
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of
oneSIS and Git

GIAC (GSEC) Gold Certification

Author:	
 Aron	
 Warren,	
 aronwarren@gmail.com	

Advisor:	
 Johannes	
 B.	
 Ulrich,	
 Ph.D.	
 	

Accepted:	
 April	
 12th	
 2012	

Abstract	

From	
 desktops	
 to	
 servers	
 to	
 even	
 the	
 largest	
 of	
 supercomputers	
 managing	
 a	

constantly	
 evolving	
 diskless	
 computing	
 environment	
 is	
 usually	
 quite	
 challenging.	
 	

Not	
 only	
 does	
 the	
 requirements	
 for	
 machines	
 change	
 over	
 time	
 but	
 the	
 need	
 for	

timely	
 security	
 patching	
 can	
 make	
 the	
 maintenance	
 unbearable.	
 	
 Creating	
 a	
 single	

diskless	
 Linux	
 image	
 that	
 is	
 both	
 easily	
 customizable	
 to	
 different	
 classes	
 of	

machines,	
 eg.	
 	
 clients	
 versus	
 servers,	
 is	
 easily	
 solved	
 with	
 the	
 use	
 of	
 oneSIS.	
 	
 Git,	
 a	

version	
 control	
 system,	
 provides	
 a	
 very	
 easy	
 method	
 for	
 upgrading,	
 downgrading	

and	
 verifying	
 diskless	
 images.	
 	
 The	
 joining	
 of	
 these	
 two	
 software	
 packages	
 can	
 easily	

save	
 hundreds	
 of	
 hours	
 for	
 an	
 administrator.	
 	
 	

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

2

	

Aron	
 Warren,	
 aronwarren@gmail.com	

1. Introduction
 This paper introduces the joining of two software packages, oneSIS and Git.

Each package by itself is meant to tackle only a certain class of problem. What is

amazing is when both are combined the resulting union offers an administrator of a

diskless computing environment an easy to use and powerful toolset to defend against the

efforts of hackers.

1.1. OneSIS

 OneSIS is an open source project that was developed by Josh England while

working for Sandia National Laboratories as a method for booting diskless compute

nodes in a supercomputer from a single, or possibly multiple, boot servers. The

flexibility gained by remotely sharing a root file system that can be custom tailored for

each client or group of clients will be demonstrated in this paper. While oneSIS is

primarily written for a handful of the most commonly used Linux distributions, namely

RedHat, SuSE, Debian, Ubuntu and Gentoo (England, 2008) any Linux distribution can

be ported in just a few minutes.

 This software package can be beneficial for many types of deployments and its’

use need not be limited to supercomputers. It can be used in many different diskless

scenarios such as desktops in hotel business centers, airline kiosks, college computing

terminals, and even business employee desktops. Another example class of machine

could be static, diskless, redundant web servers designed to offer files from a central file

server. A final example is the bind configuration files residing in a oneSIS disk image

which allows offering of the same DNS configuration from multiple servers.

 Deployment of diskless desktops and servers is easy to achieve with oneSIS

though not a focus of this paper. This paper will focus on a more generic class of

computers - the compute node class that reside in compute clusters, which are a form of

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

3

	

Aron	
 Warren,	
 aronwarren@gmail.com	

supercomputers. Compute nodes are one of the simplest types of computers to deploy in

that the operating system (OS) stack tends to be a minimal set of features and

functionality. The reason for this is the more rouge processes that perform OS scheduler

detours away from the parallel application can cause significant problems (Beckman,

Iskra, Yoshii, Coghlan, & Nataraj, 2008, pp. 4-5).

Differences between compute nodes tend to be limited to hostnames and network

addresses. Thus with relative ease administrators can deploy an entire cluster in the

matter of days to a few short weeks depending upon the variance from the standard OS

installation. While oneSIS installation is a short and easy process, the debugging of boot

problems and differences between nodes are usually the most time consuming part of the

project.

OneSIS is not only for diskless machines, populating diskful machines is also a

supported feature. Diskful installs are quite similar to the way ROCKS project handles

building clusters. While very simple to deploy a ROCKS cluster, the benefits of having a

single OS image being managed and the auditability provided by Git is lost. Local disks

in compute nodes, as well as any of the above scenarios, mean another significant

mechanical failure point in computers (Schroeder, 2007, p. 10). When dealing with a

handful of hard drives the failure rate is probably rather small. For 10,000 node clusters,

the mean time between failures can become a problem to simulations if the OS dies out

from underneath the job. Hard drives also mean another point of accountability and

liability let alone the resources needed to ensure proper destruction when the hard drive is

decommissioned or replaced.

 Before moving onto the introduction of Git, a conceptual framework needs to be

established. When a reference to a oneSIS image is made, the reference is to set of files

and directories that form the root partition. This image contains all the files necessary for

the OS to run. It also contains all of the configuration files necessary for the image to

give a personality to the diskless clients. For example, the oneSIS image contains files

such as /etc/hosts, /etc/fstab, /bin/login, and so forth. Section 2.1 will show how this

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

4

	

Aron	
 Warren,	
 aronwarren@gmail.com	

image is created.

1.2 Git

 The next software package to be introduced is Git. Git is an open-sourced

distributed version control system management system developed initially by Linus

Torovolds for development of the Linux kernel (Google, 2007). Git is not the only

versioning system that is available. Bitkeeper, CVS, Mercurial, Subversion and Perforce

are just a handful of commercial or open source software packages available (Fish, 2011).

Of the two models available: client-server or distributed, the distributed model gives us

the most benefit for our application. Instead of requiring a centralized repository for

commits and checkouts to be processed Git uses a distributed repository through the use

of cloning. Each individual “has a complete copy of all historical revisions of every file”

(Loeliger, 2009, “The Birth of Git,” para 13). This ability to clone a complete repository

lends itself to users ability to work on their own code changes or branches offline. It also

allows them to later merge those changes into a shared repository or another individual’s

repository.

 While Git is more thought of for software development the approach taken here is

to take the revision control concept and apply Git management to an operating system

installation, in particular the image produced by oneSIS. In taking the concept of

revision control over an operating system the following gains are made:

1) Ability to detect any content change in the oneSIS image including ownership

and file permissions changes. Git’s native SHA1 file checksum usage lends

itself to providing image integrity (Google, 2007). Also knowing the initial

image commit’s SHA1 lends itself to a thoroughly trusted commit tree as each

commit is tied to a previous commit or commits.

2) Ability to move forward and backward along the oneSIS image’s history for

testing in a development environment to rolling back problems in a production

environment.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

5

	

Aron	
 Warren,	
 aronwarren@gmail.com	

3) Ease in upgradability of the oneSIS image when moving from a development

to a production environment, or from one production version to another.

2. Server Setup

 To begin our example oneSIS installation a server that offers the oneSIS image is

needed. A server node needs to be installed with an operating system. In this paper

CentOS will be used as the example for both the server node and the diskless client

nodes. CentOS provides a simple installation process with minimal installation

questions. The most important configuration option is the partition layout. One

recommendation is if there are plans to utilize oneSIS and Git to the maximum

advantages, have at least one very large partition that can contain many copies of the

oneSIS image, referred to simply as images. The partition used here will be created at

/var/lib/oneSIS/images. In the end there could be a production image, a development

image, several backup copies created during upgrade time and a few for historical

reasons. That could roughly be 8 images * 6GB = 48GB. Today’s drive capacities are

more than large enough to allow a lot of playing room but legacy systems could pose a

challenge.

 The server also needs two network interfaces, one to the outside world and one to

a private network for the compute nodes. While not necessarily applicable to every

deployment scenario, for this paper the compute cluster model will continue to be used.

The other major upfront decision to make is the amount of packages to be installed. Best

practice is to install the minimal number of packages necessary. Keep in mind that

whatever packages you choose during the server installation as far as RPMs will also

show up in your oneSIS image. Choosing a minimal software list lends your compute

nodes to having a very nice, small, manageable footprint.

 2.1 OneSIS Installation and Image Creation

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

6

	

Aron	
 Warren,	
 aronwarren@gmail.com	

 Once the installation completes and the system has rebooted the oneSIS rpm

needs to be installed.

[root@server]# rpm -Uvh oneSIS-2.0.2-1.noarch.rpm

The next step is to tell oneSIS to copy the root file system. This command will

copy every local file system starting from / and place it in the location specified by the -l

option.

[root@server]# copy-rootfs -l /var/lib/oneSIS/
images/image-prod

Next create the sysimage.conf file and place it in etc in your new image. The

sysimage.conf file is the file used to give a compute node its’ personality. Any files or

directories listed here will be symlinked to a corresponding location in a ramdisk

mounted under /ram. /ram is used to store dynamic files and personality specific

configuration files. Sample sysimage.conf files are included with the oneSIS rpm but

here is the file being used here as an example:

distribution
DISTRO: RedHat EL-6 –sp
RAMSIZE: 500m

NODECLASS_REGEX node\d+ cluster
NODECLASS_RANGE node[1-5] cluster.compute

Writable system areas
LINKFILE: /etc/adjtime -d
LINKDIR: /root -d
LINKDIR: /tmp -d
LINKDIR: /var/tmp -d
LINKDIR: /var/cache -d
LINKDIR: /var/empty -d
LINKDIR: /var/lib/nfs -d
LINKDIR: /var/lock -d
LINKDIR: /var/log -d
LINKDIR: /var/run –d
LINKFILE: /etc/fstab

 The administrator’s guide goes into excellent description of each command and

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

7

	

Aron	
 Warren,	
 aronwarren@gmail.com	

configuration option but briefly here are the three options going to used:

1. NODECLASS_REGEX: oneSIS defines the class a node belongs to based

solely on the node's hostname (England, 2011). In our example a hostname of

node belongs to the example class and the compute subclass.

2. LINKFILE: Creates a file in /ram and changes the corresponding file in the

image into a link pointing to the file in /ram (England, 2011). The -d option says

to copy all of the directory’s contents into /ram.

3. LINKDIR: Creates the directory in /ram and changes the corresponding

directory in the image into a link pointing to the directory in /ram (England,

2011). The -d option says to copy all of the directory’s contents into /ram.

 Upon a client node booting oneSIS will take the hostname and create a symlink

from /ram to the appropriate classed file or directory in the image. Thus the personality

is made complete.

[root@node1]# ls -la /etc/fstab
/etc/fstab -> /ram/etc/fstab
[root@node1]# ls –la /ram/etc/fstab
/ram/etc/fstab -> /etc/fstab.cluster.compute

	

 Now that the sysimage.conf file has been created oneSIS needs to be told to

oneSIS’ify the image. The production image will be called image-prod. The -c option is

where our configuration file is located. Best practice is to have /etc/sysimage.conf

symlinked to the same location inside the image. The last argument is the location of the

image.

[root@server]# mk-sysimage -c /var/lib/oneSIS/
images/image-prod/etc/sysimage.conf /var/lib/
oneSIS/images/image-prod

 2.2 Service Installation and Configuration

 Next prepare the server to serve the image in which includes installing dhcpd,

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

8

	

Aron	
 Warren,	
 aronwarren@gmail.com	

tftpd, and tftp services.

[root@server]# yum install dhcpd tftp tftp-server

 The tftpd service needs to be edited to allow it to start, so set disable=no as well

as add some verbosity, the -v -v -v, in order to assist in troubleshooting compute node

booting. The verbose messages will be logged to syslog.

[root@server image-prod]# cat /etc/xinetd.d/tftp
service tftp
{
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = -s /tftpboot -v -v -v
 disable = no
 per_source = 11
 cps = 100 2
 flags = IPv4
}

[root@server]# cat /etc/dhcp/dhcpd.conf
ddns-update-style none;
use-host-decl-names on;
subnet 192.168.200.0 netmask 255.255.255.0 {
 option routers 192.168.200.2;
 group {
 filename "/pxelinux.0";
 next-server 192.168.200.2;
 host node1 {
 hardware ethernet 00:50:56:25:6D:C8;
 fixed-address 192.168.200.100;
 }
 }
}

To diskless boot the image, the kernel needs to be copied to /tftpboot. The kernel

doesn’t have to be the server’s current running kernel but in this example it is.

[root@server]# cd /boot; cp vmlinuz-2.6.32-
71.29.1.el6.x86_64 /tftpboot/

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

9

	

Aron	
 Warren,	
 aronwarren@gmail.com	

The next step is to build the bootstrapping image in which is done with the mk-

initramfs-oneSIS command. The -w option is to ensure the e1000 ethernet driver

isspecifically included. The -b option defines the base image location. The -f option

means to overwrite any existing initramfs file. The final two options are the initramfs

name and the kernel version to be used.

[root@server]# mk-initramfs-oneSIS -w e1000 -b
/var/lib/oneSIS/images/image-prod/ -f initramfs-
2.6.32-71.29.1.el6.x86_64 2.6.32-71.29.1.el6.x86_64

 Be sure that you know all of the necessary drivers needed in order to boot the

compute node, the most often problematic area is the network card. This completes the

steps necessary to, with some good luck, get an image to boot on the compute node.

3. Git repository setup

 This section is where Git will be used to track changes in our newly created

image. Git in itself does have a steep learning curve. While Git proficiency is not

needed to understand the following work, additional resources are listed in the references

section. Traverse to the directory to be tracked, /var/lib/oneSIS/images/image-prod in

this instance, and set up a Git repository.

[root@server]# cd /var/lib/oneSIS/images/image-prod
[root@server image-prod]# git init
Initialized empty Git repository in

/var/lib/oneSIS/images/image-prod/.git/

 First step is to create a root level .gitignore of the files Git will not be tracking.

Git will not track devices so directories that contain those need to be excluded and

contained in that file.

[root@server image-prod]# cat .gitignore
dev
proc

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

1
0

	

Aron	
 Warren,	
 aronwarren@gmail.com	

 Git does not track empty directories. Find any directory that is empty and

populate it. An easy cheat is to create an empty .gitignore in that directory.

[root@server image-prod]# find . -name .git -prune
-o -type d -empty -exec touch {}/.gitignore \;

 Since Git doesn’t track devices in /dev there is need to create a backup of what is

currently residing there and then Git track the tarball.

[root@server image-prod]# tar cvf dev.tar dev/*

 Git by itself will not track ownership or permissions so the next step is to add in

the setgitperms.perl hook to allow tracking of them.

[root@localhost image-prod]# cd .git/hooks/

[root@localhost hooks]# cp /usr/share/git-core
/contrib/hooks/* .

 The next step, which is bypassed for brevity's sake, is to create post-commit, post-

merge and post-checkout as per the instructions in setgitperms.perl. Next to make easy

work do a “git add *”. This is a very time consuming process as it must inspect each file

in the file system and calculate the SHA1 hashes.

[root@server image-prod]# git add -f *

 Git has now added every directory and file in the entire image. This process, in

Git speak, is called staging files. There definitely are files that you will not wanting to be

Git tracked. Here I walk through an example of finding a file and then unstaging that

file.

[root@server image-prod]# git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

...

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

1
1

	

Aron	
 Warren,	
 aronwarren@gmail.com	

new file: dev/.udev/db/block:ram11

[root@server image-prod]# git rm -r --cached dev/

 Now that an initial image is staged and are ready to commit, perform the commit

step.

[root@server image-prod]# git commit -m "Initial
Commit" --author="Aron Warren
<aronwarren@gmail.com>"

[master (root-commit) 3311f7e] Initial Commit
 Author: Aron Warren <aronwarren@gmail.com>
 Committer: root <root@localhost.localdomain>

 310406 files changed, 41830189 insertions(+), 0
deletions(-)
 create mode 100644 .gitmeta
 create mode 100755 bin/alsaunmute
 create mode 100755 bin/arch
...
...
...

6. Booting the Compute Node

 In this section it is time to boot the client compute node’s image. This is typically

done by applying power to the compute node. It is helpful to have a window open with a

tail of syslog and another window with a tcpdump inspecting the client-server traffic. If a

remote console is available via console redirection then that is helpful to monitor what

kernel messages or other messages are being shown. As a last resort a crash cart

connected to the node can offer the same information. While the image is booting there

is an opportunity to see what is broken and needs to be repaired. Assume that everything

during boot went perfectly proceed onto the next step. At this point start fixing problems

one-by-one. With each issues resolved use Git to commit the change and use that as

documentation for how the machine running ended up successfully running. As an

example let’s modify the sshd_config.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

1
2

	

Aron	
 Warren,	
 aronwarren@gmail.com	

[root@localhost image-prod]# vi /etc/ssh/sshd_config
...
We set PermitRootLogin to “no”
...
[root@localhost image-prod]# git status
On branch master
Changed but not updated:
(use "git add <file>..." to update what will be
committed)
(use "git checkout -- <file>..." to discard
changes in working directory)

modified: etc/ssh/sshd_config
[root@localhost image-prod]# git diff
etc/ssh/sshd_config
diff --git a/etc/ssh/sshd_config
b/etc/ssh/sshd_config
index 16c7adf..32b7547 100644
--- a/etc/ssh/sshd_config
+++ b/etc/ssh/sshd_config
@@ -39,7 +39,7 @@ SyslogFacility AUTHPRIV
 # Authentication:

 #LoginGraceTime 2m
-#PermitRootLogin yes
+PermitRootLogin no
 #StrictModes yes
 #MaxAuthTries 6
 #MaxSessions 10

	

 “git status” told us sshd_config was modified. “git diff” told us what was

modified between the current file and the previous commit containing that file. For our

example the original commit was the initial commit and in this case was the originally

installed sshd_config.

 As there are usually many patches offered for either the OS or for the software

stack during its lifetime, keeping all commits in a single branch, like the default master

branch, can become unmanageable. Branches can be quite helpful to indicate major

upgrades or where major functionality was installed. External documentation that

references that particular branch ID is useful but it may even be better to reference the

particular commit ID associated with the change.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

1
3

	

Aron	
 Warren,	
 aronwarren@gmail.com	

 Now that there is a working compute node, or at least a partially working compute

node, following are some real world issues that may crop up.

4. Performing Image Upgrades

 Upgrades to computers can either be a simple affair or a complete headache. The

scenario outlined in this paper gives a very easy method for performing upgrades. The

essential steps to an upgrade are:

1) Reconcile any uncommitted image changes indicated by “git status” (it will save

headaches later).

2) Copy the currently running image from image-prod to image-update. One way is

rsync -a image-prod image-update. Then in image-update create a new branch.

3) Boot a node into the image-update image directory and new branch by modifying

the tftp boot image to reflect the new clone’s image location.

4) On the compute node once it has booted mount the image read-write.

5) Apply the patches performing Git commits as frequently as desired.

6) Remount the image read-only.

7) Reboot the compute node and verify system functionality.

 At this point if everything works as expected then all that is needed is to restart all

of the compute nodes using the new image. If something is not working then all that is

needed is to repeat steps 4-7 on the compute node.

5. Detecting an Unauthorized Change

 Since the image is always mounted read-only in production mode, if someone

suspects that a computer has been compromised a reboot is all that is needed to reset the

machine to a good state. If there is suspicion that the image has been compromised, then

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

1
4

	

Aron	
 Warren,	
 aronwarren@gmail.com	

a Git status will alert the system administrator to any modified files.

6. Items to consider

 One of the downsides of using Git to linearly track changes is the problem of the

rpm database. Over time rpms will be added or removed from the image in which in

itself is normal for the lifecycle of a computer but a problem will arise when needing to

reset the image to a particular commit in the history of the image. Essentially all of the

rpm modifications that have occurred from that point in history to the present will need to

be replayed. Most of the time this will not be a major issue but it can cause an increase in

workload if the situation arises.

 While this model does assist software upgrades and deployment of machines that

can use existing oneSIS images, a scalability issue can occur when a site manages several

different oneSIS images. Take for example that a site can end up with 5 or 6 different

images: two for clusters, one for desktops, one for servers, one for kiosks and a final one

for an upcoming new machine deployment. The amount of work it takes to manage the

numerous images with variances amongst image layout can pose a problem for the small

shops.

9. Conclusion

 The use of oneSIS and Git together provide a mechanism for improved computer

security allowing a consistent application of change management practices. The

verification of changes and the audit-ability of the current running system is achieved

through the version control system and hashing. By having a single image deployment to

multiple machine eliminates the need for patching individual systems. The ability to

easily revert changes by checking out a previous commit means that broken deployment

can easily be fixed.

© 2
012
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46© 2012 The SANS Institute

Diskless Cluster Computing: Security Benefit of oneSIS and Git

1
5

	

Aron	
 Warren,	
 aronwarren@gmail.com	

References:

Beckman, P., Iskra, K., Yoshii, K., Coghlan, S., Nataraj, A. (2008). Benchmarking the

effects of operating system interference on extreme-scale parallel machines.

Cluster Computing, 11, 3-16. doi:10.1007/s10586-007-0047-2

Chacon, S. (2009). Pro Git [Kindle Mac version]. Retrieved from

http://www.amazon.com

England, J. (2008, July 10). oneSIS -Introduction. Retrieved February 25, 2012, from

oneSIS: http://onesis.sourceforge.net/intro.php

England, J. (2011, September). oneSIS v2.0.3: Administrator's Manual. Retrieved

February 25, 2012, from oneSIS: http://onesis.org/oneSIS-manual-onepage/oneSIS-

manual.html

Fish, S. (2011, January 19). Version Control System Comparison. Retrieved February

25, 2012, from Better SCM: http://better-scm.shlomifish.org/comparison/

comparison.html

Google. (2007, May 14). Tech Talk: Linux Torvalds on git . Retrieved February 25, 2012,

from YouTube: http://www.youtube.com/watch?v=4XpnKHJAok8

Loeliger, J. (2009). Version Control With Git [Kindle Mac version]. Retrieved from

http://www.amazon.com

Schroeder, B., Gibson, G. A. (2007). Understanding disk failure rates: What does an

MTTF of 1,000,000 hours mean to you?. Trans. Storage, 3(3), 8:1-8:31.

DOI=10.1145/1288783.1288785

	

