Text form field test:
[English |

[t |

Text area test:

English textarea =

piihs s Lagwll

I3

I.@ Downloading from site: htkp: /v, microsoft. ¢ ® Internet
Figure 13: Test form rendered using IE6 on WinXPSP3x32.

Looking at the data typed into the form fields above and comparing it to the keylog
data below, we see that XtremeRAT logged the active window title, timestamp, and
whatever the expected representation of each pressed key was, as defined by the active
Input Locale. The Input Locale was switched between English and Arabic using a mouse
after each form field was filled out. The logged “[Tab]” entries were due to focus being
shifted from one field to the next as data was typed into the form elements. This behavior

was repeated in each subsequent test.

Keylogeen(xtrat VIC"Administrator(98EDDF2E))
@ne' orline | MouseLogger |

@

Skark Stop

¥tremeRAT Kevlogger Test Form - Microsoft Internet Explorer --- 12/28/2014 12:14:05 PM
English[Tab]iug yowss[TablEnglish textarea[Tablivg ywwsé Boed e [Tab)

lProgram Manager --- 12/28/2014 12:14:49 PM

Figure 14: XtremeRAT 3.7 client showing live keylog data collected from IE6 on WinXPSP3x32.

It is worth noting that the keylog viewer built into the client does not properly
distinguish between left-to-right (LTR) and right-to-left (RTL) requirements of the

characters being logged. Thus, any Arabic seen in the “Keylogger” window depicted in

Harri Sylvander, harri@sylvander.net

© 2015 The SANS Institute Author retains full rights.

XtremeRAT — When Unicode Breaks | 19

Figure 14 will need to be read from LTR, rendering the script in a manner different than

expected since characters cannot be joined properly in this direction.

One might attribute the differences in how key presses are logged to the underlying
operating system version, was it not for the fact that the second and third tests (and others
not included in this document) showed differing behaviors for one specific OS version.
This fact enforced the understanding that the difference must have been tied to the

application itself.

The following screenshot is of Firefox 21 (FF21), running on a Windows 7 system,
showing data being inserted in multiple languages and with multiple character sets.
Immediately below Figure 15, another screenshot shows the captured keystrokes, which

were correctly interpreted, though the LTR caveat discussed above still applies.

b J " ==~

siM XtremeRAT Keylogger Test Form

(- 0 example.com/indexhtml

Text form field test:
English

=

Text area test:

igure 15: Test form rendered using FF21 on Win7SP1x32.

Figure 16 below is a screenshot of the XtremeRAT client’s keylog viewer

displaying captured keylog data of the form being filled out in FF21; the captured data

Harri Sylvander, harri@sylvander.net

© 2015 The SANS Institute Author retains full rights.

XtremeRAT — When Unicode Breaks | 20

matches the entered data. The analysis of such data should pose no problems for anyone

fluent in the language that has been logged.

Keylogger [xtrat_ WIN7-1"admin(94D3CB2B))
OFfline | Online | MouseLogger |

0

Skart Stop

wkremeRAT Igeylogger Test Form - Mozilla Firefox --- 12/28/2014 7:45:29 AM
English[Tab]ivs o ss[Tab]English textarea[Tab]lug yowsé Woad, b, |

Figure 16: XtremeRAT 3.7 client showing live keylog data collected from FF21 on Win7SP1x32.

Figure 17 shows the same form rendered on Internet Explorer 10 (IE10) running on
Windows 7SP1 32-bit. The form was filled out with exactly the same data as the form of
the FF21 browser used in the previous example. Comparing the keylog data collected
from the FF21 and the IE10 forms, depicted in Figure 16 and Figure 18 respectively,
there is a clear difference; one that indicates keylogging of FF21 forms worked as

expected and that the behavior broke in newer versions of Internet Explorer.

Text form field test:
[English

|aual

Text area test:

English textarea

Figure 17: Test form rendered using IE10 on Win7SP1x32.

Harri Sylvander, harri@sylvander.net

© 2015 The SANS Institute Author retains full rights.

XtremeRAT — When Unicode Breaks | 21

The keylog data from IE10, displayed below in Figure 18, shows no Arabic
characters, only Latin ones. Where Arabic is expected, the text has been replaced by the
ASCII representation of each key that would have resulted in the rendering of the
appropriate Arabic character, e.g. “a” instead of “U4”. The string “hguvfdm” thus
represents the sequence of keys that needs to be pressed on a QWERTY keyboard, when
Arabic is selected as the input language on a Windows system, to write the word

“Arabic” in Arabic.

Keylogger (xtrat_ WIN7-1"admin(94D3CB2B))
Offline | COnline ‘MouseLogger

i

o

Stark Stop

English[TabJhguwfdm[Tab]English textareal Tab]hguswFdm textarea

Figure 18: XtremeRAT 3.7 client showing live keylog data collected from IE10 on Win7SP1x32.

Screenshots of the other tested browsers, Avant and Sleipnir, that reuse core
components of Internet Explorer are not included here, but the results were identical to

the Internet Explorer 10 test.

2.2.3. Proposed solution

Not being able to analyze and understand data that has been captured in keylogs
poses a problem for both parties — the victim of the keylogger as well as the attacker. The
attacker is obviously trying to steal information, but the behavior exhibited by various
browsers using the “Trident” engine renders some of captured data illegible. Conversely,
the victim should be interested in trying to identify what data an attacker may have

successfully stolen.

Since both the act of converting wrongly captured keylogs back into the original
representation of the data and identifying the nature of the “random data” contained in the
keylogs are far from complicated, releasing a tool to do the conversion seemed pertinent.

As such, the author has provided a tool for doing just this. The code presented in

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks ‘ 22

“Appendix A: xtrat_log_fixer.rb - Fixing Broken Keylogs” will manually parse extracted
strings and convert them into Arabic. Do note that running the script on some systems,
where the terminal fails to show RTL scripts inline properly, will yield isolated Arabic
characters written left-to-right LTR. The quick fix is to copy the generated output and

paste the information into a text editor that has proper support for RTL text.

The code will remove some “deadkeys”, most importantly any “Delete’” and
“Backspace” actions, along with the characters that they were meant to delete; however,
there are cases where the user can unknowingly edit the text in a manner that will render
it unfit for parsing using this script. An example of such an action is a multi-line or multi-
character selection using a combination of the “Shift” key and “arrow” keys. Selecting
and then overwriting, will replace multiple characters with the first key pressed after
selection, but the script will not understand such a scenario. More complex scenarios,
such as the one described above, will have to be manually analyzed and distilled down
into what the final sequence of keypresses is meant to be, and then that is parsed with the

script.

The screenshot below (see Figure 19) shows how the author-provided tool could be
used to decode portions of illegible data contained within captured keylogs. The string

being processed, “hguvfdm” is extracted from the data displayed above in Figure 18.

$ rubyg wtrat_keylog_fixer.rb decoded-keylog.txt
+ Lonverting:
hguvfidm

¥ Decoded output:
IJ!’J‘:‘\F;

Figure 19: Tool decoding "hguvfdm" to expected output.
The decoded output in the above screenshot suffers from the LTR-versus-RTL

issue previously discussed. Copying and pasting the above string into a text editor that

renders Arabic properly yields the correct text as shown in Figure 20. The data in this

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 23

final, corrected form matches the original input that was entered into the forms, as

depicted in the browser screenshots presented earlier.

® 00 Untitled — Edited v
I_E_I | Geeza Pro %)| Regular s)18 Lj |i||§

v b > | 2 | 2 | 2 > > > | 2 > ¥
101 T sl T el T4l Pl ol

Ll

Figure 20: Decoded output pasted into TextEditor to adjust for LTR vs. RTL issue.

A keylog file is an extremely powerful artifact, as it gives an immediate
understanding of the type of data that an attacker may have been able to steal from an
environment, and it can help less technical people see the gravity of the issue that is being
tackled. When arguing for resources to respond to a compromise, having a file that
contains legible text, instead of random character strings can be a deciding factor. To this
end, the author-provided proof-of-concept tool should suffice in shedding light on data

that would have been obscured from analysts’ and management’s eyes in the past.

3. Conclusion

The author-provided solution is not perfect — it does not work for all character sets,
and it does not cater for all edge cases, but it should help anyone analyzing keylog data
extracted from an incident involving an XtremeRAT, if the language used uses a fairly

limited Unicode character set.

The exact reason why the keylogging fails when “Trident”-based browsers are used
was not discovered during this exercise, but it does seem that no other applications are
subject to the same issues. Discussions on extracting the correct Unicode characters when
using various methods of capturing keystrokes from applications are abundant on the

Internet, which would indicate that this problem is not one that is limited to XtremeRAT.

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 24

In the end, establishing the exact nature of the technical issue that causes the
keystrokes to be wrongly logged is of academic interest while understanding the artifacts
present in the data collected from compromised systems may well be a necessity for
compromised organizations. This analysis and the referenced tools should provide the

means to help fulfill that requirement.

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 25

4. References

Deadcode (2009). KB Arabic.svg. Licensed under CC-BY-SA-3.0-migrated. Retrieved

from: http://commons.wikimedia.org/wiki/File:KB_Arabic.svg

FireEye (2014). Regional Advanced Threat Report: Europe, Middle East and Africa
1H2014 [PDF file]. Retrieved from: https://www.fireeye.com /resources/

pdfs/fireeye-emea-advanced-threat-report-1h2014.pdf

Hamid, T. (2013). Hacktivism the motivator of cyber attacks in Middle East [WWW

page]. Retrieved from: http://www.thenational.ae /business/industry-

insights/technology/hacktivism-the-motivator-of-cyber-attacks-in-middle-

east

Hypponen, M. (2012). Targeted Attacks in Syria [WWW page]. Retrieved from:
http://www.f-secure.com /weblog/archives/00002356.html

Microsoft Developer Network (n.d.-a). Windows keyboard layouts [WWW page].
Retrieved from: http://msdn.microsoft.com/en-us/goglobal /bb964651

Microsoft Developer Network (n.d.-b). Locale IDs Assigned by Microsoft [WWW
page/. Retrieved from: http://msdn.microsoft.com/en-

us/goglobal /bb964664.aspx

Microsoft Developer Network (n.d.-c). Locale IDs, input locales, and language
collections for Windows XP and Windows Server 2003 [WWW page]. Retrieved
from: http://msdn.microsoft.com/en-us/goglobal /bb895996

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 26

Microsoft Developer Network (n.d.-d). Internet Explorer Architecture [WWW page].

Retrieved from: http://msdn.microsoft.com/en-us/library/
aa741312(v=vs.85).aspx

Microsoft Developer Network (n.d.-e). About keyboard input [WWW page]. Retrieved

from: http://msdn.microsoft.com/en-us/library/windows/desktop
/ms646267(v=vs.85).aspx

Microsoft Developer Network (n.d.-f). Key scan codes [WWW page|. Retrieved from:

http://msdn.microsoft.com/en-us/library/aa299374(v=vs.60).aspx

Perry, B. (2012). Adventures in the Windows NT registry: A step into the world of
forensics and information gathering [WWW page]. Retrieved from:

https://community.rapid7.com/community/metasploit/blog/2012/01/16/a

dventures-in-the-windows-nt-registry-a-step-into-the-world-of-forensics-
and-ig

Smart, J. & Altorfer, F. (2010). Complete Arabic. Hodder Education. p. xvii.

Soumyasch (2008). [Explore.svg. Licensed under CC-BY-SA-3.0. Retrieved from:

http://en.wikipedia.org/wiki/Internet Explorer#mediaviewer/File:IExplore.
Svg

Villeneuve, N. & Bennet, . T. (2014). XtremeRAT: Nuisance or threat? [WWW page].

Retrieved from: http://www.fireeye.com/blog/technical/2014/02/
xtremerat-nuisance-or-threat.html

Villeneuve, N. (2012). New Xtreme RAT attacks US, Israel, and other foreign

governments [WWW page]. Retrieved from: http://blog.trendmicro.com/

trendlabs-security-intelligence /new-xtreme-rat-attacks-on-usisrael-and-

other-foreign-governments/

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 27

Villeneuve, N., Moran, N. & Haq, T. (2013). Operation Molerats: Middle East cyber
attacks using Poison Ivy [WWW page]. Retrieved from:

http://www.fireeye.com/blog/technical/2013/08/operation-molerats-

middle-east-cyber-attacks-using-poison-ivy.html

Zeltser, L. (2013). Tools for examining XOR obfuscation for malware analysis [WWW
page]. Retrieved from: http://digital-forensics.sans.org/blog/2013/05/14/

tools-for-examining-xor-obfuscation-for-malware-analysis

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks

5. Appendix A: xtrat_log_fixer.rb - Fixing Broken
Keylogs

The source code shown below is available for download at:

http://sylvander.net/projects/xtrat/

5.1. xtrat_keylog_fixer.rb

#!/opt/local/bin/rubyl.9
encoding: UTF-8

xtrat_keylog_fixer.rb ve.1
Harri Sylvander - harri@sylvander.net

This script can be used to decode parts of keylogs
generated by XtremeRAT that have been erroneously logged as
Latin characters when the proper representation would have
been Unicode characters.

The script reads a defined file's contents to decode and strips
XtremeRAT's presentation of some special characters. If those
special characters actually modify the data, e.g. [Delete]

or [Backspace], the content will be modified accordingly.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
There are cases where this simplistic assumption will break,
e.g. if someone uses [Shift]+[Arrows] to select data, and

then overwrite or delete data. For now, these cases are not
taken into account and any such cases will require manual

modification of the keylog data prior to decoding.
require_relative 'keymaps/xtrat_keymap.rb'

require 'optparse’

require 'rex/registry’

Right-to-left and left-to-right Unicode representations
rtl = "\u200e"
ltr = "\u200f"

e it [remove_special_chars]---#
def remove_special_chars(line)
if /\[(Delete|Backspace)\]/.match(line)
Delete => remove following character
if /(<lhs>?)\[Delete\](<rhs>?)/.match(line)
Substring of the right hand side w/o first character
and with special char removed
rhs = rhs[1,(rhs.length-1)]
elsif /(<lhs>?)\[Backspace\](<rhs>?)/.match(line)
Substring of the left hand side w/o last character
and with special char removed
lhs = 1hs[0, (lhs.length-1)]
else

return line
end

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 29

line = "#{lhs}#{rhs}"
remove_special_chars(line)
end

return line
end

e [decode_keylog_string]---#
def decode_keylog_string(keylog_string, keymap)
decoded_string = ""

if keymap.nil?
raise "ERROR! Must define keymap to convert to. Exiting."
end

keylog_string.each_char do |keylog_char|
if keymap[keylog_char].nil?
decoded_string << keylog_char
else
decoded_string << keymap[keylog_char]
end
end

return decoded_string
end

R e e [get_kbd_layouts]---#
def get_kbd_layouts(regfile)
kbd_layouts = []

hive = Rex::Registry::Hive.new(regfile)
nodekey = hive.relative_query('\Keyboard Layout\Preload')
nodekey.value_list.values.each { |k| kbd_layouts << k.value.data }

return kbd_layouts
end

def print_decoded_keylog string(keylog_string, decoded_keylog string)
puts "Converting original keylog data:\n"
puts keylog_string
puts ""
puts "+ Decoded output:"
puts decoded_string
end

e e T T [Main Program]---#
Required input
infile = nil

Optional input

regfile = nil

selected_keymap = nil

Don't parse data, only list available keymaps in specified NTUSER.DAT
list_layouts_only = false

OptionParser.new do |opts|
opts.banner = "Usage: ./xtrat_keylog_fixer.rb -i INFILE [-r REGISTRYFILE [-1]] [-k KEYMAP_ID]"

opts.on("-i", "--infile ", String, "Input file containing 'broken' strings from decoded
keylogs") do |f]|
infile = f
end

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 30

opts.on("-r", "--regfile [OPT]", String, "Registry file (NTUSER.DAT) containing 'Keyboard
Layout\\Preload' values") do |f|
regfile = f
end
opts.on("-1", '
profile") do |f|
list_kbd_layouts = true
end

'--list-kbd-layouts [OPT]", "List keyboard layouts defined for current user

opts.on("-k", "--keymap [OPT]", String, "InputLocale to use when parsing keylog data") do |f]|
selected_keymap = f

end

opts.on("-h", "--help", "Show this message") do
puts optsexit

end

begin
ARGV << "-h" if ARGV.empty?
opts.parse! (ARGV)

rescue OptionParser::ParseError => e
STDERR.puts e.message, "\n", opts
exit(-1)

end

end

if infile.nil?
raise "Must define infile to operate on. Exiting...
exit(1)

end

kbd_layouts = []
keylog_string = ""
File.foreach(infile) do |line|

keylog_string << remove_special_chars(line)
end

If an NTUSER.DAT was passed for parsing, extract all possible
keymaps that might've been used. See if a mapping has been
created for the keymap and try converting for each. If the user
defines the '-1' parameter, only list the Keymaps, but do not
parse and process the INFILE.
if regfile
kbd_layouts = get_kbd_layouts(regfile)
end

Can't proceed if netither a registry file (NTUSER.DAT) with
Keyboard Layouts nor a specific InputLocale is provided.
unless (kbd_layouts.size > © or selected_keymap)
puts "Must specify a registry (NTUSER.DAT) with valid keyboard layouts or provide a target
InputLocale. Exiting..."
exit(1)
end

if list_layouts_only
puts "List of available keymap IDs:"
kbd_layouts.each { |kbd_layout| puts " - #{kbd_layout}" }
else
Use user defined InputLocale if one was passed as an argument.

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks | 31

Otherwise loop through all keyboard layoutsin the user profile,
excluding 00000409, which is default Latin charset.
The user can always force 00000409 to be used by passing
the 00000409 Locale it as a parameter to the script.
if selected_keymap
puts "\n*** Decoding keylogs using InputLocale #{kbd_layout} as expected output. ***\n"
xtrkm = XtremeRATKeymap.new(selected_keymap)
print_decoded_keylog_string(keylog_string, decode_keylog_string(keylog_string, xtrkm.keymap))
else
kbd_layouts.each do |kbd_layout|
unless kbd_layout == "0\x000\x000\x000\x000\x004\x000\x009"
puts "\n*** Decoding keylogs using InputLocale #{kbd_layout} as expected output. ***\n"
xtrkm = XtremeRATKeymap.new(kbd_layout)
print_decoded_keylog_string(keylog_string, decode_keylog_string(keylog string,

xtrkm.keymap))

end
end
end

end

5.2. xtrat_keymap.rb

H*

#
#
#
#
#

encoding: UTF-8

For now, this script assumes that the keyboard layout

in use is a standard QWERTY, Latin character set keyboard. The

more correct way to parse this would be to map from logged character
to a possible scancode based on available layouts and then

mapping back to the expected character.

class XtremeRATKeymap

attr_reader :keymap

def initialize(kbd_layout)
Initialize keymap hash
@keymap = {}

Special characters
@keymap[" "] = ' ' # Space

Only Arabic use case defined. Add keymaps as necessary,

using the InputLocale value, as defined by Microsoft.

See "Table 1" of "XtremeRAT: When Unicode Breaks" for

examples of Arabic InputLocales.

case kbd_layout

when "0©\x000\x000\x000\x000\x004\x000\x001\x00\x00\x00"
Arabic - 00000401 used in Arab nations with the exception of
French speaking countries of North Africa.

Top row Numerals
@keymap["*"] = '3
@keymap["1"] = "V'
@keymap["2"] = "Y'
@keymap["3"] = "Y'
@keymap["4"] = "¢’
@keymap["5"] = '°'
@keymap["6"] = "'
@keymap["7"] = 'V’

Harri Sylvander, harri@sylvander.net

XtremeRAT — When Unicode Breaks

| 32

@keymap["
@keymap["
@keymap["

QWERTY

@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["

ASDFG

@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["

ZXCVB

@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["
@keymap["."
@keymap["

else

O

/"

—_—r— T O HF C < 5 M QO
e S T S S i S

H AW M@ Hhaon o
S T i S i S

- ..

.3 5 o< n XN

e e e e e e e e e

R S P S i g e

cuel

BO

o >

SR N N

' #laam-alif

raise "No keymap found"

end

end

end

Harri Sylvander, harri@sylvander.net

