
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

XtremeRAT – WHEN UNICODE BREAKS

GIAC GREM Gold Certification

!

!
Author:!Harri!Sylvander,!harri@sylvander.net!

!
!

Advisor:!Richard!Carbone!

!
!

Accepted:!March!XX,!2015!!

Abstract!

!

XtremeRAT! is! a! commonly!abused! remote!administration! tool! that! is!prevalent! in!
the!Middle!East;!prevalent!to!the!degree!that!it!is!not!uncommon!to!find!at!least!one!

active! RAT! in! a! network! on! any! given! incident! response! engagement.! The! tool! is!

readily! available! to! anyone! with! a! desire! to! build! one! on! their! own.! Availability!
means! that! the! RAT! is! being! employed! for! nefarious! purposes! by! adversaries!

ranging!from!those!who!do!not!fully!comprehend!the!consequences!of!their!actions,!
to! advanced! threat! actors! that! care! less! about! legal! aspects! and! more! about! the!

objectives!of!their!respective!missions.!One!of!the!tools!provided!by!XtremeRAT!to!

aid! in! achieving! these! goals! is! a! builtMin! Unicode! keylogging! capability;! however,!
there! are! situations!when! the! logging! fails,! resulting! in! incomprehensible!keylogs.!

The!data,!or!parts!thereof,!that!are!captured!in!these!logs!can!still!be!recovered,!and!

it! is!vital!to!the!defender!to!understand!what!data!has!potentially!been!stolen.!The!
objective!of!this!paper! is!to!shed!light!on!the!challenges!posed!in!extracting!useful!

information! from! the! logs! when! nonMLatin! character! sets,! specifically! Arabic,! are!
used,!and!to!publish!an!authorMdeveloped!tool!that!can!aid! in!decoding!the!broken!

parts!of!extracted!keylogs.!

!
!

XtremeRAT – When Unicode Breaks! 2
!

Harri!Sylvander,!harri@sylvander.net!

1. An Introduction to the RAT’s Nest
The past few years have been turbulent in the Middle East and North Africa. This

turbulence manifested itself as the “Arab Spring”, which began in December 2010 in

Tunisia, and spread through many of the nations in the region. The ensuing conflicts have

played a part in many cyber realm attacks as well.

Regional conflicts, whether Arab-Israeli, Shi’a-Sunni sectarian violence, or other

ideological or political differences (e.g. Western, and specifically US influence in the

region), are at the heart of many attacks in this region. The largest portion, 45%, of the

attacks observed in Middle East and North Africa (MENA) are hacktivism related,

followed by cybercrime at 40%, and a significant 15% is associated with cyber-warfare

type attacks including espionage. (Hamid, T., 2013)

Specially crafted malware, used by both sides in the ongoing high-tech, invisible

war, are the exception to the norm. When these kinds of highly specialized tools

(malware) are employed, and ultimately uncovered, they have a tendency to be high

profile events that occupy headlines. These events are not created by the less skilled

regional attackers; they are the ones that are ready to exploit the newsworthiness of the

events in social engineering attacks, tricking unsuspecting users into opening exploit

code-laden documents or executing malicious programs that purport to contain

information relevant to the current event.

The result of a successful social engineering attack, such as the ones described

above, will many times result in one of the regionally most prevalent RATs: DarkComet,

njRAT, or XtremeRAT, being installed on the victim’s system. (FireEye, 2014) All of the

aforementioned RATs are publicly available and customizable by a potential attacker.

XtremeRAT has been used by various groups and against diverse targets in the

Middle East and abroad. (Villeneuve, N., Moran, N. & Haq, T., 2013) (Villeneuve, N.,

2012) While some of these targets have been diverse enough to make it difficult to

establish, at least with any level of certainty, the intent and goals of the attackers, there is

XtremeRAT – When Unicode Breaks! 3
!

Harri!Sylvander,!harri@sylvander.net!

also evidence that some campaigns have specifically targeted Syrian anti-government

groups. (Hyppönen, M., 2012)

RATs tend to be associated with some level of targeted activity due to the

additional level of effort required by the attacker to control individual systems. However,

in early 2014, FireEye released an article indicating that the majority of XtremeRAT

activity is related to traditional cybercrime. There, it is used to distribute spam, which

ultimately leads to the download of a more traditional banking Trojan such as Zeus.

(Villeneuve, N. & Bennet, J. T., 2014)

Whether in the hands of hacktivists, cybercriminals, or threat groups with political

motives, there are plenty of tools to choose from. Using commodity tools may offer a

level of protection for more advanced attackers by allowing them to blend in with other

actors.

1.1. Arabic Localization
Basic Arabic consists of 28 letters. In everyday use, Arabic is written omitting short

vowels, and only long vowels are explicitly written. This removes the need for typing

diacritics above or below the preceding consonant in a syllable; however, subtle changes

in vowels can change the meaning of the word, which means the reader must have a fair

understanding of the language. While this may sound confusing and may render the

language incomprehensible, consider the oft-used abbreviations of words in messaging

using mobile devices: “txt”, “msg”, and others. The concept is more or less the same, and

while a single word may be ambiguous, context often removes that ambiguity. (Smart, J.

& Altorfer, F., 2010)

In addition, there is no distinction between upper and lower case characters, so if

one wishes, all required diacritics can be generated by applying modifier keys. This

means that standard keyboards are more than capable of accommodating the required

character set for producing standard Arabic text.

XtremeRAT – When Unicode Breaks! 4
!

Harri!Sylvander,!harri@sylvander.net!

There are differences in layouts that need to be taken into account when

considering mappings of keys to the resulting character being represented. Depending on

the locale and the exact physical layout of the keyboard, mappings can vary fairly

significantly, e.g. Microsoft has three defined Arabic keyboard layouts: Arabic (101),

Arabic (102), and Arabiz (102) AZERTY. (Microsoft Developer Network [MSDN], n.d.-

a) The proof of concept code included in “Appendix A: xtrat_log_fixer.rb - Fixing

Broken Keylogs” is created for one such layout that is commonly used in Arab countries.

!

!
Figure 1: Common Arabic layout for a PC keyboard (Source: Wikimedia Commons).

To establish which languages and keyboard layouts are available for a user profile

on a system, an analyst can look for configured Input Locales in the registry. An Input

Locale defines the input language and how that language is being entered into the system.

All available keyboard layouts on a system are defined by the registry key

“HKLM\SYSTEM\ControlSet001\Control\Keyboard Layouts”, but for the purpose of

identifying potential languages configured by users, focus needs to be shifted to user

registry hives. The registry key, “HKCU\Keyboard Layout\Preload”, shown in Figure 2

defines available locales.

XtremeRAT – When Unicode Breaks! 5
!

Harri!Sylvander,!harri@sylvander.net!

!

Figure 2: Preload key showing two configured LCIDs: 409 English US and 3801 Arabic UAE.

If a configured locale does not have its own unique keyboard layout or the system

is configured to use a keyboard layout other than the default one, a mapping of the Locale

ID (LCID) to keyboard layout is stored in “HKCU\Keyboard Layout\Substitutes”. This is

the case for all Arabic locales except for Arabic_Saudi_Arabia (LCID “0x0401”), which

defaults to the Arabic 101 keyboard layout, represented by the hexadecimal value

“0x00000401”. For example, if Arabic_UAE (LCID “0x3801”) is configured, the data

“0x00003801” is stored in one of “Preload” key’s values to represent this fact. Since

there is no unique keyboard layout for the locale – it uses the same Arabic 101 layout as

Arabic_Saudi_Arabia – the configured keyboard layout will be mapped in the

“Substitutes” key, as shown in Figure!3. The “Substitutes” key contains the value

“0x00003801”, and the data, “0x00000401”, of that value represents the configured

keyboard layout.

!
Figure 3: Substitutes key showing mapping of LCID to keyboard layout.

XtremeRAT – When Unicode Breaks! 6
!

Harri!Sylvander,!harri@sylvander.net!

The data contained in the values of the “Preload” key are hexadecimal values that

need to be interpreted to reveal the actual configured languages. The interpretation is

possible by mapping LCIDs to their respective Locales, e.g. Arabic_Saudi_Arabia, using

a table available on MSDN (MSDN, n.d.-b). Below in Table 1 is an excerpt containing

the Arabic LCID:Input Locale combinations in the following table from MSDN.

Table 1: Default Arabic LCID:Input Locale combinations in XP/2003 (MSDN, n.d.-c).

Locale LCIDHex Valid Locale ID:InputLocale
combinations

Language
Collection

Arabic_Saudi_Arabia 0401 0409:00000409,
0401:00000401

Complex Script

Arabic_Iraq 0801 0409:00000409,
0801:00000401

Complex Script

Arabic_Egypt 0c01 0409:00000409,
0c01:00000401

Complex Script

Arabic_Libya 1001 040c:0000040c,
1001:00020401

Complex Script

Arabic_Algeria 1401 040c:0000040c,
1401:00020401

Complex Script

Arabic_Morocco 1801 040c:0000040c,
1801:00020401

Complex Script

Arabic_Tunisia 1c01 040c:0000040c,
1c01:00020401

Complex Script

Arabic_Oman 2001 0409:00000409,
2001:00000401

Complex Script

Arabic_Yemen 2401 0409:00000409,
2401:00000401

Complex Script

Arabic_Syria 2801 0409:00000409,
2801:00000401

Complex Script

Arabic_Jordan 2c01 0409:00000409,
2c01:00000401

Complex Script

Arabic_Lebanon 3001 0409:00000409,
3001:00000401

Complex Script

Arabic_Kuwait 3401 0409:00000409,
3401:00000401

Complex Script

Arabic_UAE 3801 0409:00000409,
3801:00000401

Complex Script

Arabic_Bahrain 3c01 0409:00000409,
3c01:00000401

Complex Script

Arabic_Qatar 4001 0409:00000409,
4001:00000401

Complex Script

“0409:00000409” is the Locale ID:Input Locale representation for US English,

which is used as a default Input Locale in non-English locales.

XtremeRAT – When Unicode Breaks! 7
!

Harri!Sylvander,!harri@sylvander.net!

By extracting the LCIDs, an analyst can determine what input languages were

available on a system at the time of acquisition. One quick and convenient way to do this

is using Metasploit’s Rex Module. Rex::Registry removes any dependencies on the

Windows API, which makes processing registry hives using Ruby feasible across

multiple platforms. (Perry, B., 2012)

Having the LCID information available is essential to properly decode some of the

data logged by XtremeRAT in specific circumstances; these specifics will be discussed in

the next section.

2. Dissecting the RAT

2.1. XtremeRAT’s capabilities
XtremeRAT is a versatile piece of code. The versions that were analyzed for this

document are 3.6 and 3.7. The former version was included due to the availability of its

source code, and the latter to make sure that the latest functionality, at the time of writing,

was covered.

!

As with many remote administration tools (RAT), XtremeRAT provides basic

capabilities such as executing programs and uploading and downloading files; however,

these are far from a complete list, as can be seen in the screenshots shown below in

Figure!4 and Figure!5.

Most of the functions and server options are self-explanatory and do not warrant an

in-depth analysis. However, the one component that is of special interest, even if it is not

unique to XtremeRAT in anyway, is the keylogger.

XtremeRAT – When Unicode Breaks! 8
!

Harri!Sylvander,!harri@sylvander.net!

!
Figure 4: XtremeRAT 3.7 Functions.

!

!
Figure 5: XtremeRAT 3.7 Server Options.

!

As can be seen in the drop-down menu screenshots presented above, the client

portion of the RAT provides the capability of searching keylogs for specific keywords,

downloading keylogger logs, and browsing keylogger files on the server. Keylogging

capabilities can be configured in the RAT during the build phase, as shown in Figure!6.

XtremeRAT – When Unicode Breaks! 9
!

Harri!Sylvander,!harri@sylvander.net!

!
Figure 6: Configuring keylogger component during XtremeRAT 3.7 build.

!

2.2. XtremeRAT’s keylogger

2.2.1. Decoding and analyzing

XtremeRAT stores the keylog data in a trivially decodable format. Nart Villeneuve

and James Bennett have documented some of the deficiencies in the encryption employed

by XtremeRAT on FireEye’s blog. (Villeneuve, N. & Bennet, J. T., 2014) Furthermore,

Bennett has released tools to decrypt known variants’ configuration files as well as

keylogger logs. The tools are available for download from GitHub

(https://github.com/fireeye/tools/tree/master/malware/Xtreme%20RAT).

!

Examining a keylog file created by XtremeRAT in a hex editor or some other

viewer that outputs the hexadecimal representation of the data contained therein, it

becomes clear that the encryption scheme used is not very complex, as seen in Figure!7.

XtremeRAT – When Unicode Breaks! 10
!

Harri!Sylvander,!harri@sylvander.net!

!
Figure 7: Keylog data of downloaded XtremeRAT 3.7 showing significant amount of null-byte values.

!
The null-bytes, i.e. hexadecimal value “0x00”, that can be seen repeating for every

second byte in the keylog file presented above, indicate the possibility of Unicode data

being logged and possibly a one or two byte XOR scheme being used.

!

Any character that can be represented with a single byte will have a null-byte as the

second byte in its Unicode representation. Performing a XOR operation on this null-byte

using a key X will result in the same value, X, immediately exposing the key. Clearly this

has not been done, or the second byte of each Unicode character is more or less static.

And, the XOR key used resulted in that character being represented as “0x00” – not a

very likely scenario.

!

The source code of XtremeRAT 3.6 reveals that the author specifically excludes

null-bytes, carriage returns, and newlines from the XOR encoding. In Pascal, these

characters can be represented by “#0”, “#10”, and “#13”, respectively, as shown in the

following figure:

!

!
Figure 8: Source code of XtremeRAT 3.6 showing exclusion of characters from XOR encoding.

XtremeRAT – When Unicode Breaks! 11
!

Harri!Sylvander,!harri@sylvander.net!

This matches what was seen in IDA Pro during the analysis of the downloaded

version, as depicted in Figure!9 below.

!

!
Figure 9: IDA Pro disassembly of XOR encoding loop in XtremeRAT 3.7.

!
Many samples in the wild share XOR-keys used for encoding keylog data. James

Bennett’s xtrat_decrypt_keylog.py, available from the GitHub repository referred to

earlier in this section, includes some of the commonly encountered XOR-keys. If an

attacker changes the XOR-key, the tool will no longer properly decode keylog data.

Fortunately, discovering the new key, and including it in the tool is not an overly

complex procedure. The article, “Tools for Examining XOR Obfuscation for Malware

Analysis”, hosted on SANS Digital Forensics and Incident Response blog, provides

XtremeRAT – When Unicode Breaks! 12
!

Harri!Sylvander,!harri@sylvander.net!

multiple tools for analyzing XOR encoded data and finding possible keys for decoding.

(Zeltser, L., 2013)

!

One thing to note is that any tool that searches for a known ASCII string will fail,

since the stored data is Unicode. A quick workaround is stripping out the null-bytes from

the file, but keep in mind that this will break any wide characters that may be included in

the data. In addition, the output may become a mix of unprintable binary characters and

ASCII.

!
On most UNIX systems, stripping out null-bytes can be accomplished by issuing

the following command:

!

$"LC_ALL=C"tr"–d"‘\0’"<"unicode_keylog.dat">"keylog.dat"

"
!

Without the “LC_ALL=C”, the reader may encounter “tr: Illegal byte sequence”

errors, as “tr” is expecting non-binary data. The resulting file will be stripped of null-

bytes and will be susceptible to XOR-analysis using one of the tools referred to earlier.

!

The recommended way to ensure nothing is lost in the decoding process is adding a

bit of logic to verify if the second byte is a null byte or if the character being decoded is a

wide character. This is what xtrat_decrypt_keylog.py does; however, it will still be

necessary to find the key that decodes the wide characters. The problem can be reduced

to finding the second half of a two-byte key, if the first byte is found using the destructive

method described above.

!

One quick way to find the first byte is to strip the null-bytes and then look for

artifacts that are expected in the keylog. XtremeRAT identifies so-called “deadkeys” that

have been pressed by denoting the name of the key in brackets, e.g. “[Backspace]”,

“[Delete]”, and “[Right Alt]”. Alternatively, XtremeRAT logs the title of the active

window in order to give context to logged data, which means the logs are bound to have

entries that contain words such as “Internet”, “Explorer”, “Firefox”, “Word”, “Excel”,

XtremeRAT – When Unicode Breaks! 13
!

Harri!Sylvander,!harri@sylvander.net!

and any others that may be appropriate for the computing environment whence the

keylog was extracted from.

!

Some versions of XtremeRAT prepend a few bytes to the keylog data file that can

be used to identify potential keylog files. The analyzed XtremeRAT source code reveals

this clearly, as can be seen in the figure below:

!

!
Figure 10: XtremeRAT 3.6 keylogger source code showing 'magic bytes' of a keylog file.

!

“Primiera Vez”, seen at the top of the code in Figure!10, is Portuguese for “first

time”, which suggests that the code will be run when the file is initially created. In

Pascal, prepending an integer with a “#” is equivalent to the character of the ordinal, e.g.

“#13” is equivalent to carriage return, and “#10” is equivalent to newline (i.e. “#13#10”

is what is often represented as “\r\n” in other languages).

!

However, this bit of code does not explain how the “0xAA 0xFE”, seen at offset 0

in the keylog file shown in Figure!7, gets there; in fact, the source code in Figure!11

clearly shows that the “header” will consist of “0xFF 0xFE”. These two bytes get written

to a file defined by the variable “KeyloggerFile”.

!

The analyzed source code does shed some light on how these bytes are generated,

but no definitive explanation for the difference observed in the code and the actual keylog

data was discovered. It is worth nothing that the source code (see Figure!11 below) and

binary versions differed, which may be the reason behind the discrepancy.

XtremeRAT – When Unicode Breaks! 14
!

Harri!Sylvander,!harri@sylvander.net!

!
Figure 11: XtremeRAT 3.6 source code showing magic bytes 0xFF 0xFE.

!

XtremeRAT samples recovered from the wild have used different “magic bytes”,

and XOR-keys used for encoding have varied between analyzed samples. Anyone that

has access to the XtremeRAT source code, which is available on the Internet, can modify

these, making such changes an expected occurrence.

!

2.2.2. Deficiencies in the keylogger

Anyone that has analyzed XtremeRAT’s keylogs extracted from an environment

where multi-byte Unicode character sets are in use may have discovered that even after

“successful” decoding, portions of the logs contain seemingly random strings. This

“random data” stems from the fact that the keylogger fails to properly map captured scan

codes to the correct character representation under specific circumstances.

!

A scan code is a device-independent identifier assigned to each key on the

keyboard. When the user presses a key, a scan code is generated. This scan code needs to

be converted into something meaningful, like the character that the person typing on the

XtremeRAT – When Unicode Breaks! 15
!

Harri!Sylvander,!harri@sylvander.net!

keyboard intended to create by pressing that given key. To achieve this, the scan key is

interpreted by the keyboard driver and mapped to a virtual-key code using what is known

as a VK_MAP – virtual-key map. The VK_MAP defines the aforementioned intent,

giving the keypress its actual purpose. Once the translation has been done, a message

with the scan code, mapped virtual-key code, and any other relevant information gets

placed in the system message queue. (MSDN, n.d.-e)

!

To illustrate the above, assume the input language of a Windows system where the

XtremeRAT server is running is set to Arabic. The scan code generated when pressing

the “A”-key on a standard QWERTY-keyboard is “0x1E” (MSDN, n.d.-f). This should in

turn normally generate the character “!”, as defined by the VK_MAP in use at the time

of the key being pressed; however, on occasion, this will be logged as “a” by

XtremeRAT. The issue was originally discovered when analyzing keylog data submitted

via form fields using recent versions of Internet Explorer.

!

Further analysis of the anomalous behavior described above suggested that this

occurs only in the context of a few applications. Any time keylog data manifested itself

as the Latin character set representation of the sequence of keys pressed, instead of the

expected Arabic words, the title of the window logged suggested a relationship to Internet

Explorer, or a component thereof. For instance, using the example above, the letter “a”

was written to the log file, not “!” as was expected.

!

The components that make up much of Internet Explorer’s functionality can be

easily reused, due to its Component Object Model (COM) based architecture.

ShDocVw.dll provides required functionality of a browser, e.g. navigation and history;

while MSHTML.dll - commonly referred to by its codename “Trident” – is responsible

for parsing and rendering HTML and CSS, without the added browser capabilities. These

two commonly reused components allow developers to extend their applications with

functionality present in a modern browser, negating the need to re-implement everything.

This modularity and component reuse was also the likely source of the observed

anomalous behavior.

XtremeRAT – When Unicode Breaks! 16
!

Harri!Sylvander,!harri@sylvander.net!

The image below shows the various components that make up Microsoft Internet

Explorer, including ShDocVw.dll and MSHTML.dll mentioned earlier. Each rectangle

represents a coherent, modular entity that provides a subset of the browser’s

functionality. Since the anomalous behavior seemed to be application specific and related

to component reuse, any component imported into all of the misbehaving applications

also defined the probable scope of the problem being analyzed.

!

!
Figure 12: Internet Explorer architecture (Source: Wikimedia. Soumyasch, 2008).

!
Internet Explorer 6 on Windows XP SP3 32-bit behaved “correctly” in the sense

that it logged Arabic when Arabic was input into text fields. On Windows 7 SP1 systems,

both 32-bit and 64-bit versions, using Internet Explorer 8 and 10, the data was incorrectly

logged as Latin characters. Other native applications that were tested seemed to log data

as expected, i.e. Arabic in Arabic, English in English.

XtremeRAT – When Unicode Breaks! 17
!

Harri!Sylvander,!harri@sylvander.net!

Tests with Chrome and Firefox resulted in the expected behavior for both Windows

XP SP3 32-bit; tests on Windows 7 SP1 32-bit and 64-bit further narrowed down the

issue to Internet Explorer, or a component thereof. Furthermore, in Internet Explorer, the

issue only seemed to present itself in cases where data was typed into a HTML form

field, and not for example when inputting text in the browser’s URL field. This suggested

that the problem stemmed from the “Trident” rendering engine component of Internet

Explorer.

!
Wikipedia provides a list of some software that uses the “Trident” engine for

rendering HTML (http://en.wikipedia.org/wiki/Trident_%28layout_engine%29). Two

browsers from this list, Avant and Sleipnir, were selected for further testing in order to

verify if the behavior was consistent with what was observed while analyzing keylog data

captured in Internet Explorer form fields. Tests confirmed that both of these browsers had

the same issue, i.e. different characters were captured in the keylogs than what was

actually being typed into and represented in the form fields.

!

Below, screenshots of testing clearly demonstrate the differences in the logged and

expected data for the various browsers. Before showing the incorrect behavior, an

example, generated using IE6 on Windows XP SP3 32-bit (WinXPSP3x32) and Firefox

21 on Windows 7 SP1 32-bit (Win7SP1x32), of the expected behavior should be

reviewed.

!

!
Note that the HTML text area form field, with Arabic at the bottom of the page,

does not contain proper Arabic. It does read “Arabic” in proper Arabic, but the following

script is a sequence of keypresses that would result in “textarea” on a standard

QWERTY-keyboard. The screenshots are intended to highlight the issue with the data

that was logged from specific applications by XtremeRAT.

!

XtremeRAT – When Unicode Breaks! 18
!

Harri!Sylvander,!harri@sylvander.net!

!
Figure 13: Test form rendered using IE6 on WinXPSP3x32.

!

Looking at the data typed into the form fields above and comparing it to the keylog

data below, we see that XtremeRAT logged the active window title, timestamp, and

whatever the expected representation of each pressed key was, as defined by the active

Input Locale. The Input Locale was switched between English and Arabic using a mouse

after each form field was filled out. The logged “[Tab]” entries were due to focus being

shifted from one field to the next as data was typed into the form elements. This behavior

was repeated in each subsequent test.

!

!
Figure 14: XtremeRAT 3.7 client showing live keylog data collected from IE6 on WinXPSP3x32.

!
It is worth noting that the keylog viewer built into the client does not properly

distinguish between left-to-right (LTR) and right-to-left (RTL) requirements of the

characters being logged. Thus, any Arabic seen in the “Keylogger” window depicted in

XtremeRAT – When Unicode Breaks! 19
!

Harri!Sylvander,!harri@sylvander.net!

Figure!14 will need to be read from LTR, rendering the script in a manner different than

expected since characters cannot be joined properly in this direction.

!

One might attribute the differences in how key presses are logged to the underlying

operating system version, was it not for the fact that the second and third tests (and others

not included in this document) showed differing behaviors for one specific OS version.

This fact enforced the understanding that the difference must have been tied to the

application itself.

!

The following screenshot is of Firefox 21 (FF21), running on a Windows 7 system,

showing data being inserted in multiple languages and with multiple character sets.

Immediately below Figure!15, another screenshot shows the captured keystrokes, which

were correctly interpreted, though the LTR caveat discussed above still applies.

!

!
Figure 15: Test form rendered using FF21 on Win7SP1x32.

!

Figure 16 below is a screenshot of the XtremeRAT client’s keylog viewer

displaying captured keylog data of the form being filled out in FF21; the captured data

XtremeRAT – When Unicode Breaks! 20
!

Harri!Sylvander,!harri@sylvander.net!

matches the entered data. The analysis of such data should pose no problems for anyone

fluent in the language that has been logged.

!

!
Figure 16: XtremeRAT 3.7 client showing live keylog data collected from FF21 on Win7SP1x32.

!

Figure!17 shows the same form rendered on Internet Explorer 10 (IE10) running on

Windows 7SP1 32-bit. The form was filled out with exactly the same data as the form of

the FF21 browser used in the previous example. Comparing the keylog data collected

from the FF21 and the IE10 forms, depicted in Figure!16 and Figure 18 respectively,

there is a clear difference; one that indicates keylogging of FF21 forms worked as

expected and that the behavior broke in newer versions of Internet Explorer.

!

!
Figure 17: Test form rendered using IE10 on Win7SP1x32.

!

XtremeRAT – When Unicode Breaks! 21
!

Harri!Sylvander,!harri@sylvander.net!

The keylog data from IE10, displayed below in Figure!18, shows no Arabic

characters, only Latin ones. Where Arabic is expected, the text has been replaced by the

ASCII representation of each key that would have resulted in the rendering of the

appropriate Arabic character, e.g. “a” instead of “!”. The string “hguvfdm” thus

represents the sequence of keys that needs to be pressed on a QWERTY keyboard, when

Arabic is selected as the input language on a Windows system, to write the word

“Arabic” in Arabic.

!

!
Figure 18: XtremeRAT 3.7 client showing live keylog data collected from IE10 on Win7SP1x32.

Screenshots of the other tested browsers, Avant and Sleipnir, that reuse core

components of Internet Explorer are not included here, but the results were identical to

the Internet Explorer 10 test.

2.2.3. Proposed solution

Not being able to analyze and understand data that has been captured in keylogs

poses a problem for both parties – the victim of the keylogger as well as the attacker. The

attacker is obviously trying to steal information, but the behavior exhibited by various

browsers using the “Trident” engine renders some of captured data illegible. Conversely,

the victim should be interested in trying to identify what data an attacker may have

successfully stolen.

!

Since both the act of converting wrongly captured keylogs back into the original

representation of the data and identifying the nature of the “random data” contained in the

keylogs are far from complicated, releasing a tool to do the conversion seemed pertinent.

As such, the author has provided a tool for doing just this. The code presented in

XtremeRAT – When Unicode Breaks! 22
!

Harri!Sylvander,!harri@sylvander.net!

“Appendix!A:!xtrat_log_fixer.rb!M!Fixing!Broken!Keylogs” will manually parse extracted

strings and convert them into Arabic. Do note that running the script on some systems,

where the terminal fails to show RTL scripts inline properly, will yield isolated Arabic

characters written left-to-right LTR. The quick fix is to copy the generated output and

paste the information into a text editor that has proper support for RTL text.

!

The code will remove some “deadkeys”, most importantly any “Delete” and

“Backspace” actions, along with the characters that they were meant to delete; however,

there are cases where the user can unknowingly edit the text in a manner that will render

it unfit for parsing using this script. An example of such an action is a multi-line or multi-

character selection using a combination of the “Shift” key and “arrow” keys. Selecting

and then overwriting, will replace multiple characters with the first key pressed after

selection, but the script will not understand such a scenario. More complex scenarios,

such as the one described above, will have to be manually analyzed and distilled down

into what the final sequence of keypresses is meant to be, and then that is parsed with the

script.

!

The screenshot below (see Figure!19) shows how the author-provided tool could be

used to decode portions of illegible data contained within captured keylogs. The string

being processed, “hguvfdm” is extracted from the data displayed above in Figure!18.

!

!

Figure 19: Tool decoding "hguvfdm" to expected output.

!
The decoded output in the above screenshot suffers from the LTR-versus-RTL

issue previously discussed. Copying and pasting the above string into a text editor that

renders Arabic properly yields the correct text as shown in Figure 20. The data in this

XtremeRAT – When Unicode Breaks! 23
!

Harri!Sylvander,!harri@sylvander.net!

final, corrected form matches the original input that was entered into the forms, as

depicted in the browser screenshots presented earlier.

!
Figure 20: Decoded output pasted into TextEditor to adjust for LTR vs. RTL issue.

!
A keylog file is an extremely powerful artifact, as it gives an immediate

understanding of the type of data that an attacker may have been able to steal from an

environment, and it can help less technical people see the gravity of the issue that is being

tackled. When arguing for resources to respond to a compromise, having a file that

contains legible text, instead of random character strings can be a deciding factor. To this

end, the author-provided proof-of-concept tool should suffice in shedding light on data

that would have been obscured from analysts’ and management’s eyes in the past.

3. Conclusion
The author-provided solution is not perfect – it does not work for all character sets,

and it does not cater for all edge cases, but it should help anyone analyzing keylog data

extracted from an incident involving an XtremeRAT, if the language used uses a fairly

limited Unicode character set.

!

The exact reason why the keylogging fails when “Trident”-based browsers are used

was not discovered during this exercise, but it does seem that no other applications are

subject to the same issues. Discussions on extracting the correct Unicode characters when

using various methods of capturing keystrokes from applications are abundant on the

Internet, which would indicate that this problem is not one that is limited to XtremeRAT.

!

XtremeRAT – When Unicode Breaks! 24
!

Harri!Sylvander,!harri@sylvander.net!

In the end, establishing the exact nature of the technical issue that causes the

keystrokes to be wrongly logged is of academic interest while understanding the artifacts

present in the data collected from compromised systems may well be a necessity for

compromised organizations. This analysis and the referenced tools should provide the

means to help fulfill that requirement.

XtremeRAT – When Unicode Breaks! 25
!

Harri!Sylvander,!harri@sylvander.net!

4. References
!

Deadcode!(2009).!KB#Arabic.svg.!Licensed!under!CCMBYMSAM3.0Mmigrated.!Retrieved!

from:!http://commons.wikimedia.org/wiki/File:KB_Arabic.svg!

!

FireEye!(2014).!Regional#Advanced#Threat#Report:#Europe,#Middle#East#and#Africa#

1H2014#[PDF#file].#Retrieved!from:!https://www.fireeye.com/resources/!

pdfs/fireeyeMemeaMadvancedMthreatMreportM1h2014.pdf!

!

Hamid,!T.!(2013).!Hacktivism#the#motivator#of#cyber#attacks#in#Middle#East##[WWW#

page].#Retrieved!from:!http://www.thenational.ae/business/industryM

insights/technology/hacktivismMtheMmotivatorMofMcyberMattacksMinMmiddleM

east!

!

Hyppönen,!M.!(2012).!Targeted#Attacks#in#Syria#[WWW#page].#Retrieved!from:!

http://www.fMsecure.com/weblog/archives/00002356.html!

!

Microsoft!Developer!Network!(n.d.Ma).!Windows#keyboard#layouts#[WWW#page].#

Retrieved!from:!http://msdn.microsoft.com/enMus/goglobal/bb964651!

!

Microsoft!Developer!Network!(n.d.Mb).!Locale#IDs#Assigned#by#Microsoft#[WWW#

page].!Retrieved!from:!http://msdn.microsoft.com/enM

us/goglobal/bb964664.aspx!

!

Microsoft!Developer!Network!(n.d.Mc).!!Locale#IDs,!input#locales,#and#language#

collections#for#Windows#XP#and#Windows#Server#2003#[WWW#page].!Retrieved!

from:!http://msdn.microsoft.com/enMus/goglobal/bb895996!

!

XtremeRAT – When Unicode Breaks! 26
!

Harri!Sylvander,!harri@sylvander.net!

Microsoft!Developer!Network!(n.d.Md).!Internet#Explorer#Architecture#[WWW#page].!

Retrieved!from:!http://msdn.microsoft.com/enMus/library/!

aa741312(v=vs.85).aspx!

!

Microsoft!Developer!Network!(n.d.Me).!About#keyboard#input#[WWW#page].#Retrieved!

from:!http://msdn.microsoft.com/enMus/library/windows/desktop!

/ms646267(v=vs.85).aspx!

!

Microsoft!Developer!Network!(n.d.Mf).!Key#scan#codes#[WWW#page].!Retrieved!from:!

http://msdn.microsoft.com/enMus/library/aa299374(v=vs.60).aspx!

!

Perry,!B.!(2012).!Adventures#in#the#Windows#NT#registry:#A#step#into#the#world#of#

forensics#and#information#gathering!#[WWW#page].!Retrieved!from:!

https://community.rapid7.com/community/metasploit/blog/2012/01/16/a

dventuresMinMtheMwindowsMntMregistryMaMstepMintoMtheMworldMofMforensicsM

andMig!

!

Smart,!J.!&!Altorfer,!F.!(2010).!Complete#Arabic.!Hodder!Education.!p.!xvii.!

!

Soumyasch!(2008).!IExplore.svg.!Licensed!under!CCMBYMSAM3.0.!Retrieved!from:!

http://en.wikipedia.org/wiki/Internet_Explorer#mediaviewer/File:IExplore.

svg!

!

Villeneuve,!N.!&!Bennet,!J.!T.!(2014).!XtremeRAT:#Nuisance#or#threat?#[WWW#page].#

Retrieved!from:!http://www.fireeye.com/blog/technical/2014/02/!

xtremeratMnuisanceMorMthreat.html!

!

Villeneuve,!N.!(2012).!New#Xtreme#RAT#attacks#US,#Israel,#and#other#foreign#

governments#[WWW#page].#Retrieved!from:!http://blog.trendmicro.com/!

trendlabsMsecurityMintelligence/newMxtremeMratMattacksMonMusisraelMandM

otherMforeignMgovernments/!

XtremeRAT – When Unicode Breaks! 27
!

Harri!Sylvander,!harri@sylvander.net!

Villeneuve,!N.,!Moran,!N.!&!Haq,!T.!(2013).!Operation#Molerats:#Middle#East#cyber#

attacks#using#Poison#Ivy#[WWW#page].#Retrieved!from:!

http://www.fireeye.com/blog/technical/2013/08/operationMmoleratsM

middleMeastMcyberMattacksMusingMpoisonMivy.html!

!

Zeltser,!L.!(2013).!Tools#for#examining#XOR#obfuscation#for#malware#analysis##[WWW#

page].!Retrieved!from:!http://digitalMforensics.sans.org/blog/2013/05/14/!

toolsMforMexaminingMxorMobfuscationMforMmalwareManalysis!

!

! !

XtremeRAT – When Unicode Breaks! 28
!

Harri!Sylvander,!harri@sylvander.net!

5. Appendix A: xtrat_log_fixer.rb - Fixing Broken
Keylogs

!

The!source!code!shown!below!is!available!for!download!at:!

!
http://sylvander.net/projects/xtrat/!

5.1. xtrat_keylog_fixer.rb
#!/opt/local/bin/ruby1.9"
#"encoding:"UTFI8"
#"
#"xtrat_keylog_fixer.rb"v0.1"
#"Harri"Sylvander"I"harri@sylvander.net"
#"
#"This"script"can"be"used"to"decode"parts"of"keylogs"
#"generated"by"XtremeRAT"that"have"been"erroneously"logged"as"
#"Latin"characters"when"the"proper"representation"would"have"
#"been"Unicode"characters."
#"
#"The"script"reads"a"defined"file's"contents"to"decode"and"strips"
#"XtremeRAT's"presentation"of"some"special"characters."If"those""
#"special"characters"actually"modify"the"data,"e.g."[Delete]"
#"or"[Backspace],"the"content"will"be"modified"accordingly."
#"
#"There"are"cases"where"this"simplistic"assumption"will"break,"
#"e.g."if"someone"uses"[Shift]+[Arrows]"to"select"data,"and"
#"then"overwrite"or"delete"data."For"now,"these"cases"are"not"
#"taken"into"account"and"any"such"cases"will"require"manual"
#"modification"of"the"keylog"data"prior"to"decoding."
"
require_relative"'keymaps/xtrat_keymap.rb'"
require"'optparse'"
require"'rex/registry'"
"
#"RightItoIleft"and"leftItoIright"Unicode"representations"
rtl"=""\u200e""
ltr"=""\u200f""
"
#IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII["remove_special_chars"]III#"
def"remove_special_chars(line)"
""if"/\[(Delete|Backspace)\]/.match(line)"
""""#"Delete"=>"remove"following"character"
""""if"/(<lhs>?)\[Delete\](<rhs>?)/.match(line)"
""""""#"Substring"of"the"right"hand"side"w/o"first"character"
""""""#"and"with"special"char"removed"
""""""rhs"="rhs[1,(rhs.lengthI1)]"
""""elsif"/(<lhs>?)\[Backspace\](<rhs>?)/.match(line)"
""""""#"Substring"of"the"left"hand"side"w/o"last"character"
""""""#"and"with"special"char"removed"
""""""lhs"="lhs[0,(lhs.lengthI1)]" " " "
""""else"
"
""""""return"line"
""""end"
"

XtremeRAT – When Unicode Breaks! 29
!

Harri!Sylvander,!harri@sylvander.net!

""""line"=""#{lhs}#{rhs}""
""""remove_special_chars(line)"
""end"
"
""return"line"
end"
"
#IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII["decode_keylog_string"]III#"
def"decode_keylog_string(keylog_string,"keymap)"
""decoded_string"=""""
"
""if"keymap.nil?"
""""raise""ERROR!"Must"define"keymap"to"convert"to."Exiting.""
""end"
"
""keylog_string.each_char"do"|keylog_char|"
""""if"keymap[keylog_char].nil?"
""""""decoded_string"<<"keylog_char"
""""else"
""""""decoded_string"<<"keymap[keylog_char]"
""""end"
""end"
"
""return"decoded_string"
end"
"
#II["get_kbd_layouts"]III#"
def"get_kbd_layouts(regfile)"
""kbd_layouts"="[]"
"
""hive"="Rex::Registry::Hive.new(regfile)"
""nodekey"="hive.relative_query('\Keyboard"Layout\Preload')"
""nodekey.value_list.values.each"{"|k|"kbd_layouts"<<"k.value.data"}"
"
""return"kbd_layouts"
end"
"
def"print_decoded_keylog_string(keylog_string,"decoded_keylog_string)"
""puts""Converting"original"keylog"data:\n""
""puts"keylog_string"
""puts""""
""puts""+"Decoded"output:""
""puts"decoded_string"
end" "
"
#III["Main"Program"]III#"
#"Required"input"
infile"="nil"
"
#"Optional"input"
regfile"="nil"
selected_keymap"="nil"
#"Don't"parse"data,"only"list"available"keymaps"in"specified"NTUSER.DAT"
list_layouts_only"="false""
"
OptionParser.new"do"|opts|"
""opts.banner"=""Usage:"./xtrat_keylog_fixer.rb"Ii"INFILE"[Ir"REGISTRYFILE"[Il]]"[Ik"KEYMAP_ID]""
"
""opts.on("Ii",""IIinfile"","String,""Input"file"containing"'broken'"strings"from"decoded"
keylogs")"do"|f|"
""""infile"="f"
""end"

XtremeRAT – When Unicode Breaks! 30
!

Harri!Sylvander,!harri@sylvander.net!

"
""opts.on("Ir",""IIregfile"[OPT]","String,""Registry"file"(NTUSER.DAT)"containing"'Keyboard"
Layout\\Preload'"values")"do"|f|"
""""regfile"="f"
""end"
"
""opts.on("Il",""IIlistIkbdIlayouts"[OPT]",""List"keyboard"layouts"defined"for"current"user"
profile")"do"|f|"
""""list_kbd_layouts"="true"
""end"
"
""opts.on("Ik",""IIkeymap"[OPT]","String,""InputLocale"to"use"when"parsing"keylog"data")"do"|f|"
""""selected_keymap"="f"
""end"
"
""opts.on("Ih",""IIhelp",""Show"this"message")"do"
""""puts"optsexit"
""end"
"
""begin"
""""ARGV"<<""Ih""if"ARGV.empty?"
""""opts.parse!(ARGV)"
""rescue"OptionParser::ParseError"=>"e"
""""STDERR.puts"e.message,""\n","opts"
""""exit(I1)"
""end"
end"
"
if"infile.nil?"
""raise""Must"define"infile"to"operate"on."Exiting...""
""exit(1)"
end"
"
kbd_layouts"="[]"
keylog_string"=""""
"
File.foreach(infile)"do"|line|"
""keylog_string"<<"remove_special_chars(line)"
end"
"
#"If"an"NTUSER.DAT"was"passed"for"parsing,"extract"all"possible"
#"keymaps"that"might've"been"used."See"if"a"mapping"has"been"
#"created"for"the"keymap"and"try"converting"for"each."If"the"user"
#"defines"the"'Il'"parameter,"only"list"the"Keymaps,"but"do"not"
#"parse"and"process"the"INFILE."
if"regfile"
""kbd_layouts"="get_kbd_layouts(regfile)"
end"
"
#"Can't"proceed"if"netither"a"registry"file"(NTUSER.DAT)"with"
#"Keyboard"Layouts"nor"a"specific"InputLocale"is"provided."
unless"("kbd_layouts.size">"0"or"selected_keymap")"
" puts""Must"specify"a"registry"(NTUSER.DAT)"with"valid"keyboard"layouts"or"provide"a"target"
InputLocale."Exiting...""
" exit(1)"
end"
"
if"list_layouts_only"
""puts""List"of"available"keymap"IDs:""
""kbd_layouts.each"{"|kbd_layout|"puts""""I"#{kbd_layout}""}"
else"
""#"Use"user"defined"InputLocale"if"one"was"passed"as"an"argument."

XtremeRAT – When Unicode Breaks! 31
!

Harri!Sylvander,!harri@sylvander.net!

""#"Otherwise"loop"through"all"keyboard"layoutsin"the"user"profile,"
""#"excluding"00000409,"which"is"default"Latin"charset."
""#"The"user"can"always"force"00000409"to"be"used"by"passing"
""#"the"00000409"Locale"it"as"a"parameter"to"the"script."
""if"selected_keymap"
""""puts""\n***"Decoding"keylogs"using"InputLocale"#{kbd_layout}"as"expected"output."***\n""
""""xtrkm"="XtremeRATKeymap.new(selected_keymap)"
""""print_decoded_keylog_string(keylog_string,"decode_keylog_string(keylog_string,"xtrkm.keymap))"
""else"
""""kbd_layouts.each"do"|kbd_layout|"
""""""unless"kbd_layout"==""0\x000\x000\x000\x000\x004\x000\x009"""
""""""""puts""\n***"Decoding"keylogs"using"InputLocale"#{kbd_layout}"as"expected"output."***\n""
""""""""xtrkm"="XtremeRATKeymap.new(kbd_layout)"
""""""""print_decoded_keylog_string(keylog_string,"decode_keylog_string(keylog_string,"
xtrkm.keymap))"
""""""end"
""""end"
""end"
end"

5.2. xtrat_keymap.rb
#"encoding:"UTFI8"
"
#"For"now,"this"script"assumes"that"the"keyboard"layout"
#"in"use"is"a"standard"QWERTY,"Latin"character"set"keyboard."The"
#"more"correct"way"to"parse"this"would"be"to"map"from"logged"character"
#"to"a"possible"scancode"based"on"available"layouts"and"then""
#"mapping"back"to"the"expected"character."
class"XtremeRATKeymap"
"
""attr_reader":keymap"
"
""def"initialize(kbd_layout)"
""""#"Initialize"keymap"hash"
""""@keymap"="{}"
"
""""#"Special"characters"
""""@keymap["""]"="'"'"#"Space"
"
""""#"Only"Arabic"use"case"defined."Add"keymaps"as"necessary,"
""""#"using"the"InputLocale"value,"as"defined"by"Microsoft."
""""#"See""Table"1""of""XtremeRAT:"When"Unicode"Breaks""for"
""""#"examples"of"Arabic"InputLocales."
""""case"kbd_layout"
""""when""0\x000\x000\x000\x000\x004\x000\x001\x00\x00\x00""
""""""#"Arabic"I"00000401"used"in"Arab"nations"with"the"exception"of""
""""""#"French"speaking"countries"of"North"Africa."
"
""""""#"Top"row"Numerals"
""""""@keymap["`"]"="'"'"
""""""@keymap["1"]"="'#'"
""""""@keymap["2"]"="'$'"
""""""@keymap["3"]"="'%'"
""""""@keymap["4"]"="'٤'"
""""""@keymap["5"]"="'٥'"
""""""@keymap["6"]"="'٦'"
""""""@keymap["7"]"="')'"

XtremeRAT – When Unicode Breaks! 32
!

Harri!Sylvander,!harri@sylvander.net!

""""""@keymap["8"]"="'*'"
""""""@keymap["9"]"="'+'"
""""""@keymap["0"]"="','"
"
""""""#"QWERTY"
""""""@keymap["q"]"="'-'"
""""""@keymap["w"]"="'.'"
""""""@keymap["e"]"="'/'"
""""""@keymap["r"]"="'0'"
""""""@keymap["t"]"="'1'"
""""""@keymap["y"]"="'2'"
""""""@keymap["u"]"="'3'"
""""""@keymap["i"]"="'4'"
""""""@keymap["o"]"="'5'"
""""""@keymap["p"]"="'6'"
""""""@keymap["["]"="'7'"
""""""@keymap["]"]"="'8'"
"
""""""#"ASDFG"
""""""@keymap["a"]"="'!'"
""""""@keymap["s"]"="'9'"
""""""@keymap["d"]"="':'"
""""""@keymap["f"]"="';'"
""""""@keymap["g"]"="'<'"
""""""@keymap["h"]"="'='"
""""""@keymap["j"]"="'>'"
""""""@keymap["k"]"="'?'"
""""""@keymap["l"]"="'@'"
""""""@keymap[";"]"="'A'"
""""""@keymap["'"]"="'B'"
"
""""""#"ZXCVB"
""""""@keymap["z"]"="'C'"
""""""@keymap["x"]"="'ء'"
""""""@keymap["c"]"="'E'"
""""""@keymap["v"]"="'F'"
""""""@keymap["b"]"="'=<'"#laamIalif"
""""""@keymap["n"]"="'G'"
""""""@keymap["m"]"="'H'"
""""""@keymap[","]"="'I'"
""""""@keymap["."]"="'J'"
""""""@keymap["/"]"="'K'"
""""else"
""""""raise""No"keymap"found""
""""end"
""end"
end"

!

