
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Shawn Lewis
Version 1

A Discussion of SSH Secure Shell

The purpose of this paper is to build on the Introduction to SSH Secure Shell paper written by
Damian Zwamborn (www.sans.org/infosecFAQ/encryption.intro_SSH.htm). This paper will focus on the
following topics of SSH Secure Shell and it’s installation on several systems.

Overview of SSH Secure Shell
How SSH Secure Shell works
SSH Secure Shell Vendors
Why Organizations should use SSH Secure Shell
Installing SSH Secure Shell
Cisco Router Installation
UNIX-Server Installation
UNIX-User Installation
UNIX-Logging into remote system
Conclusion
References

Overview of SSH Secure Shell
SSH Secure Shell is a Unix based command interface and protocol used to protect data in
transmission between devices. It is commonly used for controlling web, application servers and
network appliances remotely. SSH Secure Shell was first created in 1995 by Tatu Ylonen with the
release of version 1.0 of SSH Secure Shell and the Internet Draft “The SSH Secure Shell Remote
Login Protocol” (www.employees.org/~satch.ssh.faq.ssh-faq.html). It is comprised of a suite of three utilities,
slogin, ssh and scp. These utilities are based on earlier versions of UNIX utilities rlogin, rsh and
rcp.

The use of these SSH Secure Shell utilities both ends of the connection are authenticated using a
digital certificate. Unlike utilities such as Telnet the passwords are encrypted. SSH Secure Shell
uses RSA public key cryptography for connection and authentication. These encryption
algorithms include DES, 3DES, Blowfish and IDEA (Loshin, Pete).

How SSH Secure Shell works
SSH Secure Shell is a protocol that consists of three mechanisms, the transport layer, user
authentication and the connection protocol (www.net.lut.ac.uk). The transport layer runs over TCP/IP
of the OSI model. This layer provides the server authentication aspect of the connection. This
layer also addresses the confidentiality as well as the integrity of the connection. The second
mechanism is the user authentication piece. This will authenticate the client side user to the
server. The user authentication will run over the transport layer. The final mechanism is the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

connection protocol. This mechanism multiplexes the encrypted tunnel. Transmission of the
connection protocol is accomplished over the user authentication layer.

SSH Secure Shell works when the transport layer establishes a connection. The client would send
a request after the transport layer has been established. This “connection” would send another
service request after the authentication is complete. After these requests have been sent, proper
protocols would be agreed upon. The connection protocol mechanism would provide the
communication means. X11 connections and TCP/IP ports would be provided for the Secure
Socket Shell sessions.

SSH Secure Shell Vendors
Tatu initially offered SSH Secure Shell as a free open source UNIX package. SSH Secure Shell is
now currently commercially available on UNIX and non-UNIX platforms. With the
commercialization of SSH Secure Shell companies can offer GUI interfaces, documentation, and
technical support. There are several vendors that offer SSH Secure Shell packages for sale. One of
the most widely regarded is SSH Secure Shell by SSH Communications Security. SSH
Communications Security was founded in 1995 and is currently a leader in providing security-
related software. Van Dyke Technologies Inc. producer of Secure CRT offers a SSH Secure
Shell product that provides a product that uses 56 to 256 bits ciphers for data encryption. Other
commercial products offered are Appgate Client and Server by AppGate and F-Secure Tunnel
and Terminal by F-Secure. Most vendors offer similar functionality in their products with few
vendor specific enhancements or functions.

There are currently many versions and authors of free SSH Secure Shell available on many of the
major platforms. UNIX SSH Secure Shell products are the most widely available and developed.
OpenSSH suite offers UNIX operators the functions of SSH Secure Shell with a no purchase cost
(www.openssh.com). Windows SSH Secure Shell products are quickly becoming readily available for
free from many different sources. Simon Tatham’s PuTTY is a popular choice with
administrators. There are also SSH Secure Shell products available for systems such as the
pluggin originally written by Cedric Gourio in 1998 for Java based systems. Macintosh users
have the option of downloading MacSSH as well as several others. OS/2, OpenVMS and DOS
system administrators also have options if they wish to use SSH Secure Shell.

Why Organizations Should Use SSH Secure Shell
Any organization that transmits data across a network should tighten up security with stronger
password protection to secure its data transmission. Such a task can be done through SSH
Secure Shell. A SSH Secure Shell program will protect confidential data that flows through the
network. A “cracker” could break into a machine by sniffing passwords crossing the wire and
exploiting a know vulnerability (Barrett, Silverman). These passwords that are sent, sometimes are
transmitted in clear text format. Telnet is an example of a clear text password sent across the
network.

SSH Secure Shell is used when remote login to a device or application is necessary.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Administrators have used Unix tools rlogin, rcp (remote copy), rexec (remote execute) and rwho
(remote who) to administer their systems. These tools are easy to use and very handy since they
are a standard part of the operating system. However these tools are insecure by nature. When
using an R utility on a non-Unix box the server could be tricked into giving access to
unauthorized parties. These utilities were originally developed to assume that all systems are
Unix boxes, thus possibly allowing root access based on a client system. Systems have also been
compromised by using the .rhost file. This file contains names of trusted systems and is fairly
easy to compromise. With modifying this file a system can be included in the list of trusted
systems since the file information is not encrypted.

Use of encrypted communication tools such as SSH Secure Shell, Secure Sockets layer, Secure
email, PGP (pretty good privacy) or IP-Layer encryption like IPSec for VPN products can
increase network security dramatically. A switched network with VLANs would also decrease
the risk. However there are tools available to “sniff” the network. Dsniff is a commonly used
tool to “sniff” a switched network. The solution of such malicious activity is to have encryption
from end to end.

Installing SSH Secure Shell
The two components of a SSH Secure Shell software package is the server and client. Both
components will need to be installed and configured prior to use. The server and the client piece.
The server component is not limited to a traditional Microsoft or Novell server but could also be
defined as a router, firewall, concentrator or many other devices. These devices however would
need to be SSH Secure Shell capable. For example Cisco 7200, 7500 and 12000 series routers are
the only supported Cisco router platforms for SSH Secure Shell.

The following sections will cover several examples of basic setups for the server and the client for
a SSH system. In the following examples a Cisco 7200 router and a UNIX system will be setup
on the server side. A UNIX client will be shown as an example for client installations.

CISCO Router Installation
For the server installation component on a Cisco router two main tasks would need to be
completed (www.cisco.com).

Configure a domain name and host name for the device•
Generate a RSA Key•

The below table will perform installation of the SSH Server component for a Cisco 7200 router.
The hostname and domain names will need to be setup to identify itself for its clients.
Hostnames will be router specific in this explanation. By generating an RSA key this will
determine the security for the eventual transmission. There are several configuration settings that
could be modified however will not be covered in this document.

Command Description

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Router (config)# hostname company The hostname global configuration
command is to configure a host
name for the router.

Router (config)# ip domain-name companydomain The ip domain-name global
configuration command is to
configure a host domain for the
router.

Router (config)# crypto key generate rsa The crypto key generate rsa global
configuration command is to enable
the SSH server for local and remote
authentication for the router.
Recommended minimum modulus
size is 1024 bits.
To remove SSH from the server use
the crypto key zeroize rsa global
configuration command.

Router (config)# ip ssh {[timeout 110]} | [authentication-retries 4] Optional settings.
Timeout to specify the SSH
negotiation phase. The default is
120 seconds.
Authentication-retries specify the
number of retries. The default is 3.

An example of a 7200 router configuration with a timeout set not to exceed 60 seconds, and no
more then 2 authentication retries. The SSH configuration settings are highlighted for example
purposes. From a configuration aspect the setup is fairly straightforward with minimal setup and
maintenance.
version 12.0
no service pad
service timestamps debug datetime msec localtime show-timezone
service timestamps log datetime msec localtime show-timezone
no service password-encryption
service udp-small-servers
service tcp-small-servers

hostname cisco7200

boot buffersize 150000
aaa new-model
aaa authentication login default tacacs+
aaa authentication login aaa7200kw none
enable password enable7200pw

username mcisco password 0 maryspw
username jcisco password 0 johnspw
ip subnet-zero
no ip domain-lookup
ip domain-name cisco.com
ip ssh time-out 60
ip ssh authentication-retries 2

controller E1 2/0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

interface Ethernet1/0
ip address 192.168.110.2 255.255.255.0 secondary
ip address 192.168.109.2 255.255.255.0
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
no keepalive
no cdp enable

interface Ethernet1/1
no ip address
no ip directed-broadcast
no ip route-cache
no ip mroute-cache
shutdown
no cdp enable

no ip classless
ip route 192.168.1.0 255.255.255.0 10.1.10.1

map-list atm
ip 10.1.10.1 atm-vc 7 broadcast
no cdp run

tacacs-server host 192.168.109.216 port 9000
tacacs-server key cisco
radius-server host 192.168.109.216 auth-port 1650 acct-port 1651
radius-server key cisco

line con 0
exec-timeout 0 0
login authentication aaa7200kw
transport input none
line aux 0
line vty 0 4
password enable7200pw

end

UNIX-Server Installation
Installation of SSH1 on a UNIX system could be followed per the below instructions if a standard
installation of SSH is intended. There are several versions of SSH Secure Shell and flavors of
UNIX. Exact file names and locations may be different on each system. Also, directory locations
may be specified according to system administrator’s preference.

gzcat ssh-1.2.26.tar.gz | tar xf –
cd ssh-1.2.27
./configure –prefix+/usr –without-none –without-rsh
make
make install

By adding “without-none” this will enable the option of never to allow an unencrypted
password. This will help prevent unencrypted passwords from traveling across a network. The
“without-rsh” will never allow rshell rhosts as an option. By adding these options into the server
configuration, the SSH Secure Shell sessions will be more secure. The “make install” switch

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

will not add the SSH Secure Shell daemon into a system startup file. The system administrator
will need to manually add SSH Secure Shell to a system startup file.

Common SSH Secure Shell files on the UNIX server are:

/etc/sshd_config This file is a server configuration file.
/etc/ssh_config The client will read this configuration file. Local client

configuration files can override the options located in the server’s
global configuration file.

/etc/ssh_known_hostHost (public) keys that are known are stored within this file.

UNIX-User Installation
The user installation for a UNIX based SSH Secure Shell session is performed on each clients
workstation. The user will need to generate a key for the encrypted sessions. The command used
is “ssh-keygen”. This command will launch a random key script that will generate and list the
key. The user will be required to save the key. The default location for the key is
“$HOME/.ssh/identity”. The user will then need to complete the process by entering a passcode
and subsequently verifies it. The identification is stored locally in “/u/steve/.ssh/identity” with
the public key stored in “/u/steve/.ssh/identity.pub” The client public key is then displayed and
the installation is complete.

UNIX-Logging into remote system
For a user to establish a connection to a remote system use either the “slogin” or the “ssh”
command. The only parameter that is needed is the name of the remote system. Note that the
pass-phrase will not be echoed back to the user.

companyx% slogin speters
 Enter passphrase for RSA key 'steve@companyx.com': my c@t 83Rt
 Last login: Sun May 4 12:04:36 2001 from simdec
 [more output from the remote machine]
 speters%

You can avoid the pass-phrase prompts by keeping the authentication keys in memory. You will
only need to type the pass-phrase when you add a key into memory. If your account name on
the remote system differs from the one on the local system (the system you are connecting from)
you can use the -l switch to specify the remote account name. Creating a configuration file on
the host system can alter this.
 companyx% slogin -l speters companyx.com

Last login: Sun May 4 12:04:36 2001 from companyx.com
 [more output from the remote machine]

companyx%

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Conclusion
While these examples are not complete in the area of SSH Secure Shell systems and
implementations, they do show how to establish a secure environment and prevent malicious
activity by intercepting private information. As was discussed systems are not only susceptible
to non-encrypted passwords but also the overall transmission of company data. These
suggestions are not limited to external communication but internal alike. The examples are not
by any means a cure all for network data transmission security, but SSH Secure Shell is a good
idea to begin with. SSH Secure Shell programs are readily available at no or minimal charge for
organizations to investigate if SSH can be used as a encryption or tunneling solution.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References

Barrett Daniel J., Silverman Richard, SSH, the Secure Shell: Definitive Guide
February 2001- O’Reilly

Boran, Sean All About SSH – Part I/II, May 31, 2001
http://securityportal.com/research/ssh-part-1.html

Loshin, Pete Sealing the Pipe, June 2001
Information Security Magazine

Ylonen T., Kivinen T., Saarinen M., Rinne T., Lehtinen Internet Draft, May 11, 2000
http://www.net.lut.ac.uk/psst/draft-ietf-secsh-architecture-05.txt

Zwamborn, Damian An Introduction to SSH Secure Shell, May 15, 2001
http://www.sans.org/infosecFAQ/encryption.intro_SSH.htm

Secure Shell Version 1 Support
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s5
/sshv1.htm

Secure Shell FAQ
http://www.employees.org/~satch/ssh/faq/ssh-faq.html

http://www.vandyke.com/products/securecrt/index.html

http://www.ssh.com/products/ssh/features.html

http://www.openssh.com

http://www.securityfocus.com

