
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Discovering Winlogoff.exe

GIAC Reverse Engineering Malware (GREM) Practical
V. 2.0

Submitted by Jennie Callahan
4 March 2005



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Table of Contents

Table of Figures 2
Abstract: 3
Laboratory Setup: 4
Properties of Malware Specimen: 6
Behavioral Analysis: 8
Code Analysis: 16
Analysis Wrap-Up: 24
References 26

Table of Figures
Figure 1: Virtual Network 4
Figure 2: GT2 Output 7
Figure 3: PEid Results 7
Figure 4: Process Explorer Results 9
Figure 5: TDIMon Results 11
Figure 6: TCPView Results 11
Figure 7: Ethereal DNS Requests 12
Figure 8: Snort DNS Requests 13
Figure 9: Netcat on Linux VM 14
Figure 10: IRCD on Linux VM 15
Figure 11: Ethereal TCP Stream 15
Figure 12: HView Edit 17
Figure 13: UPX Unpack 17
Figure 14: OllyDbg Breakpoint 21
Figure 15: OllyDbg “badpass” 21
Figure 16: OllyDbg NOP 22
Figure 17: Patched antivirus.exe 23
Figure 18: OllyDbg Packed Password 24



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Abstract:
The following pages of this report were written to establish a working knowledge 
of the course material presented in Reverse Engineering Malware.  An examiner 
often times will be faced with an unknown file, which they must determine the 
functionality of.  Analysis is essentially dissected into two main sections, 
behavioral analysis and code analysis.  The behavioral analysis demonstrates 
what the file does and the code analysis demonstrates why the file does it.  In 
this report, the first aspect covered is the laboratory setup used for examination.  
Simple and standard file identification processes are next covered.  The 
behavioral analysis and then the code analysis are the next two sections.  The 
final section is the analysis wrap-up, in which a general overview of the 
examination findings was provided.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Laboratory Setup:

When examining malware specimens or unknown files, it is important to 
conduct the analysis in an environment where the examiner has control of the 
file and the surroundings.  For this exercise, an isolated network environment 
was created involving a host computer and two VMware virtual machines
(Figure 1).

Figure 1: Virtual Network

The host computer was an Intel based laptop computer which contained a 1.7 
GHz processor, 2 GB of RAM, and an 80 GB hard drive.  The computer used the 
Microsoft Windows XP Operating System with Service Pack 2.  The computer 
maintained current Microsoft updates and used Symantec AntiVirus and 
Firewall, which were also fully updated.  The host system contained the 
software VMware Workstation, version 4.5.2 for Microsoft Windows, which was 
used to create the two VMware virtual machines.  Additionally the computer 
used the software Screen Shot Deluxe version 4.0 which was used for all screen 
captures in this report.  The host computer was designated as the virtual 
network gateway and assigned the IP address 192.168.146.1.  The host 
computer was disconnected from any other network connections preventing 
access to the Internet and other networks not controlled within the controlled 
virtual network.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

The first virtual machine contained the guest operating system Red Hat Linux 
version 9.0 (Kernel 2.4.20-8).  The Red Hat operating system was accessed 
from console mode only and X Windows was not installed.  The virtual machine 
was provided by the instructor during the Reverse Engineering Malware Course 
(2-23 Feb 05).  The virtual machine contained a maximum size virtual hard drive 
of 2 GB, but only approximately 640 MB was used at the time of the 
examination.  The virtual machine used 64 MB of RAM and also used a host 
only virtual network card which was configured to use DHCP.  The virtual 
machine obtained its IP address, 192.168.146.129, from the host computer.  
Host only networking created a private network between the host and the guest 
operating systems.  The virtual machine was provided with Snort version 2.0.4, 
IRCD version 2.8, and netcat version 1.10 preinstalled, which were the only 
programs used other than the operating system. Snort is an open source 
intrusion detection system which provides traffic analysis and packet capturing
[1].  IRCD is a freely available IRC server program for Linux [2].  Netcat is a 
network utility designed to read and write data across a network [3].

The second virtual machine contained the guest operating system Microsoft 
Windows XP with Service Pack 1.  The virtual machine maintained all Microsoft 
patches available with the service pack, but did not use antivirus and firewall 
software.  The virtual machine contained a maximum size virtual hard drive of 4 
GB, but only approximately 2.3 GB was used at the time of the examination.  
The virtual machine used 256 MB of RAM and used the physical CD-Rom 
device from the host machine.  The virtual machine used a host only virtual 
network card which was configured to use DHCP.  The virtual machine obtained 
its IP address, 192.168.146.128, from the host computer.  

This Windows XP virtual machine was used to execute the unknown malware 
and numerous utilities were installed to analyze the process at various stages in 
the analysis process. IDA Pro version 4.7, written by DataRescue, is a 
disassembler and debugger which is registered for my use.  A free version of 
the utility (version 4.3) is available for download from numerous locations on the 
Internet, but was provided to me by my instructor during the Reverse 
Engineering Malware Course.  OllyDbg is another debugger that allows you to 
examine executable programs and view the internal code structure [4].  GT2 
version 0.34 is a DOS based file detection utility which provides the identity of a 
file and file information.  The GT2 program is available at the author’s website
[5].  PEid version 0.93, is a utility that detects common packers, cryptors and 
compilers for PE files (portable executables) [6]. UPX is the ultimate packer for 
executables version 1.25.  The program is free and designed to compress and 
decompress executable files [7].  Bintext version 3.0, is a free utility which 
parses out text from inside of other files similar to the Unix “strings” command.  
Bintext is owned by Foundstone, Inc. and available from their website [8].  
HView 2000 version 1.0 is a text editor that allows the user to view and edit files.  
HView is a freely available tool written by Tolo Oliver and is available for 
download at numerous websites [9].   Md5dum is a part of the Text Utilities 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Suite (Windows version) which calculates the MD5 hash value of the specified 
file [10].  RegShot version 1.61e5 is a free registry compare utility that allows 
you to take a snapshot of your registry and then compare it with a second one; 
done after making system changes [11].  Process Explorer version 8.03 (XP
Edition), TCPView version 2.34, and TDIMon version 1.0, were all freely 
available system monitor tools.  Process Explorer shows the running process on 
a computer, the files and directories accessed by the file and TCP connections 
used by the file.  TCPView shows all TCP and UDP connections the processes 
on a computer uses.  TDIMon also shows TCP and UDP connections used from 
a file running on a computer [12]. The final tool used on the Windows XP virtual 
machine was Ethereal version 0.10.9.  The program is a network protocol 
analyzer and is used in a similar manner to Snort in that it can capture and 
analyze packets sent across a network.  Unlike Snort, Ethereal has a Windows 
GUI interface which allows for easy use and clearer displays of the analyzed 
traffic [13]. 

Each of the above listed programs was installed on the Windows XP host 
machine.  Most tools were placed in a directory created for this examination 
entitled C:\Tools.  IDAPro, Ethereal and GT2 were installed using the default 
installer settings, placing the utilities in the C:\Program Files directory.  Using 
VMware, a snapshot was taken of the virtual machine to preserve the integrity of 
the clean install.  Any changes made to the virtual machine could be undone by 
reverting back to the snapshot.

Properties of Malware Specimen:

For this analysis I was provided a file entitled winlogoff.exe.  I transferred a copy 
of the file to my Windows XP virtual machine.

The first step I took in identifying the file was to use the tool GT2.  GT2 can be 
accessed by right clicking on the file in question and clicking “Detect with GT2”.  
A command prompt will open and the file will be analyzed using the gt2.exe file.  
This is a feature available with the installation.  The GT2 program file may also 
be accessed by a command prompt and navigating to the program file directory.  
In this case I used the command C:\Program Files\GT2\gt2.exe C:\winlogoff.exe
from a Windows command prompt located on the Windows XP virtual machine.  
The program provided a detailed listing of the winlogoff properties (Figure 2).  
The GT2 revealed the file size was 16384 bytes and that it was a DOS 
executable.  The winlogoff file required a Windows based operating system to 
run on.  Additionally, the GT2 program found the file was packed with UPX.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Figure 2: GT2 Output

Since the GT2 program showed the winlogoff file was a packed executable.  I 
decided to use the tool PEid to determine if additional information could be 
found regarding the file.  PEid is a Windows GUI based tool.  The user opens 
the program and then directs the program to the unknown file.  PEid
immediately scans the file and displays the results.  The results of the PEid
scan (Figure 3) provided the same information that GT2 had also listing the 
winlogoff executable as a UPX packed executable.

Figure 3: PEid Results

Neither the GT2 or PEid programs ran the winlogoff file or altered the file in 
anyway.  The two utilities merely read the contents of the file and display the 
results in a user friendly format.

The next step in the analysis was to obtain and MD5 hash value of the file.  In a 
command prompt inside of the Windows XP virtual machine, I entered the 
command C:\Tools\md5sum C:\winlogoff.exe.  The md5sum program generated 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

the hash value 8b37148bc11c09a33224fa2ac6b25613.

The next step in the analysis process was to obtain a list of text embedded in 
the winlogoff file.  Analyzing the text embedded within the file allows may 
provide the examiner with additional leads to follow up on.  The text may contain 
the author, the true file name, version information, help information, and the 
proper usage of the file.  For this step I used the program BinText, a Windows 
GUI based utility.  After opening the BinText program file, I directed the program 
to the location of winlogoff and selected the “Go” button.  The text contained 
within the winlogoff file was revealed and I exported the information to a file 
called strings_packed.txt.  A review of the text revealed the program could not be 
run in DOS mode (meaning it required the Windows environment) and it 
contained the string “ThisIsNotThePasswordYouAreLookingFor”.  No other 
relevant information was discovered.  This is due to the fact that the winlogoff 
file was packed using UPX.  The compression of the file distorts the strings 
which are normally available when the file is decompressed.  The winlogoff file 
must be decompressed and viewed again in BinText to obtain a new clearer 
version of the text embedded within the file.  This process is conducted later in 
the analysis located in the “Code Analysis” section of this report.

Behavioral Analysis:

The next step in the analysis process is to see how the program behaves when 
it is run.  The examiner must determine what the file does once it is executed.  
Typically, program files have the ability to run quietly in the background without 
making the full extent of the program’s abilities known to the user.  A malware 
specimen is more likely to hide its functionality from the casual observer since it 
is in its very nature to be malicious.  In order to see what the casual observer 
does not, there are numerous tools to be launched before executing the 
malware specimen.  The winlogoff file was described as a Windows executable 
file, so I maintained using the Windows XP virtual machine.  In this analysis, I 
used the system monitor tools Process Explorer, RegShot, TDIMon, TCPView, 
and Ethereal.  Although to some it may be considered a waste of time, I used 
each tool separately when launching the winlogoff file.  The additional steps of 
launching one monitor tool at a time, executing winlogoff, reviewing the output, 
and reverting to the saved snapshot of Windows XP helped ensure I did not 
miss any of the file’s properties.

The initial tool used was Process Explorer (XP).  I opened the program file and it 
showed the currently running processes.  I then launched the winlogoff file by 
double clicking it.  The process winlogoff.exe appeared on the display window of
Process Explorer highlighted in green indicating a new process was started.  
Winlogoff generated a new process entitled antivirus.exe and then winlogoff 
terminated displaying highlighted in red for termination.  The program 
antivirus.exe continued to run (Figure 4).  By right clicking on the antivirus.exe 
process and selecting properties or by viewing the bottom pane of the Process 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Explorer window an examiner can see additional information pertaining to the 
files.  The additional information includes the path of the file, *.dll files being 
used, TCP processes, and security of the file.  In this case, no additional 
relevant information was discovered.

Figure 4: Process Explorer Results

I reverted to the saved snapshot and began the analysis over again, this time 
using the system monitor tool RegShot. Prior to executing the winlogoff.exe file, 
I opened the RegShot program file.  I chose to view the comparison results as a 
text file, I chose to scan the entire root directory (C:\), and then directed the 
output path to my desktop.  I took a snapshot of the registry at the time of the 
clean install and prior to the execution of the winlogoff.exe file by clicking on the 
1st Shot button.  I then executed the winlogoff.exe file and waited approximately 
60 seconds before taking a second snapshot of the registry by clicking the 2nd

Shot button.  I terminated the antivirus.exe program and then clicked on the 
Compare button from RegShot.  A text file was generated which showed the 
following registry key was added:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices 

Additional review of the output from RegShot revealed the following values were 
added:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\Microsoft 
Windows Antivirus Service: 61 6E 74 69 76 69 72 75 73 2E 65 78 65 00 00
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices\Micros
oft Windows Antivirus Service: 61 6E 74 69 76 69 72 75 73 2E 65 78 65 00 00

Finally, the RegShot comparison file also revealed the following file was added:



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

C:\WINDOWS\system32\antivirus.exe

I verified the changes had actually been made to the registry by manually 
looking for them in the native Windows program regedit.  The information 
provided by RegShot confirmed the creation of the antivirus.exe program and 
revealed the files location.  Additionally, RegShot revealed the registry entries 
which would force the antivirus.exe program to automatically restart when the 
computer was restarted and a user logged in. At this point I returned to one of 
my file identification tools, md5sum.exe.  I used the utility to obtain a hash value 
of the antivirus.exe file, which revealed a matching hash value to the one 
obtained from winlogoff.exe.  Winlogoff.exe generated a copy of itself and 
placed it in the C:\WINDOWS\system32 directory.

I reverted to the saved snapshot and began the analysis over again, this time 
using the system monitor tool TDIMon. I opened the TDIMon program file, 
paused the capture (Ctrl-E), and cleared the current capture results (Ctrl-X).  
When I was ready to execute winlogoff.exe, I restarted the TDIMon capture (Ctrl-
E).  I executed winlogoff.exe and let the program run for approximately 60 
seconds.  I paused the TDIMon capture and terminated the antivirus.exe 
program.  I reviewed the display of the previous 60 seconds captured by 
TDIMon.  The program revealed the winlogoff.exe program starting and closing, 
the antivirus program starting, and then a brief moment later the Windows 
program svchost.exe began sending information to the host computer 
192.168.146.1 on port 53 (Figure 5).  This was likely a DNS request (typical of 
UDP traffic trying to reach port 53) in an effort to resolve a host name.  The host 
name look up was likely generated from the execution of the antivirus.exe file.  
No other file activity was noted during the 60 seconds, the suspicious file was 
executed.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Figure 5: TDIMon Results

I reverted to the saved snapshot and began the analysis over again, this time 
using the system monitor tool TCPView. I opened the TCPView program file 
and then launched the winlogoff.exe file.  I waited approximately 60 seconds 
and then terminated the antivirus.exe file.  During the entire time the programs 
were running, no TCP or UDP connections were noted as being generated by 
either winlogoff.exe or antivirus.exe (Figure 6).

Figure 6: TCPView Results



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

I reverted to the saved snapshot and began the analysis over again, this time 
using the system monitor tool Ethereal.  I opened the Ethereal program and 
began capturing by clicking on Capture and Start from the menu bar.  I 
configured the program to listen in promiscuous mode and to update and scroll 
the real time capture.  Promiscuous mode on a network card allows the card to 
capture all traffic on the network, even if the information is not bound for the 
particular computer the sniffer is running on.  I clicked the Okay button and the 
capture began.  At this point, I introduced the Linux virtual machine to my virtual 
network.  I started the Snort packet capture by using the command snort –vd | 
tee /tmp/sniffer.log.  This command began the sniffer process and displayed the 
results to both my screen and to a file called sniffer.log for later review.  This 
sniffer was also configured for promiscuous mode, but I did not configure any of 
the settings.  Snort was preinstalled and configured to work in the classroom 
environment and also worked for the purpose of this examination.  Both sniffer 
programs were used to ensure no network traffic was missed; however, the 
results were the same after the winlogoff file was executed. The Windows XP 
virtual machine, assigned IP address 192.168.146.128, began sending requests 
to the host computer, assigned IP address 192.168.146.1, to determine what 
computer had the domain name sleeping.sucker-anonymous.dyndns.org on port 
53 (Figures 7 and 8).  This was a typical DNS request indicating the program 
antivirus.exe was attempting to access the computer sleeping.sucker computer 
and needed to know what address to find it at.  The host computer was not 
setup as a DNS server and the information could not be found; however, the 
DNS requests from the virtual machine continued.  After approximately two 
minutes I terminated the antivirus.exe program.

Figure 7: Ethereal DNS Requests



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Figure 8: Snort DNS Requests

The next step in the analysis was to determine what the antivirus.exe program 
wanted with the computer assigned the domain name sleeping.sucker-
anonymous.dyndns.org.  The host computer could have been configured as a 
DNS server and responded with a given IP address when the DNS request was 
given.  Also, the computer could have been connected to the Internet and the 
real IP address of the sleeping.sucker computer could have been provided.  
Neither of these is a good idea as it prevents the examiner from keeping control 
of the examined file and the DNS server is an unnecessary step.  In the 
Windows XP virtual machine file system, there is a host file which is reviewed 
by the computer in an effort to resolve domain names before attempting to 
access a DNS server.  In this case I edited the file 
C:\WINDOWS\system32\drivers\etc\hosts to reflect that the computer assigned 
IP address 192.168.127.129 was assigned the domain name sleeping.sucker-
anonymous.dyndns.org.  The IP address assigned was the IP address to my 
Linux virtual machine.  This allowed the traffic being sent by the antivirus 
program to be contained within the virtual network and under the control of the 
examiner. After making the changes to the hosts file, I restarted Ethereal and 
Snort to obtain clean packet captures and then I restarted the antivirus.exe 
program.  At this point the Windows XP virtual machine read the host file and 
saw that the computer using the sleeping.sucker DNS was the Linux virtual 
machine.  Ethereal and Snort both captured network traffic from the Windows 
XP virtual machine attempting to connect to the Linux virtual machine on port 
8080.  Port 8080 is typically used for web services.  No web server or any 
service for that matter was listening on port 8080 of the Linux virtual machine.  
While the antivirus.exe file was still running, I started the netcat program on the 
Linux virtual machine.  I used the command nc –l –p 8080, which set the netcat 
program listening on port 8080 for incoming connections.  Incoming information
was displayed on the screen.  The screen showed the words NICK and USER 
which words are typically associated with IRC.  The nick and user appeared to 
be assigned the name ugkk (Figure 9).  This name appeared to be randomly 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

generated, but further attempts to login in using the antivirus.exe would later 
confirm this.  Only netcat was operating on port 8080, which is nothing like an 
IRC server.  No other information was available at this stage as Ethereal had 
only shown the same text displayed from netcat.

Figure 9: Netcat on Linux VM

Assuming that the antivirus.exe program was searching for an IRC server on 
port 8080, I needed to provide the program access to one.  The IRC server 
program IRCD was previously installed on the Linux virtual machine, but it was 
configured to listen for connections on ports 6666 and 6667, the common IRC 
server ports.  I used the text editor “vi” to add port 8080 to the IRCD configuration 
file located at /usr/local/ircd/ircd.conf.  Once the configuration file was saved, I 
started the IRC server by logging in as the user ircd ($su – ircd) and starting the 
ircd service ($./ircd).  I exited from that user ($exit) and as root I started the IRC 
client program ($irc).  I reverted back to the snapshot of my Windows XP virtual 
machine, started Ethereal and then executed the winlogoff.exe file again.  This 
time, the antivirus.exe file caused the Windows XP virtual machine to 
successfully connect to the IRC server on the Linux virtual machine.  The 
Windows XP virtual machine received a new nick and user name, vbzrg, 
confirming the nick creation was random (Figure 10).  Ethereal has a feature 
which allows a user to single out specific streams captured.  The user can right 
click on a particular TCP line in the display window and choose Follow TCP 
Stream.  A secondary window opens displaying the specific TCP stream 
between the two designated computers.  In this case, I followed the TCP stream 
of the Windows XP virtual machine (IP address 192.168.146.128) and the Linux 
virtual machine (IP address 192.168.146.129).  The TCP display showed the 
traffic sent between the two virtual machines in order to connect to the IRC 
server (Figure 11).  Based on the traffic analysis, the Windows XP virtual 
machine joined the channel #SuckersAnonymous using the channel password 
of “sillywhitehats”. I transferred back to my IRC client on the Linux virtual 
machine and logged into the same channel, using the same password.  I 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

attempted numerous commands in order to interact with the Windows XP virtual 
machine, but all attempts resulted in no response.

Figure 10: IRCD on Linux VM

Figure 11: Ethereal TCP Stream

At this point I presumed the examined file was an IRC bot.  An IRC bot is a 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

program that sits in an IRC channel and looks just like a normal user on the 
channel, but is usually idle until it's called upon to perform a particular function.  
[14].  Like many programs available in the world, the functions could be put to 
good or to bad uses.  Based on previous experience with IRC bot files, the 
interaction to access the particular functions of this bot required a password 
used by the bot master. At this point, I did not have the password and had 
completed the behavioral analysis as far as I could.

Code Analysis:

As previously noted in the Behavioral Analysis section of this report, the 
programs PEid and GT2 identified the winlogoff file as being packed with UPX.  
While inside of my Windows XP virtual machine, I attempted to use the program 
IDA Pro which also recognized the file as being packed.  I subsequently ceased 
my analysis using IDA Pro as the disassembler and debgugger utility would not 
properly reveal the contents of the file while it was still packed.  

The UPX program has a decompression switch built within the program.  This is 
not true for all packing utilities and sometimes a search for a workable unpacker 
is necessary.  From the Windows XP virtual machine, I attempted to use the 
decompression functionality of the UPX program file in a Windows command 
prompt by typing the command upx –d c:\winlogoff.exe from the program file’s 
directory.  The attempt to decompress resulted in error message relating the 
winlogoff file was modified, hacked, or protected.  

I next chose to view the contents of the binary file winlogoff by using the utility 
HView2000 from the Windows XP virtual machine.  The review of the contents 
of the file revealed no occurrence of the letters “UPX”, which are typically 
resident in a UPX compressed file.  I did however see the letters “GRM”, where I 
believed the letters UPX should be. Using HView, I changed the four 
occurrences of GRM to UPX and saved the file as winlogoff_edit.exe (Figure 
12).  Once again I used the decompression functionality of the UPX program in 
an effort to unpack the file the newly edited file.  This time the file was 
successfully unpacked.  UPX revealed a Windows 32-bit portable executable 
file, which was now 57856 bytes in size (Figure 13).



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Figure 12: HView Edit

Figure 13: UPX Unpack

I returned to my file identification tool, BinText, and viewed the text strings not 
previously available from the packed version of winlogoff.exe from the Windows 
XP virtual machine.  This time the strings revealed numerous clues as to the 
nature of the file I was examining.  Key strings noted included the following:

0000C637   0040E037      0   SLoT bot 2.0 by Black Ninja
0000C657   0040E057      0   sillywhitehats
0000C666   0040E066      0   #SuckersAnonymous
0000C680   0040E080      0   sleeping.suckers-anonymous.dyndns.org
0000C6A6   0040E0A6      0   antivirus.exe
0000CA0D   0040E40D      0   Software\Microsoft\Windows\CurrentVersion\Run
0000CA3B   0040E43B      0   Software\Microsoft\Windows\CurrentVersion\RunServices
0000CCC1   0040E6C1      0   password accepted.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

0000CE2C   0040E82C      0   SLoT bot 2.0 by SLoTH homepage http://yeah-
right/suckersanonymous

The text strings now available revealed the file could be SLoT bot version 2.0 by 
SLoTH.  The text revealed the IRC channel and password, the DNS, the 
secondary file name, and the registry entries noted from the behavioral analysis.  
Also noted was the string “password accepted” which presents a good starting 
point for the code analysis when using the disassemblers. Unfortunately, text 
analysis of a binary file is not always helpful.  False strings can be written into a 
file, the same way I used HView to alter the letters GRM to UPX.  Individuals 
creating the binaries can insert false leads or leave no information what so ever.

The same behavioral analysis steps taken above were repeated resulting using 
the winlogoff_edit.exe file.  Each of the system monitor tools resulted in the 
same findings. This step was taken to ensure the unpacked file did not exhibit 
any new characteristics not previously seen in the packed version.

The next step was to return to the disassembler.  I chose to use IDA Pro which 
had been installed on the Windows XP virtual machine and opened the file 
winloggoff_edit.exe.  Once the file was completely loaded into the disassembler 
using the default settings, I searched for the string “password” as seen in the 
BinText results.  I was brought to the string “password accepted” located at 
offset 0040354A.  Several lines above the string “password accepted” there was 
a call for a string compare (strcmp) at offset 004034B3 just after the word 
“login”.  This indicates the program will look for the string login from the user 
input and if it matches will continue with the subroutine.  In between the login 
and the password accepted was another string compare which looked for the 
word “sillywhitehat”. This was likely the password used for the login process.

I decided to test the discovery from IDA Pro and launched the winlogoff_edit.exe 
program.  I did not use IDA Pro to control the execution of the file, I just merely 
executed the file from its location on the Desktop of the Windows XP virtual 
machine.  The execution of the unpacked version of winlogoff resulted in an
unpacked version of antivirus.exe.  I continued to let the program run and 
connect to the IRC Server which was still running on the Linux virtual machine.  
After the Windows XP virtual machine successfully joined the 
#SuckersAnonymous channel I returned to the IRC client and used the Linux 
virtual machine in an effort to interact with the bot.  I used the command “login 
sillywhitehat” which resulted in the successful login to the victim computer.  The 
program generated the text “password accepted” as previously discovered in 
BinText and IDA Pro.  Attempts were made to login in with the wrong password
as well, but no indication was given that that the login failed.

I returned to the Windows XP virtual machine and used IDA Pro to view the 
assembly language of the unpacked version of antivirus.exe.  I scrolled through 
the information following the successful login.  At offset 004039D6, I discovered 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

the beginning of what appeared to be a long list of commands which could be 
used with the program.  The assembly language showed additional string 
compares looking for the particular keyword to execute that part of the program.  
Noted below most of the possible commands, there was what appeared to be a 
shortcut, one or two letters and a subsequent string compare, leading to the 
same portion of the program.  Overall, there appeared to be 50 separate 
commands noted in IDA Pro.  I returned the Linux virtual machine and tried 10 of 
the commands.  The commands tested would not work without first entering in 
the login command accompanied by the proper password.  The following is the 
results of the commands tested:

The command netinfo (ni) provided details on the connection type (dial-
up, lan, etc), the local IP and the IP address from where the computer 
connected from.

The command threads (t) showed the words thread list.  Presumably any 
threads would have been shown as well if they existed.

The command status (s) showed the text SloT bot 2.0 ready and provided 
the uptime in days, hours, and minutes.

The command vmware resulted in a lost connection whereby all other 
commands became ineffective.  The command may be used by the program to 
determine if it is being run in VMware.  In this case, it was.

The command sysinfo (si) provided the cpu, ram, space total and free, os, 
and uptime from the computer which was running the bot.

The command id (i) showed only the text SLoT.

The command about (ab) showed the text SLoT bot 2.0 by SLoTH 
homepage http://yeah-right/suckersanonymous as previously noted from the 
BinText analysis.

The command aliases (al) resulted in the sign out of the computer using 
the bot.  It is not likely this was supposed to happen, but it is what happened 
each time I ran the command.

The command open (o) opened a file on the computer running the bot.  In 
this case, I opened notepad.exe on the Windows XP virtual machine.

The command visit (v) would send the computer running the bot to the 
specified URL.  In this case, I sent it to http://www.cnn.com.  There was no 
network connectivity, so the attempt failed.

The command remove (rm) disconnected the computer running the bot 
from IRC, stopped the program antivirus.exe, removed the registry entries



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

created by the program; however, the file C:\WINDOWS\system32\antivirus.exe 
remained.

Initially, no attempt to patch or debug the file was made since the password was 
clear in the antivirus.exe file when viewed with IDA Pro.  However, if the 
password was not visible an examiner may view antivirus.exe in a debugger and 
take steps to discover the true password.  Using the debugger utility, OllyDbg,
an examiner would set a breakpoint (keyboard shortcut F2 will set a breakpoint) 
at offset 0040351E (Figure 14).  This is the location of the string compare just 
after the word sillywhitehat.  Setting the breakpoint will pause the program’s 
execution when it reaches the breakpoint and allow the examiner to see what is 
going on with the program and to control the next step the program takes.  The 
file should be executed from within the debugger.  In this case the keyboard 
shortcut F9 could be used to accomplish the task; however, there are numerous 
ways to start the program.  After the computer running the antivirus file has 
joined the IRC channel, the examiner can attempt to login in using a known 
incorrect password; in this case, badpass.  On the computer using OllyDbg, the 
antivirus.exe program pauses at the breakpoint set at the string compare.  
Displayed in the lower right hand pane in OllyDbg, is the wrong password as 
well as the correct password (Figure 15). The examiner can then let the 
program finish running and then try to login again with the newly discovered 
correct password.  Using the Windows XP virtual machine all actual attempts at 
these steps resulted in access violations to antivirus.exe.  The antivirus file 
would stop running and would never actually access the IRC channel.  On a 
hunch, I introduced a new temporary member to the virtual network.  I created a 
virtual machine using the Microsoft Windows 2000 Server operating system.  
The virtual machine was configured to use a maximum of a 4 GB hard drive, 256 
MB of RAM, and a host only network interface.  The virtual machine contained 
no patches and the only additional tool installed was OllyDbg.  The same steps 
noted above were taken using the Windows 2000 virtual machine and the 
debugging process successfully revealed the wrong password as well as the 
correct password.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Figure 14: OllyDbg Breakpoint

Figure 15: OllyDbg “badpass”

The antivirus.exe file could also be patched to where the file would accept any 
password.  In order to patch the antivirus.exe file, the program was loaded into 
OllyDbg.  I traversed to offset 00403527, which was where the jump instruction



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

(jnz) was located before the “password accepted” string.  In order to patch the 
file I pressed the space key, opening up a secondary “Assemble” window.  I 
replaced the text with the letters NOP and ensured there was a check in the Fill 
With NOP’s radio button.  This step pads the entire instruction with the 
necessary NOP’s without the examiner trying to figure out how many to put in 
themselves.  I clicked on the assemble button which replaced the previous jump 
instruction with two NOP’s (Figure 16).  By replacing the jump instruction with 
the NOP’s this causes the jump not to occur and replaces it with the instruction 
to do nothing.  I then right clicked and selected Copy to executable, All 
modifications, and Copy all.  A newly created executable was created, which 
could have been saved to disk, but I merely executed the program by using the 
F9 key.  Once the computer running the newly patched antivirus.exe program 
connected to IRC, a subsequent command followed by any password should 
have resulted in the password being accepted.  Unfortunately, I received the 
same access violation error when using the Windows XP virtual machine.  Once 
again, I tried each of the steps outlined above with my temporary Windows 2000 
virtual machine.  The file was successfully patched (Figure 17).  After the 
successful patch, I removed the temporary Windows 2000 virtual machine from 
my network.

Figure 16: OllyDbg NOP



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Figure 17: Patched antivirus.exe

In my initial code analysis, I modified the unknown file, winlogoff.exe using a hex 
editor.  While this time the method was successful, it will not always be so easy 
to decompress or unpack a packed executable.  It is possible to obtain a 
decompressed version of the file from the compressed file using OllyDbg.  It is 
important to know what type of packer is used and it may be necessary to do 
some Internet research to find out about the particular qualities of a packer.  In 
this case, we know the file was packed using UPX. From the Windows XP 
virtual machine, I executed the unpacked version of winlogoff.exe allowing it to 
generate an unpacked version of antivirus.exe, which I promptly terminated.  I 
then used OllyDbg to open the unpacked version of antivirus.exe.  I allowed the 
antivirus program to run using the F9 keyboard shortcut and allowed the 
Windows XP virtual machine to join the IRC channel.  Once it had joined, I 
returned to OllyDbg and accessed the Memory Map of the running antivirus.exe.  
The memory map showed three location of interest labeled GRM0, GRM1, and 
GRM2.  GRM0 is where the unpacked version of the executable resides as the 
section begins at offset 00401000 and extends until offset 00426000.  The 
unpacked assembly language earlier showed the relevant string compare was 
located at offset 0040351E.  From the Memory Map screen, I right clicked and 
selected Dump in CPU.  The dump opens up in a new window and the examiner 
must chose to disassemble the instructions by right clicking on the lower left 
hand pane, right clicking and selecting disassemble.  In order to obtain the 
correct password similar steps as taken above are executed.  I set a breakpoint 
at 0040351E by right clicking, choosing breakpoint and then choosing memory 
on access.  No visual display is provided showing the breakpoint is set.  I ran the 
file allowing the Windows XP virtual machine to login to IRC.  I attempted to 
login with the wrong password and seen previously, OllyDbg reveals the see 
true password (Figure 18).



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Figure 18: OllyDbg Packed Password

Analysis Wrap-Up:

This malware specimen is an IRC bot which when executed creates a copy of 
itself in the C:\%WINDIR%\system32\ called antivirus.exe.  The malware creates 
registry entries enabling the file antivirus.exe to start each time the computer is 
restarted.  Once installed, the malware attempts to connect to the domain name 
sleeping.suckers-anonymous.dyndns.org. If the host is available, the malware 
attempts to connect to an IRC server located at that address on port 8080. If an 
IRC server is running on port 8080, the malware obtains a nick which appears to 
be randomly generated. The malware then joins the IRC channel 
#SuckersAnonymous with the password “sillywhitehats”. The malware waits in 
the IRC channel until accessed using the proper authentication method.  In this 
case, the method is entering the command and password “login sillywhitehat”.

The IRC bot is a common tool used by hackers.  The program allows the bot 
master (the person controlling the computers running the bot program) to cause 
a lot of damage.  Files can be accessed, programs executed, denial of service 
attacks can be initiated and all malicious activity can be executed without the 
knowledge of the average computer user. 

In order to ensure a computer does not become the victim of an IRC bot 
program, the user should practice safe computing.  They should enable antivirus 
and firewall programs.  The user should not open executable files received from 
unknown sources. If they are a member of a managed network, the network 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

administrators should also implement antivirus and firewall utilities.  Proper 
email filters can remove executable files from email messages, which prevents 
accidental execution from the unwary email reader.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

References

[1] Caswell, Brian et al. Snort Homepage.  1 March 2005 
<http://www.snort.org>.

[2] IRCD Homepage. 1 March 2005 <http://www.funet.fi/~irc/server/>.

[3] Netcat Download Site. 1 March 2005 
<http://www.securityfocus.com/tools/137>.

[4] Yuschuk, Oleh. OllyDbg Homepage. 1 March 2005 <http://home.t-
online.de/home/OllyDbg/>.

[5] PHaX. GT2 Homepage. 1 March 2005 <http://philip.helger.com/gt/>.

[6] Jibz, et al. PEid Homepage. 1 March 2005 <http://peid.has.it/>.

[7] Oberhumer, Markus, et al. UPX Homepage. 1 Mar 2005 
<http://upx.sourceforge.net/>.

[8] Foundstone, Inc. BinText Download Page. 1 March 2005 
<http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&sub
content=/resources/freetools.htm>

[9] HView Download Page. 1 March 2005 <http://www.softlookup.com>.

[10] Md5sum Download Page. 1 March 2005
<http://gnuwin32.sourceforge.net/>.

[11] TiANWEi. RegShot Homepage. 1 March 2005 <http://regshot.yeah.net>.

[12] Process Explorer, TDIMon, and TCPView Homepage. 1 March 2005 
<http://www.sysinternals.com>.

[13] Ethereal Homepage. 1 March 2005 <http://www.ethereal.com>.

[14] Eggdrop IRC Bot Help Homepage. 1 March 2005 
<http://www.egghelp.org/whatis.htm>.


