
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Building Blocks for LINUX-PAM Authentication
 GIA C Secur ity Audit Essentials (GSA E)
 Assignment 1 version 1.1 Option 1

 Lila Zurzolo

 February 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 1

 Table of Contents

1 Abstract .. 2
2 History.. 2
3 What is PAM.. 3
4 Basic How-To of PAM..................................... 4
4.1 PAM Aware Applications/Services 5
4.2 PAM Libraries.. 5
4.3 PAM Configuration....................................... 6
4.3.1 Four Fields of pam.d files Defined................ 7
4.3.1.1 TYPE .. 7
4.3.1.2 CONTROL FLAG.................................... 8
4.3.1.3 MODULE-PATH...................................... 9
4.3.1.4 MODULE-ARGUMENTS 9
4.4 Information Files .. 9
5.0 An example of PAM.................................... 10
6.0 List of References...................................... 13

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 2

1.0 Abstract:

Many Linux distributions use Linux-PAM (Pluggable Authentication Modules for
Linux) as the mechanism for authentication. In today’s world of cyber space
wars launching attacks against the vulnerabilities in confidentiality, availability
and integrity of a system we need to understand how our system’s authenticate
and who is using what. Linux uses PAM to do just that. PAM can be used to
tighten security on a system to the point no one can get in, including root, or
loosen security so that anyone can get in with no password. Because most Linux
distributions now use PAM, certainly the more popular ones, it behooves us to
understand the basics of how PAM works and how to use it.

PAM has the potential to be a real security vulnerability or asset. I’m afraid that
most system administrators don’t understand PAM, how to set it up, or even that
it is the authentication mechanism on their systems. Using the defaults, as is
usually being done, could lead to a vulnerability exploit as soon as it is noticed
that most systems are set up that way. The one saving grace of the default
configuration is that PAM tends to error on the paranoid side. One might wonder
why there is such a thing as PAM when we have SSH, Kerberos, secure ID
cards, and several other secure ways of authentication to a system. What can
PAM do to lessen the risks and threats against a host? Because PAM is so
widely distributed with Linux and other UNIX systems it is important to
understand the nature of the beast so that this handy tool doesn’t lead to more
vulnerabilities on a system. This paper will cover a brief history of PAM, what it
is, how it is used, and an example of configuration files. It is my goal to show the
building blocks of what PAM is to get a greater understanding of PAM and
therefor be able to use it to a fuller extent.

2.0 History:

“PAM was defined and developed in 1995 by Vipin Samar and Charlie Lai of Sun
Microsystems, and has not changed much since. In 1997, the Open Group
published the X/Open Single Sign-on (XSSO) preliminary specification, which
standardized the PAM API and added extensions for single (or rather integrated)
sign-on. At the time of this writing, this specification has not yet been adopted as
a standard.” 2http://www.freebsd.org/doc/en_US.ISO8859-
1/articles/pam/index.html#PAM-INTRO. It was first released with Solaris 2.3 as a
private internal interface. 1OAF-RFC 86.0 p. 16. Linux-PAM came into
existence with Linux in the RedHat 4.0 release in 1996 and has been an integral
part of most Linux distribution ever sense. 3http://lwn.net/2001/0927/history.php3.
An incomplete list on Linux-PAM users are: Caldera, Debian 2.2 (alpha, arm,
i386, ppc and sparc, sparc64), FreeBSD 3.2, Red Hat Linux 4.0, (all platforms
that they support), SuSE Linux 6.2 (all platforms that they support), Apple OS-X
,and MSC.Linux. 4http://www.kernel.org/pub/linux/libs/pam/whereislinuxpam.html.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 3

The reason for the development of PAM was to be able to separate out the
security aspect of a service from the application that way the applications
wouldn’t have to be recompiled every time a new authentication method or
security policy needed to be added or changed. This gives greater control to the
systems administrators over their system’s authentication methods and ease of
changing methods without having to reinstall or recompile services when these
changes are implemented. For example you have the application “login” and can
decide to authenticated it through /etc/passwd & shadow files, password
database, kererbos server, secure ID card, one time password, bio-scan, or
any/all of the proceeding without recompiling the login application for the specific
means of authentication.

3.0 What is PAM:

Pluggable Authentication Modules is a method for assigning how applications
authenticate a user. It is not a security program like ssh but a mechanism of
tying programs into the system and making the decisions on which type of
authentication to use, what resources to assign, and also to log the event. As the
name indicates it uses modules that can be plugged into the mechanism as they
become available or need updating. PAM can handle the determination of
authentication mode, logging of access, management of account, control user
sessions, and manage password updates, without having to recompile the
applications. This leads to being able to “allow a system administrator to add
new authentication methods simply by installing new PAM modules, and to
modify authentication policies by editing configuration files”.
2http://www.freebsd.org/doc/en_US.ISO8859-1/articles/pam/. But PAM is quite
complex and not easy to understand. Because of its complication, problems do
arise when changing the configuration files, like completely locking out anyone
from the system. As is stated in The Linux-PAM System Administrators’ Guide
section 5.1 5http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-
5.html#ss5.1. “The first thing you have to realize is that this happens to 50% of
users who ever do anything with PAM. It happened here, not once, not twice, but
three times, all different, and in the end, the solution was the same every time.”
Most users can and do lock themselves out of their own systems when
reconfiguring PAM.

The diagram below is one of the best diagrams I’ve seen to demonstrate very
basically what PAM does. Taken from the article Pluggable Authentication
Modules for Windows NT by Ann Arbor University of Michiagan
6http://www.citi.umich.edu/u/itoi/ni_pam_usenix.pdf page 5 Figure 2.4. This
diagram flows from left to right. On the left are services/applications asking to be
authenticated to the system. On the right are different types of authentication
available to the system. PAM intercepts the application and looks in the
Configuration Table for the type or types of authentication allowed for that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 4

application and how the session is to be controlled. It then uses one or more
PAM_modules to communicate with the authentication mechanism called for in
the specific application’s Configuration Table. If there is a match the application
will then use that method to authenticate to the system before granting access.

4.0 Basic How-To of PAM

To administrate PAM one needs to know the basic building blocks of PAM.
These are defined in many How-To documents including those mentioned in the
reference section. I have used all these references and tied their definitions
together to get a plainer understanding of the parts PAM uses.

There are four basic types of management that PAM takes care of, which are
authentication certification, account management, session management, and
password management. “This reasoning leads to a partitioning of the entire set
of interfaces into four areas of functionality: (1) authentication, (2) account, (3)
session, and (4) password.” 1OAF-RFC 86.0 p. 6 These four management task
types, sometimes called modules, are referred to in the configuration files
respectively as auth, account, session, and password (see section 4.3 for further
definition). The question I kept asking was, “But how does PAM take care of
these four different management tasks?”. I needed a greater understanding of
what PAM was and how it worked.

Besides the four basic management tasks that PAM does, I have determined
there are four building blocks that work together to be PAM. To begin with this is
where I had the most difficulty in understanding PAM. As a systems
administrator I felt I needed to understand more than just how to modify the
configuration files. I needed to know what drove PAM and how it worked on a
system. When I first started researching this subject I thought PAM was just
another daemon working on the system using configuration files to make its
decisions, however it is not a daemon or any other program running on the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 5

system. Then I figured it was part of the kernel and went looking for it in the
message logs and proc files, but to no avail. What I didn’t know was that PAM is
based on a functional programming scheme. I now understand that PAM is an
intricate part of the system using mostly dynamically linked libraries that get
called when a service or application has been programmed to use them. This
understanding made all the pieces fall together for me, and hopefully will shed
some light for someone else on how and why PAM is configured the way it is. I
will address PAM from the following main building blocks that I have discovered
instead of just showing how to set up the configuration files. In general this way
of explaining PAM differs from the norm, which tends to just explain PAM by
showing you how to set up the configuration files.

The main building blocks of PAM are:

• PAM aware applications/services.
• PAM libraries on the system, usually located in /lib/security/pam_*.so
• PAM configuration file or files; /etc/pam.conf or /etc/pam.d/app_name
• Information data files or databases that a library may look for or need to

access.

4.1 PAM Aware Applications/Services

“In order to work with PAM, applications are developed to be independent of any
particular authentication scheme.” 7Standfield & Smith, p.484. You can use
PAM if the application has the PAM functions built into it or you have the source
code for the application and can therefore build in the functions yourself.

The PAM aware application will have a call to the PAM library and then in turn
the libraries/modules do the work of authentication according to the PAM
configuration file specification. These modules are dynamically linked functions
that can be called upon by the applications. Anyone wanting to program an
application to be PAM aware or just curious on how it works, can get further
information from “The Linux-PAM Application Developers’ Guide” by Andrew G.
Morgan at 8http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-
html/pam_appl.html.

4.2 PAM Libraries

The PAM library modules are at the heart of what makes PAM work. Which are
located in /lib/security/pam_*.so on most Linux distributions. These are the
dynamically linked functions that are called to do the PAM configured tasks.
Different modules are developed to work with one or more of the four basic
management task types; auth, account, session, and password.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 6

Not being a programmer, but having a basic understanding of programming, I
had the most trouble figuring out that PAM was a functional programming
scheme and then trying to understand what these modules where doing. This
was quite a cognitive shift between sys-admin way of doing things and
programming, as in script writing vs. functional programming. I was used to
using daemons and their configuration files or kernel controls when utilizing
something new. I found that to understand how to use the different modules I
needed to understand that the modules where developed for different
management task types. In general the module variables that will differ
accordingly are: types of tasks, control flags and arguments. You must tailor
your functions along with these given variables, according to the desired
library/module.

Basically when a management task calls a module it will perform the task it was
designed to perform according to the type of task, control flag, and any
arguments passed to it. What the module is developed for and what arguments it
will except are defined in the documentation directory /usr/share/doc/pam-
version#/txts/README.pam_module-name, the man pages, or documentation on
the web at several sites including 9http://www.freebsd.org/doc/en_US.ISO8859-
1/articles/pam/pam-freebsd-modules.html and
10http://www.kernel.org/pub/linux/libs/pam/modules.html. The reason I give so
many references is because I couldn’t find one central location for this
documentation on all the modules available for use. The very first source would
be the most logical place to find the desired information. However, not all
systems have had all the documentation loaded on to them during install. Linux
is very integrated with PAM and therefore it isn’t just a package to install on the
system, since most Linux distributions now come with PAM already configured.

It is important to read the documentation on any modules you want to use in
order to make sure you are using it in the best way for your system. It is the
module that does the work of PAM and has the potential to either let you lock
down your system so you can’t get in or open it up to the world even with
kerberos or some other tight security authentication method on your systems.

To learn more about programming modules you can read “The Linux-PAM
Modules Writers’ Guide” at 10http://www.kernel.org/pub/linux/libs/pam/Linux-
PAM-html/pam_modules.html.

4.3 PAM Configuration

There are two ways to configure PAM. Either by a single file, /etc/pam.conf or
several files in /etc/pam.d/, these are given the name of the application that is
using PAM to authenticate it to the system. Both configuration methods are
allowed to use comment statements, these are designated with a proceeding “#”
and applies to the end-of-line.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 7

The syntax for the configuration files in pam.d has four fields in each file.

 type control-flag module-path module-arguments

The pam.conf file has five fields, the noticeable difference is that instead of a file
for each service, the application name is the first field. It must be noted that on
older systems the configuration might be in one file instead of a directory.

 application-name type control-flag module-path module-arguments

Using the pam.d directory is now the preferred way of setting up PAM. This
actually helps reduce the risk of corrupting the one file and then locking you out
of the system. It is also easier to see what services are authenticating through
PAM by listing the files in the directory. Those services you don’t want to
authenticate to the system can be renamed or removed. I will now deal with
pam.d directory configuration type files.

4.3.1 Four Fields of pam.d files Defined

4.3.1.1 TYPE: The first field in the configuration file is the TYPE field,
sometimes called the module field. As previously stated this field has four types,
auth, account, session, and password. The four types of tasks that PAM
recognizes and what they do are:

• auth This is the task type that PAM uses to know how to authenticate
a user to the system’s authentication method(s). The auth module
actually does two tasks. The first is to determine that the user is who they
say they are, by passwords or what ever means of authentication called
for in the configuration file. Second the module sets up the credentials for
the user, such as user ID, group memberships, and resources.
2http://www.freebsd.org/doc/en_US.ISO8859-1/articles/pam/pam-
essentials.html

• account This task checks the “non-authentication-related issues of
account availability, such as access restrictions based on the time of day
or the server's work load.” In other words it verifies the accounts
availability. 2http://www.freebsd.org/doc/en_US.ISO8859-
1/articles/pam/pam-essentials.html

• session The session task handles what is needed to set-up and tear-
down a session. Including logging and setting up any mounts.
2http://www.freebsd.org/doc/en_US.ISO8859-1/articles/pam/pam-
essentials.html

• password PAM uses this task to “change the authentication token
associated with an account, either because it has expired or because the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 8

user wishes to change it.” 2http://www.freebsd.org/doc/en_US.ISO8859-
1/articles/pam/pam-essentials.html

4.3.1.2 CONTROL FLAG: The second field in the configuration file “is
used to indicate how the PAM library will react to the success or failure of the
module it is associated with… the control flags determine the relative importance
of each module (task).” 4http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-
html/pam-5.html#ss4.2 . The power of the control flag is that tasks can be
stacked. That is for example there can be several auth tasks referred to in a
configuration file, executed in series according to the order they are listed.
Depending on if the module passes or fails the control flag then determines what
PAM will tell the application. Being able to stack the type is where PAM gets its
versatility. The control flag will determine the behavior of the stack. There are
two methods of using control flags I will just explain the traditional and simpler
method, which uses a single keyword. The more complex method of the control
flag is delimited with square brackets and consists of a series of value=action
tokens. The newer method has more control and is therefor more complicated.
If you wish to use it or have an understanding of how it works read section 4.1
Configuration file syntax in “The Linux-PAM system Administrators’ Guide” at
4http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-5.html#ss4.2.
Understanding the logic behind the control flags is imperative to understanding
the configuration files. There are four keywords:

• required “Success of the of the module is required for the module-
type facility to succeed. Failure of this module will not be apparent to the
user until all of the remaining modules (of the same module (task)-type)
have been executed.” 4http://www.kernel.org/pub/linux/libs/pam/Linux-
PAM-html/pam-5.html#ss4.2

• requisite “Like required, however, in the case that such a module
returns a failure, control is directly returned to the application. The return
value is that associated with the first required or requisite module to fail.
Note, this flag can be used to protect against the possibility of a user
getting the opportunity to enter a password over an unsafe medium. It is
conceivable that such behavior might inform an attacker of valid accounts
on a system. This possibility should be weighed against the not
insignificant concerns of exposing a sensitive password in a hostile
environment.” 4http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-
html/pam-5.html#ss4.2

• sufficient “Success of this module is deemed `sufficient' to satisfy the
Linux-PAM library that this module-type has succeeded in its purpose. In
the event that no previous required module has failed, no more s̀tacked'
modules of this type are invoked. (Note, in this case subsequent required
modules are not invoked.). A failure of this module is not deemed as fatal
to satisfying the application that this module-type has succeeded.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 9

4http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-
5.html#ss4.2

• optional “as its name suggests, this control-flag marks the module
as not being critical to the success or failure of the user's application for
service. In general, Linux-PAM ignores such a module when determining if
the module stack will succeed or fail. However, in the absence of any
definite successes or failures of previous or subsequent stacked modules
this module will determine the nature of the response to the application.” -
4http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-
5.html#ss4.2

It must be strongly noted that the order of the task types is of utmost importance.
You need to list the modules that are required to be tested first. If a sufficient
module is placed in the stack before a module that is required for security then
the application could be accepted without the proper security being applied.

4.3.1.3 MODULE-PATH The module path is the actual path to the library
module you want to use for a specific task type. Remember what was said
earlier, not all library modules can be used with all the task types. If a task calls
a modules and that module is not programmed for that task, then that line in the
configuration file is ignored and PAM moves on to the next line. Most of the
library modules are located in /lib/security/pam_*.so on Linux systems. It is very
important to understand just what the module is doing and what arguments can
be passed to it. The documentation, on a properly installed Linux system, is
located in /usr/share/doc/pam-version#/txts/README.pam_module-name this
document defines which task type and which arguments are acceptable.

4.3.1.4 MODULE-ARGUMENTS As the name implies these are the
arguments that the modules will accept. Again these are defined in the
documentation for the modules. Take special care in assigning arguments, for
example the argument nullok used with an authentication module means that the
module will pass with no password in the passwd or shadow file.

4.4 Information Files

The information files that PAM uses are the same files that are used by the
applications/services. There are a few files specific to some of the modules but
these will be referred to in the documentation of that module/library. This is
another good reason for understanding the libraries and what any changes to the
PAM configuration files will do.

Some examples of data files on a Linux system and what modules might use
these particular data files are listed below. All the below information is from
http://www.alphacentauri.demon.nl/linux/basic/pam

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 10

• The module pam_securetty.so check the /etc/securetty file to see if the
terminal being used to log into as root is in the file. If not the connection is
rejected.

• The pam_rhosts_auth.so module uses the ~/.rhosts file to see if access is
granted.

• The pam_pwdb.so module is used with the account action to write
accounting information to syslog and to also update /etc/utmp and
/etc/wtmp files.

• The pam_unix.so uses the /etc/passwd and /etc/shadow files or a
password database.

• “The /etc/security directory contains control files that describe PAM’s
environment and operations.” One of the files, limits.conf “shows limits
that PAM should put on groups of users when they finish authentication.
In this file you can limit the number of processes, amount of memory, and
other resources that users will have available.”
11http://www.alphacentauri.demon.nl/linux/basic/pam

5.0 An example of PAM

It was not my intention to give a how-to on using PAM but rather an
understanding of how PAM is integrated into a system and therefore give a better
understanding of what the configuration files are really doing. There are many
sources on how to set up configuration files I will just quote from one to show an
example of PAM at work.

The following example is taken from
12http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-pam-
samples.html

#%PAM-1.0
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_unix.so shadow nullok
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_unix.so
password required /lib/security/pam_cracklib.so retry=3
password required /lib/security/pam_unix.so shadow nullok use_authtok
session required /lib/security/pam_unix.so

The first line is a comment as is any line starting with a # character. Lines two
through four stacks three modules for login authentication.

auth required /lib/security/pam_securetty.so

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 11

This line makes sure that if the user is trying to log in as root, the tty on which
they are logging in is listed in the /etc/securetty file, if that file exists.

auth required /lib/security/pam_unix.so shadow nullok

This line causes the user to be asked for a password and then checks the
password using the information stored in /etc/passwd and, if it exists,
/etc/shadow. The pam_unix.so module automatically detects and utilizes
shadow passwords stored in /etc/shadow to authenticate users. Please refer
to the the Section called Shadow Utilities in Chapter 6 for more information on
shadow passwords. The argument nullok instructs the pam_unix.so module
to allow a blank password.

auth required /lib/security/pam_nologin.so

This is the final authentication step. It checks to see if the file /etc/nologin
exists. If nologin does exist and the user is not root, authentication fails.
Note: In this example, all three auth modules are checked, even if the first
auth module fails. This prevents the user from knowing at what stage their
authentication failed. Such knowledge in the hands of an attacker could allow
them to more easily deduce how to crack the system.

account required /lib/security/pam_unix.so

This line causes any necessary account verification to be done. For example,
if shadow passwords have been enabled, the account component of the
pam_unix.so module will check to see if the account has expired or if the user
has not changed their password within the grace period allowed.

password required /lib/security/pam_cracklib.so retry=3

If a password has expired, the password component of the pam_cracklib.so
module prompts for a new password. It then tests the newly created
password to see whether it can easily be determined by a dictionary-based
password cracking program. If it fails this test the first time, it gives the user
two more chances to create a strong password, due to the retry=3 argument.

password required /lib/security/pam_unix.so shadow nullok use_authtok

This line specifies that if the program changes the user's password, it should
use the password component of the pam_unix.so module to do so. This will
happen only if the account portion of the pam_unix.so module has determined
that the password needs to be changed — for example, if a shadow password
has expired. The argument shadow tells the module to create shadow
passwords when updating a user's password. The argument nullok instructs
the module to allow the user to change their password from a blank
password, otherwise a null password is treated as an account lock. The final

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 12

argument on this line, use_authtok, provides a good example of how one can
stack PAM modules. This argument tells the module not to prompt the user
for a new password. Instead it is to accept any password that passes through
the previous password module. This way all new passwords must pass the
pam_cracklib.so test for secure passwords before being accepted.

session required /lib/security/pam_unix.so

The final line specifies that the session component of the pam_unix.so
module will manage the session. This module logs the username and the
service type to /var/log/messages at the beginning and end of each session. It
can be supplemented by stacking it with other session modules if you need
more functionality.

One last example of a module used with Linux-PAM should be mentioned. That
is the module /lib/security/pam_stack.so. This module is unique to Linux-PAM
and is used to further stack any task type with the task type stack of another
PAM configuration file; typically the system-auth service file is used. The
following is an example of how it might be used in the previous example.

#%PAM-1.0
auth required /lib/security/pam_securetty.so
auth sufficient /lib/security/pam_stack.so service=system-auth
auth required /lib/security/pam_unix.so shadow nullok
auth required /lib/security/pam_nologin.so
account requisite /lib/security/pam_stack.so service=system-auth
account required /lib/security/pam_unix.so
password required /lib/security/pam_cracklib.so retry=3
password required /lib/security/pam_unix.so shadow nullok use_authtok
session required /lib/security/pam_unix.so
session optional /lib/security/pam_stack.so service=system-auth

In this example line two will now stack the auth lines from the file system-auth in
up to this point. If it passes all the requirements from system_auth’s auth stack
then none of the other auth lines following this point will be run, if it fails then the
rest of this stack will continue. Now the account stack is run first from the file
system-auth. If any failures in that file’s stack from the account lines are found
then the rest of the account stack in this file will not run. The password stack in
the system-auth file does not affect the password stack here because it was not
included with the pam_stack.so. The session stack will run both the required
session here and the one in the system-auth file as an optional setting; no
failures will effect the session.

It should be noted that for consistent authentication of several services the
system-auth file could be used. Just be careful that it works the way you want it
to and not as a catch all or you might be opening your system up where you

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 13

didn’t mean. Included in the List of References are several good links to learn
more about configuring the PAM files.

6.0 List of References:

1. RFC 86.0, PAM standard, http://www.opengroup.org/tech/rfc/rfc86.0.html
2. Pluggable Authentication Modules, Dag-Erling Smørgrav

http://www.freebsd.org/doc/en_US.ISO8859-1/articles/pam/pam-
essentials.html

3. http://lwn.net/2001/0927/history.php3
4. Linux-PAM Users

http://www.kernel.org/pub/linux/libs/pam/whereislinuxpam.html
5. http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam-5.html#ss5.1
6. Pluggable Authentication Modules for Window NT

http://www.citi.umich.edu/u/itoi/ni_pam_usenix.pdf
7. Vicki Stanfield & Roderick Smith, “Linux System Administration 2nd edition” ,

pp 484
8. The Linux-PAM Application Developers’ Guide

http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam_appl.html
9. http://www.freebsd.org/doc/en_US.ISO8859-1/articles/pam/pam-freebsd-

modules.html
10. Modules/Applications available or in progress

http://www.kernel.org/pub/linux/libs/pam/modules.html .
11. http://www.alphacentauri.demon.nl/linux/basic/pam
12. http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/ref-guide/s1-

pam-samples.html

Additional Resources:

13. M-009: Red Hat Linux PAM Vulnerability http://www.ciac.org/ciac/bulletins/m-

009.shtml
14. Linux-PAM http://www.kernel.org/pub/linux/libs/pam/
15. The Linux-PAM System Administrators’ Guide

http://www.us.kernel.org/pub/linux/libs/pam/Linux-PAM-html/pam.html#toc3
16. User Authentication HOWTO http://www.tldp.org/HOWTO/User-

Authentication-HOWTO/index.html
17. http://www.alphacentauri.demon.nl/linux/basic/pam

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 1 February 2003

 Page 14

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Auditing Linux Workstation befind Firewall
 GIA C IT Security Audit Kickstart (GSA E)
 Assignment 2 version 1.1

 Lila Zurzolo

 February 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 1

 Table of Contents

1 Objectives..2
2 Scope..2
3 Checklist..2
3.1 Physical Security2
3.2 Operating System Configuration2
3.2.1 Security Patches............................3
3.2.2 /etc/inetd.conf................................3
3.2.3 fingerd..3
3.2.4 “r” commands................................3
3.2.5 /etc/services..................................3
3.2.6 sendmail.......................................3
3.2.7 ftp..3
3.2.8 tcp_wrapper..................................3
3.2.9 /etc/pam.d.....................................4
3.2.10 Legal Notice at logon......................4
3.2.11 Password Policy4
3.2.12 Special Accounts...........................4
3.3 Root Account...................................5
3.4 General Services..............................5
3.4.1 Remote Access Service..................5
3.4.2 Secure Terminals...........................5
3.4.3 Secure Shell Client and Server5
3.5 Other Network Security Features5
3.5.1 World Wide Web (WWW) – httpd5
3.5.2 NFS...5
4 Report ...6
4.1 Findings..6
4.1.1 Operating System Configuration.......7
4.1.2 Root Account8
4.1.3 General Services...........................8
4.1.4 Other Network Security Features......9
4.2 Recommendations............................9
5 Resources 10

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 2

1 Objectives

The overall goal of this document is to provide guidance for the reader in the
secure configuration of the Linux RedHat 7.0-7.3 operating systems’ installation.
It is to assist in removing common and known security vulnerabilities. This
document was derived in part from the Computer Security Resource Center
(CSRC) document “UNIX Security Checklist (version 1.1)” available from
http://csrc.nist.gov/secpubs/unix_security_checklist.txt.

This document may be considered a formal Corporation configuration guide to
ensure that Linux workstations are secured to a level that supports Corporation
requirements. However, any vendor supplied Security Administrator’s Guide
should be used in conjunction with this document to identify optimal processes
for securing a particular Linux Workstation.

The main concern is the outsider threat of access through the firewall by using
insecure services. It has been determined that the probability of theft and/or
access to the console of the Linux Workstation is low and therefore no power-on
password or bios password is required. It is the objective of this audit to
determine if any services are running in an insecure mode.

2 Scope

This document is for Linux workstations in access-controlled areas behind the
corporate firewall with access to the network. This document should be used to
test the Linux Workstations independently; this report will cover only one station.

3 Checklist

3.1 Physical Security

The operating system of a computer cannot protect data or availability of the
operating system form those who have physical access to the computer system.

q DO verify the workstation is inside the restricted access area.
q DO disable booting from removable media.
q SUGGEST disable the Boot password on systems in locked areas.
q Do enable the Boot password on workstations that are not access

controlled.
q Do change the Boot password from the manufacturer’s default if it is not

disabled.

3.2 Operating System Configuration

The operating system of a workstation must be installed/configured in a secure
manner. The firewall does not block a badly configured workstation from being
exploited. The workstation needs to have current configurations and patches on

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 3

them for optimal security. The services and configurations mentioned in this
section are a baseline for system security and not all-inclusive of best practices.
If these services are not at least configured accordingly, the system could be
vulnerable to exploit. The corporation has only approved RedHat Linux 7.0-7.3
for use on the Linux workstations these guidelines only address that OS.

3.2.1 Security Patches
q ENSURE that the security patches for Linux kernel are up to date.

Fix the known security problems through installation of vendor-
supplied security patches. At the command prompt type uname –a
to get the kernel version installed on the workstation. Check the
rpms, with the rpm-qa command, loaded onto the system with the
security patches listed for that kernel at
http://rhn.redhat.com/errata/rh73-errata-security.html.

3.2.2 /etc/inetd.conf
q ENSURE that the permissions on this file are set to 600.
q ENSURE that the owner is root.
q DO disable any services that you do not require.

To do this I suggest that you comment out ALL services by placing
a “#” at the beginning of each line. Then enable only the ones you
NEED by removing the “#” from the beginning of the line. In
particular, it is best to avoid “r” commands and tftp, as they have
been major sources of insecurities. For changes to take effect, you
need to restart the inetd process. At the command prompt type
/etc/rc.d/init.d/inetd restart.

3.2.3 Fingerd
q ENSURE that finger is not installed on the workstation.

3.2.4 “r” commands
q DO disable all “r” commands (rlogin, rsh, etc.)
q ENSURE there are no .rhosts files on the workstation.

These are usually stored in users home directories as ~/.rhosts.

3.2.5 /etc/services
q ENSURE that the permissions on this file are set to 644.
q ENSURE that the owner is root.

3.2.6 Sendmail
q ENSURE that sendmail is off for all run levels.

This can be checked with the command chkconfig –list sendmail. If
it is on for any run level disable it with ckconfig –level 2345
sendmail off then disable the running sendmail with
/etc/rc.d/init.d/sendmail stop.

q ENSURE that if you have a line starting with :OW” in the
/etc/sendmail.cf file, it only has a “*” next to it.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 4

3.2.7 ftp
q ENSURE that ftp is off for all run levels.

3.2.8 tcp_wrapper
q SUGGEST use this package whenever possible.
q Enable PARANOID mode.
q Consider running with the RFC931 option.
q Deny all hosts by putting “all:all” in the /etc/hosts.deny file and

explicitly list trusted hosts who are allowed access by listing them in
the /etc/hosts.allow file.

q SUGGEST wrap all TCP services that you have enabled in
/etc/inetd.conf.

q SUGGEST consider wrapping any udp servies you have enabled in
/etc/inetd.conf, you will have to use the nowait option.

3.2.9 /etc/pam.d
q ENSURE that nullok is not used in any authentication task, in any of

the configuration files in /etc/pam.d.

3.2.10 Legal Notice at logon
q ENSURE that the Corporation’s legal notice is displayed when users

logon to the system.
If the Corporate legal notice is not displayed at logon add the notice
to the /etc/motd file.

3.2.11 Password Policy

Linux workstations must implement a policy to protect and control
passwords associated with user accounts.
q DO use password shadowing or a third party product, such as

kerberos.
q ENSURE that permissions for /etc/shadow are set for 400.
q ENSURE that the owner is root.
q ENSURE that permissions for /etc/passwd are set for 444.
q ENSURE that the owner is root.
q DO set maximum password age to 365 days.
q SUGGEST set minimum password age to 0 days.
q DO set minimum password length to eight characters.
q SUGGEST configure so that password uniqueness is enforced to the

last five passwords.
q DO configure so that Account Lockout will occur after five invalid

logon attempts.
q ENSURE the user of the Linux workstation is registered in the

Corporate’s database as a current active employee and owner of the
workstation.

q DO use machine-generated passwords.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 5

q ENSURE all accounts have passwords.
q ENSURE any account without a password is locked out.

3.2.12 Special Accounts
q ENSURE there are no shared accounts other than root with approved

z-accounts.
q DISABLE all guest accounts.
q DO assign non-functional shells (such as /bin/false) to system

accounts such as bin, daemon and the sync account.

3.3 Root Account

The root account is the most powerful account on the workstations. With root
privileges the system is wide open, therefore this account must be the most
secure.

q DO restrict the number of people who know the root password to the LAN
Sys-Admins.

q DO restrict the number of people who have z-accounts.
Typically this is limited to at most 3 or 4 people including the Sys-
Admins.

q DO su from user accounts to z-accounts rather than logging in as root.
q ENSURE root does not have a ~/.rhosts file.
q ENSURE “.” is not in root’s path.
q ENSURE root’s login files do not source any other files not owned by root

or which are group or world writable.
q ENSURE root’s cron job files do not source any other files not owned by

root or which are group or world writable.

3.4 General Services

These are additional services that must be limited or removed completely from
the workstations due to the outsider threat of exploitation, denial of service,
or/and theft of data.

3.4.1 Remote Access Service
q DISABLE all dial-in ports.

3.4.2 Secure Terminals
q ENSURE that the permissions for the /etc/security file are 644.
q ENSURE that this file is owned by root.
q ENSURE that secure option is removed from all entries that don’t

need root login capabilities.

3.4.3 Secure Shell Client and Server
q ENSURE that the Secure Shell Client (ssh) and Sever daemon

(sshd) are installed.
q ENSURE that kerberos is installed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 6

3.5 Other Network Security Features

Any availability of shared resources is also a vulnerability to the system if not
configured properly; or in some cases just because they are available. These
shares must be controlled in order to restrict access to only those with the
permission to do so.

3.5.1 World Wide Web (WWW) – httpd
q ENSURE that the httpd daemon is not running.

No Linux workstation is approved to run a web server.

3.5.2 NFS
q DO use /etc/exports file to export ONLY the file systems you need to

export.
q ENSURE that the exports file does not contain a “localhost” entry or

an entry with the hosts name of the localhost.
q DO export to fully qualified hostnames only.
q ENSURE that export lists do not exceed 256 characters.
q DO export file systems read-only (-ro) whenever possible.
q ENSURE that the permissions of the /etc/exports file are 644.
q ENSURE that the file is owned by root.

4 Report

On February 18, 2003 an audit was performed on the Linux workstation,
hostname nemesis which was assigned to Mr. Joe Newperson as his Linux
workstation. The audit was conducted per the requirements outlined in this
document. The findings as well as recommendations are presented here.

4.1 Findings:

The findings will be reported according to the sections outlined in the audit
checklist.

4.1.1 Physical Security
The workstation was found to be physically located in Mr. Newperson’s
office inside the restricted area with a key lock for the only door that
opens up into this office. The restricted area has a single person
turnstile gate making it next to impossible for someone to tail gate in with
someone else. The nemesis had the power-on password disabled. This
office has the appropriate setup for what is called for in the corporation
protocal, however Mr. Newperson did not have a key to the door and
would leave it unlocked when he was gone. A power on password was
added to nemesis by the sys-admin for the time being until Mr.
Newperson can obtain a key to the office. Although this situation is
unfavorable, it is however common due to the fact of the corporations

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 7

large size. Mr. Newperson was instructed in how his computer is not the
only piece of equipment that should be locked down due to security
reasons. Also that this is a prime example of how writing down security
passwords could be compromised in this given situation and that
ultimately it is his responsibility to make sure this does not happen. The
boot order was found to be in correct configuration by not allowing
removable media to boot first.

4.1.2 Operating System Configuration

The security patches where checked against the latest security rpm
releases on the RedHat site. These where found to be up to date
according to the RedHat security rpms.

The /etc/inetd.conf was not on the system, however /etc/xinetd.conf was
and had the correct permissions and owner. The file contents had the
unused servers commented out and only the bare essentials left in.

Finger was not on the workstation.

The r-command server daemons where not on the workstation and there
was no .rhosts files on the system. The r-commands to log onto another
host where present, but this presents no compromise for nemesis
because it was not excepting rlogin.

The /etc/services file was checked for permissions and owner, both
where set correctly. However there was no check called for in this
document on seeing which ports are open on the system.

Sendmail was not running the daemon on the system. The
/etc/sendmail.cf file was configured as outlined in this document.

There where no ftp daemons running on the system.

The tcp_wrapper is not running on this system. The daemon tcpd is
used with inetd in order to check the /etc/hosts.allow and /etc/hosts.deny
files. On this system the inetd service is replaced with xinetd which does
the work of inetd using tcpd. Therefore tcp_wrappers are not needed on
this sytem in its present configuration state. The /etc/hosts.allow and
/etc/hosts.deny files where configured according to Corporation’s
standards.

In checking the /etc/pam.d configuration files it was discovered that there
where some auth tasks set up with nullok arguments allowed. These
configuration files where for services that where not running on the
system. This is not an immediate security vulnerability because the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 8

services are not currently on, however, if in the future they are turned on
for any desired reason this could lead to an exploit.

The corporate legal notice was displayed at logon and had the correct
wording.

Checked the /etc/passwd and /etc/shadow files for both permissions and
owner and found them to be set correctly. Linux-PAM is setup to
authenticate the user for all the login services. The password aging and
length is to this documents specification. The 5 incorrect password
attempt was tested and found to be working correctly, including logging
of all incorrect password attempts. The passwd command is linked to a
machine generated password generator. It was verified that Mr.
Newperson did indeed use the machine-generated password, the link
make it not possible for him to use a self created one. PAM is also set to
enforce a new password for the last 5 password changes. All users in
the password file where checked against the corporate’s database for
active employment status, one inactive employee was found in the
password file. This was a severe security vulnerability due to the fact
that this was a past sys-admin and there was still a z-account associated
with the person. The accounts where locked immediately and the
corporation’s proper supervisors were notified of the finding. All the
special accounts had /bin/false shells so that no one could use them for
logging into the system.

4.1.3 Root Account

As previously mentioned, there was one z-account left on the system for
an employee who was no longer working for the corporation. This was a
serious finding. Everything else checked to be in correct order and
working properly; therefore concluding that total integration had been
achieved and that all security aspects leading up to this point were
fulfilled. The crontabs didn’t have any cron jobs that shouldn’t be on the
system or that where owned by anyone that shouldn’t be on the system.
There where no .rhosts files in ~/root/. All roots private files had proper
permissions and owner set.

4.1.4 General Services

All the dial-in ports are inactive and modems are currently not installed
on the workstation. The only network card was a GIGA-bit ethernet card
and the connection is not hooked up to an ISDN phone only the LAN
fiber connection.

The /etc/security is a directory with the following files and directories in it;
-rw-r--r-- 1 root root 1969 Nov 9 2001 access.conf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 9

drwxr-xr-x 2 root root 4096 Oct 24 15:01 console.apps
-rw-r--r-- 1 root root 2453 Nov 9 2001 console.perms
-rw-r--r-- 1 root root 2146 Nov 9 2001 group.conf
-rw-r--r-- 1 root root 1418 Nov 9 2001 limits.conf
-rw-r--r-- 1 root root 2862 Nov 9 2001 pam_env.conf
-rw-r--r-- 1 root root 2154 Nov 9 2001 time.conf
The console.apps directory has the following files;
Bindconf kbdrate printtool sysctlconfig-gtk
Dateconfig kisdndock reboot up2date
firewall-config kppp redhat-config-bindconf up2date-config
gdmconfig kuser redhat-config-date up2date-nox
gnome-lokkit kwuftpd redhat-config-printer-gui v4l-conf
gnorpm-auth linuxconf-auth redhat-config-time xcdroast
gtoaster locale_config redhat-config-users xserver
halt neat rhn_register
hwbrowser poweroff rp3-config
internet-druid printconf-gui serviceconf
All these are owned by root and have the permissions set to 644. The
console.perms.file had the correct settings for the tty logins. The other
files should be gone through to assure settings don’t violate any security
settings. They are mainly used for the COE session currently running on
the system and are owned by root and only available to the user who is
running the COE. Checking these files is beyond the scope of this
document.

SSH and the sshd (secure shell client and server) are running on this
system. Kerberos is also installed and configured on this system. It
these services are set up to except both the system password and the
corporate kerberos password for authentication with an ssh logon.

4.1.5 Other Network Security Features

The httpd daemon is not running on this system. There is no web server
loaded onto the system.

The nfs service is not running on this system and the /etc/exports file is
empty. There is no reason at this time for this system to share out any
file systems.

4.2 Recommendations:

Most of the findings were not severe and easily corrected. The most severe
vulnerability has its root cause of using a ghost image of an older system to set-
up new workstations. It was determined that is the reason for an old sys-admin’s
account being on the system even though this is a new system. It is
recommended that a new ghost image is generated with any corrections added.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSAE Assignment 2 February 2003

 Page 10

Other discrepancies came from this document not being updated with the
systems OS. The tcp_wrapper checks, the pam.d directory having files that
aren’t needed, and the /etc/security directory being a newer way of limiting
resources. It is further recommended that the document be updated to reflect the
new technology being used and to include a section on what ports should be
open or closed.

The last finding had to do with the procedures for bringing in new employees.
There should be a checklist to insure that all the resources they need are given
to them before they are responsible for what could be corporate sensitive
information. Give Mr. Joe Newperson a key.

5 Resources:

5.1 http://csrc.nist.gov/secpubs/unix_security_checklist.txt
5.2 http://www.cert.org
5.3 http://rhn.redhat.com/errata/rh73-errata-security.html
5.4 http://www.sans.org/top20/

