
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Tim R. Sills
SANS Security Essentials
GSEC Practical Assignment
Version 1.2e

Implementing PKI in a Heterogeneous Environment
A Primer on Digital Certificate And Key Formats

Abstract
This document will discuss the various file formats for both X.509 digital
certificates and encryption keys. It will also bring to light potential issues one
would face when implementing a public key infrastructure (PKI) in a
heterogeneous environment. In particular, the focus is specifically on the topic
of binary and PEM encoded digital certificates and the Public Key Cryptography
Standards (PKCS) file formats. Further, the discussion will also include some
hard learned lessons on the nuances of supporting and implementing diverse
systems that utilize digital certificates. As we’ll see, required digital certificate
file formats will vary from application to application. Although a light overview of
PKI and digital certificates will be provided, this document assumes the reader
has some familiarity with the secure sockets layer (SSL) handshake and how
digital certificates are utilized within a public key infrastructure.

Introduction
With a heightened awareness and need for increased security, the usage and
implementation of digital certificates has almost become standard. Yet, varying
key and digital certificate file formats makes support and implementation far
from being standard. All across the Internet and on the local bookstore’s
shelves one can find numerous references to the importance of digital
certificates, how they’re used, and their role within a PKI. Yet, I have yet to find
a comprehensive document that discusses the various packaging of certificate
and key files.

When deploying a public key infrastructure (PKI) to your own organization, you
get to set the rules and establish the standard operating procedures. Often
times the required digital certificate formats will be dictated by your own
system’s requirements.

Yet what happens when the environment is for instance an Internet based E-
commerce system with heterogeneous trading partners? Consider for a
moment what you would do if you had to support a multitude of trading partners
in a business-to-business environment with each having unique digital certificate
requirements? Imagine these clients having invested significant amounts of
money and resources into their own infrastructure and business practices. Their
systems are in place and business processes formulated. Getting them to
rethink their practices to adopt your policies will be akin to lifting the Titanic. It
just isn’t going to happen without a lot of money and effort.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Hence, here is the problem at hand. Because digital certificates and key pairs
can be stored in a variety of formats, the resulting file requirements will vary
from application to application. Just short of dictating your processes and
procedures to your clients, your next best move will be as prepared as possible
in understanding the various file formats and how to manipulate them. This
document will introduce and define the PEM and DER file formats for X.509
digital certificates as well as cover RSA’s PKCS specifications. Finally, we’ll
wrap up with what it all means in the real world and how you can manipulate
these files to support a diverse client base.

Brief Overview, Digital Certificates and PKI
In its most basic form, X.509 digital certificates are digital documents that bind a
public key to an individual or company. The certificates provide the function of
authentication and conveyance of information used to establish a secure
sockets layer (SSL) connection. In order to trust this relationship between an
entity and the public key, it must be vouched for. This is the role of the trusted
Certificate Authority (CA), which signs a certificate. The CA includes their digital
signature in the certificate thus allowing the certificate holder to confirm they are
who they say they are.

The concept of a PKI system is based upon the use of public and private key
pairs. The keys are mathematically related and are used for the encryption and
decryption of data or even the creation of a unique symmetrical session key.
The key pair holder will maintain their private key in strict confidence while the
corresponding public key can be freely distributed. Embedded within the X.509
digital certificate is the public key. Figure 1 provides an example of the
interaction between a public key and private key during the transmission of data
between two end points.

Figure 1. Key Pair Usage

The X.509 digital certificate file sizes can vary from a few hundred bytes to a few
kilobytes. Some of the basic elements within a digital certificate consist of the

Credit Card
551232322
Amt:$234.29

Xa32adkak
sAd3283xu
w8foi70dx56

Credit Card
551232322
Amt:$234.29

Encryption with
Public Key

Client Data Encrypted Data Decryption with
Private Key

Original Client
Data

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

certifying authority’s name and digital signature, host name, serial number,
expiration date, and of course the public key. During the establishment of an
SSL connection, this information is conveyed to a remote system. Figure 2 is a
snap shot of a digital certificate displayed in NT. With the subject field
highlighted, you can see some of the information contained within the digital
certificate. Which in this case is a digital certificate retrieved from the SANS
Institute’s course registration server. The following examples will all be based
upon this same certificate.

Figure 2. Digital Certificate Example

There are many elements that make up an X.509 digital certificate. And a good
starting point would be Request for Comments (RFC) 2459 “Internet X.509
Public Key Infrastructure Certificate and CRL Profile”. This document discusses
the makeup of a certificate’s syntax, defines the various fields, and covers hash
algorithms as applied to digital signatures. Also, Netscape also has an
excellent overview of cipher suites and the SSL handshake in their document
"Introduction to SSL". With all of these references though, it is still hard to
decipher the meaning of the various file formats and understand when one is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

applicable over another. The next section will cover the specifics of file encoding.
Encoding X.509 Digital Certificates
As previously discussed, the X.509 digital certificate can be used to facilitate
authentication and data encryption. And as referenced, there certainly is a lot of
literature on the subject of digital certificates and implementing systems that
utilize them. Our task though is to understand the nuances of the various file
formats.

An X.509 digital certificate is based upon what is known as Abstract Syntax
Notation (ASN.1). And according to Paul Tremblett within his paper X.509
Certificates- Moving Toward Secure Communication, the ASN.1 format is “a
language used to describe data types in such a manner as to eliminate ties to
any particular platform”. In a sense, making digital certificates universal and
independent of applications and operating systems. The X.509 data can be
encoded in either a binary or ASCII form. These files are known as DER or PEM
based files. DER, distinguished encoding rules, is the binary representation.
Using Notepad to view the DER file, Figure 3 displays the binary representation
of a digital certificate.

Figure 3. DER Encoded X.509 Digital Certificate

A PEM encoded format is essentially the same X.509 digital certificate but in an
ASCII form. PEM, Privacy Enhanced Mail, is a Base64 version of the DER file

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

wrapped with the "----BEGIN CERTIFICATE----" and "----END CERTIFICATE---"
lines. This format is used for ease of transport and to facilitate cutting and
pasting of the data. With the particular PKI application I currently manage,
pasting and copying data is the only way to input and extract the digital
certificates. But as we’ll see later on, transitioning between PEM and DER is a
piece of cake if you have the right tools. Figure 4 is a PEM file opened with
Notepad.

Figure 4. PEM Encoded X.509 Digital Certificate

The creation and management of X.509 digital certificates is a fairly
straightforward process. Going back to our heterogeneous E-commerce
environment, the difficulties begin to arise as you start providing support for
various applications that have differing digital certificate requirements. For a lot
of applications, particularly web browsers, the format is indifferent as they can
transparently load either a PEM or DER file. Yet, my exposure to a wide variety
of E-commerce applications has shown that more often than not, these
applications will have a preference. The end result is if it isn’t in the right format
the application will not load it. But so far we have only covered the actual X.509
digital certificate. There is another equally as important aspect, and that is the
transport and handling of encryption keys via RSA’s Public Key Cryptography
Standards.

Public Key Cryptography Standards
Public Key Cryptography Standards (PKCS) are specifications created by RSA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Laboratories in conjunction with a consortium of vendors consisting of Apple,
DEC, Microsoft, and Sun to name a few. The functions of the PKCS
specifications vary and are written to address numerous issues as related to
security and cryptography.

For instance, the certificate-signing request standard is known as a PKCS#10.
This specification defines the syntax for public key certificates that are submitted
to a certificate authority for signing. Another example is the PKCS#8
specification, which deals with managing private keys and protecting them with
a password. Table 1 contains a list from http://www.rsalabs.com/pkcs of
currently published PKCS specifications and those under development.
Selecting the respective PKCS file will take you to RSA’s web site where you
can download the specification in MS-Word, Acrobat PDF, or PostScript.

PKCS# RSA Description
PKCS #1 Provides specification for encrypting and signing data using the

RSA public-key cryptosystem.
PKCS#1 Specification for Diffie-Hellman key agreement protocol.
PKCS#5 Defines the specifications for encrypting data with a secret key

derived from a password.
PKCS#6 Is being replaced by version 3 of X.509.
PKCS#7 Defines a specification for messages that include cryptographic

features such as digital signatures and encryption.
PKCS#8 Defines a format for private key information.
PKCS#9 Defines attribute types for use in the other PKCS standards.

PKCS#10 Defines specification for certification requests that are submitted to
a CA.

PKCS#11 Defines a programming interface called Cryptoki for cryptographic
devices such as smart cards and PCMCIA cards.

PKCS#12 Defines a format for storing or transporting a user's private keys and
certificates.

PKCS#13 Is intended to define mechanisms for encrypting and signing data
using Elliptic Curve Cryptography.

PKCS#14 Currently under development and discusses pseudo-random
number generation.

PKCS#15 A complement to PKCS #11 providing a standard for the format of
cryptographic credentials stored on cryptographic tokens.

Table 1. PKCS Specifications (RSA)
Reading the specifications though can be somewhat daunting, and it may not
always be clear as to what they are supposed to accomplish. Based upon first
hand experience with the implementation of a PKI system and through the
interaction with various clients in a heterogeneous E-commerce environment,
Table 2 highlights some of the most common file formats I have encountered
and how they were used:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

File
Format

Usage

PKCS#1 Private key. Some key generating tools will either create a
PKCS#1or PKCS#8 private key file. For instance, a tool included
with WebMethods generates a PKCS#1.

PKCS#7b Internet Explorer uses this to export and packages digital certificate
along with CA signing root certificate. A lot of applications are
starting to use this as a means to import a certificate and its trusted
root.

PKCS#8 Password protected private key storage. Preferred format of RSA
key generation tool.

PKCS#10 Certificate signing request (CSR) used to submit a certificate to the
certificate authority for signing. It is in a PEM format.

PKCS#12 Password protected file format that combines both a private key and
digital certificate into a single file. Also labeled as .pfx within
Internet Explorer.

Table 2. PKCS Usage

An example of a PKCS#7 file as displayed within Windows 2000 is provided in
Figure 5. As of lately, I have noticed that more applications are providing
support for this file format so that they can easily load in a certificate and it’s
trusting root certificate. This becomes critical when a PKI is using self-signed
certificates and the application needs to add the self-signed root to it list of
trusted certificate authorities. As an aside, Internet Explorer and Netscape Web
browsers come preloaded with several trusted root certificates. This allows
them to recognize certificates signed by the more popular certificate authorities.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 5. Windows 2000 Display of PKCS#7b

So we’ve identified the two formats for the X.509 digital certificate as being DER
or PEM based file. We have also seen that the encryption keys along with the
digital certificates can be manipulated and packaged within various Public Key
Cryptography Standards specifications. By understanding these formats and
standards, it certainly seems as if it all should be manageable. Well, it would
be only if there was some consistency between applications when loading in
digital certificates and key pairs. In the next section, the topic of implementation
issues and some learned lessons will be discussed.

Implementation Issues
The issue is twofold. For the developer, there are various options and
approaches available when loading into their application a digital certificate.
The results will often times be inconsistent file type requests from the CA. One
client may wish to simply have a binary encoded digital certificate and root
certificate supplied separately. Based upon another client’s software, it may be
required to package the certificates within a PKCS#7b formatted file.

The other facet to this complex equation is the interchangeable usage of
extensions and file types. As previously discussed, a PKCS#12 (.p12) file can
contain a user’s certificate as well as the associated private key. But this same
.p12 file can be internally formatted differently thus making it unreadable by

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

some applications.

In particular, the inability to read certain .p12 files is a known issue for
applications that utilize Sun’s JSSE 1.0.2 API for the loading of digital
certificates. As discussed in Sun’s Java Secure Socket Extension (JSSE) 1.0.2
API User's Guide:

The 1.0.2 release of JSSE has limitations on its
implementation but can read and use PKCS12 keystore
files exported by Netscape Navigator. Future releases will
also support and be tested with Internet Explorer and other
applications.

This problem was one of the tougher ones to solve as the application attempting
the certificate load made it appear there was an integrity problem with the file.
In reality it was in the wrong different format.

Other issues may arise during the creation of the certificate-signing request.
Some application’s keystores do not allow the importation of a private key. This
is not an issue as long as the submitted certificate-signing request can be
processed. On occasion though when processing a CSR, an error message
may arise noting that the file is a malformed PKCS#10. Past experience has
shown that this is sometimes due to incorrect data or unsupported characters
entered into the fields that are used for the CSR creation such as the host
name, locality, state, and country.

Troubleshooting SSL and digital certificate issues is very difficult because the
nature of the subject alone is security, which means access to information is
limited. The authentication and encryption of data is usually done in a black
box and is hidden from the user. To remedy this problem, the next section will
provide some ideas as to how you can build a toolbox for the management of
X.509 digital certificates and key pairs.

Building a Security Toolbox
The subject of security is far reaching at times and can also be very difficult to
manage considering it touches so many facets of an organization. My
recommendation is to build a security toolbox of applications and procedures.
Table 3 provides some insight into my common practices and tools utilized.

Create a Knowledgebase Keep track of the various applications you
encounter and note their specific file
preferences.

Standard Operating
Procedures

Develop operating procedures to automate tasks
of creating, manipulating, and testing files.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Be Aware Understand the SSL process and function of
certificates and key pairs. This will make
troubleshooting much easier.

Common Tools Utilize Internet Explorer and Netscape
Communicator’s ability to convert files from PEM
to DER and vice versa. Figure 6 is an example of
Internet Explorer’s capabilities.

Advanced Tools Acquire applications such as from Baltimore
Technologies to create PKCS#12 files or to do
file conversations to other PKCS specifications.

Establish a Test
Environment

Implement a test server to facilitate
troubleshooting. In particular, an Apache web
server can provide extensively detailed logs of
the SSL handshake.

Table 3. Security Toolbox

Figure 6. File Conversion in Internet Explorer

One would think that the tools for creating and manipulating files would be the
most critical aspect to your toolbox. In reality though, it will be the processes
and procedures. This is because it will become imperative that all digital
certificates look and act the same as you deploy them. Sure, they will be

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

individually unique, but collectively you have to rely on the fact that they will all
be generated, manipulated, and distributed the same. Otherwise reliability will
suffer and you’ll spend more time troubleshooting your own system let alone a
client’s.

Conclusion
The continued demand for increased security will drive the need for some form
of establishing authentication and encryption. Right now public key
infrastructure is it. Even with the support and implementation issues along with
a growing concern of instability with PKI vendors, there still doesn’t seem to be
an equivalent. Sure there’s Pretty Good Privacy (PGP) and Kerberos, but these
systems have their own issues and are not as widely accepted just yet.

With this in mind, the best a consultant or administrator can do is arm
themselves with a strong understanding of the underlying mechanics of digital
certificates and private/public keys. Acquaint themselves with the various file
formats. Obtain numerous tools to create and manipulate keys and X.509
digital certificates. And finally strive to understand the client applications and
how these applications implement security. Knowing what to expect will ease
the troubleshooting and process.

References:

ASN.1 Information Site
URL:http://asn1.elibel.tm.fr/en/index.htm (24 August 2001)

Bobbitt, Mike. “PKI Policy Pitfalls”. Information Security. July 2001: 68-79

Green, Roedy. “Digital Certificates”
URL:http://mindprod.com/gloss.html (20 August 2001)

Hirsch, Frederick. “Introducing SSL and Certificates using SSLeay”
URL:http://www.ultranet.com/~fhirsch/Papers/wwwj/article.html (24 August 2001)

Housley, R. Ford, W. Polk. Solo, D. “RFC: 2459-Internet X.509 Public Key
Infrastructure Certificate and CRL Profile”
URL:http://www.ietf.org (20 August 2001)

Housley, Russ. Polk, Tim. Planning for PKI. New York: John Wiley & Sons,
2001.

IPlanet. “Netscape Certificate Management System (CMS) Installation and
Deployment Guide”
URL:http://docs.iplanet.com/docs/manuals/cms/41/dep_gide/contents.htm (21 August 2001)

Netscape Communications Corp. “Introduction to SSL”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

URL:http://developer.netscape.com/docs/manuals/security/sslin/index.htm (22 August 2001)

RSA Security. “RSA Laboratories' Frequently Asked Questions About Today's
Cryptography, Version 4.1”
URL:http://www.rsasecurity.com/rsalabs/faq/ (24 August 2001)

RSA Security. “Public-Key Cryptography Standards”
URL:http://www.rsasecurity.com/rsalabs/pkcs (24 August 2001)

Sun. “JavaTM Secure Socket Extension (JSSE) 1.0.2 API User's Guide”
URL:http://java.sun.com/products/jsse/doc/guide/API_users_guide.html#Troubleshooting
(24 August 2001)

Tremblett, Paul. “X.509 Certificates-Moving Toward Secure Communication”.
Dr. Dobb’s Journal July 1999
URL:http://www.ddj.com/articles/1999/9907/9907c/9907c.htm (21 August 2001)

