
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem


x86 Representation of Object Oriented Programming 
Concepts for Reverse Engineers 

GIAC (GREM) Gold Certification 

Author: Jason Batchelor, jxbatchelor@gmail.com 

Advisor: Richard Carbone 

Accepted: November 23, 2015  

Abstract 

Modern samples of malicious code often employ object oriented programming techniques in 

common languages like C++. Understanding the application of object oriented programming 

concepts, such as data structures, standard classes, polymorphic classes, and how they are 

represented in x86 assembly, is an essential skill for the reverse engineer to meet today's 

challenges. However, the additional flexibility object oriented concepts affords developers 

results in increasingly complex and unfamiliar binaries that are more difficult to understand for 

the uninitiated. Once proper understanding is applied, however, reversing C++ programs 

becomes less nebulous and understanding the flow of execution becomes more simplified. This 

paper presents three custom developed examples that demonstrate common object oriented 

paradigms seen in malicious code and performs an in-depth analysis of each. The objective is to 

provide insight into how C++ may be reverse engineered using the Interactive Disassembler 

software, more commonly known as IDA. 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2 

Author Name, email@address 

1. Introduction

While object oriented programming is generally understood by developers using higher 

level languages, such as C++, the reverse engineer is required to understand how these concepts 

manifest themselves within a compiled binary. A reverse engineer operating on modern malware 

simply cannot afford to remain ignorant when considering data structures, standard classes, and 

polymorphic classes, as many of today’s specimens invoke one or more of the above. 

The remainder of this paper will review some core concepts involving how one derives 

context from variables identified in x86 disassembly and standard calling conventions. 

Subsequent sections will then focus specifically on the concepts of data structures, standard 

classes and polymorphic classes. A discussion on each of the criteria will be provided alongside 

case study analysis. During each case study, comparisons will be made between true source code 

and the x86 representation of a specific concept. While the provided source code serves to 

augment the discussion, the goal is to enable the reader to achieve the same results without its 

benefit. The exact compiler settings used for each of the provided case studies may be found in 

the Appendix. 

1.1. Assumptions 

The examples discussed herein were written in C++ using Microsoft Visual Studio 2010 

and compiled on a 32-bit Windows operating system using the Intel x86 architecture. The 

Interactive Disassembler (IDA) software will be used to identify attributes of general object 

oriented concepts and derive conclusions on how they are represented within the compiled 

binary. It is important to note, that all discussion within this paper will be directly tied to the 

above criteria. 

1.2. Core Concepts 

The identification of structures, standard classes, and polymorphic classes within a binary 

file can be a complex task. By understanding how each of these concepts is represented at the 

lowest human-readable level of code, a key advantage is granted to the reverse engineer. This 

understanding can oftentimes be defined as a structure with different member elements in IDA. 

The structure can then be applied to the rest of the disassembled program. Doing so has far 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 3 

Author Name, email@address 

reaching implications on the overall understanding of a program’s core capabilities, and how it 

functions at run time. Oftentimes, this has a domino effect on the overall reverse engineering 

effort and enriches the context a reverse engineer will be able to pass on to their customer. 

To achieve an understanding of structured elements, one needs to be well versed with 

traditional programming constructs, such as pointers and integers. Programming languages like 

C aid in this pursuit, because many C constructs correspond at a one to one ratio, to a single line 

of assembly (Lawlor, 2006). It is also important to understand how these types are used and 

represented in x86 assembly. The identification of data types relies on a solid understanding of 

assembly logic, which in itself contains the contextual clues necessary to inform the analysis. 

Table 1, below, provides a few examples of how the interpretation of basic assembly code can 

reveal deeper meaning. Consider the following examples in reference to the EAX register. 

Table 1: Contextual Analysis of Assembly Instructions 

Code Purpose EAX Context 
lea eax, [edx+4] 
add [eax], 5 

Add five to the address of 
[edx+4]. 

Eax is likely a pointer to an 
integer or perhaps another 
pointer.  

mov eax, [ecx+0xc] 
call eax 

Call into the dereferenced value 
of [ecx+0xc]. 

Eax is the address of a function. 

mov eax, [ecx+0x4] 
push [eax+0xc] 
push [eax+8] 
push [eax+4] 
call [eax] 

Load address to structure at 
[ecx+0x4] and push its member 
offsets to the stack before calling 
a structure function.  

Eax is a pointer to a structure 
containing a pointer to a function 
and that functions member 
parameters. 

Understanding calling conventions being used within the decompiled binary is also 

critical to deriving meaning from structured elements that are passed to member functions. 

Calling conventions are effectively a scheme, or standard, used for function callers (sub routine 

doing the call) and the callee (sub routine being called) within a program. They are primarily 

used for defining how parameters are passed to called functions and also how returned values are 

retrieved from them (Pollard, 2010). Four common types of calling conventions reverse 

engineers need to be concerned with when considering C++ programming for Windows are 

cdecl, stdcall, fastcall, and thiscall (Trifunovic, 2001). 

The cdecl convention is the default convention used by Microsoft for C and C++ 

programs (Microsoft, 2015). For this calling convention, arguments are passed from right to left 

and placed on the stack and cleanup of the stack is done by the caller (Trifunovic, 2001). 32-bit 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 4 

 

Author Name, email@address   

integer or memory address values that are returned from the callee are saved to the EAX register 

for the caller (Jönsson, 2005). Figure 1 illustrates this concept with appropriate annotations. 

 

 

Figure 1: Example of Cdecl Calling Convention 

 

When considering API calls made using the Windows API, the stdcall convention is 

utilized. Stdcall arguments for this calling convention are pushed from the stack from right to 

left. In contrast to cdecl stack cleanup, stack maintenance responsibility is done by the function 

callee instead of the caller (Microsoft, 2015). Return values from functions are done so using the 

EAX register (Jönsson, 2005). The annotations in Figure 2 depict a common stdcall routine.  

 

 

Figure 2: Example of Stdcall Calling Convention 

 

Fastcall is a convention used to reduce the computational cost of calling a function. This 

is done primarily by taking the first two arguments of a function and placing them into the EDX 

and ECX registers. Remaining arguments are then placed on the stack from right to left. The 

process makes function calls less expensive because operations being done directly on register 

values are faster than on the stack (Trifunovic, 2001). 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 5 

Author Name, email@address 

The thiscall calling convention uses the callee to clean the stack and has function 

arguments pushed from right to left. With the Microsoft Visual C++ compiler the ‘this’ pointer is 

passed before a function is called; it is done so using the ECX register and not the stack 

(Microsoft, 2015). It is important to note the thiscall convention has a different implementation 

for the GCC compiler, where it is very similar to cdecl except the addition of the ‘this’ pointer, 

which is pushed onto the stack last (The Art Of Service, n.d.). For functions that do not have a 

variable number of arguments, thiscall is used by default as the calling convention (Trifunovic, 

2001). Thiscall cannot be explicitly used, and is reserved for functions that do not specifically 

request a different convention, and do not take a variable number of arguments (HackCraft, n.d.).  

2. Discussion of Object Oriented Concepts and Case Studies

The following section focuses on three core concepts of object-oriented programming; 

data structures, standard classes, and polymorphic classes. Each concept discussed includes a 

brief review alongside a case study with emphasis on deriving context of member variables or 

functions. For each case study, the program is specifically written to demonstrate the topic being 

presented and deconstructed. 

2.1. Data Structures 

A data structure is merely a group of variables tied together to a single name defining the 

group. The name represents a structure type that denotes the beginning of the structure and is 

usually passed around as a pointer in memory. As an example of this, we have the following 

defined structure in Figure 3. 

1. struct InternetConnection
2. {   
3.     HINTERNET Connect;
4. HINTERNET OpenAddress;
5. LPCTSTR Useragent;
6. LPCTSTR Uri;
7. char DataReceived[4096];
8. DWORD NumberOfBytesRead;
9. DWORD TotalNumberRead;
10. };

Figure 3: Example Structure Definition 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 6 

 

Author Name, email@address   

The structure type would be defined as InternetConnection, and members of this structure 

type include an assortment of handles, C String operators, character, and DWORD variables. 

Object names of type InternetConnection, may be declared in two primary ways. They may show 

up at the end of the structure type declaration before the final semicolon as seen in Figure 4.  

 

1. struct InternetConnection   
2. {   
3.     HINTERNET Connect;   
4.     HINTERNET OpenAddress;   
5.     LPCTSTR Useragent;   
6.     LPCTSTR Uri;   
7.     char DataReceived[4096];   
8.     DWORD NumberOfBytesRead;   
9.     DWORD TotalNumberRead;   
10. } nhlDotCom, sansDotCom; // object declarations   

Figure 4: Example Structure with Declared Objects 

 

Alternatively, in Figure 5, they may also be instantiated separately within the code after 

the structure type has been declared. In this case, the structure type specifier is an optional 

attribute (CPlusPlus, n.d.). 

 

1. InternetConnection nhlDotCom;   
2. InternetConnection sansDotCom;   

Figure 5: Alternate Instantiation of Objects 

 

Incremental offsets to the start of the object are usually dereferenced in x86 to retrieve 

the member variable of a particular structure. To illustrate this concept from within a debugger, 

one can use OllyDbg while running a program that uses the structure type defined above.  



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 7 

Author Name, email@address 

Figure 6: Structure Mapping Using OllyDbg 

From the illustration in Figure 6, one can clearly see the address of 0x3FEA68 being used 

as the start address of our object ‘nhlDotCom.’ Dereferencing the start address would give one 

the HINTERNET Connect variable. These handle values take up one DWORD, or 4 bytes of 

memory as can be seen above. The LPCSTR values are pointers to their string types and likewise 

take one DWORD of space. These member values need to be dereferenced in order to be 

accessed for their contents. Conversely, the DataReceived variable is a character array with a 

maximum size of 4,096 bytes. These bytes can be clearly seen in the address space in the above 

screenshot. Finally, we have the last two DWORD values representing the number of bytes read 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 8 

 

Author Name, email@address   

and the total number of bytes read. It is important to remember endianness when interpreting 

these and all byte values on the heap. The final value for TotalNumberRead, while appearing 

visually to be that of 0xc6620100, is actually 0x0162c6 (90,822 bytes) after endianness is 

considered.  

At this point, a structure of type InternetConnection has been declared along with its 

member values. Analysis was then preformed on how a structure like this would be visually 

represented in memory of a program making use of this structure. At the assembly level, to 

reference members of an InternetConnection object, we need to first pay special attention to the 

size of each variable, and understand how much space it will take up on the heap. Doing so will 

allow us to accurately compute the offset, relative to the start of the InternetConnection object. 

Table 2 below represents how members of InternetConnection objects would be accessed in x86 

assembly assuming the register ESI is the address of our InternetConnection object.  

 

Table 2: Assembly Object Member Access Matrix 

X86 Instruction InternetConnection Member 

[esi] HINTERNET Connect 

[esi+4] HINTERNET OpenAddress 

[esi+8] LPCTSTR UserAgent 

[esi+0xc] LPCSTR Uri 

[esi+0x10] Char DataReceived[4096] 

[esi+0x1010] DWORD NumberOfBytesRead 

[esi+0x1014] DWORD TotalNumberRead 

2.1.1. Structures in IDA 
The IDA software enables analysts to create custom structures and incorporate them into 

the disassembled program. Using IDA Pro, one would complete the following steps in order to 

represent the structure type of InternetConnection and its members.  

1. Select the structures tab and press the insert key. 

2. Name the structure InternetConnection. 

3. Use the ‘d’ data key after highlighting one’s new structure to create member 

variables. 

a. One may continuously press the ‘d’ key to adjust the size to either a BYTE, 

WORD, or DWORD.  



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 9 

Author Name, email@address 

b. Special sizes need to be specified by right clicking a BYTE sized

representation of the member variable, selecting array, then typing the size.

4. Rename the structure and its members using the ‘n’ key as one would any variable

or subroutine from within IDA (Eagle, 2011).

After completing the steps above, one should have something similar to that depicted in 

Figure 7. 

Figure 7: Completed IDA Structure 

To apply the above structure to an object member of the matching type within IDA, right 

click on the member in IDA, scroll to structure offset, and select the matching structure type. The 

illustration below shows the application of the UserAgent and Uri structure members to a 

decompiled program that uses the InternetConnection structure type. 

Figure 8: Application of Structure in IDA 

2.1.2. Case Study #1 – InternetConnection Structure Type 
To further demonstrate the concept of data structures as they are encountered at the 

assembly level, a case study has been compiled that used an InternetConnection object. The 

object is used as part of a program that reaches out to a remote server over an HTTP connection 

and computes the total number of bytes served up as a webpage to the client. Each member 

variable of our structure is used as a part of this process, and the decompiled x86 code generated 

from IDA will be cross referenced with the higher level source code.  



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

0 

Author Name, email@address 

In Figure 9, the InternetConnection object is first instantiated and then passed as a 

variable to the GetHTML function, which itself returns the number of bytes returned to our printf 

statement.  

1. int main()
2. {   
3.     InternetConnection conn; // object instantiation
4. printf("Total downloaded %d bytes \n", GetHTML(conn)); // passing to GetHTML
5. return 0;
6. }

Figure 9: Case Study Main Function 

Conversely, the passing of the conn object is done with IDA, given the following code in 

Figure 10. 

Figure 10: Passing of Conn Object in x86 

Reviewing the above x86 code, at first glance, one would have no reason to believe that 

var_1020 is an object pointer to our strucutre. A closer look is now needed at how this is used 

from within the f_GetHTML function. Our first major hint is found as various structure elements 

are initialized. 

Figure 11: Initialization of Structure Member 

The illustration in Figure 11 depicts a variable at the 0x1014 offset from the start of the 

object being set to zero. In the first line, arg_0 represents the start address of our object in 

memory and is passed to EAX. The register is then used as a reference point to set member 

values. At this point, one can begin to infer that arg_0 is a pointer to an object whose type and 

members are presently unknown. As we continue to work our way forwards, however, some of 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

1 

 

Author Name, email@address   

the relationships become obvious as plaintext strings are initially set to some of the structure 

members. 

 

X86 Disassmebly  

 
C++ Source Code 

1. int GetHTML(InternetConnection &conn)   
2. {   
3.     conn.TotalNumberRead = 0;   
4.     conn.Useragent = "Mozilla/5.0 (Windows NT 5.1; rv:28.0) Gecko/20100101 Firefox/28.0

";   
5.     conn.Uri = "http://www.nhl.com";   
6.    
7.    
8.     conn.Connect = InternetOpen(conn.Useragent,INTERNET_OPEN_TYPE_PRECONFIG,NULL, NULL,

 0);   

Figure 12: Comparative Analysis for Defining Structure Members 

 

From Figure 12, arg_0 is passed to various register values, which ultimately serves as the 

starting point for our object. By reviewing the code depicted above, two strings representing a 

user agent and a URI are set to their respective offsets. Further validation for the user agent 

variable is given once one sees it pushed to the stack before the call to the API InternetOpen. 

After the call to InternetOpenA is made, one can see the returned HINTERNET handle stored in 

another member offset of our structure type. The source code at this point has a very similar flow 

of execution.  

When another API call in the program is made to InternetOpenUrlA, one gets more 

validation concerning the URI string that was initialized earlier. In addition, one is able to 

actualize one more member of our structure using the offset [edx+4]. The member variable is 

seen storing the HINTERNET handle for this call shortly after it is made in Figure 13. 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

2 

Author Name, email@address 

X86 Disassmebly 

C++ Source Code 
1. conn.OpenAddress = InternetOpenUrl(conn.Connect, conn.Uri, NULL, 0, INTERNET_FLAG_PRAGM

A_NOCACHE|INTERNET_FLAG_KEEP_CONNECTION, 0);

Figure 13: Accessing Structure Members Before WinAPI Call 

It is worth noting at this point that for the user agent and URI variables seen initialized 

earlier in the disassembly, it was not immediately assumed the variables were used as such until 

it became clear in the code. Doing so would be a novice mistake, as malicious code authors often 

purposefully initialize variables to something seemingly benign as a simple means to obfuscate 

its true intent. It is therefore essential that the reverse engineer lets the code do the talking, and 

lets the true meaning of each variable reveal itself in how it is utilized. 

Once a call is made to InternetReadFile, one can gain two more definitions for the 

InternetConnection structure type. However, the way the compiler represents the structure 

offsets is somewhat different than what was have previously observed. Instead of seeing the 

object offset referenced in open and close braces, one sees the beginning of the object moved to 

the register, then an add operation done immediately followed by a push to the API function 

InternetReadFile. The behavior can be observed on lines 1-3 and 5-7 of Figure 14 below.  



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

3 

 

Author Name, email@address   

 

Figure 14: Contextual Insight into Structure Member Role 

 

The usage alongside the API call InternetReadFile also gives contextual insight into how 

they fit into the InternetConnection structure. The first example can be correlated back to the 

lpdwNumberOfBytesRead, and the second can be tied directly back to the lpBuffer variable. 

Through MSDN, one can infer what these variables are used for, as well as how much space they 

take up within our structure. For example, one would know that lpBuffer is going to be populated 

with 0x1000 (4,096) bytes each time based on the dwNumberOfBytesToRead attribute.  

The final structure member’s usage becomes clear after the call to InternetReadFile is 

made. The x86 code enters a small block that seems to compute a summation based on the 

InternetConnection member attribute NumberOfBytesRead. The annoted x86 representation in 

Figure 15 illustrates this concept. The structure member ‘NumberOfBytesRead’ is applied on the 

fourth line since previously achieved understanding of that value was done in Figure 14. Doing 

so assists in deriving meaning for what is ultimately the TotalNumberRead structure member.  

 

 

Figure 15: Annotated Usage of Structure Member 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

4 

 

Author Name, email@address   

2.2. Standard Classes 

Classes themselves are merely an expanded concept of data structures. The primary 

difference between them and a normal data structure is they can contain functions as well as 

member variables (CPlusPlus, n.d.). Compiled code that uses classes can sometimes lose the 

‘class’ identity if the compiler has better ideas on how the code can be interpreted. This is true 

for all written code, as all code that is written is open to interpretation by the compiler and is 

often put through a gauntlet of optimizations. The provided case study examines this 

phenomenon as it applies to standard classes in greater detail.  

2.2.1. Case Study #2 – Square Class to Calculate Area 
In order to demonstrate how classes may be represented at the assembly level, a sample 

proof of concept program was created using a class named ‘Square.’ The class contains two 

variables and two functions that utilize them. The program simply initializes an object of type 

Square, computes the area, then exits after printing. Source code of the Square class is illustrated 

in Figure 16. 

 

1. /*  
2. Jason Batchelor  
3. Reverse Engineering  
4. 07/20/2015  
5.   
6. Rationale: Program for illustrating objects and structures.  
7. Reference: http://www.cplusplus.com/doc/tutorial/classes/  
8. */   
9.    
10. #include <iostream>   
11. using namespace std;   
12.    
13. class Square {   
14.     int width, height;   
15.   public:   
16.     void set_values(int,int);   
17.     int area() {return width*height;}    
18. };   
19.    
20. void Square::set_values (int x, int y) {   
21.   width = x;   
22.   height = y;   
23. }   

Figure 16: Source Code of Square Class 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

5 

Author Name, email@address 

When the a Square object is declared, the memory contents that represent the object will 

not represent what one might consider to be a Square object when looking at the source code. In 

fact, when reviewing the memory contents of what should be the Square object, one is met with 

only two variables after it is initialized, both of which are depicted in Figure 17 as 4-byte width 

and height values. 

Figure 17: Heap of Square Object 

So, where are the additional function pointers to the ‘set_values’ and ‘area’ subroutines? 

The compiler, in this case, chose not to use them that way. Compiler settings and their 

underlying logic can change the execution flow of a program dramatically. Adjusting for size or 

speed can greatly impact how defined classes are interpreted, and ultimately will change how a 

decompiled program is logically represented versus the original source code. This has an 

amplifying effect when considering byte-code based signatures for detecting malware and is a 

simplistic evasion technique employed by malware authors. While the intricacies of compiler 

theory are far beyond the scope of this paper, it is nonetheless worth mentioning.  

Considering the compiler’s intentions, and the resulting disassembled code, it is fair to 

say the ‘class’ is treated like a ‘structure’ in so far as the structure used as an example does not 

contain any void pointers to class functions. The class functions used by Square are called as if 

they are separate elements in Figure 18. Further exploration of each of these functions is 

necessary to understand the purpose of the two member variables in absence of original source 

code. 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

6 

 

Author Name, email@address   

 

X86 Disassmebly  

 
C++ Source Code 

1. int main () {   
2.   Square sq;   
3.   sq.set_values(3,4);   

Figure 18: Comparison of Calling the set_values Function 

 

When the object is defined a call to its set values method is made. Outside in the main 

function, the two bits of code seem to be very similar; however, within the x86 example one sees 

the address of a variable being loaded into the ECX register which demonstrates the thiscall 

convention. Observing this behavior also implies this object may be a global in scope (Sabanal & 

Yason, 2007). Without the benefit of source code, it should be clear to a user that the function 

being traced into takes two arguments and will likely make use of the ‘this’ pointer, contained in 

ECX at some point. 

  

 

Figure 19: Initialization of Square Object 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

7 

 

Author Name, email@address   

When tracing into the sub_401020 function from Figure 19, the two integer functions are 

set within the passed object at a predefined offset. The ‘this’ pointer is moved into EAX and EDX 

from var_4 below, after it is filled with ECX, which was the initial object pointer from earlier, set 

from the function caller. Both EAX and EDX are dereferenced in order to populate the object 

with its member values. At this point, it should be clear that the main purpose of this subrountine 

is to initialize this object.  

When tracing back to the original function caller in Figure 20, one sees the this pointer 

passed again to ECX. Before steping into sub_401000, it takes zero arguments but likely does 

something with the previously initialized object. While these inferences inform analysis and 

gauge expectations, letting the code tell the real story is extremely important. 

 

 

Figure 20: Stepping into Function Using Object 

 

Upon stepping into this function one can clearly see it load the this pointer from the ECX 

register into a local function variable. From there, the same pointer is used to populate the EAX 

and ECX register. The move from var_4 to ECX is redundant, and it should be noted here the 

example assembly was compiled using no optimizations to help better illustrate what is going on. 

 

 

Figure 21: Computation Performed Using Structure Members 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

8 

 

Author Name, email@address   

The object pointers are both dereferenced and used in a multiplication operation to 

retrieve the calculated area in Figure 21. Even if one did not have the benefit of knowing from 

previous analysis what the member value types of the object were, observing the imul (integer 

multiplication) operation would be enough to tell us they are integers. The result is stored in EAX 

and when the function returns that value it is pushed to the printf API in order to display the 

result to the end user.  

 

 

Figure 22: Final Print of Previously Computed Result 

 

2.3. Polymorphic Classes 

The concept of polymorphism is a powerful way to extend a class from its base and still 

be type compatible. Concepts, such as class inheritance, are fundamental to polymorphism 

because the derived classes inherit their base member attributes. In this way, a derived class can 

leverage base class attributes in their own internal functions (CPlusPlus, n.d.). Virtual functions 

are a related concept to polymorphic classes, in that they are used to extend functions to derived 

classes in a similar fashion to how base member variables are. Calls to virtual functions are done 

dynamically, and therefore use of the ‘this’ pointer is expected (Skochinsky, 2011). The case 

study presented in the next section goes over this concept and how it may be encountered at the 

assembly level.      

2.3.1. Case Study #3 – Finding the Magic Numbers For Each Shape 
The compiled case study presents three different shapes with the base class called 

‘Polygon’. This base class has two derived member classes called ‘Triangle’ and ‘Rectangle’ 

which share the base class attributes ‘width’ and ‘height.’ They also inherit a virtual function 

called ‘magic,’ which simply returns a computed integer based on the inherited member 

variables and its invocation. What makes these derived classes polymorphic is the fact that they 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 1

9 

 

Author Name, email@address   

are inheriting a virtual function (CPlusPlus, n.d.). Figure 23 shows a depiction of the source code 

for this program with the three classes discussed. 

 

1. class Polygon {   
2.   protected:   
3.     int width, height;   
4.   public:   
5.     void set_values (int a, int b)   
6.       { width=a; height=b; }   
7.     virtual int magic ()   
8.       { return width + height; }   
9. };   
10.    
11. class Rectangle: public Polygon {   
12.   public:   
13.     int magic ()   
14.       { return width * height; }   
15. };   
16.    
17. class Triangle: public Polygon {   
18.   public:   
19.     int magic ()   
20.       { return (width - height); }   
21. };   

Figure 23: C++ Code Defining Three Classes 

 

Within the main component of the program, we initialize three variables; rect, trgl, and 

poly respectively, and then for each of them define three more variables that are pointers to 

Polygon and assigned the addresses of a derived class (CPlusPlus, n.d.). The assignments and 

initilizations are depicted in Figure 24. 

 

1. int main () {   
2.   Rectangle rect;   
3.   Triangle trgl;   
4.   Polygon poly;   
5.   Polygon * rectangle = &rect   
6.   Polygon * triangle = &trgl;   
7.   Polygon * polygon = &poly;   
8.   rectangle->set_values (10,6);   
9.   triangle->set_values (7,5);   
10.   polygon ->set_values (4,5);   

Figure 24: Assignments Made to Base and Derived Classes 

 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

0 

 

Author Name, email@address   

At the assembly level, one can cross reference each setup and initialization of our objects 

with  the different respective subroutines. Figure 25 demonstrates the three pointers to Polygon 

as they are being setup. Note once again, we see the address being loaded into the ECX register, 

falling in line with the thiscall convention.  

 

 

Figure 25: x86 Initialization of Classes 

 

By tracing into the top most subroutine, it can clearly be seen that the function override 

takes place for the derived class in Figure 26. 

 

 

Figure 26: Initialization of Derived Class 

 

Within this subroutine two main things happen. First, the pointer to the derived class 

object is stored in ECX, and a subroutine is called which defines the base class. Next, that same 

object is loaded, and the address is overridden to point to a new offset, the address of the derived 

classes virtual function. Without the benefit of source code one can still make this assumption 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

1 

 

Author Name, email@address   

because upon stepping into the function f_initialize_base_class, one sees very much the same 

behavior as compared to the caller.  

 

 

Figure 27: Setup for Base Class Object 

 

As seen in Figure 27, the object pointer is again loaded, and derferenced itself to store the 

offset to a virtual function at the virtual memory address of 0x402154. However, once this 

function has completed, the same address from [eax] is loaded and dereferenced again to point to 

a new virtual function address in Figure 26. The base class definition in Figure 27 is overridden, 

and instead is the derived classes virtual function at off_40215C.  

In Figure 28, we take this knowledge combined with our applied annotations and function 

names thus far, and go back to IDA where the objects were being initialized. It should be now 

obvious which of the subroutines initializes our Polygon base class and which two are derived.  

 

 

Figure 28: Applying Definition of Class Types 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

2 

 

Author Name, email@address   

Continuing onward through the flow of execution in Figure 29, next is the three separate 

calls to the set_values function. At the x86 level this is called in a very similar fashion to how it 

is observed in the original source code. 

 

X86 Disassmebly  

 
C++ Source Code 

1. rectangle->set_values (10,6);   
2. triangle->set_values (7,5);   
3. polygon ->set_values (4,5);  

Figure 29: Comparative Analysis of Code When set_values is Called 

 

Within the subroutine depicted above, one can start to build a structure depiction based 

on the base class. The figure below contains annotations depicting this in greater detail. It is 

important to note specifically that earlier, the starting offset for our structure was defined when 

our object was being initialized, the remaining offsets +4 and +8, respectively, are set here to two 

separate integers. This is known because the caller’s arguments, when pushed to the stack, were 

exposed as such in Figure 30.   



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

3 

 

Author Name, email@address   

 

Figure 30: Assigning Class Member Variables 

 

After considering the information thus far, one can define the following structure using 

IDA in Figure 31. 

 

 

Figure 31: Structure Definition for Class Objects 

 

At the assembly level, the virtual functions are called by referencing the object pointer 

for the class type and moving the first element of that class into a register that is later 

dereferenced and called into directly, like any other function. Interestingly, one can see from 

Figure 32 that the thiscall convention operation of moving the object to ECX is done seperately 

from the task of setting up the EAX register for the eventual call into the virtual function. 

 

 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

4 

 

Author Name, email@address   

X86 Disassmebly  

 
C++ Source Code 

1. printf ("Rectangle Magic Number: %d\n", rectangle -> magic());   

Figure 32: Code Comparison Calling into the Virtual Function 

 

By leveraging earlier analysis concerning how classes were being initialized, it should be 

clear to us precisely which one of the three virtual functions is chosen to be executed. 

Concerning the case from above, one can observe the initial offset of the structure to be pointing 

to the virtual function for the base class at off_402154. However, immediately following that, the 

same offset was overridden to be a pointer to off_40215c. Figure 33 shows the virtual table that 

contains the three functions. If any class has virtual methods, the compiler creates a sequence of 

pointer entries in a table to those methods  (Skochinsky, 2011). Each of them are annotated to 

point out how they fit together, into the overall picture.  

 

 

Figure 33: Table of Pointer Entries to Virtual Functions 

 

Figure 34 steps into the sub routine of the base class. From within the base class, the 

object retrieved from the ‘this’ pointer is used to access member variables, perform some basic 

arithmatic, and return an integer. 

 

 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

5 

 

Author Name, email@address   

X86 Disassmebly  

 
C++ Source Code 

1. virtual int magic ()   
2.   { return width + height; }   

Figure 34: Code Comparison for Virtual Base Class Function 

3. Conclusion 

The outlined case studies illustrated common object oriented concepts with the intent of 

providing the reader with real examples encountered in reverse engineering C++. Reviewing 

calling conventions, inferring context of register contents based on assembly code, and following 

the flow of execution allows one to make informed observations on what a data structure or class 

ultimately represents. When these conclusions are applied to the broader project, it has an 

amplifying effect on the completeness of the reversing effort.   

Understanding the application of object oriented programming concepts, such as data 

structures, standard classes, and polymorphic classes, and how it is represented in x86 assembly, 

is an essential skill for the reverse engineer to meet today's challenges. While these concepts may 

be challenging for the uninitiated, the application of object oriented principles greatly simplifies 

the reversing process. When tasked to reverse engineer modern malware it is a mandatory skill to 

possess. 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

6 

 

Author Name, email@address   

4. References 

The Art Of Service. (n.d.). Pascal calling convention – thiscall. Retrieved 10 26, 2015, from The 

Art Of Service: http://theartofservice.com/pascal-calling-convention-thiscall.html 

CPlusPlus. (n.d.). Data Structures. Retrieved 07 10, 2015, from cplusplus: 

http://www.cplusplus.com/doc/tutorial/structures/ 

CPlusPlus. (n.d.). Polymorphism. Retrieved June 15, 2015, from cplusplus: 

http://www.cplusplus.com/doc/tutorial/polymorphism/ 

CPlusPlus. (n.d.). Classes (I). Retrieved June 15, 2015, from cplusplus: 

http://www.cplusplus.com/doc/tutorial/classes/ 

Eagle, C. (2011). The IDA Pro Book 2nd Edition. Canada: No Starch Press. 

HackCraft. (n.d.). Calling Convetions in Microsoft Visual C++. Retrieved August 19, 2015, 

from HackCraft: http://www.hackcraft.net/cpp/MSCallingConventions/ 

Jönsson, A. (2005, 02 13). Calling conventions on the x86 platform. Retrieved 09 05, 2015, from 

AngelCode: http://www.angelcode.com/dev/callconv/callconv.html 

Lawlor. (2006). Pointers in C and Assembly. Retrieved 09 05, 2015, from 

https://www.cs.uaf.edu/2006/fall/cs301/lecture/10_02_pointer.html 

Microsoft. (2015). __cdecl. Retrieved June 21, 2015, from Windows Dev Center: 

https://msdn.microsoft.com/en-us/library/zkwh89ks.aspx 

Microsoft. (2015). __stdcall. Retrieved June 21, 2015, from Windows Dev Center: 

https://msdn.microsoft.com/en-us/library/zxk0tw93.aspx 

Microsoft. (2015). __thiscall. Retrieved June 21, 2015, from Windows Dev Center: 

https://msdn.microsoft.com/en-us/library/ek8tkfbw.aspx 

Microsoft. (2015). InternetCloseHandle Function. Retrieved June 15, 2015, from Windows Dev 

Center: https://msdn.microsoft.com/en-

us/library/windows/desktop/aa384350(v=vs.85).aspx 

Microsoft. (2015). InternetOpen Function. Retrieved June 15, 2015, from Windows Dev Center: 

https://msdn.microsoft.com/en-us/library/windows/desktop/aa385096(v=vs.85).aspx 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

7 

Author Name, email@address 

Microsoft. (2015). InternetOpenUrl Function. Retrieved June 15, 2015, from Windows Dev 

Center: https://msdn.microsoft.com/en-

us/library/windows/desktop/aa385098(v=vs.85).aspx 

Microsoft. (2015). InternetReadFile Function. Retrieved June 15, 2015, from Windows Dev 

Center: https://msdn.microsoft.com/en-

us/library/windows/desktop/aa385103(v=vs.85).aspx 

Pollard, J. d. (2010). The Gen on Function Calling Conventions. Retrieved June 21, 2015, from 

Ntl World: http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/function-

calling-conventions.html 

Sabanal, P. V., & Yason, M. V. (2007). Reversing C++. Retrieved June 15, 2015, from Black 

Hat: https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-

Sabanal_Yason-WP.pdf 

Skochinsky, I. (2011). Practical C++ Decompilation. Retrieved June 15, 2015, from Hexblog: 

http://www.hexblog.com/wp-content/uploads/2011/08/Recon-2011-Skochinsky.pdf 

Trifunovic, N. (2001, September 22). Calling Conventions Demystified. Retrieved June 21, 2015, 

from Code Project: http://www.codeproject.com/Articles/1388/Calling-Conventions-

Demystified 



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

8 

 

Author Name, email@address   

5. Appendix 

5.1. Data Structures Source Code 

The following source code was used to create the example used in the first case study presented 

on data structures: 

1. /*  
2. Jason Batchelor  
3. Reverse Engineering  
4. 04/13/2014  
5.   
6. Rationale: Program for illustrating objects and structures.  
7. */   
8.    
9. #pragma comment(lib,"wininet.lib")    
10. #include<iostream>   
11. #include<Windows.h>   
12. #include<wininet.h>   
13. #include<cstring>   
14. using namespace std;   
15.    
16.    
17. struct InternetConnection   
18. {   
19.     HINTERNET Connect;   
20.     HINTERNET OpenAddress;   
21.     LPCTSTR Useragent;   
22.     LPCTSTR Uri;   
23.     char DataReceived[4096];   
24.     DWORD NumberOfBytesRead;   
25.     DWORD TotalNumberRead;   
26. };   
27.    
28. int GetHTML(InternetConnection &conn)   
29. {   
30.     conn.TotalNumberRead = 0;   
31.     conn.Useragent = "Mozilla/5.0 (Windows NT 5.1; rv:28.0) Gecko/20100101 Firefox/28.0

";   
32.     conn.Uri = "http://www.nhl.com";   
33.    
34.    
35.     conn.Connect = InternetOpen(conn.Useragent,INTERNET_OPEN_TYPE_PRECONFIG,NULL, NULL,

 0);   
36.     
37.     if(!conn.Connect){   
38.         printf("Connection Failed or Syntax error\n");   
39.         return 0;   
40.     }   
41.     
42.     conn.OpenAddress = InternetOpenUrl(conn.Connect, conn.Uri, NULL, 0, INTERNET_FLAG_P

RAGMA_NOCACHE|INTERNET_FLAG_KEEP_CONNECTION, 0);   
43.     
44.     if ( !conn.OpenAddress )   



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 2

9 

 

Author Name, email@address   

45.     {   
46.         printf("Failed to open URL\n");   
47.         InternetCloseHandle(conn.Connect);   
48.         return 0;   
49.     }   
50.     
51.     conn.NumberOfBytesRead = 0;   
52.     while(InternetReadFile(conn.OpenAddress, conn.DataReceived, 4096, &conn.NumberOfByt

esRead) && conn.NumberOfBytesRead)   
53.     {   
54.         conn.TotalNumberRead += conn.NumberOfBytesRead;   
55.     }   
56.     
57.     InternetCloseHandle(conn.OpenAddress);   
58.     InternetCloseHandle(conn.Connect);   
59.    
60.     return conn.TotalNumberRead;   
61. }   
62.    
63. int main()   
64. {   
65.     InternetConnection conn;   
66.     printf("Total downloaded %d bytes \n", GetHTML(conn));   
67.     return 0;   
68. }   

 

5.2. Standard Classes Source Code 

The following code was used to compile the second presented case study on standard classes: 

1. /*  
2. Jason Batchelor  
3. Reverse Engineering  
4. 07/10/2015  
5.   
6. Rationale: Program for illustrating objects and structures.  
7. Reference: http://www.cplusplus.com/doc/tutorial/classes/  
8. */   
9.    
10. #include <iostream>   
11. using namespace std;   
12.    
13. class Square {   
14.     int width, height;   
15.   public:   
16.     void set_values(int,int);   
17.     int area() {return width*height;}    
18. };   
19.    
20. void Square::set_values (int x, int y) {   
21.   width = x;   
22.   height = y;   
23. }   



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 3

0 

 

Author Name, email@address   

24.    
25. int main () {   
26.   Square sq;   
27.   sq.set_values(3,4);   
28.   printf ("Area: %d", sq.area());   
29.   return 0;   
30. }   

 

5.3. Polymorphic Classes Source Code 

The following source code was used to illustrate the third case study on polymorphic classes, and 

their representation in x86: 

1.  /*  
2. Jason Batchelor  
3. Reverse Engineering  
4. 07/21/2015  
5.   
6. Rationale: Program for illustrating virtual tables.  
7. Reference: http://www.cplusplus.com/doc/tutorial/polymorphism/  
8. */   
9.    
10. // virtual members   
11. #include <iostream>   
12. using namespace std;   
13.    
14. class Polygon {   
15.   protected:   
16.     int width, height;   
17.   public:   
18.     void set_values (int a, int b)   
19.       { width=a; height=b; }   
20.     virtual int magic ()   
21.       { return width + height; }   
22. };   
23.    
24. class Rectangle: public Polygon {   
25.   public:   
26.     int magic ()   
27.       { return width * height; }   
28. };   
29.    
30. class Triangle: public Polygon {   
31.   public:   
32.     int magic ()   
33.       { return (width - height); }   
34. };   
35.    
36. int main () {   
37.   Rectangle rect;   
38.   Triangle trgl;   
39.   Polygon poly;   



x86 Representation of Object Oriented Programming Concepts for Reverse Engineers 3

1 

Author Name, email@address 

40. Polygon * rectangle = &rect
41. Polygon * triangle = &trgl;
42. Polygon * polygon = &poly;
43. rectangle->set_values (10,6);
44. triangle->set_values (7,5);
45. polygon ->set_values (4,5);
46. printf ("Rectangle Magic Number: %d\n", rectangle -> magic());
47. printf ("Triangle Magic Number: %d\n", triangle -> magic());
48. printf ("Polygon Magic Number: %d\n", polygon -> magic());
49. return 0;
50. }

5.4. Compiler Options 

All of the case study examples were compiled using the following settings. To produce a binary 

similar to what was reviewed in this paper, please ensure the settings below are applied.  

5.4.1. Optimization Settings for Microsoft Visual Studio 2010 

5.4.2. Compiler Flags 
/Zi /nologo /W3 /WX- /Od /Oy- /D "_MBCS" /Gm- /EHsc /MT /GS /Gy /fp:precise /Zc:wchar_t /Zc:forScope 

/Fp"Release\[project name].pch" /Fa"Release\" /Fo"Release\" /Fd"Release\vc100.pdb" /Gd /analyze- 

/errorReport:queue 


