
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Peer-to-Peer Security and Intel’s Peer-to-Peer Trusted Library
Chris McKean
August 20, 2001

SANS Security Essentials
GSEC Practical Assignment
Version 1.2e (amended May 22, 2001)

Introduction
The peer-to-peer computing model is not new, but has recently become a
commonplace among the average computer user due to the introduction of
applications like Napster and Gnutella. Along with the freedom of connecting peer-to-
peer come security risks. In response to some of these security risks, Intel has
released a code library that software developers can use to strengthen the security of,
and add “trust” to, new peer-to-peer applications.

1. 0 Overview of Peer-to-Peer Computing
P2P computing can be defined as the sharing of computer resources and services by
direct exchange. P2P computing provides an alternative to the traditional client/server
architecture, while employing the existing infrastructure of networks, servers, and
clients. The two models can coexist and complement each other.

In a client/server model, the client makes requests of the server. The server responds
to the requests and acts on them. With P2P computing, each participating computer
(peer) functions as a client with a layer of server functionality. This allows the peer to
act both as a client and as a server. P2P applications can handle such functions as
storage, computation, messaging, and file distribution.

Figure 1 (Barkai, p. 4) illustrates the difference between the client/server and the P2P

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

models. It also illustrates how the two models can coexist with each other. In the
client/server model every exchange and communication goes through a central server.
In the P2P computing model, the peer systems communicate and exchange data
directly. Some P2P applications may, at times, also use servers.

Some people distinguish between “pure P2P computing” and “hybrid P2P computing.”
“Pure P2P computing” refers to a model where all participating computers are peers
and no central server is used to control, coordinate, or manage the exchanges among
the peers. In “hybrid P2P computing,” the application relies on a central server to
perform some of the functions.

2.0 Peer-to-Peer Security Concerns
P2P has been described as “an anarchistic threat to the current Internet” (David
Streitfeld, The Washington Post, July 18, 2000), and Marc Andreesen has called P2P
software a “benevolent virus.”

The potential security concerns for P2P software can be categorized as follows:
Reputation - copyright infringement•
Denial of Service - bandwidth and storage consumption•
Security Holes•
Confidentiality - file sharing•
Malware - trojan horse and virus distribution•
Information Gathering - disclosure of IP and MAC addresses, connection speed•

2.1 Reputation
Although most consumers have shown that they are not concerned with copyright
violations, companies can potentially be held responsible and, therefore liable, for the
copyright violations that the users of P2P within the company commit.

2.2 Denial of Service
Every user of a P2P program is soaking up network bandwidth. Software like Napster,
Gnutella and Scour are generally used to download relatively large files such as MP3s,
AVIs, MPGs, JPGs, and GIFs. If enough users are downloading these types of files,
this can cause network resources to be tied up, resulting in a denial of service. This
can occur inside a company or even among cable modem users who share the same
network resources. In addition to network bandwidth, full hard disks can also result in
a denial of service. If you can’t save the file that you are working on, you will stop
working to avoid the risk of losing the work. For example, in some Universities
students have downloaded so many MP3 files that the Universities have banned the
use of Napster on campus.

2.3 Security Holes
Most P2P software can be manipulated to create and slip through holes in the security
architecture of a network. For example, AOL Instant Messenger can allow you to “sniff”
for open ports on a peer machine and Gnutella has instructions on their Web site that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

will allow a user to bypass the port rules on a firewall.

2.4 Malware
Just as the average user can freely distribute any file s/he chooses, malicious users
can freely distribute trojan horse applications and viruses. To make matters worse, if
the malicious user is using a P2P program such as FreeNet, there is little fear of
getting caught since FreeNet does not use a central server and IP addresses are not
tracked. As if it couldn’t get worse with a model like FreeNet, when a file is requested,
it is copied locally from participating client to participating client until it gets to the
requesting client. It would be hard to design a better mechanism to spread malware
faster. The possibility of introducing and spreading a trojan horse or virus becomes as
easy as sending an e-mail.

As has been done with viruses in the past, if you throw in some social engineering, the
infection rate can be sped up. Using P2P software, the Zeropaid group found that files
that were given fake names referring to pornography were downloaded at an alarming
rate (more information can be found at www.zeropaid.com/busted). One can imagine
the rate that a new virus could spread through the P2P community if a user gave it a
provocative name and description.

Even commercial code can be modified and spread as malware. Programs like AOL
Instant Messenger, or any other P2P software, can be reverse engineered and
released as Open Source software. This gives malicious hackers the ability to change
the software code so that it can be used for other purposes. What better place to put a
back door than within a P2P application?

2.5 Information Gathering
The Internet still provides most networks with enough anonymity to feel a certain
amount of security through obscurity. P2P software can take away that anonymity.
The addresses of routers and gateways are exposed, and if the user is connected
directly to the Internet, their IP address and MAC addresses are also exposed. For
example, Gnutella users are given the IP address from which they are downloading by
widening the column immediately to the right of the “Status” column in the
“Downloads” window. This is a good starting place for a hacker with simple scanning
software.

Users of some P2P programs like Napster have access to information concerning
connection speed. Because most 56k connections and below are dial-up accounts,
and probably are not ‘always on’ and do not have static IP addresses, hackers may not
waste their time on these systems. But, connection speeds of 144k and higher can
indicate DSL or cable modems that are ‘always on’ with static IP addresses, a more
desirable target.

2.6 Confidentiality
Napster and Gnutella give all clients direct access to files that are stored on a user’s
hard drive. The files are stored in folders that are not shared by default, but there is the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

possibility that other folders can be added and shared. A hacker could figure out what
operating system the peer computer has and could connect to folders that are hidden
shares, thus gaining access to folders and information that was not meant to be
accessed.

3.0 Intel’s Peer-to-Peer Trusted Library
Along comes Intel’s Peer-to-Peer Trusted Library. Where did it come from, what does
it offer, and can it help alleviate some of the security issues surrounding P2P?

3.1 Motivation
Intel has stated that it’s intention with this project is to spur open innovation in the peer-
to-peer security space and provide a basis for an open-source development project
focusing on the security aspects of peer-to-peer. Intel has an unabashed, vested
interest in the success of peer-to-peer. “Anything that causes people to use their
computer more makes them buy up,” said S. Kea Grilley, Intel’s director of platform
marketing. “We think P2P itself will cause people to use their computer for more and
different stuff.”

In order to for peer-to-peer to become widespread, Intel understands that better
security and standardized methods are a must. At the company’s Peer-to-Peer
Working Group meeting, Bob Knighten, Intel peer-to-peer evangelist, said, “Security is
one of the primary issues that the whole peer-to-peer thing will have to address. Most
companies [developing peer-to-peer applications] have thought about security, but they
all do it differently.”

3.2 Overview
The Peer-to-Peer Trusted Library (PtPTL) allows software developers to add the
element of “trust” to their peer-to-peer applications. It provides support for digital
certificates, peer authentication, secure storage, public key encryption, digital
signatures, digital envelopes, and symmetric key encryption. The library also provides
simple support for networking and some operating system primitives, such as threads
and locks. Applications built with the library are portable to both Win32 and Linux.

“This is one example, a starting point, that people can use,” said Bob Knighten.
“Getting peer-to-peer into the hands of end users is the effort. People can build from
this [library] secure peer-to-peer clients to avoid some of the security problems
encountered in peer-to-peer.”

The latest version of the library (currently version 0.2, released April 5, 2001) can be
downloaded from Source Forge at http://sourceforge.net/projects/ptptl. It’s developed
in C++ with support for the Win32 and Linux development environments, and uses the
BSD license model. As is the case with most open source projects, contribution to the
PtPTL project is highly encouraged. The library is built on top of the open-source
OpenSSL Toolkit (http://www.openssl.org/). OpenSSL provides all the low level
certificate and cryptographic support and the PtPTL provides high-level interfaces to
OpenSSL.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Nelson Minar, CTO for Popular Power, at a recent conference presentation said that the
areas of intrusion detection systems, SSL, and Intel’s PtPTL will be highly desirable
resources for security professionals to master.

3.3 Documentation
HTML API documentation for the PtPTL is available and was built with an internal
documentation system, similar to that used by the Gnome Project and the Linux kernel.
Basically, a tool is used to extract API information from the source code and build
HTML documentation.

3.4 Cryptographic and Network Standards
PtPTL conforms to, and includes support for, the following standards:

* X.509 digital signatures
* PKCS#1 (RSA cryptography)
* PKCS#5 (password-based cryptography)
* PKCS#7 (digital envelopes)
* PKCS#12 (personal information exchange)
* RFC 1421 (privacy enhanced mail format)
* Various standard symmetric encryption algorithms
* HTTP

3.5 Installation
In the MS Windows environment, the Visual C++ compiler and build environment must
be installed to build the library and sample applications. In the Linux environment, the
GNU g++ compiler and GNU make must be installed to build the library and sample
applications.

3.6 Example Applications
The PtPTL comes with three example applications, each complete with source code
and make files.

3.6.1 Trutella
Trutella is a simple secure file sharing application. It uses the Gnutella network
protocol and is a complete Gnutella client. Trutella supports the notion of secure
groups and private file sharing groups for which members can choose who to let in and
who to keep out. Secure group requests are encapsulated inside Gnutella requests,
so they are passed freely around the GnutellaNet.

3.6.2 Secure File Sharing Application
Secure File Sharing is another simple secure file sharing application. It exchanges
digital certificates, authenticates peers, searches, and transfers files over HTTP.
Secure File Sharing is considerably more versatile than the Trutella application,
especially with regard to certificate distribution.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

3.6.3 Cert
Cert is a simple digital certificate manager. It can be used to create, import, export,
and store digital certificates in PKCS#12 format. Cert also creates new (randomly-
generated) RSA public/private key pairs from which it creates new certificates.

4.0 Conclusion
P2P has made a big splash into the mainstream, and has proven that it adds important
new features and benefits to the existing mainstream computing models.

Just as there are security issues with every other computing model, P2P adds it’s own
take on security issues – specifically reputation (with copyright infringement), denial of
service (with bandwidth and storage consumption), creating new security holes,
confidentiality (through unauthorized file sharing), malware (through the spread of
trojan horses and viruses), and information gathering (through the disclosure of IP and
MAC addresses, and connection speed).

The Intel PtPTL is not designed to solve all of the security issues surrounding P2P
applications but it is a good building block that directly addresses some of them and
helps alleviate others.

For example, by providing the primitives necessary to create services like private file
sharing groups and peer authentication, the issue of introducing and spreading
malware can be minimized by reducing the likelihood of a malicious user being in the
mix. Likewise, confidentiality can be addressed by utilizing the features of secure
storage and encryption, thwarting an attacker even if s/he is able to access
unauthorized information.

Similarly, security holes and information gathering are still possible, but can be
minimized by more secure application design and the use of secure groups and peer
authentication to reduce the exposure of the client to malicious users.

The PtPTL doesn’t address the issues of copyright infringement or bandwidth and
storage consumption, but this is not the goal of a P2P application security API. These
issues are not isolated to P2P and the solution lies within a combination of other
technologies and the proper enforcement of security and usage policies.

References:
“SourceForge: Project Info – The Peer-to-Peer Trusted Library.” Version 0.2. April 5,
2001. URL: http://sourceforge.net/projects/ptptl (3 July 2001).

“The Peer-to-Peer Trusted Library (Release 0.2) README.” Version 0.2. April 5, 2001.
URL: http://sourceforge.net/docman/display_doc.php?docid=3851&group_id=19950 (3
July 2001).

Barkai, David. “An Introduction to Peer-to-Peer Computing.” Intel Developer Update

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Magazine. February 2000. URL:
http://developer.intel.com/update/departments/initech/it02012.pdf (13 Aug. 2001).

Petruzzi, Mike, et al. “Security Concerns for Peer-to-Peer Software.” July 18, 2000.
URL: http://www.ktsi.net/pdf_files/Security_Concerns_Peer-to-Peer_KTSI.pdf (13 Aug.
2001).

Moore, Cathleen. “Intel Unveils Peer-to-Peer Security Building Blocks.” InfoWorld.
February 8, 2001. URL: http://www.nwfusion.com/news/2001/0208intelpeer.html (3
July 2001).

Barnes, Cecily. “Intel Shores Up Peer-to-Peer Security.” ZDNet eWeek. February 8,
2001. URL: http://www.zdnet.com/eweek/stories/general/0,11011,2683691,00.html (3
July, 2001).

Solomon, Karen. “Long-term Forecast for Building P2P.” c/net Builder.com. March 5,
2001. URL: http://builder.cnet.com/webbuilding/0-7535-8-4950892-4.html (3 July,
2001).

Kabay, M. E. “Peer-to-Peer Software and Security.” Network World Security
Newsletter. August 28, 2000. URL:
http://www.nwfusion.com/newsletters/sec/2000/0828sec1.html?nf (3 July, 2001).

