
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

!!

Case Study: 2012 DC3 Digital Forensic
Challenge Basic Malware Analysis Exercise

GIAC (GREM) Gold Certification

Author: Kenneth J. Zahn, kenneth.j.zahn@gmail.com
Advisor: Rick Wanner

Accepted: August 24, 2013

Abstract
The 2012 DC3 Digital Forensic Challenge included two malware analysis-related
exercises, one described as “basic” and one described as “advanced.” For each exercise,
competing teams were provided with an ostensibly malicious—though ultimately
innocuous—sample and asked to conduct an analysis befitting the sample’s complexity.
The author’s challenge team, Plan 9, placed 2nd in the Government-only category, 3rd in
the US-only category, and 5th in the overall competition. This paper will discuss an
updated version of Plan 9’s solution to the basic malware analysis exercise using a
combination of goal-driven and process-driven approaches. It should be noted that one of
Plan 9’s goals in the competition was to use only freely available or open source tools to
guarantee the portability of the exercise solutions. To improve the utility of this paper,
the tools that were presented in the original solution have been updated to reflect their
latest versions at the time of writing. Further, the solution has been expanded to include
additional analysis tools that were not presented in the original exercise submission.!
!
!

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 2
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

1. Introduction
1.1. DC3 Digital Forensic Challenge Overview

The Department of Defense (DoD) Cyber Crime Center (DC3) provides digital

forensic process standardization, analysis, and investigation support to the various

agencies and military commands within the US DoD (DC3, 2013). As part of DC3’s

portfolio of forensics outreach initiatives, DC3’s Futures Exploration Directorate holds

an annual, world-wide competition called the DC3 Digital Forensic Challenge. Held

since 2006, the 11-month-long challenge consists of approximately 30 digital forensics

exercises of varying difficulties and point values. The most difficult of the exercises

represent capability gaps in the digital forensic community, making their solutions of

noted importance (DC3, 2012a).

In the 2012 competition, 1,209 teams throughout the world registered for the

competition in one of eight categories: Civilian, Commercial, Government, Military,

High School, Community College, Undergraduate, and Graduate (DC3, 2012a). Team

Plan 9, the author’s team, placed 2nd in the Government-only category, 3rd in the US-only

category, and 5th overall by completing 28 of the 35 exercises (DC3, 2012b). Two of the

exercises given in the 2012 competition—305: Basic Level Malware Analysis and 404:

Advanced Malware Analysis—involved the analysis of malicious1 software samples.

Exercise 305 provided the competitors with a malicious dynamic-link library (DLL) file,

and Exercise 404 provided the competitors with a malicious Windows executable (EXE)

file.

The solution to the Basic Level Malware Analysis exercise is presented using

contemporary malware analysis techniques. The malware analysis process employed in

this exercise represents a hybridization of process-driven and goal-driven approaches.

!!
1 It should be noted that the payloads of the provided samples were not malicious, but the techniques used
by the samples are similar to those used by genuine malware.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 3
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

1.2. Malware Analysis Techniques
Currently, there are five general techniques used in malware analysis: basic static

or surface analysis, basic dynamic or behavioral analysis, static code analysis, dynamic

code analysis, and volatile memory analysis.

• Surface analysis examines the structural properties and file attributes of a

malware sample (e.g. true file type (useful if the file extension was changed), size,

file hash values, file and section headers, strings, contained objects, packing

mechanisms) without viewing assembly or machine-level instructions (Sikorski &

Honig, 2012). Surface analysis can provide information artifacts—such as IP

addresses, Internet domain names, and command parameters—that prove useful

in subsequent analysis steps.

• Behavioral analysis observes the actions taken by a malware sample while it is

running. Certain key actions taken by the malware sample, such as

adding/modifying/deleting Windows Registry keys, dropping files on the file

system, and establishing communications with a command-and-control server,

may serve as indicators of compromise (IOC) for the particular sample (Mandiant,

2011). The IOC’s observed by the analyst during this phase may then be used to

produce signatures for intrusion detection and prevention systems. Because

behavioral analysis requires executing the malware on a live machine, it is critical

to implement appropriate risk mitigations (e.g. using a stand-alone, virtualized

test environment or a sandbox) to avoid infecting production systems (Sikorski &

Honig, 2012).

• Static code analysis examines the malware sample’s executable instructions and

internal data structures by loading the sample into a disassembler. Barring code

that has been packed, encrypted, or otherwise obfuscated, all instructions present

in the sample can be viewed. Although a time-consuming technique, static code

analysis can give investigators full insight into the capabilities of the sample

under examination (Sikorski & Honig, 2012).

• Dynamic code analysis allows the analyst to execute a malware sample

instruction-by-instruction by loading it into a debugging application. Because

malware samples may have obfuscated portions, it is sometimes necessary to

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 4
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

execute the malware sample up to the completion of the de-obfuscation routine.

Once execution is halted at that point in time, the sample in memory may be

examined for de-obfuscated data structures or may be dumped to disk for

additional static code analysis (Sikorski & Honig, 2012). Dynamic code analysis

also reveals data values that are assigned at run time and not available at compile

time.

• Volatile Memory Analysis involves the examination of volatile memory at a

single point in time. Such analysis is accomplished first by dumping the volatile

memory to a file and then by inspecting the contents offline using a specialized

tool such as the Volatility Framework (Case, 2012).

1.3. Approaches to Malware Analysis
Based on the complexity of the malware sample and on the priority of the case,

one or all of the techniques listed in Section 1.2 may be used in the malware analysis

process. Some difficulty can arise when selecting the appropriate techniques for an

investigation, as it is often necessary for the analyst to strike a balance between available

resources and thoroughness of the solution. One of two generally accepted approaches

may be taken when analyzing malware: the process-driven approach and the goal-driven

approach. Either approach guides the analyst in selecting the appropriate techniques to

use during an investigation.

1.3.1. Process-driven Approach to Malware Analysis
 The process-driven approach strives to maintain the integrity of the process or

procedure being executed. Following this approach results in the formation of well-

documented, repeatable, and standardized processes. Because of these factors, this

approach holds particular merit within accredited forensic laboratories where maintaining

a standard of acceptability to ensure public trust is paramount (Barbara, 2006).

When applied to malware analysis, the process-driven approach ensures that all

steps of the analysis process are executed in a repeatable, standardized manner. The one-

size-fits-all solution may not always be appropriate, however, as malware samples can

differ substantially from one another (e.g. function, language, obfuscation use). A

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 5
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

modified version of the general malware analysis process as defined by Lenny Zeltser is

expressed in Figure 1 (Zeltser, 2013b).

!
Figure 1: Process-driven approach to malware analysis

!
 The critical decision point in the process-driven approach is highlighted in yellow.

During an investigation, a malware analyst must pose the question, “Is the documentation

sufficient to support the goals of the case?” Without having requirements for data in

mind, the analyst would be hard-pressed to answer this question effectively.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 6
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

1.3.2. Goal-driven Approach to Malware Analysis
Unlike the process-driven approach, the goal-driven approach is results-oriented.

That is, it places emphasis on the final outputs of a process (e.g. the aggregation of

analysis data in the final report) and allows a process to be tailored to a particular case

(Blackwell, 2013). Figure 2 effectively diagrams a general goal-driven approach to

malware analysis using the mind map available on REMNux 4 (Zeltser, 2013a).

!
Figure 2: Goal-driven approach to malware analysis

!
 The final output as described by the mind map is the malware analysis report.

The six connected blocks represent the sections of the final report and the attributes of

each block represent the data that populate those sections. The malware analyst is free to

define the sections and supporting data points to create an analysis report that meets the

requirements of the case. When the malware analyst extends the mind map by adding the

steps taken to gather the information, the resultant diagram is called a goal tree

(Blackwell, 2013).

 As long as the data requirements for the final report are gathered prior to malware

analysis, it is possible to create a traceable, repeatable process that is forensically sound

(Blackwell, 2013). However, following this approach exactly can yield overly complex

goal trees that may not be usable in all circumstances (e.g. within an accredited

laboratory whose standard operating procedures dictate the usage of a single,

standardized methodology).

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 7
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

1.3.3. Hybrid Approach Solution
Plan 9's approach to the basic malware analysis exercise was essentially a hybrid

of the two aforementioned approaches. First, the goals were defined according to the

data requirements of the exercise's problem statement. Second, the individual malware

analysis techniques were applied in the context of the general malware analysis process

to achieve the goals. The result was a series of simplified goal trees for each of the steps

in the general malware analysis process. The overarching plan of execution is shown in

Figure 3.

Figure 3: Exercise 305 execution plan

2. Malware Analysis Environment Setup
A virtual lab environment consisting of two logically separated virtual

networks—one host-only network and one internal network—was used in the solution to

the exercise. The host-only network environment consisted of a single virtual machine

(VM) running Microsoft Windows XP with Service Pack 3. The host-only network

environment was used solely for behavioral analysis using Cuckoo Sandbox. The

internal network environment consisted of two VM’s: one running Microsoft Windows

with Service Pack 3 and one running REMNux 4. The internal network environment was

used for all other analyses.

CentOS 6.4 was selected as the host operating system, for it is fully package-

compatible with Red Hat Enterprise Linux 6. Oracle VirtualBox 4.2 was selected for the

virtualization environment, as the package has many of the advanced capabilities of the

commercial virtualization environments (such as the ability to take and manage multiple

snapshots). Cuckoo Sandbox v.60 was extracted to the Desktop directory of the host

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 8
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

operating system’s default user. Because Cuckoo Sandbox requires Python 2.7 or

greater, it was necessary to perform a side-by-side install2 with Python 2.6, the default

package in CentOS 6.4.

The diagram for the virtual laboratory topology is shown in Figure 4.

!
Figure 4: Virtual laboratory topology diagram

3. Basic Malware Analysis Exercise
3.1. Exercise Problem Statement Summary

The 2012 DC3 Digital Forensic Challenge competitors were given a malware

sample named SvccHost.dll and were asked to “develop and document a methodology to

reverse engineer” it. The points awarded were based on the degree of success of the

documented methodology. Specifically, the following observations were to be recorded:

• Programs or services installed, stopped, started, or modified

• Purpose of programs and services

• Location and method of installation

• Files created, deleted, or modified

!!
2 A guide to performing a side-by-side installation of Python 2.7/3.3 on CentOS 6.x is available here:
http://toomuchdata.com/2012/06/25/how-to-install-python-2-7-3-on-centos-6-2/

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 9
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

• Registry settings created, deleted, or modified

• Network activity

• Obfuscation methods

3.2. Surface Analysis of SVccHost.dll
The surface analysis process used for this sample is shown in Figure 5.

Figure 5: Surface analysis for DLL

3.2.1. Copy and Hash the DLL
The surface analysis process begins by copying the original SVccHost.dll file and

then by hashing the copy using the md5deep tool. Working with a copy of the malware

sample preserves the integrity of the original file in case the sample has self-alteration or

self-deletion capability. The output of the md5deep utility is:

3.2.2. Confirm DLL is Legitimate and Check for Packing
In this step, the sample is analyzed with the Exeinfo PE3 tool. While Exeinfo PE

lists many attributes of a PE32 file, including the file and section header information,

Exeinfo PE’s most useful feature is the capability to recognize over 680 signatures of

executable packers and compilers (as of December 2012) (A.S.L., 2013). An executable

packer is an application used to compress—or pack—executable files to reduce their size

on disk. A consequence of the packing process is the obfuscation of the original

executable code, which may inhibit static code analysis. Thus, identifying the packer

used to compress an executable is a critical first step in reversing the packing process.

Executing Exeinfo PE on SVccHost.dll reveals two useful pieces of information:

!!
3 In the original exercise submission, PEiD v.95 was used in this analysis step. PEiD is no longer actively
supported, however. Exeinfo PE was selected as a replacement tool, for it offers form and function similar
to PEiD and it remains in active development.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 10
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

1. The file is a legitimate 32-bit DLL (Win32 GUI subsystem) compiled using

Borland Delphi 2006/2007; and

2. The DLL is not packed.

Figure 6: Exeinfo PE of SVccHost.dll

!
 Selecting the ‘->’ button next to the EP Section value generates the Header Info

window. From this window, the examiner observes the directory entries for an Export

Table, an Import Table, and four Resources.

Figure 7: Exeinfo PE header information of SvccHost.dll

!
Because SVccHost.dll is a Win32 GUI DLL, the presence of an Import Table and

an Export Table is expected. The presence of PE32 resources may or may not be

indicative of potential maliciousness, as the resources might be nothing more than the file

icon’s graphic image or string tables. In this case, the size of the Resource section’s size

is given as 0x7F400— or 521,216— bytes, which is suspiciously large for a DLL.

Armed with this information, the analyst may proceed with the examination using

PE32-specific tools.

3.2.3. Conduct DLL Structure and Section Analysis
Step 3 in the surface analysis process involves the examination of SVccHost.dll

with MiTEC EXE Explorer. MiTEC EXE Explorer has the ability to parse the various

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 11
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

headers and sections of a PE32 file and to perform a dump of embedded ASCII and

UNICODE strings. MiTEC EXE Explorer may also be used to extract file objects that

are embedded within a PE32 file’s resources section (.rsrc).

Figure 8 displays the information found under MiTEC EXE Explorer’s Header

tab, which confirms that the DLL has a valid PE32 signature.

Figure 8: MiTEC EXE Explorer header information: SVccHost.dll

!
The purpose of a DLL is to house commonly used functions and other resources

in a shared file to promote ease of updating and to reduce the size of compiled binaries

(Microsoft, 2011). The functions shared by DLL’s are called exported functions, as they

are intended to be imported and called by compiled executables. While outside the scope

of normal use, exported functions may also be called externally by using the Microsoft

Windows rundll32.exe utility. Figure 9 displays the single function export named

Install that was listed under the Exports tab.

Figure 9: MiTEC EXE Explorer exports information: SVccHost.dll

!
Eighty-seven functions imported from five separate libraries are observed under

the Imports tab. Table 1 names and describes each of the imported libraries.
Table 1: DLL's imported by SvccHost.dll
Imported DLL Description

advapi32.dll Provides access to advanced operating system functions such as the
Service Manager and the Registry (Sikorski & Honig, 2012).

kernel32.dll Provides access to core operating system functions such as memory
management, I/O operations, and hardware interrupts (kernel32.dll,
2010).

oleaut32.dll Provides access to object linking and embedding (OLE) functions

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 12
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

(oleaut32.dll, 2010).
SHFolder.dll Provides access to special Windows folders (SHFolder.dll, 2010)
user32.dll Provides access to user interface components and message handling

(Sikorski & Honig, 2012).

 Table 2 names and describes a few of the more suspicious function imports.
Table 2: Suspicious imports found in SvccHost.dll
Imported Function(s) Description

RegOpenKeyExW/RegCloseKey Opens/closes the specified Registry key.
RegQueryValueExA Queries the specified Registry key’s value.
WriteFile Writes data to disk.
TlsAlloc/TlsGetValue/TlsSetValue Allocates/reads/writes data to the thread local

storage area of a PE32 file.
WinExec Passes commands to the Windows command

shell.

 Based on the function imports, the SVccHost.dll has the ability to access the

Windows Registry, write files to disk, and execute commands through cmd.exe. Further,

the sample has loaded functions that manipulate the thread local storage (TLS) area of the

DLL file. Because TLS can be used to initialize data structures in threads of execution,

the TLS area is accessed by the loader prior to calling the program’s entry-point function.

Thus, if callback functions exist within the TLS area, they will be executed before the

program’s main() or DllMain() functions. This trait makes the use of TLS callback

functions ideal as an anti-debugging technique, as most debuggers break execution at the

program’s entry point by default (Sikorski & Honig, 2012). According to Exeinfo PE,

however, there is no TLS table in the SVccHost.dll file.

 The Resources tab lists the structures that are found in the .rsrc section of the

PE32 file. According to the PE32 specification, the .rsrc section is a directory table

whose entries point to data objects (e.g. files) embedded within the file (Microsoft,

2013c). Figure 10 depicts an object 512 kilobytes in size and bearing an MS-DOS file

signature (PE32 files also possess the MS-DOS file signature) that is observed in the

RCDATA segment of the SVccHost.dll. Because the .rsrc section is typically reserved

for structures such as string tables and file icons, the presence of this executable file is

highly suspicious.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 13
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Figure 10: Embedded executable file found in SVccHost.dll

!
By right-clicking on the SV object and selecting Save Resource…, the SV object

may be extracted and saved for later examination. At this point in time, only the hash

value of the SV object need be recorded, as this value will be compared to the hash value

of any files that are dropped by SVCCHost.dll during the behavioral analysis phase.

Executing md5deep on the SV object yields the following hash information:

 The Strings tab lists all of the strings (both ASCII and UNICODE are supported

by toggling the tab at the bottom of the main application pane) found in the PE32 file. A

few strings resembling low-level function names are present and displayed in Figure 11:

Figure'11:'Possible'low0level'network'functions'

 Further, the Strings tab reveals strings that appear to be shell commands intended

to be launched through cmd.exe via the WinExec system call.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 14
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Figure 12: Possible calls through WinExec

!
These findings support the notion that an embedded file—perhaps the

aforementioned SV file object—exists within SVccHost.dll.

3.2.4. Verify Structure and Segment Analysis Using Other Tools
Because software analysis tools are not perfect (including those that are validated

by accredited laboratories), it is recommended to use additional tools of similar function

to verify the results of any given tool.

The first tool selected for verification purposes was FileAlyzer 2.0, a generic file

scanner which can successfully parse the internal structures of PE32 files. FileAlyzer

agreed with all but one of the findings of MiTEC’s EXE Explorer. In particular,

FileAlyzer 2.0 counted a total of 101 imported functions from 5 DLL’s.

Figure 13: Function call count and distribution
!
 In addition, FileAlyzer highlighted that the checksum of the PE32 file was

zeroized, creating a checksum mismatch:

Because the checksum field is created and populated at compile time, the presence of a

zeroized, mismatched checksum is indicative of deliberate tampering and may be used as

an anti-analysis technique. A study conducted by Yibin Liao of the University of

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 15
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Georgia reported that of the 5598 malicious PE32 files examined, 90% had zeroized

checksums (2012).

 The second tool selected for verification purposes was Mandiant Red Curtain, a

Windows PE32 file scanner that provides entry point, entropy, digital signature, and

segment information. The main application pane confirms the Borland Delphi signature

(though Red Curtain disagrees with the version) and the Details pane confirms the

function import count as 101.

Figure 14: Mandiant Red Curtain output
!
 In addition to the single file anomaly of a zero checksum, Red Curtain indicates

that the malware sample is not digitally signed. This attribute can be used by Process

Hacker to reduce system noise by filtering out the processes that are digitally signed.

3.3. Behavioral Analysis of SVccHost.dll
The behavioral analysis process used for this sample is given in Figure 15.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 16
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Figure 15: Behavioral analysis for DLL

3.3.1. Execute DLL in Automated Sandbox
In the context of malware analysis, an automated sandbox is a tool that manages a

separate—and usually virtual—environment within which malware samples are executed

and monitored. Due to automation, the incorporation of such a tool can result in faster

execution of the malware analysis process. Cuckoo Sandbox4, an open source project,

maintains both an online malware analysis service hosted at www.malwr.com, and a

standalone, python-based, automated sandbox application. Once configured, Cuckoo

Sandbox requires only two python scripts to be executed in order to analyze a malware

sample: cuckoo.py, which manages the virtual environment, and submit.py, which

submits the malware sample to the analysis VM.

If Cuckoo Sandbox’s submit.py script is invoked with only the DLL’s file name

passed as a parameter, Cuckoo will default to loading the DLL into memory without

explicitly calling an exported function. This would result in the invocation of the DLL’s

DllMain() function, if present. DllMain() is an optional entry-point function that the

Windows loader automatically calls when it loads a DLL into random access memory

(Microsoft, 2013a). Invoking submit.py with only the file name SvccHost.dll passed as

a parameter results in the premature termination of the process and the display of the

following error message from within the Cuckoo Sandbox VM:

!!
4 The use of Cuckoo Sandbox was not included in the original exercise submission. Because leveraging
commercial automated sandboxes is common in today's malware analysis environment, Cuckoo Sandbox
was included to offer an open source alternative.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 17
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

To have Cuckoo Sandbox execute the Install() function of SVccHost.dll

observed during surface analysis, executing the following command from within the

cuckoo/utils directory is necessary:

 After an examination period of 22 seconds, Cuckoo Sandbox exited gracefully

and generated a report. A quick examination of the analysis.log file confirmed that the

analysis was terminated because the “process list was empty,” indicating that all

processes being traced by Cuckoo had exited.

Under the Dropped Files section of the report, a single file, ChallengeSvc.exe, is

listed. Based on the MD5 hash listed, this file is identical to the SV object that was

extracted from the .rcsc section of the SVccHost.dll file.

Figure 16: Dropped file detected by Cuckoo Sandbox
!
 In the Behavior Summary section, the files and Registry keys touched by

SVccHost.dll are listed. The Files summary indicates that the ChallengeSvc.exe file

was dropped into the C:\Windows\system32 directory, which is the location of

Windows’s system files.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 18
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Figure 17: Cuckoo Sandbox files summary
!

The Registry Keys summary indicates that a service named Challenge was

registered with the Windows Services list located within the

HKLM\SYSTEM\CurrentControlSet\Services key.

Figure 18: Cuckoo Sandbox registry keys summary
!
 Finally, the Processes section lists all of the system calls made by the processes

being tracked by Cuckoo during the examination. Based on a high-level trace of

processes that were spawned, the flow chart given in Figure 19 was constructed.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 19
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Figure 19: Process spawning flow chart
!

Under the rundll32.exe process (PID:16285), two system calls are listed which

create a handle to a file named “C:\Windows\system32\ChallengeSvc.exe” and then write

data to that file handle. This is the series of instructions that drops the malware payload

into the C:\Windows\system32 directory.

Figure 20: System calls to drop ChallengeSvc.exe
!
 Toward the end of the trace of the rundll32.exe process is a call to

CreateProcessInternalW(), which spawns the cmd.exe process (PID: 1568) and

executes the shell command “C:\WINDOWS\system32\ChallengeSvc.exe /install /silent”.

Figure 21: Call to spawn installation process
!
 Through cmd.exe, the process ChallengeSvc.exe (PID: 1340) is spawned. The

trace of ChallengeSvc.exe includes seven calls to the function DeviceIOControl(),

which allows processes operating in user space to communicate with device drivers.

!!
5 Process Identifiers (PIDs) are dynamically generated when processes are spawned and thus can differ in
subsequent examinations.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 20
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Because device drivers reside in kernel space, malware can use this function to pass shell

code to the kernel for execution (Sikorski & Honig, 2012).

Figure 22: Multiple calls to DeviceIOControl()
!
 ChallengeSvc.exe then opens the Windows Service Manager and registers itself

as a Windows service.

Figure 23: Calls to install a Windows service named "Challenge"
!
 ChallengeSvc.exe then invokes cmd.exe, which in turn invokes net.exe, which

calls net1.exe to start the Challenge service and to configure the service to start

automatically.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 21
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Figure 24: Calls to start Windows service "Challenge"
!
 Because the analysis ran for only 22 seconds, Cuckoo Sandbox’s packet capture

facility was not able to capture any network traffic associated with the malware. In order

to capture network traffic, manual execution of the malware and monitoring with

Wireshark were necessary.

3.3.2. Execute DLL Manually and Observe Network Traffic and Process
Execution

For manual behavioral analysis, the internal network environment was first

configured with the default IP addressing scheme (192.168.57.0/24). FakeDNS, farpd,

and inetsim were running on the REMNux VM and Process Hacker 26 was running on

the Windows XP VM when the ‘rundll32.exe “C:\Exercise 305\Copy of SvccHost.dll”,

Install’ command was executed. The Wireshark capture revealed that ICMP echo-

request (ping) packets 1058 bytes in length (data payload size of 1016 bytes) were sent to

host 157.166.226.26 every 15 seconds for 90 minutes.

!!
6 In the original exercise submission, Process Explorer (procexp) from Windows SysInternals was used in
this analysis step.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 22
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Figure 25: Wireshark packet capture without ICMP echo-replies
!
 Performing a reverse DNS lookup using the nslookup tool revealed that

157.166.226.26 resolved to host www.cnn.com:

 Because no DNS queries were observed attempting to resolve host www.cnn.com,

it must be the case that the sample was pinging a hard-coded IP address. Given the

current network configuration, it would not be possible to respond to echo-request

packets sent to hard coded IP addresses outside the current network without inserting a

layer 3 handler. For simplicity, the network configuration was altered instead.

 For the second run, the IP address of the Windows XP VM was set to

157.166.226.1 and the IP address of the REMNux VM was set to 157.166.226.26 (the

target of the echo-request packets). This configuration allowed the REMNux VM to

reply to the echo request packets sent by the sample. The Wireshark capture revealed

that ICMP echo-request packets 1058 bytes in length (data payload size of 1016 bytes)

were sent to host 157.166.226.26 every 10 seconds for 60 minutes.

Figure 26: Wireshark packet capture with ICMP echo-replies
!

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 23
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

 While the sample was communicating with the REMNux VM, Process Hacker, a

process monitoring tool, was running in the Windows XP VM. Process Hacker observed

that a service named Challenge was created and that the service running as a process

named ChallengeSvc.exe. The Handles tab of the Properties window for

ChallengeSvc.exe process revealed that at the aforementioned 10 and 15 second

intervals, the process dynamically created file handles to two device objects: \Device\Afd

and \Device\RawIP.

Figure 27: RawIP & Afd device activity observed by Process Hacker
!

The Ancillary Function Driver (\Device\Afd) serves as the management layer of

the Windows Sockets (WinSock) interface and sits just above the RawIP device in the

WinSock architecture (Mandt, 2012). This evidence indicates that the process was

crafting raw ICMP echo-request packets.

3.3.3. Execute DLL Manually and Observe System Changes
The last step in the behavioral analysis process was observing the file system and

Registry changes made by the sample using RegShot. RegShot reveals that the sample

performs the following actions:

1. The sample drops a file named ChallengeSvc.exe to the

C:\Windows\system32 directory.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 24
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Figure 28: Added files list as detected by RegShot
!

2. The sample creates a service named Challenge which executes under the

LocalSystem account.

Figure 29: Service creation detected by RegShot
!

In addition, the Windows Firewall service is stopped upon the installation of the

Challenge service. The corresponding Registry keys for Windows Firewall are not

touched, meaning that the firewall service will start upon reboot if set to Automatic.

This effectively hides the downing of the Windows Firewall from Registry monitoring

tools, but not from the Windows Security Center notifying service:

Figure 30: Windows Security Center reports downing of firewall

3.4. Is the Documentation Sufficient?
The answer to this question is no, as three issues arose during surface and

behavioral analysis that warrant additional examination. Upon the resolution of these

three issues, however, the documentation may be judged as sufficient.

3.4.1. The Presence of a TLS Table in the Dropped File
Surface analysis was performed on the dropped file ChallengeSvc.exe after the

behavioral analysis of SvccHost.dll was conducted. The only additional observation was

the presence of a Thread Local Storage (TLS) callback table:

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 25
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

!

!
Figure 31: TLS detected in dropped file ChallengeSvc.exe

!
The TLS area would normally be flagged for examination during dynamic code

analysis under the process-driven approach, for it can contain anti-debugging callback

functions. Because the documenting of anti-debugging techniques was not a defined goal

of this examination, however, the TLS area was not examined.

3.4.2. The Calls Made to DeviceIOControl()
During behavioral analysis, Cuckoo Sandbox reported a series of calls made to

DeviceIOControl() by the ChallengeSVC.exe process. Because DeviceIOControl()

may be used by malware to directly communicate with device drivers residing in kernel

space, the calls require additional investigation. To discover the source of the

DeviceIOControl() calls, API Monitor v27, a tool with a fine-grained system call tracing

facility, was selected.

API Monitor is a GUI-based tool containing definitions for more than 13,000

application programming interface (API) calls (Batra, 2012). API Monitor can trace the

API calls at the thread level, trace the input and output buffers of each call, and can filter

results based on API type.

 In the API Filter window, Devices, Internet, and Networking were selected as

the API types to trace. The Install() function was then manually invoked from the

!!
7 API Monitor was not included in the original exercise solution. API Monitor was added to the solution to
provide verification of the results produced by Cuckoo Sandbox.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 26
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Windows command line using the rundll32.exe facility. Thirty seconds after execution,

the processes recorded by Cuckoo were observed in the Monitored Processes window:

!
Figure 32: Processes monitored by API Monitor

!
! Examination of the first ChallengeSvc.exe (PID: 416) uncovered the suspect calls

to DeviceIOControl():

!
Figure 33: Trace of DeviceIOControl() calls

!
! The call tree above traced the first seven DeviceIOControl() invocations to the

NdrClientCall2() function, which was called by the gethostname() function. In fact, all

of the DeviceIOControl() calls that were recorded were traced back to gethostname().

Because the gethostname() function’s only purpose is to determine the hostname of the

local machine, it is not judged to be malicious (Microsoft, 2013b). As a result,

DeviceIOControl() may be omitted from the report.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 27
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

3.4.3. Obfuscation of Strings
During behavioral analysis, the ChallengeSvc.exe process was observed pinging

host 157.166.226.26 by hard-coded IP address. However, the string “157.166.226.26”

was not observed during surface analysis of either SVccHost.dll or ChallengeSvc.exe.

This discrepency implied that the sample was employing some type of obfuscation in

order to conceal the IP address.

In order to reveal the obfuscated text, the XORSearch tool was executed on the

ChallengeSvc.exe file using “157.166.226.26” as the search string. XORSearch is a

command line-based tool developed by Didier Stevens that accepts an input string and

will conduct a brute force search of the specified file. The tool’s brute force search

includes executing the following operations on each byte of the file (Stevens, 2013):

• Exclusive-or (XOR) for keys 0x00 through 0xFF

• Rotating left/right for keys 1 through 7 (ROL/ROR)

• Rotating English alphabet characters for keys 1 through 25 (ROT)

• Shifting left for keys 1 through 7

Once executed, the XORSearch tool returned a single result: a file XOR’ed with

key 0xFF:

!
 When the resulting file ChallengeSvc.exe.XOR.FF was loaded into the BinText

application, a series of de-obfuscated strings was revealed:

!
Figure 34: Strings found by XOR'ing file with 0xFF

!
! The identification of obfuscation methods was a defined goal of this exercise, thus

this was flagged as a critical finding and added to the final report.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 28
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

4. Conclusion
The DC3 Digital Forensic Challenge provides students, enthusiasts, and

professionals with relevant and realistic exercises to hone their computer forensics skills.

Much like real-world computer forensic investigations, the exercises require competitors

to develop and document viable and repeatable investigative methodologies—not merely

to state their findings.

In the 2012 competition, participants were given two exercises that tested their

malware analysis skills. Using the repeatable hybrid approach outlined in this paper,

Plan 9 successfully completed Exercise 305: Basic Level Malware Analysis using only

surface and behavioral analysis techniques.

The solution to the exercise is summarized in Table 3.
Table 3: Results of Analysis
Objective Finding

Programs or services installed,
stopped, started, or modified

Service started: Challenge
Service stopped: Windows ICS/Firewall

Purpose of programs and services SVccHost.dll: Drop ChallengeSvc.exe into
C:\Windows\system32 and execute by passing
“/install” as a command line switch.
ChallengeSvc.exe: Register itself as Challenge
service.
Challenge Service: Ping host 157.166.226.26
either:

1. Every 15 seconds for 90 minutes if no
reply was received.

2. Every 10 seconds for 60 minutes if reply
was received.

Location and method of installation ChallengeSvc.exe was dropped in the
C:\Windows\system32 directory and installed as
the Challenge service

Files created, deleted, or modified C:\Windows\system32\ChallengeSvc.exe created.
Registry settings created, deleted, or
modified

See Appendix B for filtered list.

Network activity

Ping host 157.166.226.26 either:
1. Every 15 seconds for 90 minutes if no

reply was received.
2. Every 10 seconds for 60 minutes if reply

was received.
Obfuscation methods Hard-coded IP string “157.166.226.26” was

encoded using XOR, key=0xFF

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 29
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

5. References
A.S.L. (2013). Exeinfo PE by A.S.L. – packer – compression detector and data detector.
 Retrieved from: http://www.exeinfo.antserve.com/

Barbara, J. (2006). A Standard Level of Acceptability for Computer Forensics.

Retrieved from ASTM International:
http://www.astm.org/SNEWS/FEBRUARY_2006/barbara_feb06.html

Batra, R. (2012). API Monitor. Retrieved from: http://www.rohitab.com/apimonitor

Blackwell, C. et al. (2013). Implementation of Digital Forensics Investigations Using a
 Goal-Driven Approach for a Questioned Contract. 9th Annual IFIP WG 11.9
 International Conference on Digital Forensics. Retrieved from:
 http://eprints.port.ac.uk/9809/1/ifipwg1192013_submission_27.pdf
!
Case, A. (2012, December 18). Analyzing Malware in Memory [PDF document].
 Retrieved from Lecture Notes on Web Log: http://blog.hackeracademy.com/wp-
 content/uploads/2012/12/THA-Deep-Dive-Analyzing-Malware-in-Memory.pdf
!
comctl32.dll. (2010). In Process Library. Retrieved from:

http://www.processlibrary.com/en/directory/files/comctl32/21090/
!
Department of Defense Cyber Crime Center (DC3). (2013, May). DC3 Mission.

Retrieved from: http://www.dc3.mil/dc3/dc3Mission.php
!
Department of Defense Cyber Crime Center (DC3). (2012). DC3 Digital Forensic

Challenge 2012. Retrieved from: http://www.dc3.mil/challenge/2012/

Department of Defense Cyber Crime Center (DC3). (2012). 2012 DC3 Digital Forensics

Challenge Final Report. Retrieved from:
http://www.dc3.mil/challenge/2012/files/2012_DC3_Digital_Forensics_Challeng
e_Final_Report.pdf

kernel32.dll. (2010). In Process Library. Retrieved from: http://www.processlibrary.com
 /directory/files/kernel32/23314/

Liao, Yibin. (2012). PE-Header-Based Malware Study and Detection. Retrieved from the

University of Georgia: http://www.cs.uga.edu/~liao/PE_Final_Report.pdf

Mandiant. (2011, August 11). Using Indicators of Compromise to Find Evil and Fight
 Crime [PDF Document]. GFIRST 2011 Conference. Retrieved from 2011
 Presentations Online Web site: http://www.us-cert.gov/sites/default/files/gfirst/
 presentations/2011/Using_Indicators_of_Compromise.pdf

Mandt, T. (2012, February 17). A Deep Dive Into AFD. Message posted to:

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 30
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

http://mista.nu/blog/2012/02/17/cve-2012-0148-a-deep-dive-into-afd/

Microsoft Corporation. (2011, September 24). Definition and Explanation of a .DLL File.
 Retrieved from Microsoft KB: http://support.microsoft.com/kb/87934

Microsoft Corporation. (2013, July 25). DllMain Entry Point. Retrieved from MSDN:

http://msdn.microsoft.com/en-
us/library/windows/desktop/ms682583(v=vs.85).aspx

Microsoft Corporation. (2013, July 11). gethostname function. Retrieved from MSDN:

http://msdn.microsoft.com/en-
us/library/windows/desktop/ms738527(v=vs.85).aspx

Microsoft Corporation. (2013, June 11). Common Control Functions. Retrieved from
 MSDN: http://msdn.microsoft.com/en-
 us/library/windows/desktop/hh298349(v=vs.85).aspx

Microsoft Corporation. (2013, February 6). Microsoft Portable Executable and Common
 Object File Format Specification v8.3. Retrieved from MSDN:
 http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
!
oleaut32.dll. (2010). In Process Library. Retrieved from: http://www.processlibrary.com
 /directory/files/oleaut32/23291/

SHFolder.dll. (2010). In Process Library. Retrieved from: http://www.processlibrary.com
 /directory/files/shfolder/23462/

Sikorski, M., & Honig, A. (2012). Practical Malware Analysis. San Francisco, CA:

No Starch Press.

Stevens, D. (2013). XORSearch. Retrieved from Didier Stevens’s Blog:
 http://blog.didierstevens.com/programs/xorsearch

Zeltser, L. (2013). REM Report Template. REMNux version 4.

Zeltser, L. (2013). Reverse Engineering Malware Cheat Sheet. Retrieved from:

http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html

6. Acknowledgments
 I would like to recognize the other members of team Plan 9 for their hard work

and dedication during the 2012 DC3 Digital Forensic Challenge. A hardy "thank you"

goes out to Mr. Bill Littleton, Mr. Gordon Martin, and Mr. Derek Smith for their great

effort and teamwork.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 31
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Appendix A – List of Malware Analysis Tools
The following table summarizes the analysis tools that were used in the exercise

solution.

Tool
Name/Version

Analysis
Type

Function Reference

API Monitor v2 Behavioral API Call Tracing www.rohitab.com/apimonitor
(Rohitab Batra, 2012)

BinText v3.03 Surface GUI-based string
display

www.mcafee.com
(McAfee, Inc., 2013)

Cuckoo
Sandbox v.60

Behavioral Automated
sandbox

www.cuckoosandbox.org
(Guarnieri, 2012)

Exeinfo PE Surface Packer and file
header
information

www.exeinfo.antserve.com
(‘A.S.L.’, 2013)

FileAlyzer v2.0 Surface PE32 header and
structure
information

www.safer-networking.org
(Safer-Networking Ltd, 2013)

md5deep v4.3 Surface MD5 hash utility md5deep.sourceforge.net
(Kornblum, 2012)

Mandiant Red
Curtain v1.0.0.9

Surface PE32 header and
import
information

www.mandiant.com
(Mandiant, 2008)

MiTEC EXE
Explorer v1.4.0

Surface PE32 header and
structure
information

www.mitec.cz/exe.html
(MiTEC, 2013)

PEiD v.95 Surface Packer and file
header
information

www.peid.info (defunct)
(‘snaker’, 2008)

Process Hacker
v2

Behavioral Real-time process
information

processhacker.sourceforge.net
(‘wj32’, 2013)

RegShot v1.9.0 Behavioral Tracks changes
made to Registry
and file system

sourceforge.net/projects/
regshot
(‘maddes’, 2013)

Windows
SysInternals
Suite

Behavioral System
monitoring suite

technet.microsoft.com/en-
us/sysinternals/default
(Microsoft, 2013)

Wireshark
v1.6.2

Behavioral Packet Capture
and Protocol
Analysis

www.wireshark.org
(Wireshark Foundation, 2013)

XORSEARCH Surface File de- blog.didierstevens.com/

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 32
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

v1.8 obfuscation via
ROT and XOR

programs
(Stevens, 2013)

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 33
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Appendix B – Registry Activity (Regshot)
Regshot 1.9.0 x86 ANSI
Comments:
Datetime: XXXX
Computer: XXXX
Username: XXXX

Keys added: 12

HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000\Control
HKLM\SYSTEM\ControlSet001\Services\Challenge
HKLM\SYSTEM\ControlSet001\Services\Challenge\Security
HKLM\SYSTEM\ControlSet001\Services\Challenge\Enum
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000\Contro
l
HKLM\SYSTEM\CurrentControlSet\Services\Challenge
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\Security
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\Enum

Values added: 41

HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\NextInstance:
0x00000001
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000\Service:
"Challenge"
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000\Legacy:
0x00000001
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000\ConfigFla
gs: 0x00000000
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000\Class:
"LegacyDriver"
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000\ClassGUI
D: "{8ECC055D-047F-11D1-A537-0000F8753ED1}"
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000\DeviceDes
c: "Challenge"
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000\Control*
NewlyCreated*: 0x00000000

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 34
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_CHALLENGE\0000\Control\A
ctiveService: "Challenge"
HKLM\SYSTEM\ControlSet001\Services\Challenge\Type: 0x00000010
HKLM\SYSTEM\ControlSet001\Services\Challenge\Start: 0x00000002
HKLM\SYSTEM\ControlSet001\Services\Challenge\ErrorControl: 0x00000001
HKLM\SYSTEM\ControlSet001\Services\Challenge\ImagePath:
"C:\WINDOWS\system32\ChallengeSvc.exe"
HKLM\SYSTEM\ControlSet001\Services\Challenge\DisplayName: "Challenge"
HKLM\SYSTEM\ControlSet001\Services\Challenge\ObjectName: "LocalSystem"
HKLM\SYSTEM\ControlSet001\Services\Challenge\Description: "Windows Security
Application - Provides Challenge/Password Authentication Support"
HKLM\SYSTEM\ControlSet001\Services\Challenge\Security\Security: 01 00 14 80 90
00 00 00 9C 00 00 00 14 00 00 00 30 00 00 00 02 00 1C 00 01 00 00 00 02 80 14 00 FF
01 0F 00 01 01 00 00 00 00 00 01 00 00 00 00 02 00 60 00 04 00 00 00 00 00 14 00 FD
01 02 00 01 01 00 00 00 00 00 05 12 00 00 00 00 00 18 00 FF 01 0F 00 01 02 00 00 00
00 00 05 20 00 00 00 20 02 00 00 00 00 14 00 8D 01 02 00 01 01 00 00 00 00 00 05 0B
00 00 00 00 00 18 00 FD 01 02 00 01 02 00 00 00 00 00 05 20 00 00 00 23 02 00 00 01
01 00 00 00 00 00 05 12 00 00 00 01 01 00 00 00 00 00 05 12 00 00 00
HKLM\SYSTEM\ControlSet001\Services\Challenge\Enum\0:
"Root\LEGACY_CHALLENGE\0000"
HKLM\SYSTEM\ControlSet001\Services\Challenge\Enum\Count: 0x00000001
HKLM\SYSTEM\ControlSet001\Services\Challenge\Enum\NextInstance: 0x00000001
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\NextInstanc
e: 0x00000001
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000\Servic
e: "Challenge"
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000\Legac
y: 0x00000001
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000\Config
Flags: 0x00000000
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000\Class:
"LegacyDriver"
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000\ClassG
UID: "{8ECC055D-047F-11D1-A537-0000F8753ED1}"
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000\Device
Desc: "Challenge"
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000\Contro
l*NewlyCreated*: 0x00000000
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_CHALLENGE\0000\Contro
l\ActiveService: "Challenge"
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\Type: 0x00000010
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\Start: 0x00000002
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\ErrorControl: 0x00000001
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\ImagePath:
"C:\WINDOWS\system32\ChallengeSvc.exe"
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\DisplayName: "Challenge"

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 35
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

HKLM\SYSTEM\CurrentControlSet\Services\Challenge\ObjectName: "LocalSystem"
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\Description: "Windows
Security Application - Provides Challenge/Password Authentication Support"
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\Security\Security: 01 00 14 80
90 00 00 00 9C 00 00 00 14 00 00 00 30 00 00 00 02 00 1C 00 01 00 00 00 02 80 14 00
FF 01 0F 00 01 01 00 00 00 00 00 01 00 00 00 00 02 00 60 00 04 00 00 00 00 00 14 00
FD 01 02 00 01 01 00 00 00 00 00 05 12 00 00 00 00 00 18 00 FF 01 0F 00 01 02 00 00
00 00 00 05 20 00 00 00 20 02 00 00 00 00 14 00 8D 01 02 00 01 01 00 00 00 00 00 05
0B 00 00 00 00 00 18 00 FD 01 02 00 01 02 00 00 00 00 00 05 20 00 00 00 23 02 00 00
01 01 00 00 00 00 00 05 12 00 00 00 01 01 00 00 00 00 00 05 12 00 00 00
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\Enum\0:
"Root\LEGACY_CHALLENGE\0000"
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\Enum\Count: 0x00000001
HKLM\SYSTEM\CurrentControlSet\Services\Challenge\Enum\NextInstance:
0x00000001

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 36
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Appendix C – Surface Analysis of ChallengeSvc.exe
The surface analysis process used for this sample is given by the following

diagram:

Copy and Hash the EXE
The output of the md5deep utility is:

Confirm EXE is Legitimate and Check for Packing
Executing Exeinfo PE on ChallengeSvc.exe reveals two useful pieces of

information:

3. The file is a legitimate 32-bit EXE (Win32 GUI subsystem) compiled using

Borland Delphi 2006/2007, and

4. The EXE is not packed:

 Selecting the ‘->’ button next to the EP Section value generates the Header Info

window. From this window, the examiner observes directory entries for an Import Table,

six Resources and a Thread Local Storage (TLS) table:

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 37
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Conduct EXE Structure and Section Analysis
The information found under MiTEC EXE Explorer’s Header tab confirms that

the EXE has a valid PE32 signature.

143 functions imported from eight separate libraries are observed under the

Imports tab. The following table names and describes each of the imported libraries.

Imported DLL Description

advapi32.dll Provides access to advanced operating system functions such as the
Service Manager and the Registry (Sikorski & Honig, 2012).

comctl32.dll Provides access to user interface components (comctl32.dll, 2010).
gdi32.dll Provides access to graphics display and manipulation functions

(Sikorski & Honig, 2012).
kernel32.dll Provides access to core operating system functions such as memory

management, I/O operations, and hardware interrupts (kernel32.dll,
2010).

oleaut32.dll Provides access to object linking and embedding (OLE) functions
(oleaut32.dll, 2010).

SHFolder.dll Provides access to special Windows folders (SHFolder.dll, 2010)
user32.dll Provides access to user interface components and message handling

(Sikorski & Honig, 2012).
version.dll Provides functions to determine Windows versions (Microsoft,

2013d).

 The following table names and describes a few of the more suspicious function

imports.

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 38
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Imported Function(s) Description

RegOpenKeyExW/RegCloseKey Opens/closes the specified Registry key.
RegQueryValueExA Queries the specified Registry key’s value.
WriteFile Writes data to disk.
WinExec Passes commands to the Windows command

shell.

 Based on the function imports, the ChallengeSvc.exe has the ability to access the

Windows Registry and write files to disk.

 The Resources tab lists the structures that are found in the .rsrc section of the

PE32 file. There are six separate resources, each of which is either a string table or a

graphics icon.

 The Strings tab lists all of the strings (both ASCII and UNICODE are supported

by toggling the tab at the bottom of the main application pane) found in the PE32 file. A

few strings resembling Windows service management calls are present:

 Further, the Strings tab reveals strings that are ICMP related:

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 39
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

Verify Structure and Segment Analysis Using Other Tools
FileAlyzer 2.0 counted a total of 418 imported functions from 8 DLL’s:

Mandiant Red Curtain confirms the Borland Delphi signature (again, Red Curtain

disagrees with the version) and the Details pane confirms the function import count as

418:

Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis 40
!

Kenneth J. Zahn, kenneth.j.zahn@gmail.com

 In addition to the single file anomaly of a zero checksum, Red Curtain indicates

that the malware sample is not digitally signed.

Last Updated: April 8th, 2014

Upcoming Training

SANS Security West 2014 San Diego, CA May 08, 2014 - May 17, 2014 Live Event

Mentor Session - FOR 610 Columbia, MD May 21, 2014 - Jul 23, 2014 Mentor

Digital Forensics & Incident Response Summit Austin, TX Jun 03, 2014 - Jun 10, 2014 Live Event

Community SANS Ottawa Ottawa, ON Jun 16, 2014 - Jun 21, 2014 Community SANS

SANSFIRE 2014 Baltimore, MD Jun 21, 2014 - Jun 30, 2014 Live Event

SANS vLive - FOR610: Reverse-Engineering Malware: Malware
Analysis Tools and Techniques

FOR610 - 201407, Jul 14, 2014 - Aug 20, 2014 vLive

SANS Virginia Beach 2014 Virginia Beach, VA Aug 18, 2014 - Aug 29, 2014 Live Event

SANS Baltimore 2014 Baltimore, MD Sep 22, 2014 - Sep 27, 2014 Live Event

SANS DFIR Prague 2014 Prague, Czech Republic Sep 29, 2014 - Oct 11, 2014 Live Event

SANS vLive - FOR610: Reverse-Engineering Malware: Malware
Analysis Tools and Techniques

FOR610 - 201410, Oct 13, 2014 - Nov 19, 2014 vLive

Community SANS Paris @ HSC - FOR610 (in French) Paris, France Nov 24, 2014 - Nov 28, 2014 Community SANS

SANS OnDemand Online Anytime Self Paced

SANS SelfStudy Books & MP3s Only Anytime Self Paced

