
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-

Postcard

GREM Gold Certification

Author: Seth Hardy, shardy@aculei.net

Advisor: Dominicus Adriyanto

Accepted: March 26, 2009

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 2 23/04/2009

TABLE OF FIGURES.. 4

ABSTRACT ... 6

ABSTRACT ... 6

1. INTRODUCTION; ABOUT THIS PRACTICAL ... 7

2. REVERSING ENVIRONMENT... 9

2.1 Virtualization – Quick and Easy Reversing Environments ...9

2.2 Virtualization Isn’t Perfect...10

2.3 Our Reversing Environment ..11

3. INITIAL STATIC ANALYSIS .. 13

3.1 Why Start With Static Analysis?..13

3.2 Sample Details ..13

4. INITIAL DYNAMIC ANALYSIS .. 18

4.1 Further Decryption...18

4.2 Summary – Initial Analysis..23

5. BEHAVIORAL ANALYSIS ... 25

5.1 Setting Up The Host ..25

5.2 Infection ..26

5.3 Network Activity ...29

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 3 23/04/2009

5.4 Summary...32

6. STATIC ANALYSIS, CONTINUED .. 33

6.1 File Overview ..33

6.2 Stage 1 Analysis ...35

6.3 Stage 2 Analysis ...39

6.4 Stage 3 Analysis ...42

7. IN CONCLUSION.. 49

7.1 Summary...49

7.2 Postmortem: Virustotal ...49

REFERENCES... 53

APPENDIX B: ARIN LOOKUPS... 56

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 4 23/04/2009

Table of Figures

Figure 1: PEiD output on the original sample ... 15

Figure 2: Hexdump of .data segment ... 18

Figure 3: PEiD after UPX unpacking ... 19

Figure 4: .text instructions from OllyDbg .. 20

Figure 5: .data after decryption (hex) ... 21

Figure 6: .data after decryption (code) ... 22

Figure 7: IDA auto analysis (before decryption)...................................... 23

Figure 8: IDA auto analysis (after decryption) .. 23

Figure 10: Embedded executable #1 ... 33

Figure 11: Embedded executable #2 ... 34

Figure 12: Embedded executable #2 ... 34

Figure 13: Stage 1 Overview.. 36

Figure 14: Hidden VirtualAlloc call... 37

Figure 15: sneaky_get_kernel_base ... 38

Figure 16: Passing off control to embedded executable code 39

Figure 17: Some stage 2 strings .. 40

Figure 18: Oops! It doesn't like it when you try to delete it...

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 5 23/04/2009

... 41

Figure 19: Siberia2 program database .. 42

Figure 20: Some function names... 44

Figure 21: Getting the SigningHash value from the registry 45

Figure 22: Construction of the GET request.. 46

Figure 23: Creating a new svchost.exe process... 47

Figure 24: CreateProcessA, ReadProcessMemory, VirtualAllocEx,

WriteProcessMemory ... 48

Figure 25: Virustotal output for card.scr .. 52

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 6 23/04/2009

Abstract

In this paper, we will cover the reverse engineering of a

Windows Portable Executable (PE) file, claiming to be an e-

postcard in the form of a screensaver, that is suspected to be

malicious. With no prior information on what the file is or what

it is supposed to do, we will use a combination of static and

behavioural analysis to identify what the software does and what

malicious action it takes against a system. In order to do this

in a way that is safe, we will also cover the reversing

environment and best practice techniques for handling

potentially malicious software. In conclusion, we will summarize

the characteristics of the software we’ve identified as

malicious.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 7 23/04/2009

1. Introduction; About This Practical

It is difficult to write about a sufficiently advanced

topic without making some assumptions about the reader. Since

the task of finding a “new” malware sample to analyze for this

practical was part of the GREM Gold process, and since the

author actively works with reverse engineering malware on a day-

to-day basis, the sample chosen seems to have been a bit more

complicated than the average IRC bot found in most of the

published GREM Gold papers!

While taking on a more difficult task isn’t a problem, it

does mean that there’s more work to be done for analysis, and

that writing down every little detail may be overwhelming and

not very useful. For this reason, it was a deliberate choice not

to include various information that pads out many other GREM

Gold papers that were read for guidance on what to cover. You

won’t find pages and pages of output from strings here, or the

amount of RAM in the laptop used for running virtual machines.

There won’t be line-by-line analysis of every single assembly

instruction in the malware sample, and certainly no copy and

pasted information on networking protocols.

For the sake of this paper not expanding to hundreds of

pages and taking far beyond the allowed timeframe to write,

there are some assumptions made on the part of the reader: that

she or he is familiar with x86 assembler and machine

architecture, knows how to use a debugger and a disassembler,

knows how to use network monitoring tools, and knows how to look

up well-documented technical information. That being said, in

exchange for these assumptions, a focus is put on trying to

illustrate higher-level concepts by demonstrating specific

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 8 23/04/2009

examples of them in the code.

There’s a lot to cover here, so hopefully this analysis is

as easy to follow along with as possible, while still

maintaining a level of technical accuracy and thoroughness

beyond what is expected.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 9 23/04/2009

2. Reversing Environment

Before we can begin, we have to consider the fact that we’ll

be working with software that may likely do any number of

dangerous things:

• Infect our system in a way that is difficult to detect;

• replicate itself to other systems in a way that can be

traced back to us;

• install a keylogger or other monitoring system;

• send spam, phishing attacks, or other malware;

• delete any and all files, whether intentionally or not;

• …and the list goes on…

Obviously we don’t want to do this on a system that we’re

concerned about, such as one we use for every day tasks.

Additionally, while we want the system to be disconnected from

the Internet, we will want it to be connected to a network so

that we can observe any network activity that may be generated.

2.1 Virtualization – Quick and Easy Reversing

Environments

The simple solution to satisfy these requirements is

virtualization. By creating a virtual machine to use as a

reversing system, we are keeping the malware in a contained

environment. Virtual machines often have snapshot capability: a

capture of the state of a machine at a particular time, with the

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 10 23/04/2009

option to quickly roll back to that state. A known good baseline

(i.e. a clean install) can be kept in a snapshot, and we can

revert back to that snapshot each time we need to be sure the

environment is clean, e.g. while we are working on observing the

infection process or moving on to another task.

Virtual machines also have the capability of operating in

“host-only” networking mode, that is, the virtual machine

monitor will create a network directly between the virtual

machine and the host machine, with no connection to the outside

world. This will allow us to use monitoring tools on the host

machine to observe network traffic destined for the Internet,

without any real danger of the malware connecting to real, live

systems.

2.2 Virtualization Isn’t Perfect

There are a couple of caveats to using virtual machines for

malware analysis, however. The first is that there are many

techniques used for detecting whether a program is being run

within a virtual machine, and that different kinds of malware

will often use this detection as a way of frustrating analysis.

Some malware will simply not execute if the presence of a VM is

detected; other kinds will take defensive action, such as by

deleting itself from the system. The advantages of

virtualization (ease of setup, speed to roll back, host-only

networking environments with only one machine) warrant giving

the analysis a try before moving on to a more complicated lab

setup if anti-VM techniques are found.

The second caveat is that virtual machines are not real

security boundaries. While (currently) exceptionally rare in the

wild, there are techniques that will allow a system to

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 11 23/04/2009

compromise a virtual machine monitor and let the malware “break

out” into the host operating system, continuing to cause damage

from there. To mitigate this risk, virtualization software

should be kept up-to-date with all patches applied, and

monitoring for any unusual behavior on the host system done

while the reversing work is underway.

2.3 Our Reversing Environment

The dynamic analysis done in this paper is entirely

performed in virtual machines.

The guest operating system is Windows XP, fully patched.

This is a custom image put together specifically for reversing,

which has just the tools needed for analysis installed. After

each time malware is run, the image is reverted back to the

baseline snapshot.

The host operating system is actually multiple host

operating systems, depending on where the work was being done.

Most of the work used an Ubuntu Linux host running VMWare Server

(initially version 2, then downgraded to version 1 due to

stability reasons), although time spent working on the paper on

the road used a MacBook running OS X, with Parallels as the

virtualization system.

In each case, a virtual network was set up in host only

mode. As the configuration for each virtualization system is

different, as are the IP ranges, specifics of the configurations

are omitted here. The important part is that the virtual machine

can only communicate with the host running the virtual machine

monitor, and not with the Internet at large (such as in bridged

or NAT modes).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 12 23/04/2009

The risk of having the virtual network allow malware to

communicate with the host operating system as part of the

analysis was determined to be acceptable. The reasons for this

are that the host systems are kept up to date, have almost no

network-accessible services available, and monitoring of network

traffic was always done using a network sniffer (in this case,

Wireshark).

Certain parts of the static analysis were performed in the

host operating system, but only when the risk was decided to be

negligible. Specifically, Unix command-line tools were used on

the binary on the Ubuntu host operating system after it was

determined that the software is a Windows executable. This was

decided to be an acceptable risk as the machine is a dedicated

malware analysis machine.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 13 23/04/2009

3. Initial Static Analysis

3.1 Why Start With Static Analysis?

Why do we start with taking a look at what’s in the program,

instead of what it does? This is entirely a matter of

preference—usually, we’ll have to go back and forth between the

two, using hints from one side of the analysis to help out with

getting further on the other side.

Since most malware is protected in some way, taking a peek

at the code first can give a good idea of whether the sample is

malicious. If it’s packed or encrypted, chances are likely

whatever is inside is going to be of interest. Starting with

static analysis also is a good opportunity to collect

identifying information about the unknown file at the beginning

of our analysis, so that we can ensure nothing about our sample

has changed at any point during the process.

3.2 Sample Details

The sample is a file named card.scr, shared via a security

mailing list (which has policy requiring it to remain

unidentified unless necessary). The sample was chosen because

(at the time) it was identified as a “new” sample: very few

commercial antivirus products detected it as malicious (as

demonstrated by Virustotal), and the malicious code itself had

not been identified.

The sample claims, via its extension, to be a Windows

screensaver file. Windows .scr screensaver files are actually

standard Windows Portable Exectuable (PE) files, structurally

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 14 23/04/2009

the same as an .exe. The method of distributing malware through

fake screensavers is well known in the malware research

community (Wikipedia).

The first step is to gather some baseline information on the

file, even if just to reference the file later on. Using

standard Linux command-line tools such as ls, md5sum, sha1sum,

and file, we can collect information on the file. The file is

copied to card.scr.orig so that we can keep it as a baseline in

case any modification (e.g. unpacking) needs to be done.

The file is small, at 22k, and the file utility suggests

that it appears to be UPX compressed.

The next step would be to determine whether the sample is

packed, but it seems like we already have a good idea that it

is. A common tool for detecting what kind of packer is involved

is PEiD, but in this case, it doesn't correctly detect the UPX

packing. The output from PEiD is displayed in Figure 1; while

there is no signature match, it does detect the presence of a

packer using entropy, entry point, and fast checking. It also

notes that the name of the section where the entry point is

located is called UPX1, a good hint that the UPX packer is

involved (Tuts4You Forum).

Error!$ ls -l card.scr.orig
-rw-r--r-- 1 shardy shardy 22016 2008-10-13 13:25 card.scr.orig
$ md5sum card.scr.orig
5a9bd6560ab97fae07607fff7dd8624f card.scr.orig
$ sha1sum card.scr.orig
dda2191971887ef9112bd05b76eb99a3fa3a46cc card.scr.orig
$ file card.scr.orig
card.scr.orig: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit, UPX compressed

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 15 23/04/2009

Figure 1: PEiD output on the original sample

Taking a look at the section names and characteristics using

the utility objdump is another good way of getting some basic

information on the sample. objdump –f will display the file

header information, and objdump –h will display the executable

section headers.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 16 23/04/2009

It’s pretty clear that this is UPX packed; rather than waste

more time doing analysis here, let’s see if the UPX unpacker

will help out. To make things even simpler, UPX can be installed

in Ubuntu with the single command “sudo apt-get install upx”.

To decompress a UPX packed sample, we use the –d flag.

UPX doesn’t give any errors, but to confirm that the

unpacking worked, we should repeat the previous steps that

gather information on the file. Note that the file is

overwritten in-place, another reason why having the original

around as card.scr.orig is useful.

$ objdump –f card.scr.orig

card.scr: file format efi-app-ia32
architecture: i386, flags 0x0000012e:
EXEC_P, HAS_LINENO, HAS_DEBUG, HAS_LOCALS, D_PAGED
start address 0x1000dd20

$ objdump -h card.scr.orig

card.scr.orig: file format efi-app-ia32

Sections:
Idx Name Size VMA LMA File off Algn
 0 UPX0 00008000 10001000 10001000 00000400 2**2
 CONTENTS, ALLOC, CODE
 1 UPX1 00005000 10009000 10009000 00000400 2**2
 CONTENTS, ALLOC, LOAD, CODE, DATA
 2 UPX2 00000200 1000e000 1000e000 00005400 2**2
 CONTENTS, ALLOC, LOAD, DATA

$ upx -d card.scr
 Ultimate Packer for eXecutables
 Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
UPX 3.01 Markus Oberhumer, Laszlo Molnar & John Reiser Jul 31st 2007

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
 40960 <- 22016 53.75% win32/pe card.scr

Unpacked 1 file.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 17 23/04/2009

Now that we have the sample unpacked, it’s time to start the

real analysis... right?

$ ls -l card.scr
-rw-r--r-- 1 shardy shardy 40960 2008-07-02 15:41 card.scr
$ md5sum card.scr
dcd05ea350f153690a136fdf1e227967 card.scr
$ sha1sum card.scr
bce54f64dc78e91da72254e33c9bbde50ee24331 card.scr
$ file card.scr
card.scr: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit
$ objdump -f card.scr

card.scr: file format efi-app-ia32
architecture: i386, flags 0x0000012e:
EXEC_P, HAS_LINENO, HAS_DEBUG, HAS_LOCALS, D_PAGED
start address 0x10001000

sample$ objdump -h card.scr

card.scr: file format efi-app-ia32

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 00000100 10001000 10001000 00000400 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .data 00009a00 10002000 10002000 00000600 2**2
 CONTENTS, ALLOC, LOAD, DATA

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 18 23/04/2009

4. Initial Dynamic Analysis

4.1 Further Decryption

Something’s still not quite right with the sample. It seems

like the file is still packed, or at the very least, its

contents are encrypted: there’s a small .text section and a

larger .data section filled with bytes that are not immediately

recognizable as either code or data, shown in Figure 2.

Figure 2: Hexdump of .data segment

While we’re in IDA taking a look at the contents of .data,

it’s also easy to see that there’s no import table present, and

that the strings have that simple encryption (e.g. byte XOR)

“feel” to them: printable characters showing up in strings, but

nothing that makes sense.

PEiD insists that the file isn’t packed, as shown in Figure

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 19 23/04/2009

3.

Figure 3: PEiD after UPX unpacking

Assuming we have another layer of protection here, let’s

take a look at the code in the .text segment and try to figure

it out. Fortunately, it’s very simple. Looking at the code in

Figure 4, it’s easy to see that there are a couple of loops

where the data in the .data segment is altered (remember that

.data starts at 0x10002000).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 20 23/04/2009

Figure 4: .text instructions from OllyDbg

However, we don’t even have to waste a lot of time here on

understanding what the unpacking algorithm is. At 0x100010AF,

100010AF 8B45 FC MOV EAX,DWORD PTR SS:[EBP-4]
100010B2 50 PUSH EAX
100010B3 C3 RETN

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 21 23/04/2009

certain instructions stand out.

At the beginning of the code (0x1000100D), the start of the

.data segment is put into SS:[EBP-4]. So, these instructions act

as an unconditional jump to the beginning of .data at location

0x10002000 by moving the location to EAX, pushing it to the

stack, and then popping it and jumping to it as part of the RETN

instruction.

To quickly verify that this is decrypting the code and

running it, we can set a breakpoint at 0x100010B3, and then take

a look at the .data section.

Figure 5: .data after decryption (hex)

The contents of .data have definitely changed. Since we now

know this is code, we should be looking at a disassembly view.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 22 23/04/2009

To do this in OllyDbg, we right click on the dump window, and

select “Disassemble”.

Figure 6: .data after decryption (code)

This looks promising: this may be the real code! In order to

save it so that we don’t have to work in OllyDbg each time, we

can dump the sections in memory to a file, and then rebuild the

PE header around it.

OllyDbg has a plugin, installed by default, called OllyDump.

The first thing to do is get EIP to the first instruction in the

.data segment by taking one step in the debugger by pressing F8.

Once there, by going to Plugins->OllyDump->Dump debugged

process, we can dump the memory to a new file. The entry point

is now 0x10002000, the start of the decrypted .data, bypassing

the decryption code.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 23 23/04/2009

Despite being dumped as an .exe, the file can’t be run as-

is, the PE headers need to be rebuilt. The tool LordPE has the

ability to do this quickly and easily: open LordPE, select

“Rebuild PE”, choose the file, and it’s done. We now have a

working executable that’s decrypted, which is immediately

obvious in IDA.

Figure 7: IDA auto analysis (before decryption)

Figure 8: IDA auto analysis (after decryption)

A quick look at the analysis bar in IDA for the malware

before and after decryption indicates that we’re on the right

track. The olive green that makes up most of the encrypted

program represents “unexplored” data, i.e. data that IDA can’t

recognize. This is the entirety of the .data section; the narrow

bands of color at the beginning reference the code in .text.

However, once we’ve decrypted .data, IDA is able to help us

out a lot more. The broader bands of blue are functions, and the

grey bands are data. There’s still unexplored data in there, but

now we’ve got a lot more to start working with.

4.2 Summary – Initial Analysis

We’ve learned the following from doing our initial static

analysis of the sample:

- The program is packed twice, once with UPX, once with an

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 24 23/04/2009

unknown method

- Someone doesn’t want us to see what’s going on in the code

- PEiD isn’t always correct!

We still have a lot more work to do to determine what the

sample does.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 25 23/04/2009

5. Behavioral Analysis

We’ve now defeated the protection around the code we’d like

to look at. But what are we looking for? Before we do any more

digging in the code, we can get a hint as to what we should be

looking for by running the program and seeing what happens.

5.1 Setting Up The Host

Some of the best hints as to what malware does come from the

network traffic it generates. Is it sending spam? Is it sending

recorded keystrokes? Is its traffic encrypted? Is it modern

botnet software that uses P2P communication, or does it still

connect to an ancient IRC server? We want to make sure we can

see every bit of communication the software attempts with the

outside world.

To do this, we’ll use (on the Linux host operating system)

the honeyd virtual honeypot program. Honeyd, in its simplest

form, will allow the host operating system to simulate the

Internet, listening on any IP and any port.

Honeyd is simple to get running on the host in this mode:

all you have to do is specify the interface. In this case, since

we are using VMWare host-only networking mode, the appropriate

interface is vmnet1. Invoking honeyd with “honeyd –i vmnet1” is

all that is necessary; from there, we can use Wireshark on the

host system to sniff all traffic on vmnet1.

On the guest OS, we will have to set the system IP and

gateway manually in order for the OS to talk to the host. The

system IP can be anything on the subnet, while the gateway must

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 26 23/04/2009

be the IP of the host (the internal IP on vmnet1). Once the

guest networking is set up, any traffic sent from the guest

intended for the Internet will connect to honeyd.

5.2 Infection

The first thing we’ll look for is filesystem changes: any

created, altered, or deleted files. This includes the registry

as a special case, as any infection will most likely modify the

registry to persist beyond a reboot.

To view the filesystem changes, we’ll use the FileMon

program, freely available as part of the Windows Sysinternals

tools. FileMon will observe any fileystem activity and provide a

(very verbose) log of each file access. We can then filter the

log on the name of the program we’ve run (in our case, card-

dumped.exe) and export it to a comma separated values (CSV)

style spreadsheet.

To observe registry changes, we’ll use the RegShot program,

another freely available utility. With RegShot, we take a

snapshot of the registry before we run the malware, and then a

second snapshot afterwards. RegShot will then compare the two

snapshots, and provide a readable summary of the differences

between the two.

We could also use the RegMon utility also included in the

Sysinternals suite, but because it is also very verbose, and

because there are a lot of registry accesses as part of normal

operation, RegShot is a more useful tool for when we’re looking

just for a summary of registry changes.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 27 23/04/2009

Here we go: let’s run the program and see what happens.

The first observed behavior is that the executable

disappears: apparently, it deletes itself! So where does the

malware go (if anywhere, on the disk)? FileMon tells us:

So, in this case, the program has dropped a file on the disk

in the C:\WINDOWS\System32\drivers directory. Revering to the VM

snapshot and trying a few more times, we can observe that the

file name is always different, but follows a certain pattern:

three letters, two numbers, ends with the .sys extension.

RegShot also demonstrates how the malware has changed the

registry. Running the malware adds 17 keys with 52 values to the

registry, and also modifies 4 values. A quick look over the

RegShot log can give us an idea of what we should be looking out

for on the system:

1230 6:42:52 PM card-dumped.exe:1944 CREATE C:\WINDOWS\System32\drivers\Myh32.sys
 SUCCESS Options: OverwriteIf Access: 00120196
1231 6:42:52 PM card-dumped.exe:1944 OPEN C:\WINDOWS\System32\drivers\ SUCCESS Options:
Open Directory Access: 00100000
1234 6:42:52 PM card-dumped.exe:1944 WRITE C:\WINDOWS\System32\drivers\Myh32.sys
 SUCCESS Offset: 0 Length: 26752
1235 6:42:52 PM card-dumped.exe:1944 CLOSE C:\WINDOWS\System32\drivers\Myh32.sys
 SUCCESS

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 28 23/04/2009

From this information, it’s a pretty safe bet that the

malware will still be around if the machine is rebooted, even if

in Safe Mode. It appears to add itself as a service, and we can

confirm this by looking at the list of services (available

directly in Windows by going to Start->Run “services.msc”), or

using the Sysinternals Autoruns tool:

Keys added:17

HKLM\SYSTEM\ControlSet001\Control\SafeBoot\Minimal\Gxh54.sys
HKLM\SYSTEM\ControlSet001\Control\SafeBoot\Network\Gxh54.sys
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_GXH54
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_GXH54\0000
HKLM\SYSTEM\ControlSet001\Enum\Root\LEGACY_GXH54\0000\Control
HKLM\SYSTEM\ControlSet001\Services\Gxh54
HKLM\SYSTEM\ControlSet001\Services\Gxh54\Security
HKLM\SYSTEM\ControlSet001\Services\Gxh54\Enum
HKLM\SYSTEM\ControlSet002\Services\Gxh54
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\Gxh54.sys
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\Gxh54.sys
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_GXH54
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_GXH54\0000
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_GXH54\0000\Control
HKLM\SYSTEM\CurrentControlSet\Services\Gxh54
HKLM\SYSTEM\CurrentControlSet\Services\Gxh54\Security
HKLM\SYSTEM\CurrentControlSet\Services\Gxh54\Enum

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 29 23/04/2009

5.3 Network Activity

We have two options for viewing network activity: we can

either watch network traffic on the guest OS, or on the host.

Since both are pretty simple, we might as well do both, and make

sure what we’re seeing matches up on both ends.

Figure 9: Malware-added service via Autoruns

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 30 23/04/2009

On the client side, we can use yet another handy

Sysinternals program, TCPView, to get an idea of network

traffic. This is chosen over a general purpose network sniffer

such as Wireshark because it gives more information, such as

what program has created the sockets.

Trying TCPView without honeyd set up, we can observe that

immediately after executing the malware, an unexplained network

connection attempt is made. All that is sent is a SYN packet to

one of seven possible IPs, each on port 80: HTTP. A connection

is attempted to one of the IPs, and if it times out, the system

will cycle through the rest.

“The system” will cycle through the rest? According to

TCPView, the connection is being made from

C:\WINDOWS\system32\winlogin.exe. This makes sense, given the

observed behavior of the malware dropping a device driver file

with the .sys extension: somehow the malware has injected new

code into the system, so new connection attempts will be coming

from a different place than the original executable.

Without even knowing what is being sent, we can use the IPs

which must be hardcoded in the program as an indicator of

whether this connection is good news. We don’t want to directly

connect to them—what if they are malicious servers which monitor

unauthorized activity!—but we can get a general idea of whether

they are on a “sketchy part of the Internet.” By doing ARIN

lookups (available at http://ws.arin.net/whois/), we can see

that four of the seven IPs are at McColo, an ISP well-known for

its active involvement in botnet command and control (C&C)

servers (Claburn, 2008). This is the same McColo that was de-

peered last autumn, resulting in an immediate drop in about 75%

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 31 23/04/2009

of spam on the Internet, thanks to cutting off the Srizbi

botnet.

So, what is the malware trying to communicate? Let’s turn on

honeyd, then run a network sniffer on the interface. With honeyd

active, the host machine will pretend to be any of the IPs

requested, follow through with the TCP three-way handshake, and

we can use any tool to monitor traffic. We could even pretend to

be the C&C server and send data back, but for now, we’ll just

sniff.

Using tcpdump, we can see that the connection is in fact for

a HTTP request:

The actual HTTP request is a simple GET request:

GET /40E800083DF96F79013A625B6C0000003C6600000000760000029BEB000530E01B242D

HTTP/1.0

shardy@shardy-desktop:~/Documents/giac-sample$ tcpdump -X -r connection.pcap
reading from file connection.pcap, link-type EN10MB (Ethernet)
12:50:37.495053 IP 192.168.104.128.2550 > 208.66.195.71.www: S 2131834684:2131834684(0) win 64240 <mss
1460,nop,nop,sackOK>
 0x0000: 4500 0030 1e2b 4000 8006 1fea c0a8 6880 E..0.+@.......h.
 0x0010: d042 c347 09f6 0050 7f11 373c 0000 0000 .B.G...P..7<....
 0x0020: 7002 faf0 0ae8 0000 0204 05b4 0101 0402 p...............
12:50:37.498527 IP 208.66.195.71.www > 192.168.104.128.2550: S 0:0(0) ack 2131834685 win 16000 <mss
1460>
 0x0000: 4500 002c 226f 0000 4006 9baa d042 c347 E..,"o..@....B.G
 0x0010: c0a8 6880 0050 09f6 0000 0000 7f11 373d ..h..P........7=
 0x0020: 6012 3e80 dc4e 0000 0204 05b4 0000 `.>..N........
12:50:37.499209 IP 192.168.104.128.2550 > 208.66.195.71.www: . ack 1 win 64240
 0x0000: 4500 0028 1e2c 4000 8006 1ff1 c0a8 6880 E..(.,@.......h.
 0x0010: d042 c347 09f6 0050 7f11 373d 0000 0001 .B.G...P..7=....
 0x0020: 5010 faf0 bccd 0000 P.......
12:50:37.499854 IP 192.168.104.128.2550 > 208.66.195.71.www: P 1:89(88) ack 1 win 64240
 0x0000: 4500 0080 1e2d 4000 8006 1f98 c0a8 6880 E....-@.......h.
 0x0010: d042 c347 09f6 0050 7f11 373d 0000 0001 .B.G...P..7=....
 0x0020: 5018 faf0 bd25 0000 4745 5420 2f34 3045 P....%..GET./40E
 0x0030: 3830 3030 3833 4446 3936 4637 3930 3133 800083DF96F79013
 0x0040: 4136 3235 4236 4330 3030 3030 3033 4336 A625B6C0000003C6
 0x0050: 3630 3030 3030 3030 3037 3630 3030 3030 6000000007600000
 0x0060: 3239 4245 4230 3030 3533 3045 3031 4232 29BEB000530E01B2
 0x0070: 3432 4420 4854 5450 2f31 2e30 0d0a 0d0a 42D.HTTP/1.0....
12:50:37.500182 IP 208.66.195.71.www > 192.168.104.128.2550: . ack 89 win 16000
 0x0000: 4500 0028 e501 0000 4006 d91b d042 c347 E..(....@....B.G
 0x0010: c0a8 6880 0050 09f6 0000 0001 7f11 3795 ..h..P........7.
 0x0020: 5010 3e80 f3b3 0000 0000 0000 0000 P.>...........

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 32 23/04/2009

This behavior looks like communication with the malware’s

C&C server, encoded in some way. Since we are not connecting to

a live server, we do not have any way of knowing what the

response is.

5.4 Summary

So, we’ve learned the following from running the malware:

- It will drop a file that claims to be a device driver

- It will add registry keys to ensure that it is restarted

after reboot

- It will attempt to contact one of seven C&C servers via a

HTTP request

This, particularly the file dropping and network connection,

will give us a good idea of what we’d like to look for while

we’re doing code analysis.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 33 23/04/2009

6. Static Analysis, Continued

6.1 File Overview

Looking over the decrypted executable in IDA, whether in

code or in hex mode, reveals a number of interesting bits of

information. One thing that stands out is that in the original

executable, there are three embedded executables (in memory, and

then embedded resources).

Figure 10: Embedded executable #1

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 34 23/04/2009

Figure 11: Embedded executable #2

Figure 12: Embedded executable #3

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 35 23/04/2009

By taking a look at the strings found, we can determine that

the registry keys and references appear in the first embedded

executable, references to winlogon.exe appear in the second

embedded executable, and the strings related to the HTTP traffic

such as “GET” and “HTTP/1.0” appear in the third.

Since we’ve spent a lot of time on code analysis already,

and there’s still plenty left to analyze, we can use this

information to get a better idea of what to focus our attention

on. It’s a safe guess that the original file is a loader, the

first and second embedded executables infect and rootkit the

system, and the third embedded executable does the work and

communicates with the outside world. We’ll split this up into

three stages: the initial sample itself is stage 1, the first

and second embedded executables acting as the infector are stage

2, and the third embedded executable acting as the payload is

stage 3.

6.2 Stage 1 Analysis

We can use IDA’s graphing view to get an idea of the

malware’s program execution flow. By positioning the cursor at

the start point of the program (which IDA will automatically

identify) and pressing the space bar, IDA will display the graph

view.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 36 23/04/2009

Figure 13: Stage 1 Overview

The code doesn’t look particularly complex. Blue arrows

represent unconditional jumps, green arrows represent the true

branch of conditional jumps, and red arrows represent the

corresponding false branch.

If we start at the beginning, we can immediately see a

number of signs that certainly point towards this code being

malicious. Looking in the start code, we can immediately see

something obviously suspicious: the presence of the string

“VirtualAlloc”, but moved into variables byte by byte. Because

the string is not in contiguous memory, but as single bytes in a

series of mov instructions that are only put into adjacent

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 37 23/04/2009

memory locations when the program is run, it will not show up by

running the strings command on the binary.

Figure 14: Hidden VirtualAlloc call

There’s also a call to a function that, during the code

analysis, was given (manually!) the name

“sneaky_get_kernel_base”. Looking at that code, we can see why:

it’s a technique for getting the base address of kernel32.dll

without calling either GetModuleHandle or LoadLibrary. Something

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 38 23/04/2009

is definitely up here: the author of this program didn’t want an

analyst to have an easy time reversing this code, and has

written the program in a way that makes analysis harder,

particularly against trivial methods such as running the strings

command.

Figure 15: sneaky_get_kernel_base

This code serves as a loader for the first of the two

embedded executables. Once the set up (kernel base, imports) are

handled, the program will point to the executable, and then

transfer control over to it. We can see this at the end of the

program: we find the MZ header, advance to the PE header, find

the start of the code, then call it.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 39 23/04/2009

Figure 16: Passing off control to embedded executable code

6.3 Stage 2 Analysis

The second stage executables promise to be interesting,

especially after taking a look over some of the strings they

hold.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 40 23/04/2009

Figure 17: Some stage 2 strings

It looks like this part is responsible for the registry

keys, creating the driver, putting it in the Windows directory,

setting it to automatically load on boot, and protecting it as

well.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 41 23/04/2009

Figure 18: Oops! It doesn't like it when you try to delete it...

There’s also an odd string that’s definitely worth noting in

here, which may reveal some more clues as to what exactly is

going on.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 42 23/04/2009

Figure 19: Siberia2 program database

There is a reference to a program database (.pdb) file, used

for debugging, for something called “Siberia2”, most likely a

protection or rootkit system1.

While this part of the malware is definitely very

interesting, time is running out! In the interest of rapid

response, we will just note interesting characteristics of how

the believed rootkit system works, things to investigate later

such as the Siberia2 connection, and move on to analysis of the

payload.

6.4 Stage 3 Analysis

Extracting all of the data in the original file from the

third MZ marker on to the end of the file results in a working

executable.

1 Like elsewhere in this report, I actively chose here not to Google for
information that might give me too much of a hint. It’s more fun this way.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 43 23/04/2009

There are some interesting strings relating to registry

functions and network functions. Since we already know that the

program generates an HTTP request, let’s investigate the

registry functions first.

$ ls -l lastmz.exe
-rw-rw-r-- 1 shardy shardy 11936 Feb 16 16:15 lastmz.exe
$ md5sum lastmz.exe
a8ce120afa4e161176f216940f07ed20 lastmz.exe
$ sha1sum lastmz.exe
644e4448a05637da68b8c2cbbaa9fc5a057c0ba6 lastmz.exe
$ file lastmz.exe
lastmz.exe: MS-DOS executable (EXE), OS/2 or MS Windows

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 44 23/04/2009

Figure 20: Some function names

By using the IDA cross-references (xrefs), we can quickly

identify where in the code the registry functions are used, as

well as the strings in the code that go along with them.

From the code, it appears as if the program is querying the

value of a particular registry key:

HKEY_LOCAL_MACHINE\SYSTEM\WPA\SigningHash-[SubKey], where the

value of [SubKey] can change. WPA here refers to “Windows

Product Activation”, and the key that the malware is querying is

essentially the signed Windows license key that confirms

activation of the Windows installation (Sysinternals Forum).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 45 23/04/2009

Figure 21: Getting the SigningHash value from the registry

So now we have to ask: what does this program use the

license key for? And what is it communicating back to the C&C

server? (Un)fortunately for us, the two questions are related.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 46 23/04/2009

Figure 22: Construction of the GET request

The answer: the value of the registry key is directly used

to construct the hex string that is sent as part of the HTTP GET

request to the C&C. It’s not too much of a stretch of the

imagination to assume that the encoding method used in the

software can be decoded on the server’s side, giving anyone with

access to the server logs a WPA-signed Windows license key.

So, this malware steals Windows license keys. But is that

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 47 23/04/2009

it?

Unfortunately, we’re not done just yet. There are more hints

of additional functionality that we can’t pass up. For example,

what exactly is going on here with svchost.exe?

Figure 23: Creating a new svchost.exe process

It looks like the malware is creating a new instance of

svchost.exe. There’s more to it, though.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 48 23/04/2009

Figure 24: CreateProcessA, ReadProcessMemory, VirtualAllocEx,

WriteProcessMemory

Following the more complicated set of jumps and calls in

IDA, we see that the program is creating a new process by

executing svchost.exe, a standard Windows program which runs

services from DLLs, allocating memory, writing to that memory,

and then executing it (Microsoft Knowledgebase). Where does the

DLL come from? From the WS2_32.DLL Winsock calls: the previous

HTTP GET request.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 49 23/04/2009

7. In Conclusion

7.1 Summary

This malicious program operates in three parts. The first,

the program itself, is a loader which protects two embedded

executables via packers, and passes off control to the first

when run.

The second part, the first and second embedded executables,

are a rootkit responsible for dropping the payload, ensuring

that it is restarted should the computer reboot, and protects it

from discovery and removal. Even though we did not do a detailed

analysis on this part of the malware, we can identify its

functionality via behavioral analysis and leave code analysis

for when we have more time to do research.

The third part, the third embedded executable, is the

payload. It sends an HTTP request to one of seven different C&C

servers, where the request can be decoded to the WPA-signed

Windows license key of the compromised system making the

request. From there, we can guess that the response to the HTTP

request will be a DLL which will be loaded into memory and

executed via svchost.exe.

We can detect the network activity of this trojan by looking

for HTTP GET requests that consist of long hex strings starting

with 40. This can be used to detect infected machines and block

outbound traffic from them.

7.2 Postmortem: Virustotal

Uploading the sample to Virustotal

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 50 23/04/2009

(http://www.virustotal.com), a free online collection of virus

scanners, can give us some insight into what this malware is

detected as by various commercial scanners.

Only 16 out of 36 antivirus products detect this sample:

Antivirus Version Last Update Result

AhnLab-V3 - - -

AntiVir - - TR/Crypt.XPACK.Gen

Authentium - - -

Avast - - Win32:Agent-ZFS

AVG - - Downloader.Agent.AHNO

BitDefender - - Trojan.Kobcka.FM

CAT-QuickHeal - - TrojanDropper.Cutwail.h

ClamAV - - -

DrWeb - - -

eSafe - - -

eTrust-Vet - - -

Ewido - - -

F-Prot - - -

F-Secure - - Suspicious:W32/Malware!Gemini

Fortinet - - -

GData - - Trojan.Kobcka.FM

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 51 23/04/2009

Ikarus - - Trojan-Dropper.Agent

K7AntiVirus - - -

Kaspersky - - Trojan-

Downloader.Win32.Mutant.aim

McAfee - - -

Microsoft - - TrojanDownloader:Win32/Cutwail.S

NOD32 - - Win32/Wigon.CI

Norman - - -

Panda - - -

PCTools - - -

Prevx1 - - Malicious Software

Rising - - -

SecureWeb-

Gateway

- - Trojan.Crypt.XPACK.Gen

Sophos - - Troj/Pushdo-Gen

Sunbelt - - -

Symantec - - Hacktool.Spammer

TheHacker - - -

TrendMicro - - -

VBA32 - - Trojan-Downloader.Win32.Agent

ViRobot - - -

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 52 23/04/2009

VirusBuster - - -

Figure 25: Virustotal output for card.scr

While the commercial scanners all have different names for

this malware, we can see that they all pretty much agree that it

is a downloader/dropper. In particular, this does appear to be

Pushdo (Stewart, 2007), a trojan that is used to distribute other

malware.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 53 23/04/2009

References

Screensaver. Retrieved February 16, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Screensaver

UPX's compressed sections (UPX0,UPX1..). Retrieved February 16, 2009, from

Tuts4You: http://forum.tuts4you.com/index.php?showtopic=18385&view=new

Claburn, Thomas. (2008). Spam Volume Drops When ISPs Terminate McColo.

Retrieved February 16, 2009, from InformationWeek:

http://www.informationweek.com/news/security/client/showArticle.jhtml?article

ID=212002194

A description of Svchost.exe in Windows XP Professional Edition. Retrieved

February 16, 2009, from Microsoft Web site:

http://support.microsoft.com/kb/314056

Stewart, Joe. (2007). Pushdo - Analysis of a Modern Malware Distribution

System. Retrieved February 16, 2009, from SecureWorks Web site:

http://www.secureworks.com/research/threats/pushdo/?threat=pushdo

RootkitRevealer Usage: Rootkitrevealer hangs. Retrieved February 16, 2009,

from Sysinternals Web site:

http://forum.sysinternals.com/printer_friendly_posts.asp?TID=12445

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 54 23/04/2009

Appendix A: Tools

Tool Description Location

honeyd Honeyd

Virtual

Honeypot

http://www.honeyd.org

IDA Pro Interactive

Disassembler

http://www.hex-rays.com/idapro/

LordPE PE editor

and

rebuilder

Archived at

http://www.woodmann.net/collaborative/tools/index.php/LordPE

md5sum MD5 message

digest

generator

Included with Ubuntu Linux distribution

objdump Binary

object

dumper

Included with Ubuntu Linux distribution

OllyDbg Debugger http://www.ollydbg.de

PEiD Packer

Identifier

http://www.peid.info

RegShot Registry

diff tool

http://sourceforge.net/projects/regshot

sha1sum SHA-1

message

digest

generator

Included with Ubuntu Linux distribution

tcpdump Packet

sniffer

Included with Ubuntu Linux distribution

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 55 23/04/2009

UPX Ultimate

Packer for

eXecutables

http://upx.sourceforge.net

Virustotal Virus

scanner

aggregator

http://www.virustotal.com

VMWare

Server

Virtual

machine

http://www.vmware.com

Windows

Sysinternals

(Autoruns,

FileMon,

RegMon,

TCPView)

Windows

system

utilities

suite

http://technet.microsoft.com/en-us/sysinternals/default.aspx

Wireshark Packet

sniffer

http://www.wireshark.org

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 56 23/04/2009

Appendix B: ARIN Lookups

209.66.122.238:80

Abovenet Communications, Inc NETBLK-ABOVENET2 (NET-209-66-64-0-1)

 209.66.64.0 - 209.66.127.255

APS Communication MFN-B794-209-66-122-0-24 (NET-209-66-122-0-1)

 209.66.122.0 - 209.66.122.255

208.66.195.15:80

208.66.195.71:80

208.66.194.232:80

208.66.194.240:80

McColo Corporation MCCOLO (NET-208-66-192-0-1)

 208.66.192.0 - 208.66.195.255

Optimal solutions MCCOLO-DEDICATED-CUST429 (NET-208-66-195-1-1)

 208.66.195.1 - 208.66.195.31

216.195.55.50:80

216.195.56.22:80

OrgName: APS Telecom

OrgID: APSTE

Address: 8130 SW BEAVERTON-HILLSDALE HWY

City: PORTLAND

StateProv: OR

PostalCode: 97225

Country: US

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Reverse Engineering a Windows “Screensaver” e-Postcard

Seth Hardy Page 57 23/04/2009

NetRange: 216.195.32.0 - 216.195.63.255

CIDR: 216.195.32.0/19

NetName: APS-EPSI

NetHandle: NET-216-195-32-0-1

Parent: NET-216-0-0-0-0

NetType: Direct Allocation

NameServer: NS1.3FN.NET

NameServer: NS2.3FN.NET

Comment: send abuse issues to abuse@3fn.net, send network

Comment: issue to noc@3fn.net

RegDate: 2003-11-05

Updated: 2004-09-17

RTechHandle: NSW-ARIN

RTechName: Swen, Nash

RTechPhone: +1-800-539-8209

RTechEmail: noc@apxtelecom.com

OrgTechHandle: NSW-ARIN

OrgTechName: Swen, Nash

OrgTechPhone: +1-800-539-8209

OrgTechEmail: noc@apxtelecom.com

