
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

MalwareD
A study on network and host based defenses that prevent malware from accomplishing its goals.

GIAC (GREM) Gold Certification

Author:(David(R(Walters,(contact@malwared.org(

Advisor:(Mark(Stingley(

Accepted:(September(16th,(2014

Abstract:

Computers pose a risk to companies due to the nature of the information they store. Most
organizations battle computer based threats on a daily basis. Malware is the attacker’s vehicle.
It is diverse, evolving, and capable of any attack a programmer can dream up. Routing, DNS
and the principle of least privilege are three critical defenses to combat malicious software.
Enterprises who tune these technologies to a more protective stance have a greater chance at
successful defense. A test of a few thousand malware samples has demonstrated that these

critical defenses work. As a result, a security analyst can better focus their investigations on
events that they know have success in their environment.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

2(

(

David(R(Walters,(contact@malwared.org(
(

Introduction:

Malware is an ever-growing problem on the Internet. Organizations struggle to prevent, detect,

and responds to malware threats. As networks grow in size and complexity this problem

increases every year. The result is an inclining trend in malware.((Trends observed by the EC3

(European Cybercrime Centre) across member states in 2013 include substantial increases in

intrusions, malware, phishing, grooming, DDoS, espionage, and botnet activity (2014 Verizon

DBIR).

Graph 1 McAfee Labs Threat Report - 4th Qtr. 2013

Malware is multi-faceted, diverse, and capable of subverting even the most well defended

computer networks. Its prevalence and capabilities are nothing new to the information security

community. Any seasoned security analyst would tell you it is highly unlikely that there isn’t a

corporate network which doesn’t regularly exhibit significant indication of compromise. As the

variants of malware grow and evolve, so do the number of indicators. There is no shortage of

indicators publically available to inform analyst and researchers about a compromise. Malicious

IP address lists, malicious domain lists, web proxy categorization lists, A/V signatures, IDS

alerts, and behavioral based analysis events are a few examples of tools and technologies that can

provide indication that a host is compromised. There are also a significant amount of tools and

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

3(

(

David(R(Walters,(contact@malwared.org(
(

services that try to determine if a suspected sample of code is malicious. It is important to note

that the goal of these tools is different than the goal of this study. Their goal is to determine

malice. This study attempts to determine if certain defenses are effective in preventing malware

success.

Behavioral malware environments typically incubate the sample code to execute in a manner that

does not always reflect an environment where malware defenses exist. The possibilities to hide

the analysis component when only executing in user space are very limited. For example, hiding

a process or a loaded library from all other processes running on the system is usually not

possible from user space alone. The just mentioned limitation is eased when the analysis

component runs in kernel space (Egele, 2008).

This method of execution has a few effects. First, it improves the ability to determine if the code

is malicious. Second, it does not consider defenses that are typical in corporate networks. The

lack of malware defenses can incorrectly determine if the code was successful in a given

network. As a result, analysts are flooded with information and events. This creates a gap

between the malware analysis tools and the true workstation within the environment.

This study attempts to bridge some of that gap through testing malicious samples in a behavioral

analysis engine built and tuned in a defensive manner. The process of analyzing a given

program during execution is called dynamic or behavioral analysis. Static analysis refers to all

techniques that analyze a program by inspecting it (Egele, 2008). Commodity malware will take

the path of least resistance. This is true throughout the malware lifecycle, from coding to

communication with C2 servers. In addition, modern malware samples frequently require some

form of Internet access for their Operation (Egele, 2008). The re-tuning or implementation of a

few existing technologies in a more defensive posture can greatly improve network security,

thereby reducing organizational risk of intellectual property and personally identifiable

information loss as well as reputational damage.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

4(

(

David(R(Walters,(contact@malwared.org(
(

Malware Defenses:

The focus of this study is to demonstrate controls that prevent malware from accomplishing its

goals. The GIAC GREM course educates on the various tools and techniques used to fight

malware. It aims to teach analysis techniques that help to respond to incidents, improve forensic

analysis performance, and strengthen defenses. This study merges some of the behavioral

analysis tools and techniques from the course with defenses learned from experience. Then it

attempts to determine the effectiveness of those defenses against malware found in the wild.

Properly armed responders and reverse engineers can make better decisions in response

situations. In addition, more accurate reporting will result from smarter analysts.

Malware defenses come in many forms. They are not limited to signature based scanning tools

on the network or on an endpoint. They are varied and diverse. A corporate network with strong

controls should utilize a defense in depth architecture to protect against malicious code. All

facets of information security program should contribute to protection. Some of these practices

include patching operating systems, forward web proxies, and users operating with reduced

privileges. It is critical that malware protection and detection mechanisms be layered and

diverse. Relying solely on signature-based tools at the endpoint increases the risk of threats

slipping through the cracks. The ability of malicious authors to pack and alter code creates

loopholes in corporate networks. On average, they repack specimens every 11 days, and some

malware families repack up to twice daily. (Caballero, 2011) One of the most common attack

vectors is executed while users browse the web. In other words, from the internally controlled

network to the public Internet. Drive-by download is the process by which adversaries infect

corporate networks by exploiting users browsing the Internet. Drive-by downloads have become

the preferred distribution vector for many malware families (Nappa, 2013).

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

5(

(

David(R(Walters,(contact@malwared.org(
(

Technologies, policies, and initiatives that defend against malicious code include:

Domain Description
1 Management Support Oversight, structure, and funding of cyber

security programs from managing bodies
2 Principle of Least Privilege Users, services, and systems should run with

only the privileges required to perform their jobs
3 Network Segmentation Critical components should be in separate

subnets with firewalls in-between
4 Strict Inbound and Outbound Traffic

Control
Links in and out of the internal networks should
be tightly controlled through proxies, firewall
rulesets, and routing

5 Configuration Management Systems should be hardened, protected, and
monitored according to an industry best practice

6 Patch management Updating software within the timeframe that the
business allows

7 Logging and Monitoring Systems, applications, and the network should be
centrally logged and monitored for malicious
activity

8 Response Plans Once a compromise is detected, the course of
action to contain, remediate, recover, and learn
from that infection

9 Signature Based Detection Anti-Virus on the endpoints, email, proxy layer
Table 1 - Defense Categories

These are a few examples of controls and technologies mature organizations use in a defense in

depth posture. The technologies tested throughout this study include the principle of least

privilege, strict inbound/outbound traffic control, and network segmentation.

Network Architecture:

The next few sections describe some basic protocols and architectures. The network diagram

depicted in figure 1 serves as a reference to these basic protocols and architectures and should be

relatively self-explanatory to any network engineer. There are a few subnets with segmentation

between critical parts of the network. The network layer separates the server zone and

workstation zone. The stub zone in-between the router and the firewall/proxy has its own

subnet. Each segment off the router is isolated at layer 3 to its own broadcast domain. This

network architecture is the configuration used to execute all the malicious samples tested

throughout this study.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

6(

(

David(R(Walters,(contact@malwared.org(
(

Figure 1 - Network Architecture

DNS:

The domain name system is a protocol designed to map human readable names to numeric

addresses, which are more suitable for a computer to process. It is a backbone protocol for

today’s Internet. The DNS RFC specifies information exchange over UDP port 53, or when

larger amounts of information are required, TCP port 53 is used. DNS is relevant to malware

because it facilitates communication between compromised hosts and C2 servers. Malware

authors program a domain name, or an algorithm to randomly compute a domain name, that

maps to an active IP address of a C2 server. This C2 server can order commands, distribute

updates, or point to other C2 servers. Frequently changing domain names is a common practice

in an attempt to avoid detection. This strategy provides a remarkable level of agility because

even if one or more C&C domain names or IP addresses are identified and taken down, the bots

will eventually get the IP address of the relocated C&C server via DNS queries to the next set of

automatically generated domains (Antonakakis, 2012).

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

7(

(

David(R(Walters,(contact@malwared.org(
(

Figure 2 is a typical example of DNS and web browsing in an environment that resolves external

domain names. In step 1, the client workstation makes a DNS query to an internal DNS server.

Step 2 has the internal DNS server responding with the IP address of the domain requested. In

step 3, the client initiates a TCP connection with the IP address that it received from the DNS

server. If this process completes, the internal workstation has a full TCP connection with an

external and untrusted host. RFC 1035 describes the protocol in more depth.

Figure 2 - DNS External Resolution

DNS-Sinkholing:

DNS-sinkholing is where the recipient of a DNS response is given a bogus address. For the

purposes of malware, malicious code receives a false address, rendering communication with the

originally intended resource unsuccessful. Figure 3 is an example of DNS-sinkholing. The

workstation makes a request as normal in step 1. The DNS server receives the request in step 2.

The server is pre-programmed to filter the response based on the name requested. This filtering

can be through whitelisting or blacklisting depending on the environment. A whitelisting

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

8(

(

David(R(Walters,(contact@malwared.org(
(

approach requires additional infrastructure because traffic leaving the internal LAN needs to go

through a through a proxy. The proxy layer can then, communicate directly to the Internet

resource, at the TCP layer. Step 3 demonstrates the attempted communication between the

workstation and the sinkhole server. The server simply logs and discards the packet.

DNS-sinkholing has the benefit of preventing the attempted communication of internal endpoints

with untrusted Internet resources. It also has the ability to log and track when these types of

communication occur. This logging can help find compromised workstation or unauthorized

software. From a malware perspective, DNS-sinkholing can greatly break down command and

control channels. Combining a DNS-sinkhole with other defenses increases the ability to detect

and prevent compromised assets from communicating with unwanted hosts or domains on the

internet (Bruneau, 2010). Further, it can prohibit the ability of malicious code to successfully

perform its programmed job.

Figure 3 - DNS Sinkhole

Routing:

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

9(

(

David(R(Walters,(contact@malwared.org(
(

Routing is the process of moving packets from point A in a network to point B. Destination IP

addresses serve as the basis of routing decisions. Routing is a core component of the Internet

and every corporate network. Workstations, servers, and routers make routing decisions all the

time. Many algorithms make routing decisions based on a multitude of factors. Some of these

factors include link congestion, number of hops, or reliability. For this study, the router chose

paths solely based on destination IP addresses.

Figure 4 is an example of a typical internal router. The router decides the path for packets to

both the corporate and external networks. If external DNS resolution is allowed, the client

receives a DNS response with an external IP address. After comparing this IP address with the

network portion of its own IP address, the workstation sends the packet to the default gateway.

Step 1 designates this process. Once the router receives the packet it must decide how to get the

packet to its destination. It performs a lookup for the destination network in its routing table.

Step 2 depicts this calculation. The router has all the local subnets configured in its routing

table, 198.18.12.0/30, 198.18.12.8/29, 198.18.12.32/27, and 198.18.12.64/30. The last route is

the default route. In the case where the workstation attempts to communicate with 131.253.40.1,

the router sends the packets out its default route. As pictured in step 3, packets are sent to the

firewall/proxy device. This is a common architecture for many enterprise networks and is the

most simple to set up.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

10(

(

David(R(Walters,(contact@malwared.org(
(

Figure 4 - Routing

Route-Sinkholing:

There are a few methods to implement Route-sinkholing. One method is to insert routes of

known bad networks that point to an internal server. Remotely triggered black hole (RTBH)

filtering is a technique that provides the ability to drop undesirable traffic (Cisco, 2005). RTBH,

as described in the Cisco whitepaper, has very similar goals as the route-sinkholing outlined in

this paper. The sinkhole server will simply discard, drop, or log the packets when processing.

This method is cumbersome to maintain because routing tables frequently grow to sizes that are

difficult to manage.

The second method has the default route configured with an internal server as the next hop.

When computed, the packets are logged and discarded. This method has the advantage of

reduced routing table entries to manage. In order for route-sinkholing to work, a proxy

infrastructure must be in place. This infrastructure interfaces with the outside world. The proxy

layer is necessary because internal resources must be able to communicate out to the Internet. In

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

11(

(

David(R(Walters,(contact@malwared.org(
(

order to communicate externally, they send the packets to the proxy layer instead of the IP

address of the external resource.

Figure 5 is an example of a packet destined for an external IP address. The router is configured

to sinkhole all packets for which it does not have a configured route. Step 1 has the client

sending the packet to the router, just the same as in figure 3. In step 2, the router performs the

same calculation to figure out which interface to send the packet. The result of the calculation

has the router sending the packet out the int3 interface to the sinkhole server. The router is

unaware that the packet will not reach its true destination. If DNS-sinkholing is used, the only

time the router receives a packet with an external destination IP address is when the software has

an IP address hardcoded. If the software relies on DNS, then the DNS response would include

the configured DNS sinkhole address.

Route-sinkholing is a strong defense when combating malicious code. It will stop all samples

that hardcode the IP address in order to communicate to command and control servers.

However, it does require additional infrastructure to support external communication. This

additional layer provides increased filtering and logging capabilities that greatly enhance

awareness and intelligence on internal to external communication.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

12(

(

David(R(Walters,(contact@malwared.org(
(

Figure 5 - Route-Sinkhole

Web Browsing Direct:

In an environment where workstations are allowed application layer access to external resources,

the request will look something like figure 6. The client has a raw transport layer connection

with the external resource. When the client tries to browse to an external website, it first

requests the IP address from the DNS Server. Second, it sends the packet to the router. Third,

the router sends the packet out its default interface. The diagram in figure 6 depicts an HTTP

GET request. This is the typical HTTP method used to request data from web servers. The

destination IP address is that of the true webserver and the TCP port is 80. This method of

browsing requires that internal routers have default routes configured to allow external access. It

also requires that DNS resolution of external domain names be resolved with their true

addresses.

This can be considered a less secure browsing method than a proxied browsing environment

because of the inability to control the flow and type of data in and out of the organization. Proxy

servers support logging individual Transmission Control Protocol (TCP) sessions and blocking

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

13(

(

David(R(Walters,(contact@malwared.org(
(

specific Uniform Resource Locators (URLs), domain names, and Internet Protocol (IP) addresses

(NIST SP 800-53).

Figure 6 - Web Browsing Normal

Web-Browsing Explicit Proxies:

Web browsing proxies can be implemented a two different ways, explicit or transparent.

Transparent is where the packets are intercepted at some point along the path. Typically, at an

internet choke point. In a transparent proxy deployment, the user's client software (typically a

browser) is unaware that it is communicating with a proxy((Websense, 2014).(((

Explicit proxies are configurations in client browsers that tells them to only communicate with

the proxy in order to reach external resources over the HTTP or HTTPS protocols. In explicit

proxied environments the transport layer connectivity is only between the client and the proxy.

The proxy establishes its own transport layer connectivity to the true web service. The client is

effectively shielded from the outside world. This is an important distinction because it allows

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

14(

(

David(R(Walters,(contact@malwared.org(
(

network administrators to sinkhole the route of last resort. In transparent proxied environments,

the default route cannot be sinkholed. This is because the client thinks that it is communicating

with the real IP of the web service.

Figure 7 illustrates both HTTP and HTTPS requests when explicit proxies are in place. The top

request shows a GET request from the client to the proxy for the website www.sdf.org. Notice

how the destination IP address is that of the proxy and not of the real IP address of www.sdf.org.

The second request is a typical HTTPS request using the HTTP CONNECT method. The client

is requesting the proxy connect to ma.sdf.org over port 443 and then pass all subsequent data

through, acting like a TCP proxy.

This tunneling mechanism was initially introduced for the SSL protocol [SSL] to allow secure

web traffic to pass through firewalls, but its utility is not limited to SSL (Luotonen, 1999).

Again, notice how the destination IP address is that of the proxy. In both cases the destination

transport layer port is 8080, because this is used as an alternate HTTP port. This is arbitrary and

any TCP port configuration works. As long as the service port on the proxy and the client match.

If protocol analysis is not being performed on applications layer protocols, arbitrary protocols

can be run utilizing HTTP CONNECT. The RFC does not require TLS or SSL be used after the

CONNECT method. SSH or SMTP could be used just the same. It can be used as a method of

data exfiltration or bypassing filtering engines.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

15(

(

David(R(Walters,(contact@malwared.org(
(

Figure 7 - Web Browsing Explicit Proxy

Putting it All Together:

When used in conjunction with each other, these technologies create a narrow and controlled

path for packets leaving the internal zones. There are great benefits to this level of control, from

a malware defensive viewpoint. These technologies will not only detect malicious code when it

phones home but also unauthorized software that is improperly configured. It can do this

because much of this software also phones home to vendor’s web sites for updating purposes. If

malicious code tries to find its C2 infrastructure through DNS, it will only get a bogus IP. If the

IP address is hardcoded, the router redirects the packets to a controlled server that logs and drops

the packets. In both cases the malicious code fails to communicate with its desired partners. The

only way for malicious code to communicate out to the Internet is through the proxy

infrastructure. In order to do this it must be explicitly coded to do so. This requires additional

effort on the malware authors part, increasing time and resources required to achieve their goals.

In addition, the code footprint increases, which increases the likelihood to detect the malicious

code through forensic investigations and A/V signatures.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

16(

(

David(R(Walters,(contact@malwared.org(
(

Principle of Least Privilege:

Every program and every user of the system should operate using the least set of privileges

necessary to complete the job (Saltzer, 1975). This is a basic principle that has been around for a

long time. However, it is frequently not enforced nor employed. In the Microsoft Windows

world this principle can be applied by removing local administrative rights of everyday users.

Enterprise environments utilize Microsoft Active Directory (AD) to manage users and groups.

Within AD, it is simple to assign proper groups to user roles. However, in larger organizations it

becomes challenging to manage and maintain roles and group memberships. This is due to the

sheer number of users and roles. Without administrative rights on a system, users cannot install

software, create services, or configure administrative settings.

Reduced privileges are highly applicable to malware defense because when malware finds its

way onto a system, it typically wants to maintain some persistence by injecting itself into the

boot process, installing as a service, or adding itself to the startup section of the registry. Least

privilege can be helpful in preventing malware incidents, because malware often requires

administrator-level privileges to exploit vulnerabilities successfully (NIST SP800-83). In

addition, if the malware is downloaded by a user running with reduced privileges, it will execute

with those same privileges.

Table 2 represents a summary of Microsoft Advisories released since 2008. The advisories are

broken down by year. The 3rd and 4th columns show the number of advisories per year where

Microsoft states “Users whose accounts are configured to have fewer user rights on the system

could be less impacted than users who operate with administrative user rights”. Since 2008,

over half of the vulnerabilities identified by Microsoft, could have a reduced impact. A

reduction due to a simple implementation of the principle of least privilege. These numbers

support that running with limited privileges reduces risk. Reduced risk through privilege

management.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

17(

(

David(R(Walters,(contact@malwared.org(
(

Year Advisory
Released

Total MS Security
Advisories

MS Security
Advisories w/Admin
Privileges Discussed

Percent

2008 78 48 61.54%
2009 74 39 52.70%
2010 106 60 56.60%
2011 100 48 48.00%
2012 83 44 53.01%
2013 106 50 47.17%
2014 55 22 40.00%

 602 311 51.29%
Table 2 - Microsoft Security Advisory Analysis – As of September 2014

Malware Analysis Technologies:

Various technologies were used to facilitate this study. A behavioral analysis environment was

set up to execute and perform examination of the malicious code. Custom scripts collected

samples and configured the environment. Scripts also analyzed the logs produced during the

execution. Figure 8 depicts technologies used at each part of the infrastructure. The

environment is largely virtual, consisting of two physical machines connected by a switch that is

not depicted. The physical machines used are the firewall/proxy and a workstation running

Archlinux. The firewall is PFSense 2.1 with squid as the proxy. The virtual host is VirtualBox

version 4.3.8 with 2 guests. One guest is a Windows 2008 R2 instance with Active Directory

and DNS roles configured. A PowerShell script was developed to sinkhole all top-level domains

(TLDs) to the IP address of the sinkhole server. This script can be found for download from

www.malwared.org. The other guest is a Windows 7 SP1 instance that is a part of the Active

Directory domain managed by the AD server. This machine serves as the malware execution

virtual victim. This machine was patched up to December of 2013. Windows defender and DEP

have been disabled for the purposes of narrowing down the causes of malware success and

failure. The machine was prebuilt to a known good configuration and then a snapshot was taken.

At the onset of each malware execution, the Windows 7 machine is reset to a known good state.

After the reset, the execution takes place. The user who is executing each sample is running

without administrator privileges. The mass execution of malware samples was facilitated by

cuckoo malware analysis software. The analysis portion of what cuckoo provides was not used

to determine success for this study. The router used to provide inter-subnet communication is

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

18(

(

David(R(Walters,(contact@malwared.org(
(

iproute2, which is a routing package built for Linux and supports rule based routing and virtual

routing tables. The logical and actual routing tables are depicted in table 3.

Logical representation: Routing representation:

! Server network to proxy layer
! Server network to workstation network
! Workstation network to server network
! Workstation network to proxy layer
! Proxy network to server network
! Proxy network to workstation network
! Default to sinkhole

! 198.18.12.8/29 to 198.18.12.0/30 int0
! 198.18.12.8/29 to 198.18.12.32/27 int1
! 198.18.12.32/27 to 198.18.12.8/29 int2
! 198.18.12.32/27 to 198.18.12.0/30 int0
! 198.18.12.0/30 to 198.18.12.8/29 int2
! 198.18.12.0/30 to 198.18.12.32/27 int1
! 0.0.0.0/0 gateway 198.18.12.66 int3

Table 3 - Logical and Actual Routing

The sinkhole server is Kali Linux. The log server is rsyslog running on the host machine in

addition to an instance of splunk for some increased filtering and export capabilities.

Figure 8 - Analysis Technologies

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

19(

(

David(R(Walters,(contact@malwared.org(
(

Collection of Samples:

All of the samples executed are malicious. The process to collect the samples was to download

various md5 hash lists from VirusShare. Each of these lists has approximately 130,000 entries.

To avoid any challenges whether or not the samples are truly malicious, each list was vetted

against VirusTotal. To qualify, the hash had to have greater than 40 of ~50 A/V engines flag the

hash as malicious. The number 40 was chosen because it allowed enough samples to be

collected in a timely fashion. The files were downloaded from VirusShare after the list was

compilied. A list of all hashes can be found at www.malwared.org, along with the scripts used to

collect and vet them.

Analysis:

The execution environment had a defensive posture.((External DNS resolution was disallowed

and requests for external domains would be responded to with the internally controlled sinkhole

address. The router’s route of last resort was configured with an internally controlled next hop.

If the samples tried to communicate directly to an external IP, the packets would never leave the

internal network. The Windows 7 virtual victim was stripped of privileges through Active

Directory. All samples were executed with domain user privileges. In addition, the Windows 7

virtual victim has had its internet options configured to exclusively use the web proxy. Log

events were collected and centralized from every critical point in the environment where

possible. Figure 9 represents the log sources collected and analyzed during each execution.

Table 4 shows the log source at each point in the architecture along with a short description of

the targeted event.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

20(

(

David(R(Walters,(contact@malwared.org(
(

Figure 9 - Event Logging Flow

(

Log Source Targeted Event Description
Workstation Audit and system Logs on the Windows 7 host – shows privilege violations

and application crash events.
DNS Server DNS queries from Windows 7 host – shows attempted DNS resolution of C2

servers by malware.
Route Sinkhole All traffic from Windows 7 host to any external IP address – shows attempted

communications directly to an IP address by malicious code when IP address
is hardcoded into the sample.

Web Proxy CONNECT and GET HTTP requests from Windows 7 host to the proxy –
shows the ability to successfully communicate to an explicit proxy.

Table 4 - Execution Event Types

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

21(

(

David(R(Walters,(contact@malwared.org(
(

As each sample was executed on the Windows 7 virtual victim, any of the above events could be

generated. The following criteria determined if the malicious code was prevented from

successfully executing or communicating outside of the local network:

1) If the sample tried to resolve an external domain.
2) If the sample tried to communicate directly to an external IP address.
3) If the sample tried to perform some task that the current user does not have sufficient

permissions.

The following criteria determined if the malicious code was successful at communicating outside

of the internal network:

1) If the sample was capable of communicating with an HTTP CONNECT or GET request
to the forward web proxy.

The result table below shows the summary of all the samples tested. The definitions for each

category are as follows:

1) Success: Web Proxy event observed.
2) Explicitly Stopped: Privilege, RouteSink, DNSSink, or Crash event observed and no

Web Proxy event observed.
3) Unknown but no network IOCs: No Web Proxy, RouteSink, DNSSink, Privilege, or

Crash event observed.

The last category is assumed to be a failure because there are no network indicators observed. It

was mentioned earlier that many modern day malicious code samples require some form of

network communications. This is sufficient to state that the sample was not successful if no

network events occurred. There could be a multitude of reasons why this sample failed. It could

have been the wrong CPU architecture, a missing expected DLL, or a failed exploit simply due

to patching. If the sample cannot communicate out to the Internet then it cannot leak proprietary

code, PII, or organization secrets. Figure 10 is a common example of a multistage attack or a

multistage persistent threat. This stage-0 loader is a fairly primitive, hard-coded application

whose behavior is fairly limited. All it does is contact some remote machine over a cover

channel and load yet another loader, called a stage-1 loader. (Blunden, 2013) This diagram

shows that even multistage exploits are thwarted when they do not have the capability to

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

22(

(

David(R(Walters,(contact@malwared.org(
(

communicate out to public resources.

Figure 10 - Multi-Stage Loader (Blunden, 2013)

(

Category Count Percentage

Total 60628 100%

Success 714 1.2%

Explicitly Stopped 9049 14.9%

Unknown but no network IOCs 50865 83.9%

Table 5 – Results

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

23(

(

David(R(Walters,(contact@malwared.org(
(

Conclusion:

The results are very interesting, in that, they hint at the fact that commodity malware is just that,

commodity malware. It is written for the masses and is expecting limited barriers. It has been

very successful over the years. Now, fast forward to the 2014 DBIR. We have more incidents,

more sources, and more variation than ever before – and trying to approach tens of thousands of

incidents using the same techniques simply won’t cut it (Verizon DBIR 2014). It is obvious that

new approaches are needed. A more in depth approach should be applied. Malware defenses are

varied and should take on many forms, even those that are traditionally thought of as network

protocols. Simple improvements to network architectures make a difference. Enterprise

environments implement defense-in-depth measures, such as enterprise firewalls that prevent a

certain amount of malware from reaching users’ computers. Consequently, enterprise computers

tend to encounter malware at a lower rate than consumer computers (MSSIR, vol 15, 2013).

This study tries to show that breaking into corporate systems is more difficult with stronger

controls. The entrants to the game will be limited to those with the most skill and resources if

the difficulty is increased, thereby reducing the overall risk that data or intellectual property loss

poses to a particular organization. It is still possible to breach any network, regardless of the

defenses in place. However, with strong controls and monitored pathways, an organization

stands a much-increased chance of detecting the threat and reducing the risk.

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

24(

(

David(R(Walters,(contact@malwared.org(
(

References:

A. Nappa, M. Z. Rafique, and J. Caballero. (2013). Driving in the Cloud: An Analysis of Drive-
by Download Operations and Abuse Reporting. International Conference on Detection of
Intrusions and Malware & Vulnerability Assessment.

Blunden, B. (2013). The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the
System. Second Edition. Jones and Bartlett Learning.

Bruneau, Guy. (2010). DNS Sinkhole. Retrieved from https://www.sans.org/reading-
room/whitepapers/dns/dns-sinkhole-33523

Cisco. (2005). Remotely Triggered Black Hole Filtering – Destination Based and Source Based.
Retrieved from http://www.cisco.com/web/about/security/intelligence/blackhole.pdf

J. Caballero, C. Grier, C. Kreibich, and V. Paxson. (2011). Measuring Pay-per-Install: The
Commoditization of Malware Distribution. USENIX Security Symposium.

J. H. Saltzer and M. D. Schroeder. (1975). The protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278-1308. Retrieved from
http://web.mit.edu/Saltzer/www/publications/protection/Basic.html

Luotonen, A. (1999). Tunneling TCP based protocols through Web proxy servers. RFC Internet
Draft retrieved from http://www.web-cache.com/Writings/Internet-Drafts/draft-luotonen-web-
proxy-tunneling-01.txt.

Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed Abu-Nimeh,
Wenke Lee, David Dagon. (2012). From Throw-Away Traffic to Bots: Detecting the Rise of
DGA-Based Malware. USENIX Security Symposium.

McAfee Labs Threats Report. (2013). Fourth Quarter 2013.

M. Egele, T. Scholte, E. Kirda, and C. Kruegel. (2008). A survey on automated dynamic
malware-analysis techniques and tools. ACM Computing Survey.

Microsoft Security Intelligence Report Volume 15. (2013). January through June, 2013.

NIST. (April, 2013). NIST Special Publication 800-53 Revision 4. Security and Privacy
Controls for Federal Information Systems and Organizations Retrieved from
http://dx.doi.org/10.6028/NIST.SP.800-53r4.

NIST. (June, 2013). NIST Special Publication 800-83 Revision 1. Guide to Malware Incident
Prevention and Handling. Retrieved from http://dx.doi.org/10.6028/NIST.SP.800-83r1

Roberto Perdisci, Wenke Lee, and Nick Feamster. (2010). Behavioral Clustering of HTTP-Based
Malware and Signature Generation Using Malicious Network Traces. USENIX NSDI.

Verizon 2014 Data Breach Investigation Report. (2014).

Websense. (August 2014). Explicit and transparent proxy deployments. Retrieved from
http://www.websense.com/content/support/library/web/v75/wcg_deploy/WCG_Deploy.1.3.aspx

MalwareD()(A(study(on(network(and(host(based(defenses(that(prevent(malware(from(
accomplishing(its(goals(

25(

(

David(R(Walters,(contact@malwared.org(
(

http://www.malwared.org – Personal website for this research which includes a few scripts
mentioned throughout the paper.

