GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Building a Malware Zoo
GIAC (GREM) Gold Certification

Author: Joel Yonts, jyonts@gmail.com
Advisor: Pedro Bueno

Accepted: December 31st 2009

Abstract
Today malware circulates in mass volume. New samples appear at a rate of
thousands per day. In order to keep pace and manage this analysis demand two key
needs emerge: automation and organization. This paper seeks to lay the foundation
for a basic Malware Zoo that will provide a framework for both. Topics surveyed
will include: basic schema design, sandboxing technology, and analysis techniques.

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 2

1. Introduction

In today’s highly connected Internet age, we have seen an overwhelming flood of
new malware. According to a report' published by McAfee (Marcus, Greve, Masiello, &
Scharoun, 2009), over 12 million new pieces of malware were discovered in the first
three quarters of 2009. This rate of thousands of new samples per day has exceeded our
ability to manually analyze and catalog these threats. Additionally, maintaining a
comprehensive library of samples and supporting analysis artifacts’ has created an

information organization nightmare.

In order to avoid being consumed by this tide of malware and analysis demand,
we must embrace analysis automation (Bayer, 2009) and adopt an efficient information
storage and retrieval system. A Malware Zoo combines these two concepts into a unified
software solution. While many such zoos exist, most are confined within anti-malware
product companies and private research organizations. Little is known about the

structure and design of the majority of these systems.

The goal of this paper is to equip a wider audience with the ability to build their
own Malware Zoo solutions. Our approach will begin with defining high-level zoo
requirements. The attributes and requirements highlighted in this section should serve as
a minimum with site-specific customization expected. Following a true SDLC® model,
we will then move onto high-level design considerations. Design considerations will
include pros and cons for choosing many architectural components such as platform,
storage medium, and development language. Finally we will conclude with a series of
type-specific analysis sections that will detail attributes and automated analysis

techniques that are unique to specific types of malware.

I www.mcafee.com/us/local content/reports/7315rpt threat 1009.pdf
2 Collection of characteristics, behaviors, and attributes of a malicious sample
3 Software Development Life Cycle

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 3

2. Malware Zoo Requirements

In order to tackle the information organization and automation requirements we must
first understand malware analysis methodology. More specifically we must understand
the attributes, analysis techniques, and analysis artifacts that give insight into the origin,
capabilities, and characteristics of a malicious sample.

The exposition of this list of techniques and data points is beyond the scope of this
paper but luckily we can leverage the large volume of published work® to build our

requirements.

2.1. Organization of Information

At the heart of zoo organization is the concept of malware sample management.
Sample management includes storage and retrieval capability of the original sample,
sample attributes, and the various artifacts generated through the analysis of the sample.
A strong search capability is also needed that can perform complex searches across the
universe of information stored within the Malware Zoo. Lastly, including a capability to
store a control group of non-malicious samples can be invaluable in the benchmarking of
malicious behavior/attributes against non-malicious samples. The following
requirements table expands these high level concepts into a more detailed list of

requirements.

4 A list of malware analysis sources is noted within the reference section
Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 4

Table Zoo Requirements: Attributes & Artifacts

Ability to store and retrieve binary and text sample files
Ability to remove samples and supporting information

Storage and search of sample attributes:
o Collection Date o Comment Field
o Collection Source o File Size
o Zoo Submission Date o File Type
o Target Platform o MD5 Hash
o User Defined Tag o Fuzzy Hash
o Randomization Metrics o Type Specific Attributes

Storage, search, and retrieval of infection artifacts:
Dropped Files o Unpacked Binaries
Network Addresses Shell Code
Network Protocols Code Fragments

o
o

o OS Specific Changes Deadlistings

o Embedded Strings Type Specific Artifacts

Storage, search, and retrieval of analysis artifacts:
o Network Trace Files o Analysis Notes
o System Trace Files o Articles & References
o IDA Pro DB Files o Misc Analysis Artifacts
o Screenshots

Storage and search by signature detections of sample:
o Packer Identification o AV Signature Detection
o Network IPS Detection o Host IPS Detection

Ability to upload and maintain a separate control set of known good samples
o Storage and retrieval of non-malicious samples & sample attributes

Table 2.1.1: Basic Malware Zoo Requirements

2.2. Automated Malware Analysis

In many ways the automated analysis zoo component is the most critical. Without a
good analysis engine it would be near impossible to populate all the fields we previously
defined for all samples. This engine should support both static and dynamic analysis

implemented with a layer of isolation and other safeguards.

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 5

The analysis engine will be the most demanding zoo component from a system
perspective since it will involve execution of many CPU, memory, and disk intensive
tasks. Scalability will be an important requirement for keeping pace with the
analysis demand. Additionally, the tasks involved with analyzing malware are
constantly changing and expanding to new tools and methodologies. This dynamic
nature of malware analysis drives the need for a modular and easily updated design.
The following requirements table expands these high level concepts into a more

detailed list of requirements.

Z00 REQUIREMENTS: AUTOMATED ANALYSIS

Modular design that will support adding and removing analysis tasks

Provide static analysis capabilities:
o Determine File Size Determine MD5 Hash
Determine File Type Determine Fuzzy Hash
Determine Randomization Signature Detection of Packer Type
Extract Embedded Strings Signature Based AV Detection
Type Specific Analysis

Provide OS / Application specific analysis environments for dynamic analysis
Support concurrent analysis of malware samples

Provide dynamic analysis capabilities:

o Collect & analyze network events associated with infection
= Determine network addresses & protocols
= Automated collection of IP & domain registrar information
= Full network packet capture

o Collect & analyze operating system events associated with infection
= Determine new and modified files
= System configuration changes

o Type-specific analysis capabilities

e Scalable design that can spread analysis tasks across multiple systems
* Isolation of dynamic analysis environments to ensure containment
* Monitoring and alerting safeguards to ensure detection of containment issues

Table 2.2.1: Automated Malware Analysis Requirements

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 6

3. Zoo Design Considerations

Designing a Malware Zoo that delivers the requirements outlined in the previous
section involves making a series of architectural decisions. Each of these architectural
choices have benefits and consequences. The intent of this section is to outline design
options along with supporting pros and cons that empower you to create a zoo design that

best fits your needs.

3.1. Data Storage & Retrieval

There is a wide array of options available for delivering the information storage
capabilities needed for a Malware Zoo. For our discussion we will limit the focus to two
technologies: Flat Files and RDBMS storage systems. Even though our focus is limited,

the same decision principles can be applied to other available options.

Flat Files

Data Storage Architecture

Access Performance (Small Zoo Set) .
Access Performance (Large Zoo Set) .

Scalability Options

Ease of Implementation

Data Manipulation with Standard OS/Text Tools
Complex Search Capability

Support for High Availability Solutions

‘Excellent QGood GAverage GPoor QNeingibIe

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 7

As you can see from the previous table, utilization of a flat file’ storage system is an
ideal choice for smaller zoo sets that make use of standard text tools and shell scripts to
store, manipulate, and retrieve information. This architecture usually enables a quicker
time-to-market for initial implementation and requires less application development
experience. The main disadvantage of flat file storage systems is reduced performance
for larger zoos.

A RDBMS® based storage system is a natural choice for larger zoos that need
improved data access performance, higher availability, and complex searching capability.
It may take longer to implement such as system and require additional developer and

DBA skills but it should enable a more feature-rich and responsive Malware Zoo.

3.2. Platform Considerations

Platform choice is more a matter of preference that aligns with comfort level and
experience. Technologies that may be part of a Malware Zoo implementation such as
databases, programming/scripting languages, web servers, and other tools exists on all
major platforms.

Microsoft Windows, however, may be at a disadvantage as a zoo platform choice.
The disadvantage comes in the form of additional difficulty in maintaining containment
of samples due to the targeted (Wildlist Organization International, 2010; Aquilina,
Casey, & Malin, 2008) nature of this platform. This disadvantage can be overcome by
implementation of additional safe guards but may still be an important point to weigh

when choosing your zoo platform.

3.3. Analysis Node Architecture

Zoo analysis nodes fall into two categories: static and dynamic. Static nodes are
used to run various tools against the sample with the intent of extracting attributes
without executing the malware or triggering an infection. These nodes are tool
centric with the primary design consideration being how to combine like toolsets

into shared static nodes.

5 Flat file systems make use of normal operating systems files to store information
6 Relational Database Management System

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 8

Dynamic nodes shift the focus to a malware centric view where environments
are built to cater to the target execution environment of the samples. As one can
imagine, the number of dynamic nodes could become quite expansive considering
all of the application/middleware/operating system combinations possibly targeted
by malware. Picking an architecture that can efficiently support an ever-expanding
population of dynamic nodes is the first design challenge. The next design challenge
is providing an ability to “reset” a node back to a known-good, pre-infected state.
This functionality is critical since the end result of any successful dynamic
(behavioral) analysis run is a fully infected analysis node.

Solving the challenges outlined above often begins with choosing an
appropriate system architecture. Virtualization technology is a good system
architecture for promoting efficient resource utilization across a vast array of
unique analysis nodes. Most virtualization solutions also have the much-needed
“reset” capability implemented in the form of snapshot and revert. Virtualization
architecture is not without fault, however. Malware authors often implement VM
detection in their malware as a way of detecting and subsequently derailing analysis
efforts conducted by researchers.

Use of physical systems as analysis nodes is the purest environment for
analyzing malware with the most protection against anti-reversing techniques. The
drawback to this system architecture is poor scalability (especially if the mapping of
unique analysis environments to physical systems is a one-to-one ratio) and a very
slow and cumbersome “reset” capability.

A third option for system architecture exists in the form of sandboxing
technology. Some sandboxing solutions are already purpose built malware
analyzers. These systems require no additional design or development and can be
added directly to your zoo environment. Examples of this type of sandboxing
technologies are TRUMAN, Norman Sandbox” and CW Sandbox?. Other sandboxing

technology such as DeepFreeze® seeks to simply provide an environment with

7 http://www.norman.com/technology/norman sandbox

8 http://www.sunbeltsoftware.com/Malware-Research-Analysis-Tools/Sunbelt-CWSandbox

9 http://www.faronics.com/en/Products/DeepFreeze /DeepFreezeEducation.aspx

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 9

enhanced isolation and “reset” to pre-infected state. The table below provides a

Physical

Analysis Node Architecture

Analysis Throughput
(Environment “Reset” Capability)

Efficient Use of Hardware and Resources ..

Diversity in Supported Malware Types
(wide range of OS/Application Environments)
Anti-analysis Susceptibility ..
Analysis Isolation ..

.Excellent QGood GAverage @Poor QNeingibIe

summary of analysis node design considerations.

An ideal dynamic analysis engine would allow for multiple analysis nodes
with varying node types. This design could take advantage of virtualization and gain
speed and versatility benefits but also include a limited number of native nodes to

test for VM detection malware.

3.4. User Interface Selection/ Layout

A good user interface can have a tremendous impact on an analyst’s ability to
effectively and efficiently analyze samples. Often a balance is needed, or in some
cases dual interfaces, that support a quick point-n-click interaction while not loosing
the capabilities of batch upload, low level manipulation, and application integration

interfaces. Also, the user interface must be able to operate in the restricted

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 10

environment created through the various isolation layers implemented within a
Malware Zoo

Utilization of a thin client web presentation for applications has emerged as a de
facto standard for many enterprise applications. With portability and support for a
vast array of clients leading this movement, adopting this Ul technology will ensure
you can access from the broadest range of clients and devices. Additionally, thin
client technology functions well within a highly restricted environment due to the
inherit separation of presentation client from the server. The main pitfall to this Ul
architecture is the possibility of accidently sending a malware’s browser exploit
code to the zoo Ul screen. If this architecture is chosen, additional safeguards must
be implemented to scrub all Ul output.

Traditionally, thick clients or local GUI based applications could provide a more
dynamic and rich user experience but new web technologies such as DHTML and
AJAX combined with server side Java and PHP has closed this gap.

Depending on the integration and usability requirements there may be multiple
secondary interfaces and APIs implemented with a wide array of email, web,
messaging, and network based protocols. When choosing these additional
interfaces, isolation should always be considered. The principle to keep in mind is

each interface is a conduit by which loss of containment may occur.

3.5. Access Restrictions & Safe Guards

The greatest risk to maintaining a Malware Zoo is the loss of containment. In
this scenario a malicious sample somehow breaks out of the controlled storage and
analysis environment and infects the host system or other systems on the network.
In order to prevent this, a strong layer of isolation is required. Isolation can and

should take the form of the following:

* Segregated analysis network

* Separate (from host!%) physical systems or virtual machines for analysis

10 Host refers to the primary system housing the data storage and Ul components
Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 11

* Selection of a host platform that is not vulnerable to the majority of malware
samples (Selecting UNIX platform to store Win32 Malware)
* Display options for analysis artifacts should be scrubbed to avoid Ul

exploitation (Browser Exploits, Malicious JavaScript, iFrames, etc.)

With the best of safe guards things can still go wrong! Adding an integrity
monitoring and alerting system may save you from an embarrassing incident. A
comprehensive integrity system should look for potential compromise in any of the
zoo components: host systems, analysis network, data storage system, and the user
interface. Needed integrity monitoring capabilities may include:

* Monitoring of firewall and/or packet capture logs to ensure proper network

containment

* Maintaining host system file integrity utilizing a hash matching or similar
integrity validation technique

* Routine on-demand anti-virus scan of host systems (excluding memory and
file system locations housing malicious samples)

e Validation of database user accounts, permissions, and other administrative
structures against a normalized base line

* Ensure client side browsers are configured properly and current on patches

Finally, the debated practice of allowing malware to “phone home” to real
Internet sites may have it's value points but may not have a place in an automated
environment. If this is a practice you incorporate into your analysis processes,
carefully consider keeping this a manual task where you are actively watching the
information exchange. Too many variables are present to truly account for them all
with automation. The two greatest concerns would be the infection of innocent
downstream Internet users and the possibility of allowing an attacker a backdoor

into your analysis environment.

4. MyZoo: An Example Malware Zoo
With so many options and considerations it is easy to fall into analysis paralysis

and delay the building of a working solution. To avoid this issue this section will

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 12

define an example zoo design and provide basic implementation details. This
section may serve as a blueprint to jump-start your Malware Zoo development.

The design of this Malware Zoo, called MyZoo, will follow a LAMP!1 model
common to many open source solutions. The base OS will be a Linux!? distribution
running a MySQL!3 database for data storage and Apache/PHP4 for a user interface.
Analysis nodes will utilize a mix of VMWarel> virtual machines and physical
systems. To complete the solution, Python scripting will be used to tie the various
system components together into a heterogeneous solution. The specific details of

the solution stack is outlined below:

Architecture Stack
Host Platform Suse Linux v11.3
Data Storage MySql v5.1
User Interface PHP / Apache
Analysis Nodes - Linux, Win32, Mac OS X nodes
- Virtual & Physical Nodes

Virtualization VMWare Workstation 6.5

Programming Language Python 2.6

Table 4.0.1: Example Malware Zoo Architecture

4.1. Host System Design

The host system(s) will serve as the core for the Malware Zoo. This system(s)
will serve the user interface, store the samples, and control the analysis flow.
Properly configuring the host system components of the zoo includes developing a
file system structure to house the zoo, establishing trust relationships for submitting
samples to analysis nodes, and configuring of access restrictions to the web

interfaces. Below is the configuration used for MyZoo.

Zoo File Structure
$Z00_HOME /usr/local/zoo
Binary Files $Z0OO_HOME /bin

11 Development model incorporating Linux, Apache, Mysql, and PHP
12 http: //www.opensuse.org/en

13 http: //www.mysql.com/about

14 http: //www.apache.org/

15 http://www.vmware.com/products /workstation

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 13

Zoo Configuration $Z00_HOME/etc
Sample Storage $Z00_HOME/samples
$ZOO_MAINT /maint
Temporary Space $ZOO_HOME /uploads
HTML & PHP Ul Files $Z00_HOME/www
Table 4.1.1: MyZoo File Structure

The file structure utilizes an application “HOME” directory that houses a bin
(Binaries), etc (Configuration), and www (Web Content) layout. The uploads
directory serves as a temporary storage point for uploaded files. Uploaded files are
quickly consumed by the zoo and moved to the appropriate directory or database

structure.

The samples directory serves as the storage point for malicious samples. An
alternate design option was to store the files as binary objects within the database.
The file system storage option was chosen because it would greatly simplify and
improve the performance for reanalyzing the entire sample library. To better
organize the samples directory, a hierarchy was adopted that spreads the sample
library over a large number of directories whose names were derived from a

portion of the samples MD5 hash.

Sample Library Directory Hierarchy

./samples/ec78/ec783c6cb3ele0f66a7c2122b8ed7575
./samples/5635/5635121eefed47333d00£f£ff1fd4a5021f
./samples/0207/02077e4935994£d69813887fb0df6195
./samples/5acf/5acfaa3f96c54670780488f5e415cc57
./samples/31a8/31a8756b48576862e6312bdc063fa94b
./samples/999d/999dfed7d3£f90ba5d11b7£6364be98f4
./samples/bf90/bf902e1e439797£409a9bed0880e8bd2
./samples/aea9/aea9c27b8103bl7bd5da95d41a2fc274
./samples/ec78/ec783c6cb3ele0f66a7c2122b8ed7575
... truncated ...
Table 4.1.2: MyZoo Sample Directory Structure

This approach sufficiently randomizes the samples across a large number of
potential directories. As the population of samples grows and additional
organization becomes needful, an additional layer of directories can easily be added

utilizing the next grouping of characters in the samples hash. The beauty of this
Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 14

solution is that the exact storage location can be quickly calculated from the samples
hash. Also, note that the actual sample file is renamed to match the samples MD5
hash. This prevents potential name collision when analyzing the sample and the
original submission may still be retained as an attribute in the sample database.
Table 4.1.3 shows proof-of-concept Python source code for implementing a hash-

based directory hierarchy.

TABLE 4.1.3 PYTHON SCRIPT FOR MANAGING FILE ARTIFACTS STORAGE
import os

Parent Directory for Zoo Sample Storage
SAMPLE_DIR="/zoo/samples"

def storeFileArtifact (fileData, md5Hash):
Construct and Create (if necessary) sample directory
archiveDir =SAMPLE DIR+"/"+md5Hash[:4]
if os.path.exists(archiveDir) == False:
os.makedirs(archiveDir)

Store sample

zooName =archiveDir+"/"+md5Hash
fStore=open(zooName, "w")
fStore.write(fileData)
fStore.close()

return zooName

getFileArtifact (md5Hash):

Construct sample directory

archiveDir =SAMPLE DIR+"/"+md5Hash[:4]

if os.path.exists(archiveDir) == False:
return False

Retrieve sample data
zooName =archiveDir+"/"+md5Hash
sampleData=open(zooName, 'r').read()

return sampleData

tError checking omitted for brevity

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 15

4.2. Data Storage & Retrieval Configuration

The core of MyZoo is a MySQL database. The database will house all data
elements and artifacts with the exception of samples and the control group. In
order to efficiently store this voluminous and diverse group of data, a database
schema that normalizes the data into a grouping of tables with indexes built to
optimize access is needed. The following is the schema used to build the example

Z00.

Figure 4.2.1: Directory of Tables for the Zoo Database
The sample table stores the basic attributes of the sample. These attributes

are either included with the sample submission, available from OS functions or

available through simple static analysis tools.

SAMPLE TABLE
sample_id INT(XX), PRI KEY Unique identifier
tag VARCHAR(XX) User defined tag for
type VARCHAR(XX) Sample type (Predefined Types)
Platform VARCHAR(XX) Platform targeted by sample
size BIGINT(XX) Sample size (bytes)
md5 CHAR(XX), UNIQUE MD5 hash of sample
entropy FLOAT Randomness of Sample Data
zoo_date DATE Date sample was submitted
comment VARCHAR(XX) User defined comment

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 16

Table 4.2.1: MyZoo Schema for Samples Table

When samples are collected there are many interesting but often fluid pieces of
information that can be collected. Items like “where the sample originated” or
“what the sample was named when it was on a particular system” falls into this
category of interesting but not necessarily unique to a given sample. To
accommodate this many-to-one relationship between source information and a
sample, this information is stored in a separate sources table. This table is linked

with a specific sample table entry using the MD5 hash as a primary key.

SOURCES TABLE
md5 CHAR(XX), PRI KEY MD5 Hash of Sample
orig name VARCHAR(XX) Original Filename of Sample
tag VARCHAR(XX) User Defined Tag
source VARCHAR(XX) Sample Source: URL, System, Email
path VARCHAR(XX) File System Path, IP Address, etc.
collection_date VARCHAR(XX) Date of Sample Collection
case_id VARCHAR(XX) Case ID Associated with Sample
comment VARCHAR(XX) User Defined Comment

Table 4.2.2: MyZoo Schema for Sources Table

Anti-malware product vendors often lead the forefront in research and
identification of malware. Getting a read from various anti-malware vendors on
their assessment of a given sample is a crucial piece needed to link your analysis
with the research of colleagues throughout the world. Table 4.2.3 presents the

schema used in MyZoo for storing this information once collected.

AV_DETECTIONS TABLE

md5 CHAR(XX) MD5 Hash of Sample
av_name CHAR(XX) Anti-Malware Vendor Name
av_detection VARCHAR(XX) Detection String Returned or NULL
date Datetime Date of Sample Scan
av_version VARCHAR(XX) Scan Engine and Signature Versions

Table 4.2.3: MyZoo Schema for AV Detections Table

Whether intentionally or by accident, malware authors often leave many
clues embedded in unencoded strings within a sample. These pieces of information

range from an author’s hacker name to hosts intended for use as command and

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 17

control. Often the strings can also give away the country of origin for a particular

sample. Since this data is unstructured the schema for storage is very loose and

simple.
STRINGS TABLE
md5 CHAR(XX) MD5 Hash of Sample
strings TEXT Embedded String
date DATETIME Date of String Extraction

Table 4.2.4: MyZoo Schema for Strings Table

In addition to the tables already defined there are two additional groups of
tables. The first can be generally labeled as ADMIN tables. These are various tables
that are used in the backend operations of the zoo. Tables of this category include,
but are not limited to, zoo configuration table, a logs table that tracks all zoo events
(submissions, sample extraction, etc.) and a jobs table where various zoo tasks can
be scheduled or submitted.

The last grouping of tables is the analysis tables. These tables store the
various artifacts extracted during analysis of the sample. Since these tables are so
closely tied to the analysis process we will defer defining these tables until we reach

the various analysis sections documented in later sections of this paper.

4.3. Managing Analysis Node Submissions

Managing analysis nodes can be a considerable amount of work. Samples
must be submitted to these nodes, the analysis process must be initiated, and the
results must be collected in such a way that the data can be incorporated into the
zoo database. Having all of these tasks driven from the zoo engine server (houses
the database and serves the web UI) is asking for potential performance and
containment issues.

A better approach would be to offload all of these administrative tasks onto a
separate analysis node controller. This controller would be responsible for the
following functions:

* Submitting analysis tasks to nodes
* Managing the analysis process on the remote nodes

* Collect resulting analysis information

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 18

¢ Methods for the zoo engine server to retrieve analysis information

* Manage the state of the analysis nodes (reset, patch, rebuild, etc.)

Additionally, network access controls can be implemented so that analysis
nodes can only communicate with the controller and the controller can only
communicate with the zoo engine through a secured SSH connection. This layer of

isolation provides a powerful addition to our layers of containment.

4.4. Scripting Language

Malware analysis is a vast topic and the tools list required to analyze the gambit
of sample types is expansive. These tools include scripts, operating system
commands, custom applications, and forensic tools. In order to avoid the MyZoo
implementation from devolving into a loose collection of utilities, the Python®
scripting language will be used to bind the various tools and techniques together
into a cohesive solution. The various analysis techniques highlighted in the
forthcoming analysis sections will be presented as either native Python or system
commands wrapped in Python functions. The intent of these scripts is to provide a
template for implementing zoo analysis functionality. Actual zoo implementation
should include additional data parsing, object oriented development, and error

checking functionality.

16 http://www.python.org/

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 19

4.5. User Interface Design

As mentioned in section 4.1, the LAMP development model was selected for
implementation of MyZoo. The user interface components of LAMP translate to the
use of HTML, Apache, and PHP to create a thin-client based interface. Actual screen
design is beyond the scope of this paper but generally the screens identified in Table

4.5.1 were implemented as part of the MyZoo conceptual zoo.

AT)

R

(URL, Hostname)
= Case D

= Collection Date

= Comment

Page Elements Eorm Elements Eorm Elements
= Zoo Status = Tag = byTag
= Sample Metrics = Path to Sample = by MD5
= Pending Jobs = Collection Type = by Type
(Web, Host, Email) = by Source
= Collection Path = by Case ID

= by AV Detection

a by String

‘ SEARCH l

= Tabular List Zoo Configuration

= Sample ID = Display Jobs

= MD5S = View/Search Logs

¢ Tag

= Platform

¢ Type, Size

: égﬁ'lglaetiinks Screen Design Based
(Sources, Analysis, on Analysis Data
Download, etc.) Collected

Table 4.5.1: Conceptual Screen Layout for My Zoo

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Building a Malware Zoo | 20

4.6. Design Summary

App Server: Apache,
PHP, Javascript

DB Server: MySQL
App Engine: Python

Porl 80, 443, 2

Thln Client App Firewall
Browser, HTML,
Javascrnpt
I: Port: 22:|

HDNEY NDDES

Analysis Controller:
Issue analysis jobs &

publish results

l PHYSICAL ANALYSIS NODES |

I VIRTUAL ANALYSIS NODES I

Figure 4.5.1: MvZoo Concentual Design

Figure 4.5.1 pulls the various design elements outlined in this section into an
integrated system view. Note the addition of an analysis controller. This system serves
as a bridge between the zoo and the various nodes. By implementing this additional
system, we can offload the management of the analysis process and the analysis nodes
from the primary zoo systems. This is beneficial for system resource management and

follows as modular design philosophy.

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 21

5. Static Analysis

Often the first step in analyzing a potentially malicious sample is to pass the
sample through a series of static analysis tools. Static analysis tools analyze the
sample’s file structure and/or contents without executing the sample. These
analysis processes establish the basic attributes of each sample as they are

submitted to the zoo collection.

5.1. Collecting General Sample Attributes

General Attributes
e Size e Sample Type
* Hash e Strings
* Fuzzy Hash * Entropy

Table 5.1.1: Common Attributes that Exists Across all Sample Types

The general attributes listed in Table 5.1.1 transcends platform and exists
regardless of sample type. The processes for collecting these attributes run the
gambit of simple size (Table 5.1.2) calculations to the more advanced fuzzy hashing
and entropy calculations. This section will document static analysis techniques for
obtaining each of these attributes and present a potential schema for storing these

data elements.

TABLE 5.1.2: DETERMINING SAMPLE SIZE
import os

def getSize(filename):

Return file size
size =os.path.getsize(filename)
return size

Sample Type

Determining sample type is a foundational step in beginning an automated
analysis process. Type will largely dictate the path the sample will take through the
analysis process and defines what information will be stored about this sample.

There are multiple options for determining sample type but one of the best is the

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 22

tried and true *NIX file command. This command exists natively on all *NIX derived

operating systems!” and has an extremely simple syntax.

TABLE 5.1.3 DETERMINING FILE TYPE
import commands

def getFileType(filename):

Execute "file -b <filename>"
results=commands.getstatusoutput("file -b "+filename)
return results[l] # [0]=Execution Status, [1]=CMD Output

A good augment to the file command is the verbose TrID¢ utility by Marco Pontello.

TABLE 5.1.4 EXTENDED IDENTIFICATION USING TRID UTILITY
import commands

def getTrID(filename):

Execute "trid —d: -b <filename>"

cmd="trid -d:"+TRID DEFS+" "+filename
results=commands.getstatusoutput (cmd)

return results[l] # [0]=Execution Status, [1l]=CMD Output

Cryptographic Hash

In the world of malware samples where filenames can change in milliseconds
the cryptographic hash reigns supreme as the method for uniquely identifying
samples. Specifically MD5 and SHA1 hashes are the most common hashes used in

sample identification. Table 5.1.5 provides options for computing file hashes.

18 http://mark0.net/soft-trid-e.html

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 23

TABLE 5.1.5 COMPUTE HASHES
import hashlib

def getHash(filename):
data=open(filename, "r").read()

Compute MD5 and SHAI1 hashes

md5hash=hashlib.md5 (data) .hexdigest()
shalhash=hashlib.shal(data).hexdigest()

Build return structure
results=[md5hash, shalhash]

return results

Another form of hashing called fuzzy hashing has emerged as a method for
comparing the similarities between two samples. Fuzzy hashing uses a Context
Triggered Piecewise Hashing method (Kornblum, 2006) for comparing files on a
section by section basis. As part of this process each file entering the zoo would be
compared against the existing fuzzy hash database for a potential match. Matches
are not absolute, hence the “fuzzy” concept, but rather measured on a scale from 0-
100. Regardless of the outcome, the zoo’s fuzzy hash database would be extended to
incorporate the fuzzy hash of this new sample. Fuzzy hashing can potentially

identify malware families, common packers, and other functional similarities.

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 24

TABLE 5.1.6 COMPUTE Fuzzy HASHES AND FuzZzy MATCHES
import commands

def getFuzzyHash(filename):
Compute fuzzy hashes and fuzzy matches

cmd="ssdeep -bm "+FUZZY DB+ " "+filename
match=commands.getstatusoutput (cmd)

cmd="ssdeep -b " +filename

fuzzyHash=commands.getstatusoutput (cmd)

Add hash to database for future match
addFuzzyHash2DB(fuzzyHash)

Build return stucture
results=[fuzzyHash, match]

return results

Embedded Strings

Numerous methods exist for extracting string data. A popular option is the
*NIX strings command. This command exists on all major *NIX variants and the Mac
OS X platform. This command could be a good choice for extracting string data but
may suffer performance issues due to potentially passing large volumes of data
through an external program call (external to the zoo’s Python engine). An alternate
option that may alleviate this performance concern is to construct a native Python
function for extracting string data. Table 5.1.7 shows proof-of-concept code for

implementing a strings utility in native Python.

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 25

TABLE 5.1.7: EXTRACT EMBEDDED STRINGS
import curses.ascii

def extractStrings(fileName):
frag=
strList=[]
bufLen=2048
FRAG LEN=4 # Min length to report as string

fp=open(fileName, "rb")

offset=0
buf=fp.read(buflen)
while buf:
for char in buf:
Uses curses library to locate printable chars
in binary files.
if curses.ascii.isprint(char)==False:
if len(frag)>FRAG LEN:
strList.append([hex(offset-len(frag)),frag])
frag=""
else:
frag=frag+char

offset+=1
buf=fp.read(buflen)
return strlList

Sample Entropy

Another interesting sample attribute is the measure of entropy or
randomness in the data. Generally, the higher the entropy the greater the chance

the sample is either compressed or encrypted. (Kendall & McMillan, 2007).

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 26

TABLE 5.1.8: COMPUTATION OF DATA ENTROPY1?
import math

def getEntropy(data):
"""Calculate the entropy of a chunk of data.
if not data:
return 0

mon

entropy = 0
for x in range(256):
p_x = float(data.count(chr(x)))/len(data)
if p x>0:
entropy += - p _x*math.log(p x, 2)

return entropy

Anti-Malware Signature Detections

A great addition to a zoo analysis system is the static analysis of the sample
by an array of Anti-Malware products. The best approach for zoo implementation
would be to leverage the command line scanner tools included with most AV
products and turn off On-Access scanning. These products can be installed on
individual analysis nodes or an attempt can be made to consolidate them onto a

reduced number of analysis nodes.

Zoo Storage of General Sample Attributes

The MyZoo schema described in Tables 4.2.1 through 4.2.4 accommodates
the storage of most of the attributes described in this section with the exception
being the storage of the TrID data and fuzzy hashing results.

To accommodate the TrID data a text field can be added to the sample table
or a separate table can be built with the special purpose of housing this data. The
advantage of the separate table approach is improved performance of sample table

access due to reduced record size and reduced record fragmentation.

19 Source code taken from Ero Carrera’s pefile: http://code.google.com/p/pefile

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 27

SAMPLE DESCRIPTION TABLE

md5 CHAR(XX) MD5 Hash of Sample
trid TEXT Output of TriD utility
Table 5.1.9: Sample Description Schema

The other advantage of the sample description table approach is that it can
be leveraged to store other text information about the sample. This other data could
be anything from general notes entered by the analyst to the output of future
commands that will be added as an expansion to our zoo’s functionality.

The other element that was not included in the original database schema is
the fuzzy hashing results. Efficiently storing and managing the fuzzy hash
relationships can be challenging due to the many-to-many relationships
represented. First, a table that stores the “fuzzy matches” between samples could

take the form of the table described in Table 5.1.10.

FUZZY MATCHES TABLE
md5 CHAR(XX) MD5 Hash of Sample #1
md5 CHAR(XX) MD5 Hash of Sample #2
fuzzy_score TINY Numeric score (0-100) of match
date Datetime Date of Fuzzy Hashing

Table 5.1.10: Schema for Storing Fuzzy Matches
Each match that achieved a configurable threshold score would be entered as
a separate entry in this table. A second table could store the growing fuzzy hash

database used in the fuzzy hashing process.

FUZZY HASH DB TABLE
md5 CHAR(XX) MD5 Hash of Sample
fuzzy_hash CHAR(XX) Fuzzy Hash of Sample

Table 5.1.11: Schema for Maintaining the Fuzzy Hash Database

Since the primary fuzzy hashing tool outlined in this section, ssdeep, requires
the hash database to reside in a file, a process may need to be created to continually

update/dump a local file copy of this database table.

5.2. MS Packed Executable Analysis
The PE file format contains many potentially interesting structural components

for malware analysis. While there are numerous fields available for analysis, our

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 28

focus will be limited to those attributes that will point directly to malicious activity

or that will assist us in further analysis of the sample.

PE Header Analysis

The foundational structures of the PE file format?29 are the PE Headers. These

data structures house many file attributes that are of interest to the malware

analyst. Table 5.2.1 represents a potential set of attributes used during the analysis

process.
PE Header Attributes Used in Malware Analysis
PE File Header Optional Header
* Machine Magic
* Number of Sections SizeOfCode
* Pointer To Symbol Table SizeOfInitializedData
* Number of Symbols SizeOfUninitializedData
* Size of Symbols EntryPoint
* Size of Optional Header BaseOfCode
* (Characteristics BaseOfData
ImageBase
Export Directory Table (EDT) SizeOflmage
* Name RVA SizeOfHeaders
* Ordinal Base DLLCharacteristics
* Address Table Entries NumberOfRVAsAndSizes

e Number of Name Pointers

* Export Address Table RVA Import Directory Table (IDT)

* Ordinal Table RVA * Import Lookup Table RVA
* Name RVA
Import Library Table (ILT) * Import Address Table RVA

* Ordinal/Name Flag
* Ordinal Number Load Configuration Structure
* Hint/Name Table RVA * SecurityCookie

e SEHandlerTable

* SEHandlerCount

Table 5.2.1: Relevant PE Header Attributes

Since PE file analysis is a mature area of malware analysis, many options

exist for extracting these elements of a sample. In keeping with the Python roots of

20 http: //www.microsoft.com /whdc/system/platform/firmware /pecoff. mspx

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 29

our MyZoo design, a Python based toolset called pefile?! provides a good
programmatic capability for extracting this information.

TABLE 5.2.2: EXTRACTION OF PE ATTRIBUTES
import pefile
import peutils

class PE:
def init (self,filename):
self.pe=pefile.PE(filename)
return

getDOS HEADER(self):
return self.pe.DOS HEADER

getFILE HEADER(self):

return self.pe.FILE HEADER

getOPTIONAL HEADER(self):
return self.pe.OPTIONAL HEADER

getPE TYPE(self):
return self.pe.PE_TYPE

getDIRECTORY ENTRY IMPORT (self):
return self.pe.DIRECTORY_ ENTRY IMPORT

getDIRECTORY ENTRY EXPORT (self):
return self.pe.DIRECTORY_ ENTRY EXPORT

PE Identification
Another feature of the pefile toolset is the ability to match a PE structure

against a database of known PE signatures??. Included in the database are

signatures for many packers, compilers, and other development tools.

21 http://code.google.com/p/pefile
22 PE signature functionality and signature database is based on the PEiD utility

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 30

TABLE 5.2.3: PE IDENTIFICATION
import pefile
import peutils

def peIdentify(filename):
Load PE Signature Database & Sample PE
sigs=peutils.SignatureDatabase(SIGS DB)

pe=pefile.PE(filename)

Match PE against signature database
matches=sigs.match all(pe, ep only=True)

return matches

Zoo Storage of PE Attributes
Expanding our example database schema (MyZoo) to store PE attribute

information is a fairly straightforward process. A general PE attribute table would

serve as storage for most of the attributes.

PE ATTRIBUTES DB TABLE
Machine CHAR(XX) Target CPU Platform
NumberOfSections CHAR(XX) Number of Sections
TimeDateStamp CHAR(XX) Creation Date & Time
PointerToSymbolTable CHAR(XX) Symbol Table Location
NumberOfSymbols CHAR(XX) Size of Symbol Table
... truncated?3 ...

Table 5.2.4: DB Schema for Storing PE Attributes
The primary PE attributes not stored in the PE Attributes table are function

imports and function exports. These elements again fall into the many-to-one

relationship status which is best organized into a separate table.

IMPORT & EXPORT DB TABLE
md5 CHAR(XX) MD5 Hash of Sample
type TINYINT Import or Export
fct name CHAR(XX) Function Name
fct address CHAR(XX) Function Address
fct_ ord TINYINT Ordinal Number of Function

Table 5.2.5: DB Schema for Storing Imports and Exports

23 PE Table Schema was Truncated Due to Schema Length and Repetitive Definition.
Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 31

The import/export table would contain one entry for each function that is
either imported or exported with the use of an MD5 hash of the sample to link all

entries back to a specific sample.

5.3. Mac OS Binary Analysis

With the rise in Macintosh market share the need for basic Mac binary analysis
has also risen. The Mach-O binary format?* is the Mac equivalent of the MS
Windows PE file format. Mach-O has many of the same structures that we analyzed
in the previous MS Packed Executable section. Mach-O structures of interest include
headers, imports, exports, shared libraries, and the symbol table. Tables 5.3.1
provides a sample Python script for extracting these attributes using the otool?5

utility.

TABLE 5.3.1: EXTRACTION OF MACH-O ATTRIBUTES
import commands

class MachO:
def init (self, filename):
self.filename=filename

def callSystemCmd(self, cmd):
results=commands.getstatusoutput (cmd)
return results[l] #[0]=Execution Status, [l]=CMD output

otool —h <filename>

def getMachHeader(self):
cmd="otool -h "+self.filename
results=self.callSystemCmd (cmd)
print results

otool —f <filename>

def getFatHeader(self):
cmd="otool -f "+self.filename
results=self.callSystemCmd (cmd)
print results

24http://developer.apple.com/mac/library/documentation/DeveloperTools/Conce
ptual/MachORuntime/Reference/reference.html

25 otool is part of Apple’s Xcode Development Suite:
http://www.apple.com/developer

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 32

TABLE 5.3.1: EXTRACTION OF MACH-O ATTRIBUTES (CONTINUED)

otool —L <filename>

def getLibraries(self): # External Libraries
cmd="otool -IL "+self.filename
results=self.callSystemCmd (cmd)
print results

otool —1 <filename>

def getLoadCmds(self): # Segment & Section Information
cmd="otool -1 "+self.filename
results=self.callSystemCmd (cmd)
print results

nm -a <filename>

def getSymbolTable(self):
cmd="nm -a "+self.filename
results=self.callSystemCmd (cmd)
print results

Storage of the Mach-O attributes and elements follows a similar schema design
as to what was developed in section 5.2. The header attributes that exist as a one-
to-one relationship with the sample can be stored within a Mach Attributes table.
File imports, exports, libraries, and symbols would be stored in separate tables.
These additional tables can be Mach-O specific or the equivalent tables used for
storing imports, exports, etc. for the PE files can be generalized to house both types.

Since the development of Mach-O attribute database tables so closely resembles
those already defined in section 5.2, sample Mach-O tables will not be included in

this section.

5.4. ELF Binary Analysis

For the sake of completeness, this section will describe the techniques and
attributes involved with analyzing ELF Binaries. ELF is the most common binary
executable format utilized by the Linux OS.

The ELF binary format has the same major structures that we saw in the PE and
Mach-O formats. This list of structures include an ELF header, segment & section
information, dynamic libraries, and a symbol table. Tables 5.4.1-5.4.4 describe

methods for extracting these attributes.

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

TABLE 5.4.1: EXTRACTION OF ELF ATTRIBUTES
import commands

class ELF:
def init (self, filename):

self.filename=filename
return

callSystemCmd(self, cmd):
results=commands.getstatusoutput (cmd)
return results[l] #[0]=Execution Status, [l]=CMD output

readelf —h <filename>
def getHeaders(self):

cmd="readelf -h "+self.filename
results=self.callSystemCmd (cmd)
return results

readelf —S <filename>
def getSegments(self):

cmd="readelf -S "+self.filename
results=self.callSystemCmd (cmd)
return results

readelf —d <filename>
def getLibraries(self):

cmd="readelf -d "+self.filename
results=self.callSystemCmd (cmd)
return results

readelf —s <filename>
def getSymbolTable(self):

cmd="readelf -s "+self.filename
results=self.callSystemCmd (cmd)
return results

Building a Malware Zoo | 33

Storage of the ELF attributes follows a similar methodology and schemas as

outlined in section 5.2 and 5.3 so sample ELF tables with not be included in this

section.

5.5. Analysis of Other Sample Types

In sections 5.2 through 5.4 we covered the major executable binary formats that

are utilized by malware developers. These formats represent malware threats that

are targeted at the operating system level. Malware, however, often attacks at the

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Building a Malware Zoo | 34

application layer so we must broaden our capabilities to accommodate analysis of
this new category of malware.

Before examining some common application layer malware types we should
take a moment to discuss the dangers of incorporating this type of malware into our
zoo. The greatest danger with application layer malware is that the applications
exploited by the malware may be included as part of the operation of your zoo
solution. The most obvious is browser-based malware infecting the browser used to
access your Malware Zoo. Another example could be the use of Microsoft Office
tools to view zoo reports on a sample that turns out to be a Microsoft Office virus.

Additional care needs to be taken to ensure isolation of this category of samples.

Malicious PDFs
Malware delivered via Malicious PDF?2¢ is currently king amongst document

type malware. A number of tools exist to parse these documents with the intent of
mapping the malicious content. Some of the most prominent tools are the pdf-
parser and pdfid?’ tools written by Didier Stevens. These are Python based tools

that provide extensive parsing and identification capabilities for this document type.

TABLE 5.5.1: EXTRACTION OF PDF ATTRIBUTES

import commands
import pdfid

class PDF:
def init (self, filename):
self.filename=filename
return

def callSystemCmd(self, cmd):
results=commands.getstatusoutput (cmd)
return results[l] #[0]=Execution Status, [l]=CMD output

pdfid.py <filename>

def getObjectTypes(self):
results=pdfid.PDFiD(self.filename) # Extract Ob Count
rtn=pdfid.PDFiD2String(results, True) # Format Results
return rtn

26 http://www.adobe.com/devnet/pdf/pdf reference.html

27 http://blog.didierstevens.com/programs/pdf-tools

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 35

TABLE 5.5.1: EXTRACTION OF PDF ATTRIBUTES (CONTINUED)

Since pdf-parser.py is written in Python a native
integration similar to the pdfid example above is

possible. For this example pdf-parser.py was called
as an external program

pdf-parse.py --hash <filename>

def getObjectHash(self):
cmd="pdf-parser.py --hash "+self.filename
results=self.callSystemCmd (cmd)
return results

pdf-parse.py <filename>

def getObjects(self):
cmd="pdf-parser.py "+self.filename
results=self.callSystemCmd (cmd)
return results

pdf-parse.py --object <#> <filename>

def getObjectByNum(self, ObjNum):
ObjParm=" --object " +str(ObjNum) +" "
cmd="pdf-parser.py"+ObjParm+self.filename
results=self.callSystemCmd (cmd)
return results

Image Malware
Another example of application layer malware is malicious image files. With

this type of malware, exploit code embedded within the image takes advantage of an
image viewer flaw to gain remote execution capabilities. The primary goal of the
remote execution is usually to extract malware from an embedded image object and
install it on the local system. Detecting these embedded objects is one key in
analyzing this type of malware. stegdetect?? is a free tool by Niels Provos that aids in
the detection of hidden objects within images. Table 5.5.2 provides source for

implementing stegdetect within our example zoo.

28 http://www.outguess.org/detection.php

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 36

TABLE 5.5.2 HIDDEN OBJECTS IN IMAGE FILES
import commands

def detectHiddenObj (imagefile):

Utilize stegdetect for detecting objs embedded in images
cmd="stegdetect "+ imagefile
results=commands.getstatusoutput (cmd)

return results

In the MyZoo example, behavioral analysis would be used to further analyze

any malicious image files flagged by the detection function.

Analysis Expansion Opportunities
Many opportunities exist to expand the zoo analysis capabilities outlined in this

section. With the framework built and with the intended modular design, additional
analysis capabilities should be easily added. For the sake of brevity some analysis
capabilities were omitted that may be target areas for future expansion. These
areas include malicious JavaScript, Office Macro, and Mobile Device malware

analysis.

5.6. Summary

Static analysis is a great first step in the malware analysis process. The previous
static analysis sections highlighted the various techniques for building a basic static
analysis capability. Since these techniques were presented in the form of python

functions, rolling them together into a cohesive solution is greatly simplified.

TABLE 5.6.1: PROCESSING SAMPLE
def processSample(filename):

Basic Sample Attributes

fileTypeStr =getFileType(filename)
basic_attr['type'] =getFileType(filename)
basic_attr['size'] = getSize(filename)

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 37

TABLE 5.6.1: PROCESS SAMPLE (CONTINUED)

md5,shal= getHash(filename)

basic_attr['md5'] =md5

basic_attr['shal'] =shal
basic_attr['fuzzyhash']=getFuzzyHash(filename)
basic_attr['entropy']=getEntropy(filename)

DB function for inserting attribute data
Paraml: <table name>

Param2: <data to insert into DB>
dbInsert("SAMPLE", basic_attr)

Parse PE File

if fileTypeStr.count("PE32") >0:
pe=PE (filename)
dbInsert("PE_ATTR", pe)

Parse Mach-O File

elif fileTypeStr.count("Mach-0") >0:
macho=MachO(filename)
dbInsert ("MACHO ATTR", macho)

Parse ELF File

elif fileTypeStr.count("ELF") >0:
elf=ELF(filename)
dbInsert ("ELF_ATTR", elf)

Parse PDF File

elif fileTypeStr.count("PDF") >0:
pdf=PDF (filename)
dbInsert("PDF_ATTR", pdf)

Notice in the script above, after calling each of the analysis functions, all
attribute data is stored in the zoo database. This allows a decoupling of data
collection from presentation and reporting of the data. Table 5.6.2 lists a sample

PHP script used to generate a web report of basic attributes for a given sample.

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 38

TABLE 5.6.2: PHP SCRIPT FOR GENERATING A SAMPLE REPORT

// MYSQL Connect and DB select
= mysqgl connect(
mysgl select db();

14

'"SELECT * FROM samples where md5=""'. 5
if (mysgl query()) { // Run the query
if(= mysqgl fetch assoc(5r)) {
print "<TABLE class=\"attrTable\">";
print "<CAPTION>Basic Attributes</CAPTION>";

// Parse Query Results & Build HTML Report
foreach (as =>) {
print "<TR>";
print "<TD class=\"attr\">". .":</TD>";
print "<TD>". ."</TD>";
print "</TR>";

}
print "</TABLE>";

Figure 5.6.3 shows a report generated using the PHP script shown above.

BAsIC ATTRIBUTES
SAMPLE_ID: 1227
TAG: Koobface
MD5: 18395e9476bde417692f3a7ab807ac44
SHA1: 699004eebfed330cead8532b5e80c98bf27eaact
PLATFORM: Win32

TYPE: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit
SIZE: 40960

ENTROPY: 3.82781953111
Z0O_DATE: 2009-10-26

COMMENT: Sample retrieved from site spammed through facebook wall post

Figure 5.6.3: Sample Zoo Report for a Koobface sample

Joel Yonts, jyonts@gmail.com

© 2010 The SANS Institute Author retains full rights.

Building a Malware Zoo | 39

6. Behavioral Analysis

Behavioral analysis is a vast topic that we will approach lightly with a focus on
an overview of processes used in behavioral analysis, interesting behavioral
analysis artifacts and collection methods, and a general approach to artifact storage.
This section will leverage the behavioral analysis environments that were outlined

in sections 3.3 and 4.3.

6.1. Analysis Overview

Examining malware while it is executing is far different than simply looking at a
sample at it’s resting state. In the static analysis processes described in section 5 we
were in the command seat and could execute the analysis commands and collect the
output at the pace we dictate and in our prescribed sequence. With behavioral
analysis the approach changes to allowing the malware to do what it wants (within
our controlled environment) while the analyst captures the relevant data in more of
a spectator type position. Obviously the processes of gathering this information
needs to have an additional layer of automation and coordination because we are no
longer controlling the analysis flow.

The analysis techniques used in this section falls into one of the following two

categories.

e Events are collected as they occur and
stored for the analysis and reporting
phase

e A baseline is established prior to
sample execution and the end state of
infection is compared against the
baseline to identify deltas

Real-time collection is usually implemented on the system being infected with

some level of hooking being implemented to catch system calls in order to maintain

Joel Yonts, jyonts@gmail.com

Building a Malware Zoo | 40

a running list of activities. While this is transparent to most applications, malware
that contains anti-analysis functionality may be able to detect the presence of these
tools and skew the analysis results.

Snapshot & Compare suffers less from the anti-analysis techniques as described
above since the tools are not running during the main infection process. This
technique also has gaps since there could be a wide range of activities that are
transient and not represented in either the before or after snapshots. Also, the
malware infection may implement Rootkit technology that prevents the after
infection snapshot from getting an accurate picture of the system.

A good automated analysis environment leverages both types of analysis
techniques to gain the widest visibility and improve the likelihood of closing the

gaps mentioned above.

6.2. Analysis Artifacts

At a summary level, when malware executes, the artifacts of infection involve a
combination of network activity, file system changes, and operating system
modifications. These general categories take on a vastly different implementation
depending on the operating system and malware type being analyzed. For the sake
of brevity we will focus on implementing behavioral analysis for MS Windows PE
samples but the same principles and techniques would apply to the majority of
malware samples available. Figure 6.2.1 represents basic attributes of interesting

when conducting behavioral analysis of MS Windows PE samples.

Joel Yonts, jyonts@gmail.com

Building a Malware Zoo | 41

r r)
e [P Addresses e Registry
e Hostnames » Additions Services
e Session Pcap e Modifications e Mutex

e Deletions

B cov B sisem

Figure 6.2.1: Artifacts of Windows PE Behavioral Analysis

Collecting Events in Realtime
There are many tools available for tracking system modifications. Popular

options include Process Monitor?° by Sysinternals (Microsoft) and the open source
tool Process Hacker3). For the sake of automation however, a non-graphical tool
may be a better option. Capture-Bat3! is a tool developed by the New Zealand
Honeynet project that provides real-time monitoring of networking and file system
events. Table 6.2.1 shows the syntax for invoking the tool and provides a sample log

file.

TABLE 6.2.1: CAPTURE-BAT SYNTAX & OUTPUT

S CaptureBat —c —n —1 output.log

$
S cat output.log

"22/4/2010 8:24:48.722","file", "Write","C: \WINDOWS\bill108.exe",

"C:\Documents and Settings\Administrator\Local Settings\Temporary
Internet Files\Content.IE5\SDAVWL67\hostsgb3[1].exe"

"22/4/2010 8:24:48.722","file", "Write","C: \WINDOWS\bill108.exe",
"C:\Documents and Settings\Administrator\Local Settings\Temporary
Internet Files\Content.IE5\SDAVWL67\hostsgb3[1].exe"

29 http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
30 http://processhacker.sourceforge.net
31 https://www.honeynet.org/node/315

Joel Yonts, jyonts@gmail.com

Building a Malware Zoo | 42

TABLE 6.2.1: CAPTURE-BAT SYNTAX & OUTPUT (CONTINUED)

"22/4/2010 8:24:48.737","file", "Write", "C: \WINDOWS\bill108.exe",
"C:\Documents and Settings\Administrator\Local
Settings\Temp\zpskon 1271948510.exe"

"22/4/2010 8:24:48.800", "process", "created", "C: \WINDOWS\bil1l108.exe",
"C:\Documents and Settings\Administrator\Local
Settings\Temp\zpskon 1271948510.exe"

Snapshot & Compare
In the field of Computer Forensics a core objective is to identify what files

and registry keys have been added, modified, accessed, and removed on a suspect
system. Since this is the same information we need for our malware analysis, the
use of forensic tools may be a good addition to our automated analysis environment.
Table 6.2.2 shows a snippet3? of a forensic timeline gathered during a recent
malware investigation.

TABLE 6.2.2: FORENSIC TIMELINE SNIPPET

<Columns Omitted> macb c:/WINDOWS/system32/captcha.dll

<Columns Omitted> ...b c:/WINDOWS/Prefetch/RDR_1271939089.EXE-2AF9B881.pf

<Columns Omitted> m.c. c:/WINDOWS/system32

c
c
c
<Columns Omitted> mac. c:/WINDOWS/Prefetch/RDR_1271939089.EXE-2AF9B881.pf

output truncated for brevity ...

Each line in a timeline is composed of several columns of attributes that
represent a unique filesystem event. The second to last column of the timeline
represents the file operations executed against the file object listed by the full path
column to the far right. A simplified interpretation of the file operation attributes is

listed in Table 6.2.3.

m Modification Change in File Content

a Access File Access

¢ Change Change in File Metadata (Permissions, Owner, etc.)
b Born Date File Creation

Table 6.2.3: Filesystem Operations(Carrier, 2005)

The sleuth kit is an 0SS solution that makes timeline creation available to the

masses. This tool is available on the Sleuth Kit website3? or as part of the Helix

32 Non-relevant timeline attributes were omitted for formatting purposes.
33 http://www.sleuthkit.org

Joel Yonts, jyonts@gmail.com

Building a Malware Zoo | 43

Forensics Toolkit3*. Figure 6.2.4 shows the process of creating a forensic timeline

using Sleuth Kit.

TABLE 6.2.4:: FORENSIC TIMELINE CREATED USING SLEUTHKIT
S fls —r —m c: /dev/<disk name> > events.fls

s

S mactime —b events.fls > events.timeline

Within the context of a zoo solution, a timeline could be created for each
analysis node prior to infection. Post-infection, a new timeline would be created
and the two would be compared to identify filesystem events related to the

infection.

6.3. Honey Node

A large part of malware’s behavioral footprint involves its interaction with the
Internet and LAN hosts. Observing these interactions in an isolated environment
requires creating a potentially complex network of systems and services targeted by
a sample. To solve this complex challenge, Honey Nodes3> can be implemented
within the analysis environment to emulate a long list of network services. Once
implemented, these Honey Nodes can be leveraged to observe malware dropper
functionality, SPAM capabilities, and other malware propagation methods. A good
source for Honey Node technology is the Honeynet Project3¢. This site serves as a
collection point for a number of subprojects that deliver a wide range of Honey

Nodes technologies and tools.

6.4. Artifact Storage

Storage of artifacts collected through behavioral analysis follows a similar
pattern as outlined in the various static analysis sections. Behavioral analysis
artifacts are stored in one or more tables linked to the sample through a common

key (MD5). The primary deviation from this pattern stems from the understanding

34 http: //www.e-fense.com /products.php
35 Honey Nodes emulate a wire range of network services for analysis purposes
36 http://www.honeynet.org/project

Joel Yonts, jyonts@gmail.com

Building a Malware Zoo | 44

that behavioral analysis results can vary over time. Examples of this variance
include selection of dropper site URL, phone home URL, or polymorphism algorithm
that varies based on date & time. Understanding that these elements can vary
between analysis sessions drives the need for also capturing the specific analysis
session by which these artifacts were collected. To track this data point, all artifacts
gathered during a behavioral analysis session will be tagged with a unique
analysis_id. Tables 6.4.1 - 6.4.4 present a reprehensive schema for storing major

behavioral analysis artifacts.

BEHVIORAL ANALYSIS: SESSION TABLE

md5 CHAR(XX), UNIQUE MD5 hash of sample
analysis_id INT Analysis ID
TimeDateStamp CHAR(XX) Date & Time of Analysis Session
comment CHAR(XX) Analyst Comment

Table 6.4.1: Sample Analysis Sessions

BEHAVIORAL ANALYSIS: FILE ACTIVITY TABLE

md5 CHAR(XX), UNIQUE MD5 hash of sample
analysis_id INT Analysis ID
file_path CHAR(XX) Path to file object
file_operation TINY 1=ADD, 2=DEL, 3=Mod

Table 6.4.2: Sample Filesystem Events

BEHAVIORAL ANALYSIS: NETWORK ACTIVITY TABLE

md5 CHAR(XX), UNIQUE MD5 hash of sample
analysis_id INT Analysis ID
URL CHAR(XX) Full URL
hostname CHAR(XX) Hostname
ip_address CHAR(XX) IP Address
port CHAR(XX) Number of Sections
direction CHAR(1) Send or Receive
Bytes CHAR(XX) Creation Date & Time
TimeDateStamp CHAR(XX) Date & Time of Resolution
comment CHAR(XX) Analyst Comment

Table 6.4.3: Sample Network Activity

Joel Yonts, jyonts@gmail.com

Building a Malware Zoo | 45

BEHAVIORAL ANALYSIS: REGISTRY ACTIVITY TABLE

md5 CHAR(XX), UNIQUE MD5 hash of sample
analysis_id INT Analysis ID
reg key CHAR(XX) Registry Key
key_oper TINY 1=ADD, 2=DEL, 3=Mod
reg value CHAR(XX) Registry Value
val_oper TINY 1=ADD, 2=DEL, 3=Mod
comment CHAR(XX) Analyst Comment

Table 6.4.4: Sample Registry Events

The same schema design methodology outlined above can be leveraged to create DB
structures to store other behavioral analysis artifacts such as services, DLLs, and

drivers.

7. Conclusion

The zoo ideas and processes outlined in this paper represent only the most basic
malware analysis and organization functionality. There are many opportunities for
expansion of capabilities and enhancement of existing functionality that highlights
the need for a modular, easily expandable architecture. The intent of this paper was
not to build a complete solution but rather to define a framework of implementing a
zoo solution that is customized to your environment. This framework covers all the
major areas of design and should set you on the path to your own successful

Malware Zoo implementation.

Joel Yonts, jyonts@gmail.com

Building a Malware Zoo | 46

8. References

Anley, C,, Heasman, |., Linder, F., & Richarte, G. (2007). The Shellcoder's Handbook:
Discovering and Exploiting Security Holes (2nd Edition ed.). (C. Long, K. Kent, & K.
Cofer, Eds.) Indianapolis, IN: Wiley Publishing, Inc.

Aquilina, J. M., Casey, E., & Malin, C. H. (2008). Malware Forensics: Investigating and
Analyzing Malicious Code. (C. W. Rose, Ed.) Burlington, MA, US: Syngress Publishing,
Inc.

Bayer, U. (2009 December). Large-Scale Dynamic Malware Analysis (Doctoral
Dissertation, Vienna University of Technology). From iSecLab:
http://www.iseclab.org/people/ulli/dissertation_ubayer.pdf

Carrier, B. (2005). File System Forensic Analysis. Upper Saddle River, NJ: Pearson
Eductaion, Inc.

Eilam, E. (2005). Reversing: Secrets of Reverse Engineering. (R. Elliott, E. B. Calabro, &
P. Hanley, Eds.) Indianapolis, IN: Wiley Publishing, Inc.

Halpin, T. (2001). Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design. (D. D. Cerra, C. Palmer, B. Breyer, & K. DellaPenta, Eds.)
San Francisco, CA: Morgan Kaufmann Publishers.

Kendall, K., & McMillan, C. (2007). Practical Malware Analysis. Black Hat DC 2007.
Washington: Black Hat.

Kirillov, I. A,, Beck, D. A, Chase, M. P, & Martin, R. A. (2009 October). The Concepts of
the Malware Attribute Enumeration and Characterization (MAEC) Effort. Retrieved
2010 March from MAEC: Malware Attribute Enumeration and Characterization:
http://maec.mitre.org/about/docs/The_MAEC_Concept.pdf

Kornblum, J. (2006). Identifying almost identical files using context triggered
piecewise hashing. Digital Investigation. 3, pp. 91-97. Science Direct.

Marcus, D., Greve, P., Masiello, S., & Scharoun, D. (2009). McAfee Threats Report:
Third Quarter 2009. McAfee Inc., McAfee Labs. Santa Clara: McAfee Inc.

Nazario,]. (2004). Defense and Detection Strategies Against Internet Worms.
Norwood, MA: Artech House, Inc.

Seitz,]. (2009). Gray Hat Python: Python Programming for Hackers and Reverse
Engineers. (M. Dunchak, & T. Ortman, Eds.) San Francisco, CA: No Starch Press.

Joel Yonts, jyonts@gmail.com

Building a Malware Zoo | 47

Skoudis, E., & Zeltser, L. (2004). Malware: Fighting Malicious Code. (M. Franz, Ed.)
Upper Saddle River, NJ: Prentice Hall.

Szor, P. (2005). The Art of Computer Virus Research and Defense. (K. Gettman,].
Goldstein, G. Kanouse, K. Hart, & C. Andry, Eds.) Upper Saddle River, NJ: Pearson
Education, Inc.

Wildlist Organization International. (2010 January). WildList: January, 2010.
Retrieved 2010 March from The WildList Organization International:
http://www.wildlist.org/WildList/201001.htm

Zeltser, L. (2010). Reverse-engineering malware: malware analysis tools and
techniques. Proceedings of the SANS conference

Joel Yonts, jyonts@gmail.com

