GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Fore
at http://www.giac.org/registration/grem

Detailed Analysis Of Sykipot
(Smartcard Proxy Variant)

GIAC (GREM) Gold Certification

Author: Chong Rong Hwa, ronghwa.chong@gmail.com
Advisor: Antonios Atlasis

Accepted: 1st April 2012

Abstract
On January 2012, AlienVault reported a Sykipot variant with smartcard access
capability that has drawn high attention in the security industry. The internals of
this malware sample, such as flow of the malware, backdoor capabilities, tricks and
techniques, and encryption algorithm are described in this paper. Additionally, its
backdoor capabilities are compared with the analysis work of another Sykipot
variant published by Symantec. This comparison displays the vast improvements
that Sykipot has made. And most importantly, this paper facilitates the security
analysts or researchers to response and remediate Sykipot infections, analyze the
impact of Sykipot infection, decrypt Sykipot encrypted messages, or even design a
fake bot to communicate with the attackers for future research works.

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 2

1. Introduction

According to Symantec, Sykipot has been used in targeted attacks for the past few
years since 2006 (Thakur, 2011). It was mentioned that this malware does only target
Government departments, but it also affects other market sectors such as

Telecommunications, Computer Hardware, Chemical and Energy.

As reported by AlienVault, this malware is proliferated through spear-phishing
email with malicious attachment or link. This malicious payload then deposits the

Sykipot malware into the system (Blasco, 2012).

In Thakur’s report, Sykipot is analyzed to be a backdoor malware that supports
the execution of both command prompt and customized commands remotely.
Additionally, it allows uploading or downloading of files, which could possibly allow the
attackers to steal information or plant new malwares. And interestingly, it is also
reported that this malware could be instructed to dial back to the Command and Control
(CnC) server at a delayed time. This feature could possibly impede network forensic
using time-pattern. For example, a network analyst would probably miss the connections
made by Sykipot, if he chooses to analyze only network connections that are established

at a regular interval.

On January 2012, AlienVault reported an interesting Sykipot variant that accesses
smartcards of the infected machine (Blasco, 2012). This feature is probably added to

facilitate the attacker to access deeper into the network for protected resources.

In this paper, the internals of this smartcard proxy variant (kindly shared by
AlienVault) are detailed, to facilitate security analysts or researchers to: response and
remediate Sykipot infections; analyze the impact of Sykipot infection; decrypt Sykipot
encrypted messages; or even design a fake bot to communicate with the attackers for

future research works.

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 3

2. Overview of Sykipot (Smartcard Variant) Malware

As depicted in Figure 1, Sykipot has two malware components - Sykipot EXE and
DLL. Sykipot EXE is an executable file with Sykipot DLL embedded unencrypted in its
resource section (see section 3.2). When the user opens a malicious link or attachment

inside the spear-phishing email, Sykipot EXE is then deposited and executed.

Upon executing Sykipot EXE for the first time, it copies itself to its working
directory (one level above %temp% directory) as “dmm.exe”. Sykipot DLL is then saved
into this working directory as “MSFS5F9.dat” in preparation for DLL injection.
Following that, Sykipot EXE monitors for the presence of Outlook, Firefox and Internet
Explorer, and inject Sykipot DLL into them (see section 3.1).

The Sykipot DLL is observed to perform key logging and clipboard copying in
one thread; and opens a backdoor to the CnC server in another. The functionalities this
malware offers ranges from remote execution of backdoor commands, to access secured

resources that requires authentication against smartcard (see section 4).

As a mean to survive reboot in a stealthy manner, Sykipot EXE relocates itself to
the start up folder as “taskmost.exe”, only upon closure of the Windows session; and
removes traces in the start up folder when run. This inevitably impedes live system

forensic when start-up entry points are inspected (see section 3.4).

a

-

Sykipot
Filename: dmm.exe
A §
2 A Wz
e § ‘;‘0)’, A %,
QO é)‘ / h ~0°}<
S/ @
,,)A ¢ / \ %
Y <4 A %
Y / \ o,
<Y / N\ N
4

taskmost.exe

| v/ /‘ \
— /’ Startup Folder

Figure 1. Overview of Sykipot

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant)

3. Analysis of Sykipot EXE

The filename, MDS5 hash and size of this particular sample are dmm.exe (or
taskmost.exe), BOFODC538F08E49C4B0DA93972BC48A3 and 69632 bytes
respectively. The primary purpose of Sykipot EXE is to drop and inject Sykipot DLL into
Outlook, Firefox and Internet Explorer (see section 3.2); and its secondary purpose is to

maintain persistent in the system (see section 3.4).

3.1. Flow Of Sykipot EXE
Figure 2 describes the flow of the Sykipot EXE (dmm.exe) derived through static

code analysis, and verified using behavioral analysis and debugging.

-removekys
command?

Kill all Sykipot EXE

N A

Is running
for first
time?

Relocate to working
directory as dmm.exe

N

S

Change timestamp of

Delete taskmost.exe dmm.exe to svchost.exe
'Exn .
Start thread to register Restart as dmm.exe
Window "
Message? window

Y
T
Save dmm.exe to start Save resource to file as
up folder as MSF5F9.dat
taskmost.exe

R
Inject MSFSF9.dat (DLL)

Delete dmm.exe into Outlook, Firefox
and Internet Explorer I

Figure 2. Flow of Sykipot EXE

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 5

As described in the flowchart above, this malware also has the ability to uninstall

itself through command line with argument “-removekys”. Otherwise, it would either

restart itself in its designated working directory, or run two threads to perform DLL

injection and maintain persistency.

3.2. DLL Injection

To perform DLL injection, all processes are enumerated to identify targeted

processes - outlook.exe, iexplore.exe and firefox.exe (see Figure 3).

Dtext:
.text:
.text:
-text:
.text:
-text:
-text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
-text:
.text:
-text:
.text:

004081BCY
884081BCD
80401BCE
08401BD4
00401BDA
08401BE1
0884081BES
00401BE6
884081BE7
00401BE?
88401BEC
088401BEE
00401BF 0
084081BF7
00401BFB
08401BFC
88401BFD
00401BFF
884081C02
08401C04
08401C06
884081C06
00401C06
08401Cc08
00401C09
88401C0D
084081C13
00401C18
884081Cc18
08401C18
884081C1F
08401C23
88401Cc24
884081C25

IsRightProcessTolInject:

notFirefox:

lea
push
call
nov
lea
lea
push
push
call
add
test
jnz
lea
lea
push
push
call
add
test

jz

mov
push
nov
call
mov

lea
lea
push
push
call

eax, [esp+265Ch+moduleName]
eax ; Str
ds:_strlur

pdi, ds:strstr

ecx, [esp+2666h+outlook]
edx, [esp+2666h+moduleName]

ecx 5 SubStr
edx ; Str
edi ; strstr
esp, 6Ch
eax, eax
. . et
eax, [esp+265Ch+firefox] ; Firefox?
ecx, [esp+265Ch+moduleName]
eax 5 SubStr
ecx ;5 Str
edi ; strstr
esp, 8
eax, eax

short notFirefox

; CODE XREF: Inject
edx, [esi]
ebp ; hObject
[esp+26668h+pidTolnject], edx
ds:CloseHandle
[esp+265Ch+b_OL_FF_IE_found], 1

; G : Inject
eax, [esp+265Ch+iexplore]
ecx, [esp+265Ch+moddleName]
eax 3 SUDSTF

ecx ;5 Str
edi ; strstr

Figure 3. Targeted Processes For DLL Injection

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 6

Sykipot DLL is injected into targeted processes using the CreateRemoteThread
with LoadLibrary Technique (Kuster, 2003). This technique uses VirtualAllocEx to
allocate a memory page in the targeted process; WriteProcessMemory to write the path
of the malicious DLL into allocated memory space of the targeted process; and
CreateRemoteThread to start a new thread with LoadLibraryA as thread entry point to
load specified DLL (see Figure 4).

.text:00408163C call ds:VirtualAllocEx
.text:00401642 mov edi, eax
.text:00401644 mov [ebp-28h], edi
.text:00401647 test edi, edi

.text: 00401649 jnz short loc_461658
.text:0040164B mov [ebp-24h], eax
-text:00408164E jmp short loc_4816A9

SEEXEIOONO1650 § ——— oo
.text:00401650

-text:00401650 loc_4616508: ; CODE XREF: InjectDLLIntoProcess+79Tj
.text:00401650 push [§] ; lpNumberOfBytesWritten
.text:004081652 push esi ; nSize

-text:00481653 mov ecx, [ebp+8Ch]

-text:004081656 push ecx ; 1lpBuffer

-text:00401657 push edi ; lpBasefAddress

-text:00401658 push ebx ; hProcess

.text:00401659 call ds:UWriteProcessHemory

.text:0046165F test eax, eax

.text:00481661 jnz short loc_461668

-text:00401663 mov [ebp-24h], eax

-text:004081666 jmp short loc_4816A9

textzBB401668 ; -
.text:00401668

.text:00401668 loc_u401668: ; CODE XREF: InjectDLLIntoProcess+91Tj
-text:00401668 push offset ProcName ; “LoadLibraryn™

-text:0040166D push offset ModuleName ; “HKernel32"

-text:00481672 call ds:GetModuleHandleA

-text:-004081678 push eax ; hHodule

-text: 004081679 call ds:GetProcAddress

.text:0040167F mov [ebp-2Ch], eax

.text:00461682 test eax, eax

.text:004081684 jnz short loc_46168B

-text:00401686 mov [ebp-24h], eax

-text:004081689 jmp short loc_4016A9

SEEXEZOO168B § ——— o
.text:0040168B

-text:0040168B loc_4B168B: CODE XREF: InjectDLLIntoProcess+B4Tj

.text:00408168B push 5} ; 1pThreadld
-text:00408168D push 5} ; duCreationFlags
-text:0040168F push edi ; lpParameter
.text:00401690 push eax ; lpStartAddress
.text:004061691 push 5} ; duStackSize
.text:00401693 push 5] ; 1pThreadattributes
.text:00461695 push ebx ; hProcess
.text:00481696 call ds:CreateRemoteThread

Figure 4. DLL Injection Using CreateRemoteThread with LoadLibraryA

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 7

As Sykipot DLL is embedded unencrypted in the resource section of Sykipot
EXE, it could be easily identified using PE parser such as PEview (see Figure 5). This
DLL dropped into the Sykipot working directory as MSFS5F9.dat (mentioned in Figure 2,
Flow of Sykipot EXE).

’3?‘\, PEview - Z:\smart\sykipot.exe - DIE]
File Vien Go Help

20000 ([F #|[=w= o

= sykipot.exe pFile | Raw Data | Value |
IMAGE_DOS_HEADER 00002A50 4D 5A 90 00 03 00 00 OO0 04 00 OD OO FFFF OO OO MZ.............. =
M3-DOS Stub Program 00002A70 B8 00 00 00 00 0D 00 OO 40 00D OO OD OD OO OO OO @

el
[

IMAGE_NT_HEADERS 00002A30 00 00 00 0D OO DO OO OO OO OO QO OODOODODOOOD
IMAGE_SECTION_HEADE | 00002A30 00 00 0D OO OD OO 0D OO OO OD OO OD 18010000
IMAGE_SECTION_HEADE | 00002AA0 OE 1F BAOE 00 B4 03 CD 21 BE 01 4CCD 21 584 B8 1. L. ITh
IMAGE_SECTION_HEADE | 00002AB0 B9 73 20 70 72 6F 67 72 61 6D 20 63 61 BEBE BF is program canno
IMAGE_SECTION_HEADE | 00002ACO 74 20 62 65 20 72 75 6E 20 B9 6E 20 44 4F 53 20 t be run in DOS
SECTION .text 00002AD0 6D 6F B4 65 2E 0D OD OA 24 00 00 00 00 00 00 0O mode....%.......
SECTION .rdata 0D0D2AED C5 30 88 FD 81 51 E6 AE 81 51 E6 AE 81 51 EB AE .
SECTION .data 00002AFO DB 72 F5 AE 83 51 E6E AE FA 4D EA AE 82 51 E6 AE .
= SECTION .rsrc 000D2B00 69 4E E2 AE 83 51 EBE AE OF 59 B9 AE 80 51 E6 AE i
IMAGE_RESOURCE_C | 00002B10 02 59 BB AE 93 51 E6 AE 02 4D EB AE 82 51 E6 AE .
IMAGE_RESOURCE_C | 00002B20 EE 4E EC AE 85 51 E6 AE EE 4E E2 AE 85 51 EB AE .
IMAGE_RESOURCE_C | 00002B30 81 51 E7 AE 24 51 E6 AE B7 77 E2 AE 82 51 EB AE .
IMAGE_RESOURCE_C | 00002B40 B7 77 ED AE 84 51 E6 AE 46 57 ED AE 80 51 EB AE .
IMAGE_RESOURCE_C | 00002B50 7E 71 E2 AE B0 51 E6 AE 52 69 B3 68 81 51 EB AE . . .
06 00002860 00 0D OO DO OO DO ODOD ODOOOODOOOODODOOOD
‘?nnmm'n nn No nNo NN nn NN NN nNn /AN 45 0N NN AC N1 N5 AN PE | ILIL'

&
[#

Ll
PRLOHLOODOO

..QéDZ-<E-<D

Qo
o
= -

t

Viewing DLL 0065 0804 4

Figure 5. Statically Examine Sykipot EXE using PEview

To impede memory or disk forensic, this DLL disguises itself as a Microsoft
related executable file. It appears to be a legitimate “IPv4 Helper DLL” created by
“Microsoft Corporation” (see Figure 6). And certainly, this could possibly pass the eyes
of an inexperienced malware analyst when listing DLL using Process Explorer (live
forensic tool) or Volatilty dlllist plugin (memory forensic tool).

| MSF5F9.dat Properties

General Version |Security| Summary|
File version: 5.1.2600.2180
Description: IPv4 Helper DLL

Copyright: SMicrosoft Corporation. All rights reserved.

r—Other version information
ltem name: Value:
Microsoft Corporation

File Version
Intemal Name
Language
Original File name
Product Name
Product Version

Figure 6. File Properties of Sykipot DLL

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 8

According to Volatility command reference, DLL injected using this technique

would not be flagged as malicious by the Volatility malfind plugin. (Volatilty Command

Reference, 2012). Consequently, Sykipot achieves stealth by not hiding itself.

» Resource Tuner - Z:\calc.exe

File Tools Help

AP-As|H| O]

Do Ex 2 RDuleo|r s Br=|

(1 lcon Entry
7 Menu
(1 Dialog
(1 Sting
[Accels

y Resource Editor: <Version.1> H

VERSION INFO MODE

)

(1 Group lcon
-7 Version

1
1 Manifest

Module Version Number

Module Attibutes

Prerel Info Infered
PoductVersion:[5 =i [1 | [ee0 |0 | EP:::?E [Info Inferre

[Special Build

08 Type: [NT (WINDOWS32) 'I File Type: |APP

Language/Code Page: |1033/1200 'I

-

File SubType: IUNKNDWN 7

Key

[Value

CompanyName
FileDescription
FileVersion
InternalName
LegalCopyright
OriginalFilename
ProductName
Productversion

Microsoft Corparation
‘Windows Calculator application file

Version Info Editor E

5.1.2600.0 (xpclient.010817-1148)

CaLc

@ Microsoft Corporation. &l rights reserved.
CALCEXE

Microsoft® Windows® Operating System
5.1.2600.0

Figure 7. Editing of Version Information

As seen in the figure above, the version information of an executable file can be

modified using a resource editor such as Resource Tuner from Heaven Tools (Visual

Resource Editor, 2012). Hence, it is not surprising to see malware authors to use this

(simple yet convincing) technique to evade detection.

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 9

3.3. Time Stomping

Like most anti-forensic malwares, it would stomp the timestamp of its executable

files to be the same as the system files (see Figure 8). In this instance, Sykipot stomps the

timestamp of Sykipot EXE executable file to be the same as svchost.exe (a windows

system file). It would probably be filtered and unseen when a disk forensic analyst filters

the list of files using timestamp of Window’s system executable files.

00401FD4
00401FDA
86401FDE
O0401FE3
O0481FEY
B0401FEA
00401FF0
B0401FF2
B0481FF4
00401FF6
00401FF8
B0481FFA
80401FFC
00401FFD
B0401FFF
00402001
00402003
00402005
00402007
00402009
00402008
00402012
00402017
00402018
0040201A
0040201E
00402020
00402024
00402025
00402029
0040202A
00402028
0040202C
00402032
00402036
0040203A
00402038
0040203F
00402040
004020841

call ds:GetSystemDirectoryn
lea edx, [esp+330h+startupFolder]
push offset String2 ; "\‘\suchost.exe”
push edx ; 1pString1
call ds:1strcath
mov edi, ds:CreateFilen
push 5} ; hTemplateFile
push 5] ; dwFlagsAndAttributes
push 3 ; duCreationDisposition
push 0 ; 1lpSecurityattributes
push [§] ; dwSharelode
push] ; duDesiredAccess
push eax ; c:\windows\system32\suchost.exe
call edi ; CreateFilen
push 8 ; hTemplateFile
push ¢} ; duFlagsAndAttributes
push 3 ; duCreationDisposition
mov esi, eax
push a ; 1pSecuritynttributes
push 5} ; dwShareMode
lea eax, [esp+344h+localSetting dmm.exe]
push 6C00066066h ; duDesiredAccess
push eax ; %localsetting%\dmm.exe
call edi ; CreateFileA
lea ecx, [esp+330Bh+LastWriteTime_TokenHandle]
mov edi, eax
lea edx, [esp+33Bh+LastAccessTime]
push ecx ; lpLastUriteTime
lea eax, [esp+334h+CreationTime]
push edx ; lpLastAccessTime
push eax ; 1pCreationTime
push esi ; hFile
call ds:GetFileTime ; get file time of suchost
lea ecx, [esp+330Bh+LastWriteTime_TokenHandle]
lea edx, [esp+33Bh+LastAccessTime]
push ecx ; lpLastUriteTime
lea eax, [esp+334h+CreationTime]
push edx ; lpLastAccessTime
push eax ; 1pCreationTime
push edi ; hFile
ds:SetFileTime ; set it to malware |

00402042 call

Figure 8. Time Stomping of Sykipot EXE

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 10

3.4. Persistency Mechanism

One other important function of Sykipot EXE is to maintain persistency in a

stealthy manner. Sykipot deletes “taskmost.exe” from start up folder to remove traces of

persistency when run. At the same time, a new thread is started to listen for the following

windows messages to detect exit of windows session - WM_QUIT (0X12),

WM _DESTROY (0X02), WM_QUERYENDSESSION (0X11) and WM_ENDSESSION

(0X16) (see Figure 9).

TettoduleFileNameA(®, &ExistingFileName, 8x164u);
SHGetSpecialFolderPathA(®, &startupFolder, CSIDL_

strcat(&startupFolder, "\\");

STARTUP, 8);

strcat(&startupFolder, (const char =)"taskmost.exe");

switch { Msg)
{
case 2u: Ie4
PostQuitiMessage(0);
CopyFileA{&ExistingFileName, &startupFolder,
if (TokenHandle)

CloseHandle{TokenHandle);
RevertToSelf();

b
edit(8);
return result;

case Bx12u: 174
CopyFileA(&ExistingFileName, &startupFolder,
if { TokenHandle)

CloseHandle{TokenHandle);
RevertToSelf();

e
exit(8);
return result;
case 0x11u: 77
CopyFileA(&ExistingFileName, &startupFolder,
if (TokenHandle)
{
CloseHandle{TokenHandle);
RevertToSelf();

e
exit(0);
return result;
case Bx16u: 77
CopyFileA(&ExistingFileName, &startupFolder,
if { TokenHandle)
{
CloseHandle{TokenHandle);
RevertToSelf();

} .

exit{@);

return result;
default:

WHM_DESTROY

8);

WH_QUIT
8);

WH_QUERYENDSESSION
8);

WH_ENDSESSION
8);

return DefWindowProcA(hWnd, Msg, wParam, 1Param);

Figure 9. Relocate Sykipot EXE to Survive Reboot

Only when windows exit, Sykipot relocates itself to the start up folder again as

“taskmost.exe” to survive reboot. Since the executable file only exists in start up folder

when required, live analysis would probably miss this executable when start-up entries

are inspected (see Figure 9).

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 11

4. Analysis of Sykipot DLL

The filename, MD5 hash and size of this particular sample are MSFSF9.dat,
C2821DDESD309962337434AA6062EAA9 and 58368 bytes respectively. The purpose
of the DLL executable file is to log all keystrokes and maintain backdoor for the attacker
to remote control the victimized system (see section 4.1). The technical details of the
malicious artifacts, backdoor, proxy selection and encryption are covered in section 4.2,

4.3, 4.4 and 4.5 respectively.

4.1. Flow of DLL
Figure 10 and Figure 12 depicts the flow of a key logger thread and a backdoor
thread respectively, derived through static code analysis and verified through behavioral

analysis and debugging. See section 4.2 for details of malicious file artifacts.

It is evident that this malware is not only interested in logging all keystrokes, it
also captures all clipboard contents (see Figure 11). Obviously, this would be for the

purpose of a comprehensive information stealing.

_., Backdoor
Thread

; Key Logger Thread

Figure 10. Flow Key Logger Thread

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 12

"1008082¢1 call ds:0penClipboard
100082C7 push 1 ; uFormat
1000882C9 call ds:GetClipboardData
100082CF mov esi, eax

1000882D1 push esi ; hHem
100082D2 call ds:GlobalSize

100082D8 push esi ; hHem
100082D9 call ds:GloballLock

100082DF push esi ; hHem
180082E6 mov ebp, eax

1000882E2 call ds:GlobalUnlock
1000882E8 call ds:CloseClipboard
1000882EE push edi ; hund
180082EF call ds:CloseWindow
1000882F5 cmp ebp, ebx

100082F7 jz loci1BBGSBsE

Figure 11. Copy Clipboard Data

Backdoor
Thread

Decrypt MSF5F6.dat to
MSF5F7.dat

Get next connection
timestamp from
MSF5F7.dat

Delete MSF5F6.dat,
MSF5F1.dat, MSF5F2.dat,
MSF5F4.dat, MSF5F5.dat

Download Encrypted
Commands to MSF5F1.dat
and start logging in
MSF5F5.dat.

Decrypted Commands to
MSF5F4.dat.

Categorize commands
and set the values in
array. Each category has
128 entries by 1024 bytes

Save time to activate into
MSF5F7.dat and Encrypt
to MSF5F6.dat.

Delete MSF5F7.dat and
MSF5F4.dat

Process File Downloads
Requests (getfile)

Process File Upload
Requests (putfile)

Compute sleep duration

Process Command
Prompt Requests (cmd)

Encrypt MSF5F5.dat (log
file) to MSF5F2.dat

Upload MSF5F2.dat
Delete MSF5F5.dat and
MSF5F2.dat

Process Backdoor
Requests (door)

Encrypt MSF5F5.dat (log
file) to MSF5F2.dat

Upload MSF5F2.dat
Delete MSF5F5.dat and
MSF5F2.dat

Figure 12. Flow of Backdoor Thread

Require
End?

From the flow above, it is observed that the encrypted commands are downloaded

into MSF5F1.dat. The commands are then classified into five different groups, and are

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 13

found to be the same as the commands described in the Symantec’s report — emd, door,
getfile, putfile and time (Thakur, 2011). As seen in Figure 13, it is analyzed that the
contents of each group are stored in a 2D array (a maximum of 128 string entries). The

functionality of each group is described in the list below.

* cmd contains a list of command-prompt commands.
* door contains a list of backdoor commands.

» getfile refers to a list of files to be downloaded.

* putfile refers to a list a files to be uploaded.

e time refers to the next connection time.

Tdata:10012598 ; char bufArrays_putfile[128][1624]
.data:10612598 bufArrayis_putfile db 26686h dup(?)
.data:108812598

.data:100832598 ; char buffArray3_GetFile[128][10624]
.data:10032598 bufArray3_GetFile db 26666h dup(?)
.data:108832598

.data:1086852598 ; char bufArray5_Time[128][1024]
.data:106852598 bufArray5_Time db 20066h dup(?)
.data:1086852598

.data:160872598 ; char bufArray2_door[128][16024]
.data:10072598 bufArray2_door db 206666h dup(?)
.data:166872598

.data:10092598 ; char bufArrayi1_command[128][1624]
.data:10092598 bufArrayi1_command db 20066h dup(?)

Figure 13. Data Type of Command Categories

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 14

4.2. Malicious File Artifacts
All related executable and configuration files depicted in Figure 14 are stored in
the Sykipot’s working directory. Figure 15 depicts the code used Sykipot to determine its

designated working directory (one level above %temp% directory).

MSF5F0.dat MSF5F1.dat MSF5F2.dat

e Plain text storing e Encrypted downloaded ¢ Encrypted log information
clipboard data and key commands. from MSF5F5.dat to be
strokes captured. exfiltrated.

MSF5F4.dat MSF5F5.dat MSF5F6.dat

¢ Decrypted command from e Plain text containing ® Encrypted Timestamp for

MSF5F1.dat to be information such as log next connectivity from
processed. results from commands. MSF5F7.dat

MSF5F7.dat MSF5F9.dat

e Time to connect back to ¢ Dropped malicious DLL for
backdoor server. injection.

* YYYY/MM/DD HH:MM:SS

Figure 14. Sykipot File Artifacts

"I
00401053 lea eax, [esp+184h+tempDirectory]
8064816857 sub eax, 2
V4
"
0640105A
80408185A loopScanningForSlash: ; eax is the pointer to the temp directory
8646816850 cmp byte ptr [eax+ecx], '\' ; ecx is the last character of scanned string
00461685E jz short slashldentified
1
¥ ¥
"] "]
00640816868 mov edx, ecx 8640106E
06401862 dec ecx ; loop update|| |8848186E slashidentified: ; scan successful
00401063 test edx, edx 0040106E dec ecx
804010865 jnz short loopScanningForSlash 8040106F lea eax, [esp+1084h+tempDirectory]
804016873 push ecx ; Count
00401074 mou ecx, [esp+108h+Dest]
004081078 push eax ; Source
0048107C push ecx ; Dest
0046167D call ds:strncpy
06401083 add esp, 6Ch
|

Figure 15. Sykipot Working Directory

Despite the filenames and purpose of all file artifacts are identified, we should not

use the file name or path to ascertain if a system is not compromised by Sykipot. This is

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 15

because the file names used by Sykipot are different in different variants. See table

below.

File name Function

Gtpretty.tmp Orders from the CnC.

Gdtpretty.tmp Decrypted version of orders from the CnC.
Pdtpretty.tmp Log file.

Ptpretty.tmp Encrypted version of log file.

Table 1. File Artifacts Identified by Symantec

4.3. Backdoor Commands

The backdoor commands can be divided into two main groups, generic and

smartcard-specific backdoor commands, which are described in section 4.3.1 and 4.3.2

respectively.

4.3.1. Generic Backdoor Commands

Table 2 compares the list of functionalities identified in this sample against the

functionalities reported by Symantec (Thakur, 2011).

Index | Command Alienvault Identified Variant | Symantec Identified Variant
1 shell Removed from this variant Do nothing
2 run Executes using WinExec Executes using WinExec
3 reboot Restarts the computer Restarts the computer
4 kill Ends a process Ends a process
5 process List processes Not implemented
6 runtime List time Not identified
7 system Execute a file Not identified
8 ipconfig List network configuration Not identified
9 move Move file Not identified
10 | del Secure delete file Not identified
11 rundll Load a DLL Not identified
12 enddll Unload a DLL Not identified
13 dir List directory contents Not identified
14 | port List TCP and UDP connections Not identified
15 | uninstall Uninstall Sykipot Not identified
16 | key Get key logger results Not identified

Table 2. Backdoor Command Comparison

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 16

It is interesting to see the improvements that the malware author has made. The
improvement ranges from reconnaissance functionalities to loading/unloading of DLL
and secure deletion of file. Figure 16 reveals the pseudo code to secure delete a file by

overwriting each byte in the file with “0x00” prior deletion.

i hFileDelete = CreateFileA{sFileDelete, 6, 0, 8, 3u, 0, 8);

fileDelete_size = GetFileSize(hFileDelete, 8);

CloseHandle{hFileDelete); |

v31 = fopen{sFileDelete, "w");

hMSF5F5 = u31;

if { tu3l) l
return 8;

for (i = B; *(u31->_flag & Bx18) && i < (signed int)fileDelete_size; ++i)

fputc{@, v3l); // zerorise the file
v31 = hMSF5F5;

b

fclose(v31);

hMSF5F5 = fopen{(fileNameFromFileRecon, "a");

if { *hMSFS5F5)

return 0;
if (DeleteFileA(sFileDelete))
deleteStatus = "del success?\n";
else
deleteStatus = "del false?\n";

fprintf (hMSF5F5, deleteStatus);
fclose{hMSF5F5);

Figure 16. Secure File Deletion

4.3.2. Smartcard Specific Backdoor Commands
Table 3 tabularizes the smartcard specific backdoor functionalities identified in

this sample.

Index | Command Purpose

1 cl List certificates associated with private keys

2 cm Loads ActivClient DLL
List of card readers and cards available

3 krundll Load custom DLL with three exported functions: LoginFunc,
PutFunc and GetFunc.

4 kenddll Unload the custom DLL

5 kshow Show card login status

6 klogin Invoke LoginFunc

7 kput Invoke PutFunc

8 kget Invoke GetFunc

9 kfile Set the upload file name

10 kpin Set the pin value

11 kcert Set the cert value

12 kheader Set the header value

13 kreferer Set the referrer value

Table 3. Smartcard Specific Backdoor Commands

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

As the custom DLL (loaded through krundll command) is not available for

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 17

analysis, it becomes an analysis blind spot. However, its intention can be induced through

its exported function name and parameters. The function prototype of the custom

smartcard related DLL is analyzed as follows:

* LoginFunc (URL, referer, header, uploadFileName, certificate, PIN, dataout)

e PutFunc (hInternet, putString, referer, header, URL, b_putfile or putdata,

uploadFileName, certificate, PIN, dataout)

* GetFunc (hinternet, URL, referer, header, uploadFileName, certificate, PIN,

dataout)

From the list of smartcard specific backdoor commands, it is not seen to hack the

smartcard to extract private certificate. Despite so, it has effectively used the victimized

machine as a smartcard proxy, to access the protected resources that require smartcard as

2nd-factor authentication using “klogin”, “kput” and “kget” commands.

As mentioned in Table 3, “cl” lists all the card issuer and subject of certificates

associated with private keys (see dead listings in Figure 17 and Figure 18). However, this

does not imply extraction of private key. Additionally, a properly configured smartcard

should not allow extract of private key.

[~ =)

100083D2
100083D2
100083D2
180683D3
100083D4
100083D4
100083D4
100083D9
100083DA
100083E0
1800883E2
100083E4
100083E8

loc_166683D2:

push
push
push

push
call
mov
cmp
mov
jnz

ebx

esi

offset szSubsystemProtocol ; MY
; A certificate store that holds certificates
; with associated private keys

ebp ; hProv
ds:CertOpenSystemStoren
ebx, eax
ebx, ebp

[esp+814h+hCertStore], ebx
short loc_10008404

Figure 17. Open System Store

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 18

----------- Le—p worwen v

o pu, 1

1000846F lea eax, [esp+818h+pszNameString]
10008473 push eax

100088474 push [esp+81Ch+uar_868]

10008478 push offset aD_issuerS ; “%d.Issuer=%s\t"”

1800847D push hHMSF5F5 ; File

10008483 call ebp ; fprintf

10008485 add esp, 16h

10008488 lea eax, [esp+818h+var_4060]
1000848F push ebx ; cchNameString
10008498 push eax ; pszNameString
10008491 push 5] 5 pvTypePara
10008493 push 5} ; dwFlags
10008495 push 4 ; duType
10008497 push esi ; pCertContext

;
10008498 call edi ; CertGetNameStringf

1000849A lea eax, [esp+818h+var_400]

100084A1 push eax

1000884A2 push offset aSubjectS ; "Subject: %s\n"

180084A7 push hHMSF5F5 ; File

100084AD call ebp ; fprintf

100084AF add esp, OCh

1000884B2 push esi ; pPrevCertContext

100084B3 push [esp+81Ch+hCertStore] ; hCertStore
100084B7 call ds:CertEnumCertificatesInStore

100684BD mov esi, eax
100084BF test esi, esi
1000884C1 jnz short loc_1666845C

Figure 18. Retrieve Certificate Information

Another interesting command to mention is “cm”. When this command is
invoked, it attempts to load “acpkes201.dll”, an ActivClient DLL, to get the list of card

readers and card status (see Figure 19).

Ouuw e ol LAl

push offset afc_xsi_utilg @ ; "AC_XSI_UtilGetCardStatus"
lea ebx, [eax-1]

push dword ptr unk_166B53E4 ; hHodule

call ebp ; GetProcAddress

test eax, eax

jnz short loc_1000869D

1 _

' v
"]

10008869D

1000869D loc_1600869D:
100808869D push ebx
10008869E push esi
100808869F push BFFFFFFFFh
1000886A1 call eax

100086A3 cmp eax, BSI_ACCESS_DENIED
100086A8 jg short loc_1080086E2
1
v
[P h
100086AA cmp eax, BSI_ACR_NOT_AUAILABLE
100086AF j1 short loc_100086E2
i 1)
[L
100086B1 cmp eax, BSI_CARD_PRESENT
100086B6 jnz short loc_160886DB
- J

Figure 19. Retrieve Card Status

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 19

As seen in Figure 20, Sykipot loads acpkes201.d1l (ActivClient DLL) from any of

the three possible paths - System directory, “C:\Program Files\Activldentity\ActivClient”

or “C:\Program Files(x86)\Activldentity\ActivClient”. This reveals that the attacker is

probably aware that the targeted user is using ActivClient DLL.

.text:10008553 call ds:GetSystemDirectoryn
.text:10088559 push offset afAcpkcs281_dll ; "‘\\acpkcs261.d11™
.text:1000855E push esi ; Dest
.text:1008855F call strcat

.text:10008564 nov eax, dword ptr unk_100B53EA4
.text:10008569 pop ecx

.text:1000856A test eax, eax

.text:1000856C pop ecx

.text:1000856D ijnz loc_100085F8

.text:10008573 push offset a1t HE AV
.text:10008578 push hMSF5F5 ; File
.text:1000857E call edi ; fprintf

-text:100088580 mov ebp, ds:lLoadlLibraryn
.text:10008586 pop ecx

.text:10008587 pop ecx

.text:10008588 push esi ; lpLibFileName
-text:100088589 call ebp ; LoadLibraryf
.text:10008588B test eax, eax

.text:10008858D mov dword ptr unk_188B53E4, eax
.text:10008592 jnz short loc_100085F8
.text:10008594 push offset a2 5 "2\n"
.text:10008599 push hHMSF5F5 ; File
.text:1000859F call edi ; fprints

.text:100085A1 push ebx ; Size
.text:100085A2 push) 3 Val
.text:100085A4 push esi ; Dst
.text:100085A5 call nenset

.text:1000885AA push offset aCProgramFilesA ; “C:\\Program Files\\ActivIidentity\iActivCli™..
.text:100085AF push esi ; Dest
.text:100085B6 call strcpy

.text:100085B5 add esp, 1Ch

.text:100085B8 push esi ; lpLibFileName
.text:100085B9 call ebp ; LoadLibraryAf
-text:100085BB test eax, eax

.text:100085BD mov dword ptr unk_1088B53EL4, eax
.text:100085C2 jnz short loc_100085F8
.text:100085C4 push offset key? HER AN
.text:100085C9 push hMSFSF5 ; File
.text:100085CF call edi ; fprintf

.text:100085D1 push ebx ; Size
.text:100085D2 push 8 ; Val
.text:100085D4 push esi ; Dst
-text:1000885D5 call nemset

.text:100085DA | push offset aCProgramFilesX : "C:\\Progran ri1nﬁ(x86)\\ncriulﬂrnritu\\nnr“.J

Figure 20. Paths to Load ActivClient DLL

4.4. Proxy Selection

As depicted in Figure 21, it is interesting to see that this malware selects the proxy

value depending on the application that it injects into.

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 20

a L3
w3

10003984 push offset firefox ; “firefox”
100839B9 push offset processName ; Str1
10800839BE call strcmp

188839C3 pop ecx
1008039C4 test eax, eax
100039C6 pop ecx
10800839C7 jnz short loc_18080839D6
1
¥ v
"I [= l
10080839C9 call GetProxyInformationFromFirefox| |160039D8
1080039CE jmp short loc_10808839D5 100039D8 loc_1600839D6:
*11608039D8 call GetProxyInformationFromRegistry

Figure 21. Proxy Selection

Suppose if it is a DLL loaded inside firefox, it will use the proxy setting found
inside “%APPDATA% \Mozilla\Firefox\Profiles\<profile folder>\prefs.js” (sce

Figure 22). In other cases, proxy information is extracted from the registry

“HKEY_USERS\%SID%)\Software\Microsoft\Windows\CurrentVersion\Internet

Settings\Proxyserver”.

S —— ey TP I e S ey
.text:1000873BD push CSIDL_APPDATA ; csidl

.text:1000873BF push eax 5 pszPath

.text:1000673CH push 5} ; hund

.text:1000873C2 call ds:SHGetSpecialFolderPathnA

-text:1080873C8 lea eax, [ebp+Appdata_Mozilla_Firefox_Profiles]
.text:10080873CE push offset aMozillaFirefox ; "\\Mozilla\\Firefox\\Profiles"
-text:1000673D3 push eax ; Dest

-text:100073D4 call strcat

.text:1000673D9 lea eax, [ebp+Appdata_HMozilla_Firefox_Profiles]
-text:100073DF push offset aPrefs_js ; “prefs.js”

Figure 22. Retrieve Firefox Settings

Furthermore, it also noticed that Sykipot connects over port 80 or 443 (see Figure

23). These ports are probably chosen to increase the chance of connecting to the CnC

server, as ports 80 or 433 are commonly used for HTTP and HTTPS web traffics
respectively (Service Name and Transport Protocol Port Number Registry, 2012).

Oif (?*InternetCrackUrlA(sURL, 8, @, &UrlComponents))
return 3;

strepy(szObjectName, &u24[1]);

strcat(sz0ObjectName, v25);

vl = stricnp(Str1, "https");

hConnect = InternetConnectA(hInternet, szServerName, v4 ¢*= 0 ? 80 : 443, ¢, c, 3u,

Figure 23. Connection over HTTP or HTTPS

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

© 2012 The SANS Institute

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 21

4.5. Encryption Mechanism Overview

The figure below depicts the usage of the wrapped encryption and decryption
functions. For example, the pseudo code on the left reveals that the EncryptFile function
is invoked to encrypt the data in “MSF5F7.dat” (plain text) and save the result to
“MSF5F6.dat” (cipher) using a preprocessed key (string value “19990817”). This
preprocessed key is further encoded before use in its encryption core (see Figure 25).

o

Use of Encryption Use of Decryption
lea eax, [ebp+fileDestination MSFS5F6.dat] lea eax, [ebp+Path_MSF5F6.dat]
lea ecx, [ebp+var_2C] push offset alsf5f6_dat ; "MSF5F6.dat”
push eax ; fileDestination push eax ; Dest
lea eax, [ebp+fileSource MSF5F7.dat] call strcat
push offset a19990817_key ; "19990817" lea eax, [ebp+Path_WSF5F7.dat] .
push eax ; fileSource push offset aMsf5f7_dat ; "MSFS5F7.dat
call EncyptFile push eax ; Dest
call strcat
add esp, 18h
lea ecx, [ebp+uar_14]
call sub_10001000
lea eax, [ebp+Path_MSFS5F7.dat]
xor esi, esi
push eax ; MSFS5F7.dat - destination
lea eax, [ebp+Path_MSFS5F6.dat]
push offset a19990817_key ; "19990817"
push eax ;5 MSF5F6.DAT - source
lea ecx, [ebp+uar_14]
mov [ebp+var_4], esi

call DecryptFile

Figure 24. Usage of Encryption and Decryption Functions

Figure 25 depicts the flow and pseudo code of how Sykipot encrypts or decrypts a
data block (64 bits) using a key (64 bits). As seen in its pseudo code, the 64 bits input
data is represented using two separate DWORD variables. E.g. datalnDWHigh and
dataInDWLow are DWORD variables, which store higher and lower order DWORD

values of the input data respectively.

Additionally, the pseudo code also reveals that the data is encoded, before and
after use of the custom DES function, using two different functions. With these additional

layers of encoding, it further complicates the analysis of Sykipot encryption function.

The analysis of the encoder and custom DES functions are further detailed in

section 4.5.1 and 4.5.2 respectively.

Chong Rong Hwa, ronghwa.chong@gmail.com

Author retains full rights.

Custom DES

Initial Encode Data

Initial Encode Key

Generate Round
Keys

Initial Permutate

Perform 16 rounds
of Round operation

Final Permutate

Final Encode Data

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) ‘ 22

EncodeDataPriorEncrypt{datalnDWHigh, datalnDWLow, dataSize reverseOffset, &data_bitArray);
EncodeDataPriorEncrypt(Pass_DWORD_Higher, Pass_ DWORD_Lower, passwordSize, &key bitArray);
memcpy{&oundTmp, &key bitaArray, sizeof(roundTmp));
GenerateAllRoundKeys(roundTmp, arrOfRoundKeys);
memcpy(&initialData, &data bitArray, sizeof(initialData));
PerformInitialPermutation{initialbData, &DatalLeft, &DataRight);
forward0OfFfSet = 0;
reverseOffset = 1020;
do
4
selectedOffSet = forwardOffSet;
mencpy(&tmp, &Dataleft, sizeof(tmp));
memcpy(&Dataleft, &DataRight, sizeof(Dataleft));// prepare suwap
/7 tmp = left
/7 left = right

// right = tmp
if (tencryptFlag)

selected0ffSet = reverseOffset;
mencpy(&oundTmp, arr0fRoundKeys + selected0ffSet, sizeof(roundTmp));
mencpy(&RData, &DataRight, sizeof(RData));
PerformRoundFunction{RData, roundTmp, &roundlutput);//
// perform round function on right half of data
mencpy{& -oundTmp, &-oundlutput, sizeof(roundTmp));
mencpy(&RData, &tmp, sizeof(RData)); // execute swap
// RData = tmp, where tmp = LData

PerformXOR(RData, roundTnp, &DataRight); /7 LData = LDATA XOR RoundFunction(RData)
foruardDffSet += 68;

reverselffset —-= 68;

while (reverseOffset > -68)3 // a total of 16 rounds
/f 1828 > -68
/f => 1088 > 8
/7 => 1888/68 > B/68

7/ =>16 > 8
v16 = &datalutaj;

memcpy{&oundTnp, &Dataleft, sizeof(roundTmp));
memcpy{&ibata, &bataRight, sizeof(RData));
PerformFinalPermutation{*&RData, vi2, vi13);
memcpy (& -oundTinp, &dataluta, sizeof(roundTmp));

return EncodeEncryptionOutput(roundTmp, datalut, v17, uvi8);

Figure 25. Flow of Encrypting/Decrypting a Block of Data

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 23

4.5.1. Encoder Functions

The Initial Encode Function (IEF), as shown in Figure 26, reveals that each byte

of the data is first added with an encoding key (integer value 28), and then converted into

an array of bit values. As seen in Figure 25, this function is used to encode both input

data and key prior use of custom DES.

o —
(R
10001051
108080810851 repeat_encode_byte by add28:
1080801051 push 7
100801053 add ecx, 28 ; add 28 to byte
100081056 pop esi ; esi = 7, counter
vy
(PR
18001057
100010857 convertByteToBinaryString:
1080010857 mov eax, ecx
1808016859 push 2
100808105B cdq ; set eax to quad
180808165C pop ebx
1000165D idiv ebx ; divide eax by 2
10800105F test edx, edx
100016861 mov edx, [ebp+outBinary] ; edx = out buf
100010864 setnz al ; Set Byte if Not Zero (2F=8)
1008016867 mov [edx+esi], al
10881086A mov eax, ecx ; update loop
180808106C cdq
1080061086D sub eax, edx
1000106F sar eax, 1 ; shift right
10001071 dec esi
1080061672 mov ecx, eax
1008016874 jns short convertByteToBinaryString
r
(R
100010876 mov eax, [ebp+inSize]
100881679 inc edi
10001074 add [ebp+outBinary], eax
1006107D cmp edi, eax
10088167F jl short processNextByte
I
v [

Figure 26. Initial Encode Function

A majority of the binary data used within the Sykipot Encryption/Decryption

functions are stored using the data structure described in Figure 27, where bits and size

are fields of type BYTE [64] and DWORD respectively. The bits field is used to store

data binary manipulation, while the size field describes the number of bits stored.

00000660 Data_64Bits
00000000 bits
00000040 size
00000644 Data_64Bits

struc ; {(sizeof=0x44)
db 64 dup(?)

dd ?

ends

Figure 27. Data Structure Used to Store Binary Values

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 24

The Final Encode Function (FEF) shown in Figure 28 reveals that a binary array

is converted into a byte value, and then subtracts the byte value with an encoding key

(integer value 28). As described in Figure 25, this function is used to encode data after

encrypting the data using the custom DES function.

a

V¥

(= =]

1000106A3
188018A3 convertBinaryToByte:
18008168A3 cmp
100010A7 jz

byte ptr [ebx+esi], O
short loc_1060616AB

A 4
[
1000616A9 add ecx, eax ; set ecx to accumulate
1000106A9 ; ecx = b7%2"7 +
10060816A9 : b6*2"6 +
100016A9 H R
100016A9 H bBx2"@
79
[N
1600106AB
100016AB loc_100016AB:
100016AB cdq
180016AC sub eax, edx
1080016AE sar eax, 1
100061686 inc esi
1008616B1 cmp esi, 8
10001684 jl short convertBinaryToByte
1
A 4
e 5
1608016B6 mov eax, [esp+OCh+inDataHl]
16800168BA sub cl, 28
160016BD add ebx, 8
100616CH mov [edi+eax], cl
1000168C3 inc edi
1880168C4 cmp edi, 8

Figure 28. Final Encode Function

From the implementation of IEF and FEF, it shows that they are two simple

inversely related functions, where IEF and FEF encode by addition and subtraction using

the same encoding key respectively.

To generalize this analysis, Figure 29 mathematically proofs that if [EF and FEF

are inversely related, Sykipot Decryption Function is then guaranteed to be able to

decrypt the data encrypted using Sykipot Encryption Function. Hence, it implies that the

malware author could possibly further complicate the analysis by implementing a more

complex IEF, as long as IEF and FEF are inversely related.

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 25

“Let S* be the Sykipot encryption function,

SP be the Sykipot decryption function,

A be the Sykipot initial encoding function,

B be the Sykipot final encoding function,

DES; be the DES encryption function,

DES;' be the DES decryption function,

k be an arbitrary key used by the DES encryption and decryption function, and
P be an arbitrary plain text,

where S* = B o DES; o 4 and

S?=B o DES;' o A.

Suppose if function A and B are inversely related, then

SPoS§(P) =BoDES;'oA0BoDES,0cA(P)
=B o DES;' o (4 o B) o DES, 0 A (P) (since composite function is associative)
=B o (DES:' o DES;) 0 A (P) (since 4 is an inverse function of B)
=B o A(P) (since DES;" is an inverse function of DES})

= P (since 4 is an inverse function of B)

Hence, SP is an inverse function of SE.
Q.E.D.

Figure 29. Proof of Sykipot Decryption Function

4.5.2. Custom DES Function
From the pseudo code in Figure 30, it is obvious that the Sykipot encryption
function has sub functions that match the flow of DES Feistel Structure to perform Initial

Permutation, Round Manipulation, XOR and Final Permutation.

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.

S

weur |
(INITIAL PERMUTATION GenerateAllRoundKeys(roundTmp, arr0fRoundkeys);
memcpy(&initialData, &data bitArray, sizeof{initialData));
PerformInitialPermutation{initialData, &Dataleft, &DataRight);
lo | [Ro forwardOffSet = 8;
rsne) — reverselffset = 1020;
]
N v— do
selected0ffSet = forward0ffSet;

-~ -

~~~~~~

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 26

memcpy{&tmp, &Dataleft, sizeof{tmp));
memcpy(&bataleft, &DataRight, sizeof(Dataleft));// prepare swap
/7 tmp = left
// left = right
// right = tmp
if ( tencryptFlag )
selectedOffSet = reverseOffset;
memcpy (& oundTmp, arr0fRoundKeys + selectedOffSet, sizeof{roundTmp));
memcpy{&RData, &DataRight, sizeof{RData));
PerformRoundFunction(RData, roundTmp, &-oundOutput);//
// perform round function on right half of data
memcpy (& oundTmp, &oundOutput, sizeof(roundTmp));
memcpy{&RData, &tmnp, sizeof{RData)); // execute suap
/7 RData = tmp, where tmp = LData
PerformX¥OR{RData, roundTmp, &DataRight); /7 Lbata = LDATA XOR RoundFunction{RData)

{ L]

N — forwardOffSet += 68;
[, bis=ha _.J Eﬁiﬂﬁﬁ”‘“” reverselffset —= 68;

b

l Iy M6 bhile ( reverseDffset > -68 ); // a total of 16 rounds

¢ v ' /7 1820 > -68
Rye=Lis DRy, K /7 => 1888 > @
[retsins i /7 => 1088768 > 0768

/7 =>16 > 8

@vmt INITIAL PERM

QuIPUT

vi6 = &datalutaj;

memcpy (& oundTmp, &Dataleft, sizeof{roundTmp}));
memcpy(&RData, &DataRight, sizeof(RData));
PerformFinalPermutation(*&RData, v12, vi13);

Source of DES Feistel Structure Flow: (Daley & Kammer, 1999)

Figure 30. Mapping DES Feistel Structure to Skyipot




Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 27

All permutations that are used by the custom DES encryption/decryption function

are performed using the generic permutation function identified in Figure 31. The

parameter “option” is used to select the type of permutation to perform. The options

supported by this function are tabularized in Table 4.

option
option
option
option
option
option

: 64
: 64
HE
: 32
: 56
48

VT E LN -

bits
bits
bits
bits
bits
bits

(IP)

(FP)

(Expansion Table)
(P)

(PC1_C)

(PC2_C)

int _ stdcall PerformPermutationByOption

(DWORD option, Data_64Bits dataln,
Data_64Bits xdataOut)

beginPermutate:
pbatadut = datalut;
idz = 83
datadut->size = cntHax;

if ( cntMax > 8 )
while ( 1)
{
if ( option == 1)
{

constantbword = InitialPermutation[idx];
goto updateConstantBox;

¥

if ( option == 2 )

{
constantbword = FinalPermutation[idx];
goto updateConstantBox;

b

if ( option == 3 )

{
constantDword = ExpansionTable[idx];
goto updateConstantBox;

b

if ( option == 4 )

constantbword = PermutationTable[idx];
goto updateConstantBox;

b
if ( option

== 5 )
break; /7 PC1_C
if ( option == 6 )
{
constantDword = PC2_C[idx];
updateConstantBox:
pDataOut->bits[idx] = *(&option + constantDword + 3);
e
++idx;
if ( idx >= cntHMax )
return idx;
> /7 end uvhile
constantDword = PC1_C[idx];

goto updateConstantBox;

return idx;

Figure 31. Perform Permutation By the parameter “Option”

Option | Permutation Type (Nunﬁ)l::trp(l)lft bits) Description
| ) Permutates the data input prior
! ¥l Permutation 64 passing through Feistelf strrl)lcture.
. . Permutates the data output after
% Final Permutation 64 passing through Feistelitructure.
Permutates and Expands data used
3 E 48 in r.ound fun(?tion. ‘
This E table is customized (see
below for details).
4 p 48 Permptates data used in round
function.
5 PC1 56 Permutates key before scheduling.
6 PC2 48 Generates round key.

© 2012 The SANS Institute

Table 4. Options Supported By Generic Permutation Function

Author retains full rights.



o
data:
data:
data:
data:
data:
data:

data

data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:
data:

data

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 28

10008620 InitialPermutation

10008020

1000B626 dd
10008020 dd
1006B620 dd
10008020 dd
:10008120 FinalPermutation dd
10008120

1606B128 dd
10008120 dd
10068B1280 dd
1000B120 dd
10008220 ExpansionTable dd
10008220

100688220 dd
10008220 dd
10088220 dd

1000B2E0 ; int SBoxValues[8]
dd

1000B2ED SBoxUalues
1000B2EO

1000B2ES dd
1006B2ED dd
1006B2ED dd
1000B2EB dd
1000B2ED dd
1006B2ED dd
1000B2E® dd
1000B2ES dd
1000B2EO dd
1000B2ES dd
1000B2EO dd
10060B2ES dd
1000B2EO dd
1006B2ED dd
1000B2ED dd
1006B2ED dd
1000B2E0 dd
1000B2ED dd
1000B2E0 dd
1006B2ED dd
1000B2ED dd
1006B2ED dd
1000B2E0 dd
1006B2ED dd
1000B2EQ dd
:1006B2ED dd

dd 58, 56, 42, 34, 26, 18, 18, 2, 60, 52, 44, 36, 28, 20
; DATA XREF: PerformPermutationByOpt
38, 22, 14, 6, 64, 56, 48, 48
w1, 33, 25, 17, 9, 1, 59, 51
43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5
63, 55, 47, 39, 31, 23, 15, 7
40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23
; DATA XREF: PerformPermutationByOpt
6, 46, 14, 54, 22, 62, 308, 37, 5, 45, 13
53, 21, 29, 36, 4, a4, 12, 52, 20, 60, 28, 35, 3
43, 11, 19, 59, 27, 34, 2, 42, 18, 50, 18, 58, 26
33, 1, ¥1, 9, 49, 17, 57, 25
32,1, 2,3, 4,5, 4, 5,6, 7,8, 9,8, 9, 18, 11, 12
; DATA XREF: PerfopmPeyrmutationByOpt
13, 12, 13, 14, 15, 16, 17, 16, 17, 1s,2u, 21
20, 21, 22, 23, 24, 25, 24, 25, 26, 27,7287 29, 28
29, 38, 31, 32, 1
[64]
14, 4, 13, 1, 2,

12, 4, 62, 54, 46, 38,
32, 24, 16, 8, 57, 49,

63, 31,

15, 11, 8, 3, 18, 6, 12, 5, 9, 08, 7
; DATA XREF: PerformSboxing+3FTr
2, 13, 1, 18, 6, 12, 11, 9, 5, 3, 8
6, 2, 11, 15, 12, 9, 7, 3, 18, 5, @
9,1,7,5, 11, 3, 14, 18, 8, 6, 13
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 8, 5, 10
3, 13, 4, 7, 15, 2, 8, 14, 12, 8, 1, 10, 6, 1, 5
e, 14, 7, 11, 18, 4, 13, 1, 5, 8, 12, 6, 9, 2, 15
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 14, 9
18, 8, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8
13, 7, 8, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1
13, 6, 4, 9, 8, 15, 3, 8, 11, 1, 2, 12, 5, 10, 14, 7

8, 15, 7, 4, 14,
4, 1, 14, 8, 13,
15, 12, 8, 2, 4,

9,
3,
5,

1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
7,13, 14, 3, 8, 6, 9, 18, 1, 2, 8, 5, 11, 12, 4, 15
13, 8, 11, 5, 6, 15, 8, 3, 4, 7, 2, 12, 1, 10, 14, 9
18, 6, 9, 8, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4
3, 15, 0, 6, 106, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
2,12, 4, 1, 7, 18, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9
14, 11, 2, 12, 4, 7, 13, 1, 5, 8, 15, 10, 3, 9, 8, 6

4, 2, 1, 11, 18, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14
1, 8, 12, 7, 1, 14, 2, 13, 6, 0, 9, 10, 4, 5, 3
12, 1, 18, 15, 9, 2, 6, 8, 3, 4, 14, 7, 5, 11

8

10, 15, 4, 2, 7, 12, 9, 5, 6 13, 14, 0, 11, 3, 8
7
1

15,
» 13,
» 1,
, 8

1, 14, 1, 7, 6, 0, 8, 1

9, 14, 15, 5, 2, 8, 12, 3, , 4, 18, 1, 13, 11, 6
u, 3, 2, 12, 9, 5, 15, 10, 3
4, 11, 2, 14, 15, 8, 8, 13, 3, 12, 9, 7, 5, 18, 6, 1
13, 0, 11, 7, 4, 9, 1, 19, 14, 8, 5, 12, 2, 15, 8, 6
1, 4, 11, 13, 12, 3, 7, 14, 18, 15, 6, 8, 8, 5, 9, 2

Figure 32. Customised E Table

All the values that are used by the permutation and substitution tables are the

same as the constants used in DES implementation (Daley & Kammer, 1999), except for

one element in the E Table is changed from 19 to 29 (see Figure 32 for the number

circled in red). By definition of Feistel Cipher (Backes, 2007), there is no requirement for

the round function to be invertible. Hence, by changing the constants (such as E Table

constants) used by the round function, does not affect the decryption of the encrypted

cipher, as long as the round function implemented in both encryption and decryption

algorithms are consistent.

It is believed that the malware author has changed only one DES standard

constant to trick the analyst into thinking that the standard DES encryption algorithm is

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.



Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 29

used. It is hard to detect this minor change with the consideration that there are more than

3000 constants used in standard DES implementation.

Figure 33 reveals that the Round Key Generation function implemented by
Sykipot has sub functions that match the DES Round Key Generation Flow, i.e. functions
to rotate the round key seed and generate round key. Similarly, Figure 34 shows that the
Round Function implemented by Sykipot also has sub functions that match the Round
Function Flow, i.e. functions to expand and permutate the data, XOR the expanded data
with the round key, substitute the data using the SBoxes and permutate using the round

permutation table.

All these evidences suggest that the Sykipot encryption algorithm is implemented
using custom DES (using modified E Table) with input data, input key and output data
encoded to confuse the analyst. With this knowledge, researcher could possibly design a

fake bot to interact with the attacker, to further analyze Sykipot.

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.



T ——
KEY

Detailed Analysis Of Sykipot (Smartcard Proxy Variant) ‘ 30

/PERMUTED),

CHOICE )

\

int _ stdcall GenerateAllRoundKeys{Data_64Bits raw key rightKey, Data_64Bits x=roundKeyArray)
{
int v2; /7 ecx@8
DUWORD =xpShift; // ebx@1
int result; // eax@2
Data_64Bits =roundKey; // edi@2
Data_o64Bits leftKey; // [sp-8Ch] [bp-124h]@2
Data_64Bits rawKey; // [sp-4Ch] [bp-E4h]@1
Data_64Bits rightKey; // [sp-48h] [bp-EBh]@2
Data_64Bits x=curShift_RoundKeyBufferPointer; // [sp-4h] [bp-9Ch]@2
Data_64Bits currentRoundKey; // [sp+Ch] [bp-8Ch]@2
Data_64Bits KeyLeft; // [sp+56h] [bp-48h]@1
int key; 7/ [sp+94h] [bp-4h]@1

= U2;
&rrawkey, &raw_key_rightKey, sizeof(rawKey));
performPC1(raukey, &KeylLeft, &raw_key rightKey);

/LT
\_SHIFTS )

pShift = shifts;
do
{

curShift_RoundKeyBufferPointer = *pShift;

shiftKey{&KeyLeft, curShift_RoundKeyBufferPointer);
curShift_RoundKeyBufferPointer = #pShift;
shiftKey(&raw_key_rightKey, curShift_RoundKeyBufferPointer);
curShift_RoundKeyBufferPointer = &currentRoundKey;
memcpy(&r-ightkey, &-aw_key rightkey, sizeof(rightkey));

ﬁimunﬁ}__K memcpy{&leftkey, &Keyleft, sizeof(leftKey));
n

- ¢
(L [ e
\_SHIFTS \_SHIFTS

\ CHOICE2 ) result = GenergteRoundKey(leftKey, rightKey, x»&curShift_RoundKeyBufferPointer);

roundKey = b

while ( pShift < PC2_C );
return result;

}

// 16 rounds as PC2_C is adjacent to pShift

Source of DES Round Key Generation Flow: (Daley & Kammer, 1999)

Figure 33. Mapping DES Round Key Generation to Skyipot



~ R(2ens) |

48 BITS

Detailed Analysis Of Sykipot (Smartcard Proxy Variant)

100014EC
188814EE
188614F0
1
100014F7
108014FA
188614FD
_ 180814FE
| 10001501
1008061503
180881504

K (48 BITS)

1 1

[ 32 BITS

IO O

10801506
10001509
[ 1aoots0p
Sy 10001510
10001511

1000151¢C
100801522
18881525
180801526
10001529
10001528

18881537
1886153D
10001543

1880154
180881554
10001555
10001556
10881557
18801558
10001558

nov edi, esp

rep mousd ; end push data to stack

mou ecx, ebx

call PerformExpansion

lea eax, [ebp+xorResult]

lea esi, [ebp+roundkey] ; prepare push round key to stack
push eax

sub esp, 44h

push 17

pop ecx

nov edi, esp

sub esp, A44h

rep movsd ; end push round key to stack

push 17 ; prepare push round data to stack
lea esi, [ebp+rounddata]

pop ecx

nov edi, esp

rep mousd

mov ecx, ebx ; end push round data to stack

call PerformXOR

lea eax, [ebp+sBoxedResult]
lea esi, [ebp+xorResult]
push eax ; dataout
sub esp, A44h

push 11h

pop ecx

nov edi, esp

rep mousd

nov ecx, ebx

call PerformSboxing

push [ebp+pDatalut] ; Data_64Bits =
lea esi, [ebp+sBoxedResult]
sub esp, 44h

push 17

pop ecx

nov edi, esp

rep mousd

nov ecx, ebx

all PerformRoundPernutation
pop edi

pop esi

pop ebx

leave

retn 8Ch

PerfornRoundFunction endp

Source of Round Function Flow: (Daley & Kammer, 1999)

Figure 34. Mapping DES Round Function to Skyipot

© 2012 The SANS Institute

Author retains full rights.

31



Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 32

4.5.3. Encryption Analysis Validation

After analyzing the encryption function, the next step is to validate the analysis.

Below lists the steps (of one possible way) to validate the analysis of the Sykipot

encryptio

1.

2.

n function:
Generate a plaintext file with arbitrary content.
Encrypt the plaintext file using unpatched Sykipot (see Figure 35).

Encrypt the plaintext file using patched Sykipot (see Figure 36), where the
patches are applied to convert Sykipot Custom DES into Standard DES.

Encrypt the plaintext file using standard DES (see Figure 37).

Compare each cipher generated by Sykipot (patched and unpatched) against
the cipher generated by standard DES (see Figure 37).

Suppose if the analysis is correct, the cipher generated by the patched Sykipot

should be the same as the cipher generated by the standard DES; and the cipher generated

by the unpatched Sykipot should be no way close to the cipher generated by the standard

DES.
o
- [CPU - main thread, module DLL_101] 1. Trigger Execution Of
@ File View Debug Plugins Options ‘Window Help EncryptF”e(
Bl x| wlu| wi] JJ:JF 2] L|E[M “z:/plain.txt”,
e =N ,‘EFP”’ “z:/cipher-beforepatch.bin”)
19 16E (DLL_IBI EncrgptFlle> EEP 51[1[4;'4_,”
5 0a061178| p44. |ASCII "Z:/plain. tut™
1688D05C| ] . M| ASCII "password”
88851978 c$9 ASCII "Z:scipher-beforepatch.bin®™
o2 Expansiontable 43 53, 1. 3,0, % 5 v, 5, 6, 7, 8, 9, 8, 9, 10, 2. EBox values as original
10008220 DATA XREF: Perfopmf ltdtmnB)
10868228 dd 13, 12, 13, 14, 15, 16, 17, 16, 17, 18 20, 21
6668220 dd 26, 21, 22, 23, 24, 25, 24, 25, 26, 27,28, 29, 28
16608226 dd 29, 30, 31, 32, 1

Address |Size|State |0OLd | Hew
16831653 3. | Removed| ADD ECX, 1C ADD ECX¥, @
168818BA 3.|Removed|SUB CL,1C__ __ . lsue CL,® __ __

3. Encoder as original

Figure 35. Generate Cipher Using Unpatched Encryption Function

© 2012 The SANS Institute

Author retains full rights.



Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 33

- [CPU - main thread, module DLL_101]

@Flle Yiew Debug Plugins Optlons Window Help

1. Trigger Execution Of
EncryptFile (

Blx| »u| ui

“z:/plain.txt”,
“z:/cipher-afterpatch.bin”)

1366005C
BBBSE63B BaasFz4a

1.»
@24,

10008220
16008220
16008220
160082206

16008220 ExpansionTable

wooU; Ty

dd 32,

dd 13,
dd 29,
dd 29,

T ST 5 6. 5, 9, 10, e 2. E Boxvalue patched
R tationBy
208, 21

8, 29, 28

12, 13, 14, 15, 16, 17, 16, 17, 18
21, 22, 23, 24, 25, 24, 25, 26, 27,
30, 31, 32, 1

Address | Size|State |OLd | Hew |
10001053 | 3. |Active |ADD ECR, IC ADD ECX, B
100010BA | 38.|Active |SUB CL,1C__ ___ __lsuB CL,b __

-—-——-—— 3. Encoder patched

Figure 36. Generate Cipher Using Patched Encryption Function

Figure 37 and Figure 38 depict the comparison between Sykipot generated ciphers

and OpenSSL generated ciphers, where OpenSSL is a tool that could be used to generate

standard DES cipher (OpenSSL for Windows, 2008). As expected, the cipher generated

prior patching is no way close to the cipher generated using standard DES (see Figure

37). This shows that Sykipot is not encrypting using DES. However, it is surprising to

note that the last eight bytes between the ciphers generated by the patched Sykipot and

OpenSSL are different (see Figure 38). This shows that the patched Sykipot generates the

same cipher as DES, except for the last block (64 bits).

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.



Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 34

z:\encrypt>fc cipher—beforepatch.bhin cipher—openssl.bhin
Comparing files cipher—-heforepatch.bin and CIPHER-OPENSSL.BIN
PARBAAABR: D6 B3

nARBAAA1 -

PnARBRAAA2 :

PANBAAA3 :

PANRBAA4 :

nARPAAAS :

PARBAAAG -

161515151515 ]

nARBAAAS -

nARBRAAAY -

nARBAARA :

PIRPRAAAB: 2

nARBAAAC :

nARBAAAD :

NABBAAAE :

NABBAAAF :

nARRAA14:

nARRAA11 :

nAnRAA14:
nARABA1S =
nARRBA1G6 =
nARRBA1L7?:

z :\encrypt>openssl enc —des—ech —in z:/encrypt/plain.txt —out z:/encrypt/cipher—
openssl.bin —K 78617373776F7264 —iv B

z :\encrypt>fc cipher—afterpatch.bin cipher—-openssl.hin
Comparing files cipher—afterpatch.bin and CIPHER-OPENSSL.BIN
AANRB28 :

BRARRn29 :

BARBRB2A =

PRAAAB2B :

BRARRB2C :

BAAEnn2D :

BOOBRB2E :

BABBBB2F :

FC: cipher—afterpatch.bin longer than CIPHER-OPENSSL.BIN

Figure 38. Comparing Sykipot (After Patch) Cipher with DES Cipher

To investigate this difference, the code is examined deeper. As shown in Figure
39, the pseudo code implies that the plain text is padded with 0x20 to a file size divisible
by 8 bytes (since the block size is 64 bits).

ZTaveOutput:
if ( )

return { )s

Figure 39. Code to Pad Plain Text

Additionally, it is also observed that a one-byte pad information is appended to

the end of cipher to indicate the number of pad used (see Figure 40).

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.



Detailed Analysis Of Sykipot (Smartcard Proxy Variant)

H&X Filz Edit Search Position View Tools Specialist Option dow  Help
DEEHSEE BB ALNEN  -REeEs | &
plain b cxpher-aﬂemmch.bml
her-aftemat Of fset 01 2 3 4 5 & 7 8 910 11 12 13 14 15
;[{‘E:rcr’petrp ' 00000000 | B3 FE 87 39 7A S5 C8 CC 85 75 23 D8 52 02 20 9D
! 00000016 | E3 11 63 4A 37 24 E6 E4 B6 DA 6B 0C 6F D4 EBE 8F
00000032 19 EE 84 9D 32 E9 92 1B DA 6E 02 44 99 A9 77 1C
File sizé3bytes | "~~~ -
00000048 [ 05 |

Figure 40. Pad Information

35

To verify the abovementioned analysis, the plain text is padded with pad (0x20) to

shortest possible file length divisible by 8. In this case, 5 bytes of pads are applied to the

plain text (see in Figure 41).

Emm-uﬁuxt]
HEX File  Edit Searc L alist  Options ‘Window Help
DDGSI‘E& -J%%w‘e‘aﬁ”gx i d | o PEs | 9Fem O | &
plain bt |
Offset o1 2 3 4 5 & 7 g 9 4 B C D E F
g?;g;m oooooooo | S4 68 65 20 71 75 69 63 6B 20 62 72 6F 77 6E 20 | The guick brown
00000010 66 6F 78 20 64 75 6D 70 73 20 6F 76 65 72 20 74 | fox jumps over t
Cio wtbsee | 00000020 |68 65 20 6C 61 74 79 20 64 6F 6720 20 20 20 20| he lazy dog
memset(inputBuffer + numBytesRead dup, 0x20u, 4 * (nunOfByteskEncrypted >> 2));
‘vr‘lg:;!:ell:‘l({.’?lx:|r:n“lﬂl:‘i::[11::‘:‘[‘;:E:::I::/:‘:)\x-f‘l;m,r|_||Mm1 >> 2] + numBytesRead_dup,| 8x28u, |num0fBytesEncrypted & 3);// pad with 8x26

Figure 41. Padded Plaintext

After a retest, it is verified that there is no discrepancies between the ciphers

generated by patched Sykipot and OpenSSL, other than the additional padding
information added by Sykipot (see Figure 42).

z:/encrypt/cipher—

z:/encrypt/plain.txt —out
@ —nopad

wer—afterpa
3 f1plP) after
.hin long

i cipher—open
bin and CIPHER
CIPHER-OPE

Figure 42. Comparing Sykipot (After Patch) Cipher with DES Cipher

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute

Author retains full rights.



Detailed Analysis Of Sykipot (Smartcard Proxy Variant) | 36

5. Remediation Measures
Infection caused by this Sykipot sample can be easily remediated with the

following steps:

1. Close all targeted processes (i.e. Internet Explorer, Firefox and Outlook) to

unload malicious DLL.

2. Kill “dmm.exe”. One possible way is to use Process Explorer (see Figure

43).

3. Remove all malicious artifacts (files with name starting with “MSF5F”

and “dmm.exe”’) found in the Sykipot’s working directory.

4. Remove “taskmost.exe” from the start up folder if it exists. See Figure 44

to open start up folder using “shell:startup” command.

&7 Process Explorer - Sysinternals: www.sysinternals.com [MALWAREHUNTER \user]

File Options View Process Find DLL Users Help

B2 =Em3(E A ||
Process PID[ cPuU] Path [ Command Line
B ] System ldle Process 0 9846
:] Intemupts n/a
~IDPCs n/a
@] System 4
=] i explorer.exe 1728 CAWINDOWS'\e... C:\WINDOWS\Explorer.EXE
VMwareTmy.exe 1776 C:\Program Files\... "C:\Program Files\VMware\VMware Tools\VMware Tray.exe"
() VMware User exe 1784 C:\Program Files\... "C:\Program Files\VMware'\VMware Tools\VMwareser.exe"

2 procexp exe 3104 154 C:tools\sysintem... "C:\tools\sysintemals'\procexp.exe"

wd py_C:\Documents an.__"C:\DOCUME™1\use\LOCALS~T\dmm exe"
— VINdow.

Name Company Name I Version | Path #
- N

dmm.exe SEIFTE C: uments and Settings \user
advapi32.dil Kill Process Del Microsoft Corporation 5.01.2600.2180 C DOWS\system32\advap)
comcti32.dll Kill Process Tree Microsoft Corporation 5.82. C:\WINDOWS\system32\comct|
ctype nls Restart C:AWINDOWS\system32'\ctype |
gdi32.dll Microsoft Corporation 5.01 CAWINDOWS\system32'\gdi32
kemel32.dll Suspend L Microsoft Comporation 5.01 CAWINDOWS\system32'\keme!|
locale.nls Launch Depends. .. _ C ’v'[r\JDOF’v'S \system 3§‘Jccale
msvert.dil Debu Microsoft Corporation C:\WINDOWS\system32\msverd
netapi32.dll 9 Microsoft Corporation 5.0 C:A\WINDOWS\system32\netapi
ntdll dl Properties... Microsoft Corporation 5 C DOWS\system32\ntdll dl
Seschnine.._Cotow | Mo Coporion 50126002180 CAINDOS 2o

Figure 43. Killing of Sykipot in Process Explorer

TEEE—— 20

= Type the name of a program, folder, document, or
Internet resource, and Windows will open it for you.

Open: | |

Figure 44. Open Start-up Folder

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.



Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 37

6. Conclusion

From the analysis in this paper, it is obvious that Sykipot is an espionage malware
designed to steal victim’s information, access protected resources and maintain backdoor
in a persistent and stealthy manner. By understanding the techniques used by Sykipot, it

helps the analysts to take note of the tricks that Sykipots has used to avoid detection.

Unlike a majority of malwares that dial back to CnC server at periodic interval,
Sykipot is able to connect to the CnC at a time specified by the attacker. By having an
indeterministic dial back time, it is hard to notice Sykipot’s connection as a network
anomaly. Additionally, its connection is unlikely to be blocked by firewall as it is
connected out over port 80 or 443, via the injected processes that are expected to have
HTTP or HTTPS connections (see Figure 23 and Figure 3). Hence, it is dangerous for an
analyst to assume that a system is clean, even if there is no network connection

performed at a regular time interval.

Additionally, an analyst should not assume executable files that have timestamp
or version information that appears to be a Microsoft system file to be safe (see Figure 8
and Figure 6). Instead, the analyst should also consider the path of the executable files
when performing forensic. In this case, it is suspicious for a Microsoft system file to be

located in local settings, and therefore this anomaly should be flagged.

On top of that, by injecting Sykipot DLL using CreateRemoteThread with
LoadLibrary technique, Sykipot would not be flagged as malicious by Volatility malfind
plugin. This effectively helps Sykipot to camouflage itself as a benign DLL.
Consequently, an analyst should not be overly reliant on automated scripts to identify

anomalies.

Last but not least, in the event if a new Sykipot is identified, an analyst could
possibly try to use the analyzed encryption algorithm to decrypt Sykipot related messages

to further understand intent of the malware.

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.



Detailed Analysis Of Sykipot (Smartcard Proxy Variant) 38

7. References
Kuster, R. (2003, August 20). Three Ways to Inject Your Code into Another
Process. Retrieved from http://www.codeproject.com/Articles/4610/Three-Ways-to-

Inject-Your-Code-into-Another-Proces

Blasco, J. (2012, January 12). Sykipot variant hijacks DOD and Windows smart
cards. (AlienVault) Retrieved from http://labs.alienvault.com/labs/index.php/2012/when-

the-apt-owns-your-smart-cards-and-certs/

Thakur, V. (2011, December 14). The Sykipot Attacks. (Symantec) Retrieved

from http://www.symantec.com/connect/blogs/sykipot-attacks

Volatilty Command Reference. (2012, March 1). Retrieved from
http://code.google.com/p/volatility/wiki/CommandReference

OpenSSL for Windows. (2008, December 4). Retrieved from

http://gnuwin32.sourceforge.net/packages/openssl.htm

Daley, W. M., & Kammer, R. G. (1999, October 25). DATA ENCRYPTION
STANDARD (DES). (U.S. DEPARTMENT OF COMMERCE/National Institute of

Standards and Technology) Retrieved from http://csrc.nist.gov/publications/fips/fips46-
3/fips46-3.pdf

Visual Resource Editor. (2012, March 25). (Heaventools) Retrieved from

http://www.heaventools.com/resource-tuner.htm

Service Name and Transport Protocol Port Number Registry. (2012, March 28).
(Internet Assigned Numbers Authority) Retrieved from
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-

numbers.txt

Backes, M. (2007). Block Ciphers. (Saarland University) Retrieved from
http://web.cs.du.edu/~ramki/courses/security/2011 Winter/notes/feistelProof.pdf

Chong Rong Hwa, ronghwa.chong@gmail.com

© 2012 The SANS Institute Author retains full rights.



Last Updated: April 8th, 2014

Upcoming Training

CERTIFIED!

SANS Security West 2014 San Diego, CA May 08, 2014 - May 17, 2014 Live Event
Mentor Session - FOR 610 Columbia, MD May 21, 2014 - Jul 23, 2014 Mentor
Digital Forensics & Incident Response Summit Austin, TX Jun 03, 2014 - Jun 10, 2014 Live Event
Community SANS Ottawa Ottawa, ON Jun 16, 2014 - Jun 21, 2014 |Community SANS
SANSFIRE 2014 Baltimore, MD Jun 21, 2014 - Jun 30, 2014 Live Event
SANS vLive - FOR610: Reverse-Engineering Malware: Malware |FOR610 - 201407, Jul 14, 2014 - Aug 20, 2014 vLive
Analysis Tools and Techniques

SANS Virginia Beach 2014 Virginia Beach, VA Aug 18, 2014 - Aug 29, 2014 Live Event
SANS Baltimore 2014 Baltimore, MD Sep 22, 2014 - Sep 27, 2014 Live Event
SANS DFIR Prague 2014 Prague, Czech Republic | Sep 29, 2014 - Oct 11, 2014 Live Event
SANS vLive - FOR610: Reverse-Engineering Malware: Malware |FOR610 - 201410, Oct 13, 2014 - Nov 19, 2014 vLive

Analysis Tools and Techniques

Community SANS Paris @ HSC - FOR610 (in French)

Paris, France

Nov 24, 2014 - Nov 28, 2014

Community SANS

SANS OnDemand

Online

Anytime

Self Paced

SANS SelfStudy

Books & MP3s Only

Anytime

Self Paced




