
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 1 of 29 8/22/2001

Securing Time – The Autokey Protocols

R.H. Palko
Table Of Contents

2
2
4
5
6
6
7

10
11
11
12
14
14
14
20
20
21
21
22
22
25
27

1.
2.
2.1
2.2
3.
3.1
3.2
3.3
4.
4.1
4.2
5.
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.

Preface………………….…………………...………
Overview……………………………………...….…
Error Handling……….……..…………………..…..
Security Issues………..….……..………………..…
NTP Modes….………..…………………………….
Client-Server Mode…………….………..………....
Symmetric (Peer) Modes……..…………………….
Multicast Mode…………….….………..……..……
Installation and Configuration…...……………...….
Installation……….……………….……………..….
Configuration…………… ..………..….………..….
Addenda …………………….……..….….……..…
Addendum 1 Overview of NTP……..…...………....
Addendum 2 Session Key Generation.……………..
Addendum 3 Cookies…..…….……….…….……...
Addendum 4 NTP Message Format….…..………...
Addendum 5 Key Files………..……….……..…….
Addendum 6 Hostname & RSA Public Keys…...….
Addendum 7 Diffie-Hellman Values…………...…..
Addendum 8 Message Format Details……….…..…
Addendum 9 Configuration Files ..…………………
Notes & References….……………………………..

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 2 of 29 8/22/2001

1. Preface:

This paper investigates the authentication protocols used with NTP-V4. It does not
review the NTP protocol itself, nor does it cover in detail the authentication protocol used in its
predecessor, NTP-V3.

For those new to the topic, NTP is the Network Time Protocol, used to acquire a reliable
time standard for a site/host from the Internet. A brief overview of the full NTP protocol can be
found in Addendum 1.

NTP Authentication is unique in that it must operate in an initial environment of un-
trusted sources coupled with inaccurate clocks. The problem is exacerbated by computational
overhead constraints which impact the ultimate accuracy of the timestamps required for proper
operation of the NTP Protocol. These unique requirements are why standard techniques such as
IPSEC, and the naïve approach of signing each timestamp message are inappropriate for use as
an authentication mechanism.

2. Overview:

The NTP Authentication schemes are for the purpose of identifying the Server to the
Client, (the converse of the SSH model), to ensure the Client ‘knows’ the source of its time
reference.

NTP-V4 has added ‘extension fields’ to the NTP message to convey cryptographic
information between machines. These fields are only present in messages transporting
association-id and cryptographic related information and are dispensed with in ordinary
timestamp messages.

NTP Autokey is a “Work in Progress” on the standards track. This paper discusses the
Authentication portion of NTP-V4 as distributed in the current reference implementation tar ball,
ntp-4.0.99m-rc2.tar.gz.

Since NTP is a ‘work in progress’ it is subject to change. Therefore, this paper may be
rendered obsolete in some parts by future distributions of the program suite.

Autokey does not employ encryption per-se, only hashing and signing functions. It does
this by using a combination of PKI and pseudo-random one-time keys generated by the MD5
hashes. The NTP timekeeping mechanism itself provides some defense against false timestamps
inherent in its filtering algorithm, but assumes the sources of the false timestamps are
misconfigured Servers rather than by malicious intent.

In the reference implementation, Autokey is based on the RSAREF20 cryptographic
library, namely the RSA public-private key system, MD5 and the Diffie-Hellman key negotiation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 3 of 29 8/22/2001

system.

NTP has to meet two requirements when authenticating, obtaining accurate timestamps
and authentication information. A Peer or Server is not accepted into the host’s candidate
population until both Authentication Values and Network Delay Values have been obtained.
Authentication is via Keyed MACs, (Message Authentication Codes), and RSA signatures of
cryptographic data. Network delay calculations are based on timestamps. Timestamps are
accepted unauthenticated for calculation purposes, but not used for clock synchronization
purposes until authentication is complete and conversely. Once both items have been completed,
the Client accepts the Peer or Server as a candidate source of synchronization.

There are two schemes available in NTP-V4, symmetric key, (backwards compatible with
NTP-V3), and Autokey which is new as of NTP-V4.

Symmetric key authentication, (introduced in NTP-V3 and not to be confused with the
NTP-V4 Symmetric Modes), utilizes either DES-CBC or Keyed MD5. These keys must be
distributed by a secure means outside the NTP protocol suite, which leads to the usual key

distribution conundrum encountered with any symmetric key system, in that
∑

−

=

1

1

n

k
k

sets of keys
have to be distributed, where n is the number of correspondents. Nothing further will be
discussed about the NTP-V3 scheme. Interested parties are referred to RFC 1305.

Autokey solves the key distribution problem through PKI techniques, and uses a triad of
algorithms; RSA Public/Private Key, Keyed MD-5 and Diffie-Hellman key exchange in its
operations.

General protocol usage is MD5 to detect message modification, RSA to verify sources,
and Diffie-Hellman to generate a common secret value in certain modes.

There are three sets of Autokey protocols corresponding to the three primary modes of
NTP: Client-Server, Symmetric Peer, and Multicast*.

RSA Signatures with timestamps are used in all modes to verify the source of all
cryptographic identities.

Session keys, extracted from a key list, are used in all modes for MD5 hash keys.

The Session key is a one-time key. For Key generation details see Addendum 2.

The NTP message authenticator is composed of two fields, the ‘key/algorithm identifier’
field and the ‘mac digest’ field. In authenticated NTP-V4 the ‘key/algorithm identifier’ field
contains the Kid, (hereinafter referred to as the ‘Auth.Kid’) of the current Ksession key and the ‘mac-
digest’ field, (hereinafter referred to as the ‘Auth.MAC’), is the Ksession keyed md5 hash of the
message fields.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 4 of 29 8/22/2001

Cookies are used in all modes and can assume several values dependent on the NTP
mode. See Addendum 3 for details.

Session key lists are refreshed approximately hourly based on the polling interval. DH
parameters and RSA keys are refreshed, on average, once per day. NTP-V3 private keys are
permanent keys and are refreshed manually.

RSA Public keys and DH Parameters are public values and can be obtained via the
Autokey protocols, or from sources outside the NTP system using insecure means such as file
transfer.

No state information is kept by the Server in Client-Server or Multicast Modes. However
partner state is kept in Symmetric Mode between Peers.

The authentic bit in the NTP status word is set when either the Cookie value, or Autokey
key list values, (dependent on NTP mode), and RSA signatures are valid. If the authentic bit is
set, the timestamps are evaluated otherwise they are ignored.

If the Client clock is stepped**, rather than slewed**, all cryptographic and time values for
all associations are purged and the Autokey protocol is restarted, this is to ensure that these
values do not survive a clock reset.

The most recent timestamp for each signed parameter is saved. Extension fields with
timestamps which are zero or older than the saved timestamp for the related signature parameter
are discarded without further processing.

While host system resident RSA key files and DH parameter files are not signed, their file
extensions contain ‘time of generation’ timestamps.

Since the RSA public key timestamp is copied from the file extension timestamp, the files
should always be generated when the host clock is valid.

A specific relationship amongst timestamps is enforced by the protocol:

1. All signature timestamps must be earlier than the packet receipt timestamp.
2. All signature timestamps must be later than the Public Key timestamp.
3. In Multicast Mode, the cookie timestamp must be later than the 'Autokey-values’

timestamp.
4. In Symmetric Modes, The ‘Autokey-value’ timestamp must be later than the DH

public key timestamp.

One caveat in the foregoing relationship structure, the granularity of the public key and
signature timestamps is one second, so a difference of zero is ambiguous. Additionally,
timestamps can be in error by as much as the synchronization distance** =

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 5 of 29 8/22/2001

(root-dispersion+(root-delay/2)).

2.1 Error Handling:

There are two mechanisms in the protocol to handle errors, the reachability register and
the watchdog counter.

The reachability register is an 8 bit left-shift register, which shifts a zero in for every poll
interval. When a response packet is received which passes authentication and sanity** checks, a
one is shifted into the register. If the register goes to zero, a general reset on the Association is
done which restarts the protocol from the value state obtaining when the Association was first
created.

The watchdog timer is incremented at each poll interval, regardless of the state of the
reachability register. The timer is cleared when a cryptographically authenticated packet is
received. If the counter reaches a value of 16 a general reset is done on the Association. When the
Association is restarted the poll interval is doubled.

The default NTP message error recovery mechanism is that a request is repeated at each
poll interval until a response is received or the watchdog timer expires causing a general reset.

2.2 Security Issues:

One possible attack mode is a denial of service attack by forcing the Client to expend
cycles running expensive key refresh routines by sending bogus or replayed signatures.

To defend against this attack, all signatures are time stamped. The timestamp is either a
valid NTP-seconds stamp or has the value of zero if the Server is not synchronized.
Extension fields with a timestamp value of zero are discarded immediately without further
processing.

The cryptographic values are smaller than those normally associated with strong
cryptography. This is driven by two constraints, the requirement for backward compatibility with
NTP-V3 and the need to minimize the processing overhead associated with cryptographic
calculations.

There are three tiers of security defense:

Message Authentication Code, (MAC):1.
Any message received with an invalid Auth.MAC field is discarded immediately
without further processing.

Session Keys:2.
The cryptographic primitives are regenerated on a relatively frequent basis. The key
sequence on the inversely read list is unverifiable to an intruder not in possession of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 6 of 29 8/22/2001

the ‘Autokey-value’ message. Unnecessary ‘bogus signature’ checks are prevented
by timestamp checks.

Autokey protocols:3.
The nature of the protocols ties each message to its immediate former message and
ultimately to the cryptographic primitives. Recovery from lost messages is enabled by
possession of the values sent in the ‘Autokey-value’ message at key list generation
time.

NTP Timekeeping Algorithm:4.
Additional security is obtained by the ten sanity** checks performed by the NTP
timestamp evaluation algorithms in the determination of a suitable source for
synchronization.

3. NTP Modes:

Client/Server Mode:3.1

3.1.1 Overview:

The dialogue begins with a Cookie request sent from the Client to the Server. The Server
responds with an RSA signed message containing the Cookie. Note that the Server does not
keep the Cookie, as the Server can regenerate the Cookie as required. The Client stores the
Cookie and builds a Session Key list. From this point onward, NTP protocol messages between
the Client and Server are moderated by Key-ID, (Kid), values, (which change with every
message), and the Cookie. A Client poll request uses a session key in calculating the Auth.
MAC. The Server recalculates the Auth.MAC to validate the Client and the Client maintains
message request/response synchronization by comparing the Kid in the response to the Kid in the
request.

3.1.2 Dialogue Details:

The Client builds a cookie request message using the standard request template, and
sends it to the Server.

The Server rolls a 32 bit random number, (which it saves for use with all Clients), and
creates the Cookie as the first 4-octets of the hash, (hash=MD5 (|ipclient|ipserver|kid=0|Nrandom|)). The
Cookie is sent to the Client in a cookie response message.

The Client verifies the signature using the Server public key, which was obtained either
outside NTP or from the Server via a ‘hostname/public key’ request message. The Client checks
the Server timestamp for a valid non-zero value, (a value of zero is a flag that the putative Server
is not synchronized and should not be used until it is synchronized to its own sources).

The Client saves the Cookie for use in poll requests and validations.
The Client generates a key list using the cookie, (note that the key list is only generated on

the Client).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 7 of 29 8/22/2001

The Client enters the main timekeeping dialogue loop:

START: The Client builds a poll request NTP message to be sent to the Server with no 1.
extension fields, calculates the MAC=MD5(|Ksession|NTP header fields) using a session
key from its key list and builds the Auth fields; Auth.Kid= Kid and Auth.MAC=MAC.

The Server retrieves its random number and re-calculates the cookie.2.
The Server verifies the MAC by reconstructing the key using the Kid from Auth.Kid,
the re-generated cookie, and the Client and Server IP addresses:
Ktest = MD5(|Sip|Dip|Kid|cookie|). It then uses the Test-Key to hash the received NTP
header fields: MD5(Ktest|NTP header fields|) and compares the result with Auth.MAC.

Assuming the result of the hash comparison is valid, the Server builds an NTP 3.
timestamp response message for the Client using an NTP timestamp and an
Authenticator, Auth.Kid=Kid using the Kid sent by the Client, and an Auth.MAC built
from the Client’s Kid, Cookie, and the ip addresses of the Client and Server as follows:
Ksession= MD5(|Sip|Dip|Kid|cookie). Auth.MAC = (MD5(|Ksession|NTP-response header-
fields|). Note that in the Client/Server mode the Server does not build a key list.
However, the session key, Ksession, is different in both directions as the Client and
Server Ip addresses are permuted in the Ksession hashing process.

The Client extracts the Kid from Auth.Kid and verifies that it matches the Kid of the 4.
request. If it does match, the Client calculates Ksession: MD5(|Sip|Dip|Kid|cookie|) and
uses Ksession to validate Auth.MAC: MAC = MD5(|Ksession|NTP response-header-fields|).
Assuming everything is correct the Client saves the timestamp. The timestamp
information is used in the main NTP timekeeping algorithm to determine the dynamic
suitability of the Server based on dispersion** and diffusion** calculations after
compensation for network delay.

At the next Client determined poll interval, the Client loops to the start of the poll 5.
dialogue to obtain another timestamp from the Server.

6. The Client-Server dialogue continues in this loop until the Client key list is exhausted,
at which point another key list is generated and the loop is reentered with the new key
list.

When the Server regenerates the random number the cookie is derived from, the
Server will fail to authenticate subsequent Client requests and will return a ‘NAK’
response, (i.e. the Kid will be equal to zero). The Client ignores messages with the
Kid=‘NAK’ and eventually the Association will encounter a watchdog timeout and the
protocol will be restarted.

Symmetric (Peer) Modes: 3.2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 8 of 29 8/22/2001

3.2.1 Overview:

Either Peer may take the part of the Server or the Client. However, this relationship
can change if the root synchronization distance** of the respective Peers’ changes.

The Symmetric Mode has two sub-modes, Active/Active and Active/Passive.

Active/Active Sub Mode:

This mode’s dialogue is brief, as the peer relationship has been pre-configured on
both Peers and each Peer will have the opposite Peer’s hostname, RSA public keys and
Diffie-Hellman parameters available as files. All that is required by the dialogue is to
exchange DH public-keys, generate the shared secret, build individual key lists, verify
timestamps, calculate network delays, and enter the poll loop.

Active/Passive Sub Mode:

The dialogue is started by the Active Peer, which must exchange Canonical
Hostname, RSA Public Keys, DH Parameters, and DH Public Keys in a preliminary
dialogue before engaging in a dialogue essentially the same as that of the
Active/Active mode dialogue.

Dialogue Details:3.2.2

Preliminary Dialogue:

The Active/Passive Mode preliminary dialogue is started by the Active Peer:

Active Peer: Obtain the Passive-Peer’s canonical hostname and RSA public 1.
key, (if not already obtained from other sources), and negotiate a common set
of DH parameters with the Passive Peer. Build a key list using the default key
and cookie, of zero, and send its DH public key in an RSA signed extension
field message to the Passive Peer.
Passive Peer: Obtain the hostname and RSA public key for the Active Peer, 2.
either via a request message to the Active Peer or from a trusted source such
as a Certificate Server or Secure DNS. Use the RSA public key to verify the
signature in the received packet’s extension field, and then use the common
DH parameters to construct a set of DH keys, calculate the shared secret, and
build the common cookie from the first 4-octets of the shared secret. The
response packet sent to the Active Peer contains the Passive-Peer’s DH public
value, timestamp, and a request for the Active Peer’s ‘Autokey-values’ in
signed extension fields.

Common Pre-Poll Dialogue:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 9 of 29 8/22/2001

Both sub modes are essentially the same. However, it in the interests of
continuity, the description will continue to use the Active/Passive labels:

Active Peer: Calculate the common cookie using the Passive’s DH public key, 3.
and build a new key list using the cookie which is the first 4-octets of the
shared secret. It then constructs a timestamped and signed ‘Autokey-value’
message to send to the Passive Peer, along with a request for the ‘Autokey-
values’ of the Passive Peer.
Passive Peer: Build a key list using the common cookie and send a signed, 4.
timestamped ‘Autokey-value’ message to the Active Peer and set the
authentic bit in the Passive Peer’s status word.
Active Peer: Check the received signatures and timestamps store the Passive 5.
Peer’s ‘Autokey-value’ and set the authentic bit in the Active Peer’s status
word.
The two Peers now dispense with extension fields and exchange timestamps 6.
to calibrate the delays. The Peer with the shortest root synchronization
distance**, (lowest stratum number), becomes the Server and the other
becomes the Client. The Client then sets its clock and the normal polling
sequence begins.

The peers now enter the main timekeeping poll loop. Since which peer will act
as Client, and which will act as Server is dynamic dependent upon current
stratum, this description will assume that the Active Peer is the Client and the
Passive Peer is the Server.

Poll Loop:

8. START: The Active Peer builds a poll request message to be sent to the
Passive Peer using a session key from its key list for the Auth fields; Auth.Kid=

Kid and Auth.MAC=MD5(|Ksession|NTP-header-fields|).

The Passive Peer verifies the MAC by first extracting Kid from Auth.Kid, and re-9.
creating the Active peer’s session key, Ksession = MD5(|Sip|Dip|Kid|Cookie|). It
confirms that the received Kid is the next expected Kid from the Active Peer,
and then uses the Ksession key to hash the received NTP header fields:
MD5(Ksession|NTP-header-fields|) and compares the result with Auth.MAC.

Assuming the result of the hash comparison is valid, the Passive Peer builds a 10.
poll response message for the Active Peer including an NTP timestamp and a
MAC built from the next session key from its key list; Auth.Kid=Kid and
Auth.MAC = MD5(|Ksession|NTP-header-fields|).

The Active Peer verifies the received message in the same manner as that 11.
described for the Passive Peer in step 9 above. Assuming everything is correct

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 10 of 29 8/22/2001

the Active Peer saves the timestamp.

The timestamp information is used in the main NTP timekeeping algorithm to
determine the dynamic suitability of the Passive Peer as a synchronization
source based on dispersion** and diffusion** calculations after compensation
for network delay.

At the next Active Peer determined poll interval, the Active Peer loops to the 12.
start of the poll loop to obtain another NTP timestamp from the Passive Peer.

13. The ‘Active Peer-Passive Peer’ dialogue continues in this loop until one of the
peers’ key list is exhausted, at which point that peer generates and distributes a
new key list and the poll loop is reentered.

In the event of a lost ‘Autokey-value’ message, or a refresh of the DH public key by
either peer, the recipient peer will fail to authenticate subsequent partner peer messages
and will return a ‘NAK’ response, (i.e. the Kid will be equal to zero). Authentication will
fail and the watchdog will timeout.

The protocol requires that when a Peer receives a DH public key value resulting in a
different cookie it must respond with its own DH public key value. Both peers can now re-
generate their key lists based on the new common Cookie developed from the new shared
secret.

Multicast Mode:3.3

Overview:

There are three modes grouped under Multicast; Broadcast, Multicast, & Manycast.

The essential differences between Multicast and Broadcast modes is in the IP address
space used and the range of the advertisements.

Manycast operates in the Multicast IP range but the client actively ‘trolls’ for suitable
servers rather than listening passively for advertisements.

The remainder of this discussion will focus on Multicast.

The Server regularly sends unsolicited advertisement messages at a rate of about one per
minute. These messages always contain an extension field, either the ‘Association-Id’ extension
field or, if the Server has just regenerated its key list, the ‘Autokey-value’ extension field.

Note that in a departure from the norm, the multicast ‘Association-Id’ extension message
is transmitted unsigned in the advertisement messages. However, the ‘Autokey-value’ message is
signed in the normal manner.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 11 of 29 8/22/2001

Since the Multicast advertisements always contain an extension field, the cookie is always
zero and the session key, Ksession is always based on public values. The Association-Id identifies
the Server to all Clients.

The Client, on receipt of the Server advertisement, changes to Client-Server Mode to
authenticate the Server, obtain a valid timestamp and set the authentic bit in the Client’s status
word. After authentication, the Client will remain in Client-Server Mode long enough to gather
enough timestamps to calibrate the Server delays

The Client then switches to Multicast-Client Mode and does not send again unless the
Server happens to regenerate the key list and the Client misses the ‘Autokey-value’ message. If
this happens, the Client fails to authenticate the Server’s advertisements and eventually
undergoes a watchdog reset, which starts the protocol over again.

Dialogue Details:

Since the Server identity is unknown to the Client until the Client receives an
advertisement, the Client must first obtain the Server’s canonical hostname and RSA Public key
from the Server using a ‘hostname-public key’ request message.

After validation, the Client must obtain the Server’s key list, if it had not already been
obtained from a Server advertisement, by building an ‘Autokey-value’ request using the Server’s
Association-id advertisement message as a request handle. After this dialogue is complete, the
Client goes into Multicast-Client Mode and just listens to the Server’s Multicast advertisements
to gather timestamps and refreshed ‘Autokey-values’.

Installation & Configuration:4

This focus of this discussion is on installation and configuration for the Solaris 2.6
Ultra/Sparc platforms and the Linux x86 platform running Red Hat 7.1 with the 2.4.2-2 kernel
using the GCC compiler.

Installation:4.1

In general terms, compiling and installation of NTP follows the well known ‘./configure ->
make -> make check -> make install’ paradigm. However, to use the Autokey features of the
program it is necessary to obtain a copy of either the rsaref20 library or the rsaeuro library and
place it in the ntp directory tree. This is not as straightforward as it could be, for RSA no longer
makes rsaref20 available at their web site and other locations on the Internet have several versions
of both packages available.

After obtaining a copy of the library, ‘untar’ it into either an ‘rsaref2’ or ‘rsaeuro1’
directory in the NTP directory tree root, (see the README.rsa file for details). Then patch the
source/rsa.c file in the library bundle using the patch found in the README.rsa file, which came

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 12 of 29 8/22/2001

with the NTP distribution. Unfortunately, not all versions of either library are patchable, so it may
be necessary to try several versions to locate one that is patchable. This is an important point, for
if a version of the library is used which has to be patched by hand, there is no assurance that
other modifications have not been made which will render the library incompatible with the NTP
source code in possibly subtle ways.

‘./configure’ will find the library and build the Makefile with no problems. However,
‘make’ may exit with an error. If this happens there is an incompatibility in the rsa library and a
different library will have to be located. Eventually, a library will be found that can be both
patched and compiled.

After ‘make’ has run successfully, run ‘make check’ and ‘make install’.

Configuration:4.2

Configuration consists of two steps, creation of the ntp.conf file and generation of the
required keys. The first step is to create the ntp.conf file. This should be done first as the key
generation utility, ntp-genkeys, reads the configuration file when it runs.

The writer has built three configurations for the client-server, active-peer, and passive-peer
modes of operation respectively. The only option added was logging. The configuration files
used are in Addendum 9: Configuration Files.

In general, the configurations are straightforward but complex in the number of available
options and require a close reading of the configuration and ntpd html pages of the distribution.
The daemon will ignore and log any misunderstood configuration commands.

The final step is to generate the keys. There is a bug in the ntp-genkeys utility if it is run
with no qualifiers, which will cause it to place all the keys in the root directory with broken links
in the /etc/ntp and /usr/local/etc directories.

The writer has found the best way to generate keys is to cd to the /usr/local/etc directory
and run ‘ntp-genkeys –h’ from there. This will create all of the keys in the /usr/local/etc directory
and will not create any links. The keys which are generated are ntp.keys.<fs>, ntpkey.<fs>,
ntp_dh.<fs>, and ntpkey_hostname.<fs> where <fs> is the common ntp timestamp used as a file
stamp to identify the key series. The keys are the md5 keys, (NTP-V3 symmetric keys), RSA
private key, Diffie-Hellman agreement parameters, and the RSA public key respectively. Move
ntp.keys.<fs> and ntpkey.<fs> to the /etc/ntp directory.

Create links as follows:
In /usr/local/etc: ntp_dh -> ntp_dh.<fs> and ntpkey_hostname -> ntpkey_hostname.<fs>.
In /etc/ntp: ntp.keys -> ntp.keys.<fs> and ntpkey -> ntpkey.<fs>

To run in peer mode between active peers it is essential that both peers share a common

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 13 of 29 8/22/2001

ntp_dh.<fs> file. It does not make any difference which peer’s Diffie-Hellman parameter file is
used, but the peers must share a common file. If both peers have a different file, the file with the
newest file stamp will be used. If one peer does not have a parameter file, it can obtain it from the
other with an Autokey message exchange. Alternatively, a copy of the file can be copied from
one peer to the other and placed in /usr/local/etc linked to ntp_dh

One additional file needed is the leap-seconds.<fs> file available by ftp from the NIST
timeservers, (e.g. ftp://time-b.nist.gov/pub/leap-seconds.list), and place it in /usr/local/etc with a
link ntp_leap -> leap-seconds.<fs>. Note that the entry ‘leap-seconds.list’ is a link to the current
version of the leap-seconds.<fs> file.

Some last points:

Do not create an empty ‘drift’ file in /etc/ntp, the daemon will create the file itself when it
has garnered enough information to calculate drift.

Do create the logging directory and file, (e.g. /var/log/ntp/ntp-log).

Start the daemons; ‘sudo ntpd’ will work provided the configuration file ntp.conf is in the
default ‘/etc’ directory. Daemon operation may be monitored by observing the ntp-log file, or by
using either of the two utilities, ntpq or ntpdc.

Observations and Comments:4.3

Solaris:

NTP 4 performs as expected in the modes which were tried, (Client-Server, & Peer-
Peer), when running on Solaris 2.6 machines, (note that it was not tried on x86
platforms, only on sparc and ultra platforms). One instance of the daemon runs which
forms three sockets; *.123, 127.0.0.1.123, and
<host-address>.123.

Linux (R.H. 7.x):

2.2.16 Kernel: NTP compiles with no fatal errors but cannot run successfully. It
appears that the child process, which should hook the required UDP-123 port, dies
when it is forked.

2.2.18 Kernel: NTP compiles and the daemon starts. However, the three children it
spawns cannot hook the required ports unless the daemon is started in debug mode.
When running in debug mode, the three children form three sockets, 127.0.0.0:123,
0.0.0.0:123, and <host-address>:123. Client-Server mode operates successfully, but
Peer modes have problems maintaining Autokey authentication.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 14 of 29 8/22/2001

2.4.2 Kernel: NTP compiles and the daemon starts normally. It spawns three
children, which form the same three sockets as with the 2.2.18 Kernel. Client-Server
mode operates successfully, but the Peer modes have the same problems as the 2.2.18
Kernel.

Hopefully, the Linux issue will be addressed in future releases.

5. Addenda:

5.1 Addendum 1 – Overview of NTP

NTP is used to contact a group of, (typically three), timeservers on the Internet via the
IANA assigned port UDP 123 and, by means of the NTP timekeeping algorithm, dynamically
select a timeserver from the group to use as a reference for the synchronization of the host
system clock.

NTP synchronizes clocks on the Internet in a hierarchical arrangement, (termed Strata),
where Stratum-0 is a time standard, Stratum-1 is a host machine directly connected to a time
standard, Stratum-2 is a host obtaining its time via NTP from a Stratum-1 machine, etc.

NTP is based on the receipt of timestamps and the calibration of network delays derived
from these timestamps. Timestamps are obtained via polls using a ‘request/response’ message
exchange with a Server in all modes other than Multicast, where timestamp messages are
advertised at regular intervals by the Server and the Clients just passively ‘listen’.

In NTP-V4 message fields are used to pass association-id and cryptographically related
information between Servers and Clients.

NTP-V4 Timestamp flow can be shown as follows: server time -> delay for cryptographic
operations -> delay of delivery to the network -> network delay -> delivery delay to the NTP
application -> delay for cryptographic validation -> recipient host NTP timekeeping process. The
largest processing time uncertainty is in the cryptographic processes, which can range from 1 –
10 µ sec for MD5 to hundreds of milliseconds for RSA dependent on the host architectures.

On the Client, the NTP clock filter selects the best candidates from a cluster of potential
Servers via a software frequency/phase-lock loop based on the NTP timekeeping algorithm,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 15 of 29 8/22/2001

which minimizes error** and drift**.

The overall NTP filter algorithm errors range from < 1ms on LANS to ~10ms on WANS

The TAI leap second table, which is used to correct UTC to Atomic clock time, can either
be obtained outside the NTP protocols or via an Autokey protocol request.

For additional NTP timekeeping details see the reference section of this paper.

5.2 Addendum 2 - Session Key Generation:

The key list is an array of keys used in the NTP authentication protocols. The keys are
identified by a Kid number. Kid numbers have a total range of 1 – 232, with NTP-V3 symmetric
keys occupying the range of 1 → (216 –1) and NTP-V4 session keys occupying the range of 216

→ (232-1).

The remainder of the discussion focuses on the Autokey portion of the list.

Session keys are generated and placed into a key list. There is one key list for each
Association maintained by the host.

The key list entry is a session key consisting of the Key-ID and the 128-bit hash (MD5
(|Sip|Dip|Kid|Cookie|)) Where Sip=Source IP, Dip=Destination IP, Kid = Key-ID.

The Key-ID can have three values:
Kid(1st) = a Random number, Nrandom, where 216 ≤ Nrandom ≤ (232 -1).
Kid(n) = a 4-octet pseudo-random number equal to the first 4-octets of the previous key hash that
was stored in the list.
Kid(NAK) = 0

While the key list is being generated, if there is a collision between a Kid value already
used on the list, or the Kid value is outside of the allowable range, the list will be deleted and re-
generated from the beginning.

The size of the key list is a function of the poll interval, with approximately one hour's
worth of keys being generated. The default minimum poll interval is 64 seconds and the default
maximum poll interval is 1024 seconds. However, the absolute maximum number of session
keys is determined by the value of NTP_MAXSESSION at compile time. In the reference
distribution this value is set to 100.

NTP-V3 keys have a permanent lifetime, while an Autokey session key lifetime is one poll
interval after it is scheduled to be used.

The key list is used in reverse order with the last key generated being the first key used.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 16 of 29 8/22/2001

Therefore, the recipient can validate the Kid of the current session key by testing that the first 4-
octets of the current Ksession are equal to the Kid of the previous session key.

An example list:

Idx0: Kid(1st)|MD5(|Sip|Dip|Kid(1st)|cookie|)
Idx1: Kid(1)|MD5(|Sip|Dip|Kid(1)|cookie|)
Idx2: Kid(2)|MD5(|Sip|Dip|Kid(2)|cookie|)
Idx3: Kid(3)|MD5(|Sip|Dip|Kid(3)|cookie|)
Idx4: Kid(4)|MD5(|Sip|Dip|Kid(4)|cookie|) ß First key used.

‘Final Idx=4’, ‘Next Kid ‘= first 4 octets of session key located at Idx4, (i.e. the value of Kid (5) if
such a key had been generated).

After the list is generated, the ‘Autokey-value’ message is built including the ‘init-seq’
field equal to the ‘Final Idx ‘value from the example and the ‘init-key-id’ field equal to the ‘Next
Kid’ value from the example.

The signed ‘Autokey-value’ message is sent unsolicited to the partner, or in the case of
Multicast is sent in Multicast advertisement message. Since the ‘Final Idx‘ points to the first Kid ‘
used, and the current Ksession is linked to the previous Kid, all keys on the key list are traceable to
the RSA Signature associated with the first key used from the list.

The recipient can now validate the first MAC generated by the Server using the key list as
‘Next Kid ‘=first 4 octets of the first Ksession key that is used.

Key lists are purged under the following circumstances:

A switch from Client-Server to Multicast-Client Mode, (the key list is no longer 1.
needed)
A change in the poll interval, (the expiry time of the keys is no longer valid).2.
A general reset occurs.3.
There is an error in fetching a key from the list.4.
There is a refresh of DH private and public keys, (all Client association key lists are 5.
purged).
The Client is first synchronized, i.e. the clock is stepped**, (all Client association key 6.
lists are purged).

Key List Usage Examples:

Here are two examples of the use of the key list. The first example is the use of the list where all
messages are received. The second example demonstrates list auto-recovery in the presence of a
missed message.

Note: This example is taken from fragment of an ntpd debug dump. The addresses have been

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 17 of 29 8/22/2001

sanitized.

Preliminary: Construct a key list: (this excerpt shows the construction of the last 10 keys
generated)

Note: The ‘session_key’ value is not shown, as the debug code only shows the key-id values not
the full md5 hash of ‘Ksession = MD5(|Sip|Dip|Kid|Cookie|)’. See the session_key routine in
ntp_crypto.c for full details.

start of edited dump extract
#fields: src-addr dest-addr key-id cookie nxt key-id sec
session_key: 192.168.10.5 > 192.168.1.1 9fdb7143 403d41d0 hash 6c3e34ae life 1408
session_key: 192.168.10.5 > 192.168.1.1 6c3e34ae 403d41d0 hash 60d87fce life 1280
session_key: 192.168.10.5 > 192.168.1.1 60d87fce 403d41d0 hash 9bffcf42 life 1152
session_key: 192.168.10.5 > 192.168.1.1 9bffcf42 403d41d0 hash 1672e1fe life 1024
session_key: 192.168.10.5 > 192.168.1.1 1672e1fe 403d41d0 hash 02f659d0 life 896
session_key: 192.168.10.5 > 192.168.1.1 02f659d0 403d41d0 hash cc5a347b life 768
session_key: 192.168.10.5 > 192.168.1.1 cc5a347b 403d41d0 hash 610494bc life 640
session_key: 192.168.10.5 > 192.168.1.1 610494bc 403d41d0 hash 7935a380 life 512
session_key: 192.168.10.5 > 192.168.1.1 7935a380 403d41d0 hash 5dbee5a5 life 384
session_key: 192.168.10.5 > 192.168.1.1 5dbee5a5 403d41d0 hash 5efa4629 life 256
#fields: seq key-id cookie timestamp exp
make_keys: 10 5efa4629 403d41d0 ts 3204571369 poll 7
end of edited dump extract

The ‘seq’ and ‘key-id’ will become the ‘Init-Seq’ and ‘Init-KeyId’ fields respectively of the
‘Autokey value’ message.

Construct the ‘Autokey-value’ message extension field:

|flags|code=’autokey-value’|field-length|Assoc-Id|T.S.|Init-Seq=10|Init-KeyId=5efa4629|Sig-
len|Sig|

The ‘Autokey-values’ are sent to the partner.

Notes:
In the following descriptions, the md5 hashes are artificial and are not what would be

obtained by hashing the purported values for two reasons; the addresses have been sanitized and
the data format passed to md5 is not the format displayed by the debug message. See
ntp_crypto.c for details.

Additionally, the variables ‘exp-hash-frag’ and ‘count-seq’ are constructs of the example
used to illustrate the intent of the code and are not to be taken as an explicit definition of how
these functions are actually accomplished within the code.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 18 of 29 8/22/2001

Normal Messaging:

An example of a normal message transmission sequence as viewed by the Recipient:
Recall that the keys are used from the list in the inverse order of their generation.

Copy Init-Key-Id from the Autokey-Value message to a variable, say exp-hash-frag.
exp-hash-frag=Init-Key-Id=5efa4629.
Save Init-Seq as count-seq.
count-seq=Init-Seq=10

Message-1:
Authenticator Fields: |Kid=5dbee5a5|MD5-hash-of-NTP-header-fields|
Construct Session Key:
Ksession=MD5(192.168.10.5192.168.1.15dbee5a5403d41d0)=
5efa4629ff5bca6493ea27feef1e31b3
Comparison of ‘exp-hash-frag’ and first 4 octets of Ksession: 5efa4629 = 5efa4629
Save ‘exp-hash-frag’=Kid =5dbee5a5
Decrement count-seq.

Message-2:
Authenticator Fields: |Kid =7935a380|MD5-hash-of-NTP-header-fields|
Construct Session Key:
Ksession =MD5(192.168.10.5192.168.1.17935a380403d41d0)=
5dbee5a52040bf60ba2ba66b897f94d0
Comparison of ‘exp-hash-frag’ and first 4 octets of Ksession: 5dbee5a5=5dbee5a5
Save ‘exp-hash-frag’=Kid =7935a380
Decrement count-seq.

Message 3:

Authenticator Fields: |Kid =610494bc|MD5-hash-of-NTP-header-fields|
Construct Session Key:

Ksession =MD5(192.168.10.5192.168.1.1610494bc403d41d0)=
7935a380e10e1f8be558df7cfad28fee
Comparison of ‘exp-hash-frag’ and first 4 octets of Ksession: 7935a380=7935a380
Save ‘exp-hash-frag’=Kid =610494bc
Decrement count-seq.

Message 4:

Authenticator Fields: |Kid =cc5a347b|MD5-hash-of-NTP-header-fields
Construct Session Key:

Ksession =MD5(192.168.10.5192.168.1.1cc5a347b403d41d0)=
610494bcc6401ad6901465b4fe235417
Comparison of ‘exp-hash-frag’ and first 4 octets of Ksession: 610494bc=610494bc

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 19 of 29 8/22/2001

Save ‘exp-hash-frag’=Kid = cc5a347b
Decrement count-seq.

Missed Message Auto-recovery:

An example of auto-recovery of the key list due to a missed message as viewed by the Recipient

Copy Init-Key-Id from the Autokey-Value message to a variable, say exp-hash-frag.
exp-hash-frag=Init-Key-Id=5efa4629.
Save Init-Seq as count-seq.
count-seq=Init-Seq=10

Message-1:
Authenticator Fields: |Kid=5dbee5a5|MD5-hash-of-NTP-header-fields|
Construct Session Key:
Ksession=MD5(192.168.10.5192.168.1.15dbee5a5403d41d0)=
5efa4629ff5bca6493ea27feef1e31b3
Comparison of ‘exp-hash-frag’ and first 4 octets of Ksession: 5efa4629 = 5efa4629
Save ‘exp-hash-frag’=Kid =5dbee5a5

Message-2:

Missed Message

Message 3:

Authenticator Fields: |Kid =610494bc|MD5-hash-of-NTP-header-fields|
Construct Session Key:

Ksession =MD5(192.168.10.5192.168.1.1610494bc403d41d0)=
7935a380e10e1f8be558df7cfad28fee
Comparison of ‘exp-hash-frag’ and first 4 octets of Ksession: 5dbee5a5≠7935a380

Auto-recovery:

Compute a Test-Session key using the first 4 octets of the unexpected hash fragment as a session
key, Kid

Ksessiontest =MD5(192.168.10.5192.168.1.17935a380403d41d0)=
5dbee5a52040bf60ba2ba66b897f94d0
Decrement count-seq

Compare ‘exp-hash-frag’ with the first 4 octets of the test session key: 5dbee5a5=5dbee5a5.

Since they equate, The Session key with the first 4-octet sequence is in the key list and the ‘exp-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 20 of 29 8/22/2001

hash-frag’ sequence was the key-id of a missed message.

Therefore, the Session Key with the Kid value of 610494bc is a valid key and may be used for
checking the MAC. Additionally ‘exp-hash-frag’ can be reset to 610494bc, which will restore the
list from the perspective of the Recipient.

Save ‘exp-hash-frag’=Kid =610494bc
Decrement count-seq.

Post-recovery:

Message 4:

Authenticator Fields: |Kid =cc5a347b|MD5-hash-of-NTP-header-fields
Construct Session Key:

Ksession =MD5(192.168.10.5192.168.1.1cc5a347b403d41d0)=
610494bcc6401ad6901465b4fe235417
Comparison of ‘exp-hash-frag’ and first 4 octets of Ksession: 610494bc=610494bc
Save ‘exp-hash-frag’=Kid = cc5a347b
Decrement count-seq

Multiple missed message keys can be recovered in this manner by iteration of the tests back to
the value obtained as the ‘Init-Key-id’ in the ‘Autokey-value’ message with an iteration limit of
count-seq=0.

However, if the failure was due to a cookie or key list change which went undetected the list will
not be able to be reconstructed barring a MD5 hash collision which can be disregarded due to the
nature of the MD5 function.

5.3 Addendum 3 – Cookies:

The 4-octet cookie can have multiple values based on NTP mode and Message type:

Cookie values:

Multicast Mode and any packet with an Extension Field = Zero (0)1.

Client-Server Mode = first 4-octets of the hash=MD5(|Sip|Dip|0|Nrandom|), where Nrandom is 2.
a Server generated 4octet random number.

Symmetric (Peer) Modes: = first 4-octets of DHsecret, where DHsecret is negotiated 3.
between the Peers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 21 of 29 8/22/2001

5.4 Addendum 4 - NTP Message Format:

The NTP message is composed of a header section, optional extension sections, and an
authenticator section. While any message may contain extension fields, usually poll messages do
not contain extension fields.

NTP Header Format:1.

The basic header is 48 octets in size, composed of 32 bit words containing identifier,
delay, dispersion** and timestamp data

Extension Field Format:2.

Extension fields are used for the transmission of association-id and cryptographically
related information between hosts in the form of Autokey request/response information
such as cookies, RSA public keys, DH parameters and negotiations. Extension response
fields are always signed with the special exception of the Multicast ‘Association-Id’
advertisement messages.

The extension fields consist of flag, type, length, association, data & padding. Padding is
to 32 bit for any field except the last, which is padded to 64 bit.

Authenticator Field Format:3.

The authenticator consists of multiple 32-bit fields, the first of which contains either
algorithm identity, (NTP-V3), or the Key-ID. The remaining fields contain either the
symmetric encryption of the Basic header, (NTP-V3), or the Keyed MD5 hash of the NTP
Header fields plus any Extension fields.

For detailed field information for these formats see Addendum 8.

5.5 Addendum 5 – Key Files:

In configured associations, the Server or Peer public key can be obtained from a file on
the Client, which was obtained outside of the protocol, or the Client can obtain the public key
from the Server via the NTP protocol.

In Multicast or Symmetric Passive association, the Server public key must be obtained
from the Server via the NTP preliminary protocol, or from a trusted 3rd party source such as a
Certificate Server or Secure DNS.

The following key files will be found on all machines:
Note <fs> = A file timestamp in NTP timestamp format

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 22 of 29 8/22/2001

ntp.keys.<fs> = NTP-V3 symmetric keys.1.
ntp.keys are generated with the other keys but not used by Autokey.
ntp_dh.<fs> = Diffie-Hellman Parameters.2.
ntp_dh must be common amongst the constellation of machines but can be
distributed by insecure means.
ntpkey_<hostname>.<fs> = RSA Public Key.3.
ntpkey_<hostname>.<fs> can be distributed by insecure means.
ntpkey.<fs> = RSA Private Key.4.
ntpkey must be kept secret on each machine.
ntpkey_certif_<hostname>.<fs> PKI Certificate.5.
Currently obtained if available but not used.

These files are commonly linked to generic names. For example: ntp.keys ->
ntp.keys.<fs>. Key files are created with the utility ntp-genkeys as a ‘key-generation’ with a
common <fs> value. Therefore, new keys can be put in service merely by changing the files
pointed to by the generic names.

5.6 Addendum 6 – Hostname & RSA Public Key Acquisition:

A Server’s or Peer’s RSA Public Key may be obtained in several ways; by means of a file
transfer in the case of a configured association, (e.g. Active/Active Symmetric), from a trusted 3rd

party source such as a Certificate Server or Secure DNS. Alternatively, it may be obtained
directly from the Server with a ‘hostname and public key request message’ using the standard
request template.

The Server responds with its canonical hostname, (defined as the return string from the
UNIX gethostname () function), RSA Public Key, Public Key Timestamp, message timestamped
and RSA signature.

If the signature cannot be verified, or the public key file cannot be found or loaded, the
request is repeated until it is successful or there is a watchdog timeout.

The response contains the public key in network byte order, (big-endian) with the
modulus being the first 32bit word and in the format defined in the RSAREF20 documentation.

5.7 Addendum 7 – Diffie-Hellman Values:

There are two sets of DH values that must be obtained. The DH parameters, ‘N’ &
‘G’,(where ‘N’ is a large prime and ‘G’ is a generator of ‘N’), and the DH Public Key for the
partner calculated using the parameter values.

(DH-Publicpartner = G DH-Private-partner mod N).

The DH public key used to compute the shared secret,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 23 of 29 8/22/2001

(DHsecret = DH-Publicpartner
DHprivate-local mod N).

The Parameter and Public Key values may be obtained, either by ‘out of protocol’ means
from files in the case of a configured Active/Active association or, from the partner Peer by
means of ‘Autokey request-response’ extension message pairs. The requests use the standard
request template extension message with the appropriate code number while the timestamped,
RSA signed responses are returned in the relevant response messages.

5.8 Addendum 8 – Message Format Details:

The formats detailed in this Addendum are the ones currently defined for the Reference
implementation. However, since this is a ‘work in progress’ the format details of the various
messages may change as the protocol evolves pending promulgation of the Standard.

For current format details please refer to the latest edition of the papers cited in the
References Section.

Common Definitions and notations:
The field name subscript number is the field size in bits, with a subscript of ‘x’ being 1.
used where the field is of a variable length.
Fields are padded to their respective boundaries, with the last field in a message 2.
padded to its 64 bit boundary, to ensure the extension fields are multiples of the 32 bit
standard size.
There are only 2 flag bits currently defined, Reply and Error.3.
The ‘|’ character indicates field boundaries.4.

NTP Header:1.
|li|vn|mode|stratum|poll|precision|root-delay32|ref-ident32|ref-timestamp64|
orig-timestamp64|rx-timestamp64|tx-timestamp64|extension-1x|extension-nx|
key/algorithm-ident32|mac-digestx|

For the fields from ‘li’ through ‘tx-timestamp’ see NTP-V3, (rfc-1305), for
definitions.

The extension fields are optional message fields.
The key/algorithm field is the Kid of the session key in NTP-V4.
The mac-digest size is 128-bits in V4.
The key/algorithm and mac-digest fields are collectively known as the
‘Authenticator’.

NTP Timestamp format:1.1
|seconds32|fraction32|
The total value is the elapsed seconds and fractions since 1-jan-1900.

Request message extension fields:2.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 24 of 29 8/22/2001

All extension response fields are signed and timestamped with the timestamp being
the time of signing and included in the signed field range.

Extension field code numbers take the form of 0x10n and 0x810n where ‘n’ is the 2.1
code number in request and response messages respectively.

Currently assigned code numbers:
Parameter Negotiation – reserved for future use.1.
Association ID.2.
Autokey Value.3.
Cookie.4.
Diffie-Hellman Parameters.5.
Diffie-Hellman Public Key.6.
Hostname & RSA Public Key.7.
Certificate.8.
TAI Leapsecond Table.9.

Standard Request Template:2.2
|flags8|code8|length16|association-id32|
Used by all codes except where noted.

Code–1. Parameter Negotiation2.3
|code16|length16|association-id32|timestamp32|param-lenn|parametersn|
RSA-sig-len64|RSA-signature512|
This code is not in use and is reserved for future use. It is only included here for
continuity.

Code-2. Association-Id Request & Response:2.4
Request:|flags8|code8|length16|association-id32|status-flags32|
Association-id = 0 on request and Server Assigned Number on Response.
Status-Flag values currently in use:
Bit 31=Autokey Enabled, bit 30=Public & Private Keys loaded,
Bit 29=DH Agreement parameters loaded, bit 28=Leap Second table loaded.

Code-3. Autokey Value Response:2.5
|flags8|code8|length16|association-id32|timestamp32|init-seq32|init-key-id32|
RSA-sig-len64|RSA-signature512|
init-seq is the index number of the last Kid added to the key list.
init-key-id is the first 4 octets of the last Session key added to the key list.
Signed fields are ‘timestamp’ through ‘init-key-id’.

Code-4. Cookie2.6
Request:

Standard Request Template, Association-Id=0.
Response:

|flags8|code8|length16|association-id32|timestamp32|cookie32|

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 25 of 29 8/22/2001

RSA-signature-len64|RSA-signature512|.
Association-ID is a server assigned number.
‘timestamp’ is time when the Cookie was generated and signed.
Signed fields are ‘timestamp’ through ‘cookie’.

Code-5. Diffie-Hellman (DH) Parameters:2.7
|flags8|code8|length16|association-id32|timestamp32|filestamp32|
prime-len64|prime512|gen-len64|generator512|RSA-sig-len64|RSA-signature512|
filestamp is the timestamp when the parameters file was generated.
Signed fields are ‘timestamp’ through ‘parameters’.

Code-6. Diffie-Hellman (DH) Public Key:2.8
|flags8|code8|length16|association-id32|timestamp32|filestamp32|DH-Public-key-len64

|DH-Public-key512|RSA-sig-len64|RSA-signature512|
filestamp’ is timestamp when the DH parameters file was generated.
Signed fields are ‘timestamp’ through ‘DH-Public-key’

Code-7. Hostname & RSA Public key:2.9
|flags8|code8|length16|association-id32|timestamp32|filestamp32|
RSA-Public-key-len32|RSA-Public-key-modulus32|RSA-Public-key2048|
Hostname-len32|Hostnamen|RSA-sig-len64|RSA-signature512|
Association-ID=0 as the hostname and RSA public key are properties of the Server
and not related to a specific association.
Filestamp is the timestamp when the RSA public key was generated.
RSA-Public-key format follows that of RSAREF20.
Signed fields are ‘timestamp’ through ‘hostname’

Code-8. Certificate:2.10
|flags8|code8|length16|association-id32|timestamp32|filestamp32|
Certificate-len32|RSA-sig-len64|RSA-signature512|
Association-ID=0 as the certificate is a property of the Server and not related to a
specific association.
Signed fields are ‘timestamp’ through ‘hostname’

Code-9 Leap Second Table:2.11
|flags8|code8|length16|association-id32|timestamp32|filestamp32|table-len32|
tablen|RSA-sig-len64|RSA-signature512|
Association-ID=0 as leap-second-table is not a property of any specific association.
Filestamp is the timestamp of the generation of the Leap second (TAI) file on the
originating machine, usually an NIST machine.
Signed fields are ‘timestamp’ through ‘leap-sec-table’.

5.9 Addendum 9-Configuration Files:

These configurations were used to test the Autokey authentication functions and are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 26 of 29 8/22/2001

not meant to be complete NTP configuration files. They were written to implement three
modes of operation; Client-Server, Active-Active Peers, and Active-Passive Peers
respectively. Several options have been omitted and reference should be made to the
relevant HTML document pages before implementing NTP on production machines.

These files have been ‘sanitized’ using the reserved domain ‘example.org’ and the
reserved address block 192.168.0.0.

9.1 Client -> Server Mode:

#ntp.conf
#06-jul-01
#test configuration for authentication tests.
#client name is client.example.org
#
#set up server arrangement with server-1.example.org and server-2.example.org
#IP addresses have been used here to avoid possible DNS cache poisoning pending the
#completion of secure DNS.
#
server 192.168.10.20 autokey
server 192.168.11.21 autokey
#
driftfile /etc/ntp/drift
#
keys /etc/ntp/ntp.keys
keysdir /usr/local/etc
#
the crypto keyword is required, but its qualifiers are optional.
the use of the ‘dh’ as the syntax for the qualifier for the Diffie-Hellman key is correct
and was gleaned from the source code.
the following two lines are actually one continuous line in the configuration file.
crypto privatekey /etc/ntp/ntpkey publickey /usr/local/etc/ntpkey_client.example.org dh
/usr/local/etc/ntpkey_dh leap/usr/local/etc/ntp_leap
#
logfile /var/log/ntp/ntp-log
#
note that the ‘logconfig’ syntax differs from the ‘Miscellaneous Options’ Html page in
that the ‘logconfig=’ syntax generates an error message on startup
but the ‘logconfig ‘ syntax appears to work.
logconfig clockall +peerall +sysall +syncall
#

9.2 Active Peer <–> Active Peer Mode:

#ntp.conf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 27 of 29 8/22/2001

#02-jul-01
#test configuration for authentication tests.
this machine’s name is peer-1.example.org.
#
#set up peer arrangement between peer-1.example.org and peer-2.example.org.
IP addresses have been used here to avoid possible DNS cache poisoning pending the
#completion of #secure DNS.
#
#Lower stratum servers are required for traceability to the stratum root as neither peer is a
#stratum 1 machine with a directly connected stratum 0 clock.
server 198.168.12.22
server 198.168.13.23
#
#set up peer arrangement with peer-2.example.org
peer 192.168.14.24 autokey
#
driftfile /etc/ntp/drift
#
keys /etc/ntp/ntp.keys
keysdir /usr/local/etc
#
the crypto keyword is required, but the qualifiers are optional.
the use of the ‘dh’ as the syntax for the qualifier for the Diffie-Hellman key is correct
and was gleaned from the source code.
the following two lines are actually one continuous line in the configuration file
crypto privatekey /etc/ntp/ntpkey publickey /usr/local/etc/ntpkey_peer-1.example.org dh
/usr/local/etc/ntpkey_dh leap /usr/local/etc/ntp_leap
#
logfile /var/log/ntp/ntp-log
#
note that the ‘logconfig’ syntax differs from the ‘Miscellaneous Options’ Html page in
that the ‘logconfig=’ syntax generates an error message on startup
but the ‘logconfig ‘ syntax appears to work.

logconfig clockall +peerall +sysall +syncall
#

9.3 Active<->Passive Peer Mode:

The configuration files are essentially the same as for active <-> active peer mode with the
exception of the peer statement being only in the active peer’s configuration.

The passive peer’s RSA public key file and the Diffie-Hellman, (DH) parameter file can
be placed in the active peer’s /usr/local/etc with the appropriate links if they are available from
other sources such as a public key server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 28 of 29 8/22/2001

5. Notes and References:

5.1 Notes:
 * The term Multicast is used herein to collectively refer to the three multiple access modes

Multicast, Manycast,& Broadcast unless specified otherwise.
** For descriptions of these terms refer to RFC 1305.
Since this is a ‘work in progress’ the possibility exists of differences between what is found
in the html pages, which come with the distribution, and similar information posted on the
web site. Resolution of such conflicts can be obtained by reference to the CVS repository
at http://maccarony.ntp.org/cgi-bin/cvsweb.cgi/, or in extreme cases, by reference to the
distribution source code.

Published References:5.2

Html pages in the reference distribution:1.
ntp-4.0.99m-rc2/html/index.htm

Source code in the reference distribution:2.
ntp-4.0.99m-rc2/ntpd

Authentication Options. David L.Mills mills@udel.edu3.
http://www.eecis.udel.edu/~ntp/ntp_spool/html/authopt.htm

Autonomous Authentication. David L. Mills4.
http://www.eecis.udel.edu/~mills/autokey.htm

Network Time Protocol, Security Model & Authentication Scheme. David L. Mills5.
http://www.eecis.udel.edu/~mills/database/brief/autokey/autokey.pdf

Public Key Cryptography for the Network Time Protocol. David L. Mills6.
Electrical Engineering Dept, University of Delaware, May 2000
http://www.eecis.udel.edu/~mills/database/reports/pkey/pkeya.pdf
http://www.eecis.udel.edu/~mills/database/reports/pkey/pkeyb.pdf

Public-Key Cryptography for the Network Time Protocol, (version 1). David L. Mills7.
<draft-ietf-stime-ntpauth-01.txt> April 2001
This reference is an ietf internet draft and is a ‘work in progress’. This specific draft has an
expiry date of October 2001.
Required inclusion of the <draft-ietf-stime-ntpauth-01.txt> copyright statement:
“Full Copyright Statement”
“Copyright © The Internet Society (date). All Rights Reserved. This document and
translations of it may be copied and furnished to others, and derivative works that comment

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 29 of 29 8/22/2001

on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that
the above copyright notice and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the Internet Society or other Internet
organizations, except as needed for the purposes of deploying Internet standards in which
case the procedures for copyrights defined in the Internet Standards process must be
followed, or as required to translate it into.

http://www.ietf.org./internet-drafts/draft-ietf-stime-ntpauth-01.txt

Cryptographic Authentication for Real-Time Network Protocols. David L. Mills8.
In: AMS DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.
45 (1999), 135-144.
http://www.eecis.udel.edu/~mills/papers.htm

Network Time Protocol, Distribution Notes. David L. Mills9.
http://www.eecis.udel.edu/~ntp/ntp_spool/html/index.htm
Distribution Copyright Statement:
**
*
* *
* Copyright (c) David L. Mills 1992-2001 *
* *
* Permission to use, copy, modify, and distribute this software and *
* its documentation for any purpose and without fee is hereby *
* granted, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission *
* notice appear in supporting documentation, and that the name *
* University of Delaware not be used in advertising or publicity *
* pertaining to distribution of the software without specific, *
* written prior permission. The University of Delaware makes no *
* representations about the suitability this software for any *
* purpose. It is provided "as is" without express or implied *
* warranty. *
* *
**
*
RFC 1305Network Time Protocol (Version 3) Specification, Implementation and Analysis10.
David L. Mills, University of Delaware, Mar 1992
http://rfc.net/rfc1305.html

12. Source of leap-seconds.<fs> file:
 ftp://time-b.nist.gov/pub/leap-seconds.list
Note that the entry ‘leap-seconds.list’ is a link to the current version of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Securing Time 30 of 29 8/22/2001

leap-seconds.<fs> file.

