
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS Security Essentials GSEC Practical Assignment

A Look at Automatic Protocol Generation & Security Protocols

By Boris W. Vassall
July 16, 2001
(Original Submission)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Table of Contents

Introduction 3
Discussion on Security Protocols 3
Framework Requirements for APG 5

Specification for Input 5
Protocol Generator 6
Protocol Screener 7
Protocol Representation 8

Notation 8

Case Study Discussion 9
Closing Discussion 11
References 12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Introduction

This paper will attempt to describe automatic protocol generation, and
security protocols. Automatic Protocol Generation, APG for short, is a
mechanism to generate security protocols automatically. This is
accomplished by having the designer or engineer input a set of
security system requirements and properties that dynamically
produces a security protocol that best meets the criteria. [APDS00]
The system requirements for input are defined as a metric function,
which defines the cost or overhead of the protocol primitives, which
defines an ordering over protocols with respect to the metric function.
Based on this ordering, APG investigates the protocol space and
outputs the correct protocol, which has minimal cost with respect to
the metric function. The protocol also satisfies the security properties
and system requirements.

The advantage of the Automatic Protocol Generation (APG) approach
over the current protocol design process is that, it is fully automatic.
The designer inputs the properties and system requirement’s which
result in a security protocol or output. This is by far, a better process
than creating the security protocol manually. The protocols generated
by APG have a higher level of confidence. This high level of confidence
is a result of being able to verify with a powerful protocol analyzer.
Another advantage of APG is that since with respect to the order of
increasing cost on the Metric Function, APG searches through the
protocol space and generates correct protocols with minimal cost that
are in line with the system requirements. Further advantages would be
that APG is very flexible in the sense that it can handle different
security properties and system requirements.

Discussion on Security Protocols

Security Protocols play a pivotal role in the overall scheme of e-
commerce and the Internet. Every day new attacks, compromises,
and viruses threat the ability to securely and effectively transact data
between “fellow-users” on the Internet. The role of a Security Protocol

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

is to utilize cryptographic building blocks to achieve security goals such
as authentication, confidentiality, and integrity. Newer applications and
systems may require existing security protocols to be revised or
updated to meet more modern system requirements. Security protocol
development is a delicate task, and history has shown that security
protocol development is very challenging. [BAN89, Low96]
The current security protocol design process is arguably flawed for the
following reasons:

It’s Error-prone. Security protocols should be intricate because •

attackers are powerful.
Manually designed protocols are flawed because they contain •

undocumented assumptions, which is a result of the lack of
formalism and mechanical assistance.
The protocol designer lacks the expertise and experience and is •

more than likely to develop a non-efficient protocol that is flawed
fundamentally.
Non-optimal, the designer may include unnecessary operations. •

Conservative designers may include unnecessary operations just to
play it safe.
Inefficient and Expensive. The design process can be slow, and can •

potentially become the bottleneck to the project. High costs can be
incurred due to redesign, update plans, or liability claims.

APG is a mechanism to address the above shortcomings of manually
developed security protocols. APG allows the designer to specify the
desired security properties such as authentication and secrecy, system
requirements, and low bandwidth. System requirements are defined
as symmetric or asymmetric encryption/decryption.

(Symmetric encryption is defined as the process of encrypting
using a single key to both encrypt and decrypt data.)

(Asymmetric encryption is defined as the process of encrypting
using two keys one for encrypting and the other for
decrypting.)

The protocol generator after receiving the required inputs it generates
a candidate security protocol, which satisfies the system requirements.
In the final stage a protocol screener analyzes the candidate protocols,
ignores the flawed protocols, and creates the correct protocols that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

address the desired security properties. The benefits of this approach
is that it provides the following:

Automatic, the designer specifies the security parameters and •

properties but the remaining process is automatic.
Provides a High Confidence level. There are no hidden assumptions •

as is the case in the manual protocol development process.
The protocol screener is powerful enough to generate a proof if the •

protocol is correct or a counterexample. Thus providing further
confidence in the process.
High Quality, the user defined requirements include a metric •

function which specifies cost overhead of a protocol.
Flexibility, this mechanism works for different security properties, •

system requirements, and attacker models.

Framework Requirements for APG

From a high perspective, APG is composed of an automatic protocol
generator and an automatic protocol screener as depicted by our
figure illustrated below. The process of APG has four stages.

Stage 1: The protocol designer must define the security properties and
system requirements for input.

Stage 2: The protocol generator searches the protocol space and
generates candidate protocols that satisfy the system requirements in
stage 1.

Stage 3: The protocol screener analyzes the candidate protocols.

Stage 4: The flawed protocols are discarded and the correct ones that
satisfy the security properties are outputted.

Protocol
Generator

Protocol
Screener

Candidate
Protocol

Specification for Input

A specification language was developed to define the security

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

properties necessary for two parties to talk to each other. The
properties are security, authentication, secrecy and other properties
related to e-commerce. The system requirement is specified as a
metric function and is a part of the initial setup. So what does the
initial system configuration define? It defines which cryptographic
primitives are available to the principals and what keys each principal
possess. What does this mean? Well let’s take for example a
asymmetric-key such as PKI. All the parties know their own private
key and the public keys of the other principals. In a symmetric-key
environment the principals have shared secret keys. Hybrid systems
are also possible.

The Metric function equates to the cost or the overhead of the
protocol. For example, in metric design it’s possible to make the metric
correspond to the time overhead of the protocol. To further
demonstrate this example, let’s take for instance smart-card
technology. In a smart-card system, encryption can be very fast
however the bandwidth between the card and the reader may be slow,
in which case the metric function specifies a low cost for encryption,
but a high cost for sending and receiving messages. The metric
function increases monotonically as the protocol complexity is
increased. This requirement is necessary during the protocol
generation phase, where protocols up to the maximum cost threshold
are generated. To further clarify and simplify, the role of the metric
function is to define an order among the protocols generated by the
protocol generator. When given a specification of security properties
and system requirements, the protocol is optimal if it has the lowest
cost-value with respect to the metric function.

Protocol Generator

An obvious question produced out of the preceding section is, what is
the role of the Protocol Generator. The Protocol Generator’s function is
to generate candidate protocols that satisfy the particular system
requirements. When we observe closely the protocol space that the
protocol generator works with. One finds that that space is virtually
infinite. This poses another challenge, how do we limit the number of
potential protocol candidates without omitting any potential optimal
protocols. The answer to this question lies in a process called iterative
deepening. This process, plain and simply put, is a search algorithm.
The way this algorithm works is, that a cost threshold of protocols is
set in each iteration. Then a search is done in the protocol space to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

generate all the protocols below the given threshold. Next, after the
protocols are sorted by their costs, the protocol screener tests them.
If a protocol satisfies the desired properties (Which means that it’s
cost is minimal) the generation process can stop. Otherwise, we
increase the cost threshold and generate more protocols. To also aide
in the process, a reduction technique is used to prune invalid
candidate protocols early before they are passed on to the Protocol
Screener. Many of the generated protocols include severe security
flaws, which can be detected by a verification algorithm. A pruning
algorithm is used to discard most severely flawed protocols. The
Protocol Screener uses a verification condition.

Protocol Screener

The role of the Protocol Screener is given a candidate protocol, the
screener must examine the protocol and tell whether it’s verifiable or
not. The protocol screener is reliable when it claims that a protocol
satisfies certain security properties. Since the protocol generator
produces thousands of protocols, the protocol screener is required to
be very efficient in its task to find the optimal protocol in a reasonable
amount of time.

So the next logical question would be, how does the Protocol Screener
handle the task of verification of the protocols it receives from the
generator? To answer this question we must look at a few verification
techniques. Basically there are two types of verification techniques.
The two techniques are Automatic & Semiautomatic protocol analysis.
Semiautomatic protocol analysis tools are NRL Analyzer [Mea94], the
Interrogator Model [Mil95], FDR [Low96], and Brutus [CJM98]. Althena
however, is an automatic protocol analysis tool that is most preferred
automatic protocol analyzer because of the following reasons;

Althena has the ability to analyze protocol executions that have any •

arbitrary configurations. Many existing automatic analyzer tools can
only reason about finite state space. When Althena terminates, it
proves that a protocol satisfies its specified properties under any
arbitrary protocol configuration, or it demonstrates a
counterexample if the property does not hold.

Althena can exploit state space reduction techniques, which as a •

result provides a highly reduced state space.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Althena provides a proof if a protocol satisfies a given property.•

Protocol Representation

A protocol represents the sequence of actions of two communicating
parties. The actions include sending and receiving messages. These
messages are defined by the grammar listed below, and can easily be
extended as needed. This also helps support the argument of flexibility
in AGP.

Message ::= Atomic |Encrypted |Concatenated
Atomic ::= Principalname |Nonce |Key
Encrypted ::= (Message, Key)
Key ::=PublicKey | PrivateKey| SymmetricKey
Concatenated ::= Message List
Message List ::= Message | Message, Message List

A tree can also represent each Message, with the atomic messages as
leaves and operations as intermediate nodes. In the figure below we
illustrate an example for the message A,B, {A,B}kb. The depth of a
message is defined as the depth of the tree representing the
message. In the example below the message depth is 4.

Notation

A, B are the principals
NA is a nonce generated by A
KA denotes A’s public key
KA

-1 denotes A’s private key

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

For further information: http://paris.cs.berkeley.edu/~perrig/projects/protgen/node6.html

Case Study Discussion

For the purposes of keep this paper brief we have elected just to give
a brief summary of the case study found [APDS00]. However, I
recommend further reading of this case study, because helps to
simplify the complexities of the process.

Assumptions1.
Message components are typed1.
No redundant message components in the concatenation2.
No initial keys are sent in a message.3.
The initiator’s name needs to be in the first message in a 4.
format understandable to the responder.
We don’t consider permutations of the message components 5.
of a concatenated message.

A pruning Algorithm is developed for each security property, which 2.
prunes the majority of the protocols.

For impersonation attempts, we use two intruders to attack each 3.
protocol. The Intruder I1 tries to impersonate the initiator. A, and

C o n c a t

A B E n c r

C o n c a t K b

A B

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the other intruder Ir , tries to impersonate the responder B.

If the protocol screener outputs a flawed protocol, the automatic 4.
protocol generation is not trustworthy. The screener has to be
efficient because the generator could generate thousands of
protocols.

A simple linear metric function is used in the experiment. Each 5.
operation has a unit-cost. The cost value of a protocol is the sum of
the costs of all the protocol operations and components.

Example of Symmetric-Key mutual authentication protocols:

A -> B: NA, A
B -> A: { NA, NB, A} KAB

A -> B: NB

A -> B: NA, A
B -> A: { NA, NB, B} KAB

A -> B: NB

Example of ISO Symmetric-Key three-pass Mutual Authentication
Protocol:

A ->B: NA, A
B ->A: { NA, NB, B} KAB

A ->B: { NA, NB} KAB

Example of Asymmetric-key mutual authentication protocols:
(The following protocol is the same as the fixed version of Needham-
Schroeder protocol[Low96])

A -> B: { NA, A} KB

B -> A: { NA, NB, B} KA

A -> B: NB

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Closing Discussion

[APDS00] With a user-defined specification of security properties and
system requirements, including a system metric function, APG
generates minimal protocols that satisfy the specified security
properties and system requirements, minimal with respect to the
metric function. This strategy is a significant improvement over the
current protocol design process, because it is more reliable, efficient,
and produces protocols that are comparable to the given system
requirements.

After further reviewing the proof of concept case study generated by
A. Perrig and D. Song [APDS00] one can conclude that this study
supports the theory that APG is a viable option. However, the case
study mainly covers the authentication security property. There are
other interesting security properties such as those related to e-
commerce, such as atomicity. The process needs to be extended to
include these properties. Atomicity is the process of performing all of a
series of instructions or none at all. (Further clarification can be found
[Tyger01]).

In the case study performed by A. Perrig and D. Song [APDS00],
perfect encryption was an assumption. This assumption states that a
cipher text can only be decrypted if the decryption key is present, and
similarly, a cipher text can only be produced if the encryption key is
present. Researchers are still exploring protocols, which are resistant
to attacks such as dictionary attacks. However it is equally important
to try and strengthen the attacker model to produce stronger
protocols.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References

[APDS00] A. Perrig, D. Song, On a First Step to the Automatic Generation of
Security Protocols. Computer Science Department, University of California, Berkeley
http://paris.cs.berkeley.edu/~perrig/projects/protgen/node2.html

[Song99] D. Xiaodong Song, A new Efficient Automatic Checker for Security
Protocol Analysis. Computer Science Department, Carnegie Mellon University 1999.
http://citeseer.nj.nec.com/211930.html

[PS00] Looking for Diamonds in the Desert --- Extending Automatic.. - Perrig, Song
(2000) (Correct)...for Diamonds in the Desert Extending Automatic Protocol
Generation to Three-Party Authentication and Key Agreement Protocols Adrian
Perrig http://citeseer.nj.nec.com/perrig00looking.html

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Tools and Algorithms for the Construction and Analysis of Systems,
volume 1055 of Lecture Notes in Computer Science, pages 147-166. Springer-
Verlag, 1996.

[Tygar01]
Atomicity versus Anonymity: Distributed Transactions for Electronic
Commerce(J.D.Tygar, 1998) [New] 06/05/01
http://www.vldb.org/conf/1998/p001.pdf

[BAN89]
M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical Report
39, DEC Systems Research Center, February 1989.

[CGP99]
Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,
1999.

[CJM98] E.M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a
natural deduction style message derivation engine to verify security protocols. In
Proceedings of the IFIP Working Conference on Programming Concepts and Methods
(PROCOMET), 1998.

[DY89]
D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198-208, March 1989.

[HT96]
N. Heintze and J. Tygar. A model for secure protocols and their compositions. IEEE
Transactions on Software Engineering, 22(1):16-30, January 1996.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

[Int93]
International Standards Organization. Information Technology - Security techniques --
Entity Authentication Mechanisms Part 3: Entity authentication using symmetric
techniques, 1993. ISO/IEC 9798.

[Low96]
G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Tools and Algorithms for the Construction and Analysis of Systems, volume
1055 of Lecture Notes in Computer Science, pages 147-166. Springer-Verlag, 1996.

[Low97]
G. Lowe. A hierarchy of authentication specifications. In Proceedings of the 1997
IEEE Computer Society Symposium on Research in Security and Privacy, pages 31-
43, 1997.

[Mea94]
C. Meadows. A model of computation for the NRL protocol analyzer. In Proceedings
of the 1994 Computer Security Foundations Workshop. IEEE Computer Society Press,
June 1994.

[Mea95]
C. Meadows. Formal verification of cryptographic protocols: A survey. In Advances in
Cryptology - Asiacrypt '94, volume 917 of Lecture Notes in Computer Science, pages
133-150. Springer-Verlag, 1995.

[Mil95]
J. Millen. The Interrogator model. In Proceedings of the 1995 IEEE Symposium on
Security and Privacy, pages 251-260. IEEE Computer Society Press, 1995.

[MMS97]
J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using murϕ. In Proceedings of the 1997 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, 1997.

[RN95]
Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Series in Artificial Intelligence, 1995.

[Son99]
Dawn Song. Athena: An automatic checker for security protocol analysis. In
Proceedings of the 12th Computer Science Foundation Workshop, 1999.

[THG98]
F.Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Why is
a security protocol correct? In Proceedings of 1998 IEEE Symposium on Security and
Privacy, 1998.

[WL93]
T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In
Proceedings of the IEEE Symposium on Research in Security and Privacy, 1993.

