
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Analysis of a Secure Time Stamp Device

GSEC Practical Assignment Version 1.2f
for GIAC Certification in

Security Essentials

Chris Russell
October 17 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Table of Contents

1 INTRODUCTION 1

2 The Basic Design 2

2.1 Overview 2

2.2 Non-Repudiation 3

2.3 Digital Signatures 3

2.4 Potential Vulnerabilities 3

3 The Birthday Attack 4

3.1 The Problem 4

3.2 The Solution 5

4 Time Stamp Algorithm 6

4.1 Creating a Signed Time Certificate 6

4.2 Verifying a Signed Time Certificate 7

5 Tamper Resistance 8

5.1 Chain of Trust 8

5.2 Hardware Tamper Resistance 9

5.3 Physical Tamper Evidence 9

5.4 Software Tamper Resistance 10

5.5 Integrity Detection 10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 3

6 Authenticating the Public Key 10

7 Secure Clock 11

7.1 Time Recalibration 11

7.2 Time Certification 11

7.3 Time Audit Logs 11

8 Secure Logs 12

9 Conclusion 12

10 Bibliography 12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

INTRODUCTION1

This paper discusses the design of a Secure Time Stamp device used to securely
timestamp digital data, such as computer documents, files, and raw binary data of
arbitrary format. Thus, the device is used to prove two facts:

Existence: That a file existed on a given date & time.•
Data Integrity: That the file was not altered since the time it was stamped.•

These two facts are essential for a number of purposes, including but not limited to:

Gathering and registering binary data to be used as forensic evidence, such as •
computer files, memory dumps, packet recorder data, security analysis logs, etc.
Electronically “notarizing” the date and time of inventions and other time-critical •
documents, such as business plans, intellectual property, engineering documents,
source code, contracts, etc.
Generating secure audit logs for financial transactions, crypto key generation and •
management, system management, etc.

The design of this device is an excellent, real world example on the application of several
security engineering principles and technologies, including:

Nonrepudiation, authentication, and data integrity.•
Cryptographic algorithms.•
Formal analysis of security protocols, chain of trust, and belief logic proofs.•
Hardware tamper resistance, tamper detection, and secure audit trails.•
Secure real-time clocks.•

This device was originally designed by Tom Rodriguez and myself in August 2001.
Unfortunately, we subsequently discovered a patent filed by Robert Blandford [2]
presenting a nearly identical design. Thus, our project was scrapped. Looking for the
silver lining, we were obviously on the right track and our design was validated, albeit not
unique.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 5

The Basic Design2

Overview2.1

The timestamp device creates Signed Time Certificates for data input into the device.
Certificates are stored into separate files (from the original data). Therefore, a file can be
time stamped without altering its contents.

The basic system works as follows:

The data is input and buffered into the device.1.

A cryptographic one-way hash (such as SHA-1, MD5, SHA-256, etc.) is generated 2.
from the buffered data.

The current date/time is read from a secure real-time clock within the device.3.

A certificate is generated containing the hash, current date/time, and device serial 4.
number, and the certificate is signed using a private key stored within the device.

Thus, in order to read and verify a time stamp:

Time
Stamp
Device

Binary
Data

Signed
Time

Certificate

Secure
Clock

Data
Input

Signed Time
Certificate
Output

Time Stamp Certificate Generator

One-Way
Crypto
Hash

External
Time Sync

Sources

Device Id
& Crypto

Keys

Device
Auditing

Tamper Resistant Hardware
Hardware
Tamper

Detection

Crypto
Random
Num Gen

Secure Audit
Logs

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 6

The signed time certificate is verified using the device’s public key. If the 1.
signature does not match, then the certificate is invalid and thus it is rejected.

The hash stored in the certificate is verified by calculating a new hash from the 2.
data. If the hash values don’t match, then either (1) the certificate does not belong
to that particular data file, or (2) the data file has been altered, and thus it is
rejected.

If both verifications (above) succeed, then the date/time is read from the certificate 3.
and returned as the authoritative result.

Non-Repudiation2.2

Perhaps the most important feature of this device is non-repudiation. It is essential that a
Signed Time Certificate be undeniable proof of the date & time that the data was
notarized, and the specific Time Stamp device (serial number, etc.) that was used to
perform the notarization.

Ensuring non-repudiation requires a number of features, including cryptography, a secure
clock, secure (auditable) logs, tamper resistance, and device identification. Each of these
features are essential components to auditing and forensically determining the validity of
a Signed Time Certificate, such that a certificate could withstand scrutiny as key evidence
in a court of law.

Digital Signatures2.3

The Time Certificate is signed using a cryptographic digital signature algorithm, such as
DSS, RSA, NTRU, etc.

Each Secure Time Stamp device has its own unique private key used to sign the
certificates. Preferably, this key is generated within the tamper resistant hardware (such
as FIPS 140-1 level 3 or 4 [3]) of the device and never exposed externally. Thus, no one
can ever know the value of the private key without defeating the hardware tamper
resistance features.

Alternatively, if the key is generated by software running on general purpose hardware
(without hardware tamper resistance), then they key may be protected via a combination
of portable crypto devices (smart cards, dongles, etc.), software tamper resistance, and/or
code obfuscation with embedded split-keys (to ensure that the entire private key is never
completely exposed in memory at any time). These techniques are used by a number of
DRM (Digital Rights Management) technology providers, such as Microsoft, Real, Intel,
Intertrust, and others.

Potential Vulnerabilities2.4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 7

The basic system described in §2.1 above is an oversimplification of the full design.
Without specific additions, it is vulnerable to a number of potential exploits, including:

A hash generated exclusively from the input data may be vulnerable to a Birthday 1.
Attack [5][13].

If the device is physically tampered, then the private key can be read from 2.
memory and used to forge Signed Time Certificates. Or, the device can be
reprogrammed using a different, known private key.

Unless the public key (used to verify the signature) is securely authenticated, then 3.
a forged public key may be distributed and used to “verify” forged time
certificates.

It may be possible to alter or “roll back” the internal real-time clock, thus 4.
producing fraudulent time certificates from a legitimate device.

The rest of this document describes the remaining details necessary to eliminate these
vulnerabilities and create a secure, tamper-resistant device.

The Birthday Attack3

The Problem3.1

A one-way cryptographic hash is a special type of hash function that exhibits the
following properties:

Given data X, it is easy (i.e., computationally efficient) to compute the hash H(X).•

Given the hash H(X), it is practically impossible (i.e., “NP-Complete” [1]) to find •
another data Y that generates the same hash value (i.e., H(X) = H(Y)), even if the
value of X is known.

Using cryptographic techniques, a minor change in the binary value of X produces •
major, chaotic changes to the value of H(X). In essence, H(X) behaves like a one-
way pseudo-random number generator.

If a hash is n bits long, then a brute force attack (to find a value Y such that H(Y) = H(X))
is typically O(2n) in complexity [5][1]. For example, the MD5 algorithm generates a 128-
bit hash. Therefore, a brute force attack should require 2128 attempts, which is well
beyond the range of current technology.

However, the Birthday Attack reduces the complexity to only O(2n/2) [5]. That means
only 264 attempts are needed to crack for MD5, which is possible using specialty,
massively parallel computers [13]. The attack works by generating a sequence of different

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 8

data values (X1, X2, …) and finding any two that generate the same hash (i.e., H(Xn) =
H(Xm)). It is much simpler to find two values (Xn and Xm) that generate the same hash
(H(Xn) = H(Xm)) than to find a single value (Y) that generates a given hash (H(Y) = H(X)).

Thus, it is possible to find two documents that generate the same hash value. While the
first document may contain legitimate data, the second could be crafted to contain
malicious or contrary data. If these documents were legal contracts, just imagine how
much havoc they could create! It is essential to properly authenticate (or identify) the
correct document that corresponds to a given time certificate.

The Solution3.2

It is not possible to perform 264 attempts using a single Secure Time Stamp device.
Therefore, the crack must be performed offline using massive parallel processing. Once
two documents (Xn and Xm) are found that generate the same hash value(H(Xn) = H(Xm)),
then only one of them needs to be input into the Secure Time Stamp device. The
resulting certificate would then work for either of the two documents.

To eliminate this attack, the device appends a nonce to the data prior to hashing. A nonce
(short for “number used once”) is a single-use number. A new nonce value is generated
every time a new document is time stamped.

Therefore, even through the hash values of the two documents are identical:
H(Xn) = H(Xm)

once the nonce is added, the hash values no longer match:
H(N + Xn) • H(N + Xm)

and thus the signed time certificate properly identifies the valid document and rejects the
forged one.

If the nonce is predicable (such as an simple count sequence: 1, 2, 3, …), then the attack
can be modified to locate two matching documents for a given nonce value. Therefore,
the nonce values must be unpredictable.

Ideally, nonces should be created using a truly random number generator. Such a
generator would rely on the chaotic physical properties (physics) of the hardware, such as
thermal vibrations, in order to generate a nondeterministic sequence of truly random,
unpredictable numbers. Intel builds a truly random number generator into their Pentium
III (and subsequent) processors using the RNG [6] instruction. Other truly random
number generators in history included:

SGI’s Lavarand, a bunch of lava lamps at SGI that were periodically •
photographed and processed to produce a chaotic sequence of numbers. (Used to
be available at http://lavarand.sgi.com.)
Rand Corporation’s RAND Tables, which used an electrical random pulse •
generator to create an “electronic roulette wheel” [1 page 422].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 9

Alternatively, a pseudo-random number generator may be used. However, if the
generator function is reversible (not one-way), then an inverse function can be used to
calculate the seed value and hence crack subsequent random numbers. Instead, a
cryptographically random number generator is required. One technique is to encrypt (or
cryptographically) hash the pseudo-random numbers prior to being used, thus ensuring
the generator function is one-way (i.e., “NP-Complete” to crack). Appendix 3 of the DSS
standard [4] defines two algorithms for generating cryptographically random numbers,
one using SHA-1 and the other using DES. Other, more efficient algorithms exist, such
as ISAAC [7]. This is an area of continuing research.

Time Stamp Algorithm4

This section describes the specific algorithms in more detail for generating and verifying
time certifications. On the left side are the algebraic steps written using GNY Logic
nomenclature [10], and on the right side is a textual description for each step.

GNY Logic is a method for analyzing belief systems for security protocols and is an
extension and improvement over the more traditional BAN Logic [11] approach.
(Granted, I’m using the GNY nomenclature less formally in order to illustrate the
algorithm rather than to prove correctness of belief inferences.) Methods for proving trust
and belief systems in security protocols are an active area of research.

For simplicity, the signed time certificate
(N, H(N, X), T, S, {H(N, H(N, X), T, S)})-K is

also referred to as (C). These two expressions are synonymous.

Creating a Signed Time Certificate4.1

In order to timestamp binary data (X), the Secure Time Stamp device (D) performs the
following steps, in order:

D | (+K, -K, S)≡ The device (D) internally generates a public key 1.
(+K) and private key (-K) pair. Furthermore, the
device has a unique serial number (S). These values
are generated once and stored into persistent storage
(such as NVRAM) within the device.

D X< The binary data (X) to be time stamped is input into 2.
the device (D).

D | #(N)≡ A nonce (N) is created using a cryptographic or 3.
truly random number.

D | H(N, X)≡ The nonce is appended to the data and a digital 4.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 10

fingerprint of the nonce+data is generated using a
one-way cryptographic hash, such as MD5, SHA-1,
SHA-256, or similar algorithm.

D | (N, H(N, X), T, S)≡ A certificate is created, containing the value of the 5.
nounce, the digital fingerprint of the data, the
current date & time, and serial number of the time
stamp device.

D | {H(N, H(N, X), T, S)}-K≡
6.

The signature is generated by encrypting
(asymmetric encryption) a hash of the certificate (or
similar signing algorithm).

D |~ C The resulting Signed Time Certificate 7.
(N, H(N, X), T, S, {H(N, H(N, X), T, S)})-K is
output from the device.

Verifying a Signed Time Certificate4.2

In order for user (U) to read and verify the timestamp (C) associated with binary data (X),
the following steps are performed in order:

U (X, C)∋ In order to read and verify a timestamp, the user (U) 1.
must have the data (X) and corresponding signed
time certificate (C), which is equal to
(N, H(N, X), T, S, {H(N, H(N, X), T, S)})-K .

D |~ (+K, S) The device transmits its public key (+K) and unique 2.
serial number (S).

U | (S)φ≡ If the serial number transmitted by the device 3.
matches the certificate, then proceed. Otherwise,
the certificate is rejected. This is not a
cryptographically strong form of authentication and
thus is not sufficient for believing the certificate,
only for rejecting it.

+K
U | D |~ +K

U | D

≡

≡ →4.
If it can be proven that the public key was
transmitted by the device (and not spoofed), then

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 11

+K is guaranteed to be the correct key to validate
the signature.

Note: This is a potential weakness in the protocol.
Since the transmission (+K, S) is not authenticated,
it can be spoofed. Therefore, this communication
much be performed over a physical point-to-point
connection or similar technique to prevent spoofing.

U +K, U {H(N, H(N, X), T, S)}-K
U H(N, H(N, X), T, S)

∋

∋

<

5.
The signature is decrypted, returning the hash of the
certificate. (However, the certificate is not trusted
yet.)

U | (H(N, H(N, X), T, S))
U | D |~ C

φ≡
≡6.

The hash value is recomputed from the cleartext of
the certificate (N, H(N, X), T, S) and compared
against the decrypted hash from the signature. If
the hashes match, that proves the certificate (C) was
generated by the device (D). Otherwise, it is
rejected.

U | (H(N, X))
U | C | X

φ≡
≡ ⇒7.

The hash of the nounce+data H(N, X) is
recomputed and compared against the hash stored
in the certificate. If the hashes match, that proves
the data belongs to the certificate. Otherwise, it is
rejected.

U | D, U | D |~ C, U | C | X
U | C, U | T

≡ ≡ ≡ ⇒
≡ ≡8.

Because the user trusts the device, proved the device
generated the certificate, and proved the certificate
corresponds to the data, therefore the user trusts the
certificate and extracts the data/time value from it.

Note: This last step illustrates another potential
vulnerability: The user must trust the physical
device. If the device has been tampered with, then
all bets are off! Therefore, hardware tamper

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 12

1 The book Security Engineering [13] discusses various high-tech attacks possible against hardware (pages
280-284), such as freezing RAM below -20ºC to preserve its data, using recovering memory remanence data
from powered down RAM chips, etc. Unfortunately, these attacks are out of scope and the Secure Time
Stamp device is most likely susceptible to them. You have to draw the line somewhere! ☺

resistance and secure auditing are necessary in order
to justify the user’s leap of faith in his hardware.

Tamper Resistance5

Chain of Trust5.1

Every security protocol has a chain of trust. For the Secure Time Stamp device, the root
of trust is the physical device itself.

First, the device transmits its public key.1.
Then, the public key authenticates the signed time certificate.2.
Finally, the time certificate authenticates (and verifies data integrity) of the data.3.

Each signed time certificate identifies the specific Time Stamp device used. Thus, for
added security in determining the authenticity of a certificate, the actual device can be
identified, physically inspected to determine if tampering has occurred, and audited using
its secure logs.

If the device itself has been tampered, then the public key and time certificates may have
been forged. Therefore, it is essential to protect against hardware tampering and be able
to detect if any tampering has occurred.

Hardware Tamper Resistance5.2

Hardware Tamper Resistance ensures that the hardware cannot be physically
compromised, thus preventing a user from accessing private crypto keys, altering the real-
time clock, tampering with the software, forging certificates, etc.

A case alarm may be installed onto the physical case. If an attempt is made to open the
case, then an alert is recorded into the secure log, the private key is permanently erased,
and the device is deactivated.

Hardware tamper resistance may necessitate a power source to be built into the device.
One implementation is to store private keys and critical data (but not the logs!) into
volatile memory and power the memory from an internal power source. If the case is
opened, then power is cut off and the contents in memory are instantly1 lost forever.

PCBs (printed circuit boards) and wire etchings may be coated with an epoxy or similar
substance. Attempting to physically remove the epoxy would result in ripping the chips
off the board, thus damaging the PCB and destroying the private keys and critical data.
This approach is used by nCipher (http://www.ncipher.com) in the design of their FIPS

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 13

140-1 level 3 tamper resistant hardware systems, such as nShield
(http://www.ncipher.com/nshield).

The PCBs may also be wrapped in a tamper resistant bag (similar to an anti-static bag,
except it contains a mesh of tiny conductors along its surface). If the bag is punctured or
torn, then power is disrupted and the private keys and critical data are lost.

The hardware should provide a level of tamper resistance equivalent to FIPS 140-1 level 3
or 4 [3].

Physical Tamper Evidence5.3

Physical Tamper Evidence makes it possible to determine through physical inspection if a
device has been tampered or cloned.

Evidence may include:

A self-destructing case that physically breaks when opened.•
A serial number inconspicuously etched onto the PCB.•
Security tags that self-destruct when they are removed. Ideally, these tags should•
be difficult to counterfeit, such as holographic tags, and are installed both inside
and outside the case of the device.
Etc.•

Software Tamper Resistance5.4

A software-only implementation cannot take advantage of hardware tamper resistance
and therefore may employ software tamper resistance techniques (code obfuscation, self
modifying code, encrypted code segments, anti-debugging, hardware monitoring, virtual
memory page table change detection, etc) and split keys (to ensure that private keys are
never completely exposed in memory at any time) to help strengthen security and non-
repudiation. Portable crypto devices (such as smart cards, dongles, etc.) may be used as
well.

If implemented without software tamper resistance, then the application may require
users to personally sign and certify time certificates when they are created, so they are in
essence personally vouching for the authenticity and correctness of the certificate.

Alternatively, a server implementation may encrypt the signing keys with a symmetric
key “passphrase-based” algorithm. Thus, if they encrypted key is even stolen, it is useless
without the passphrase. When the application is launched (either manually, when the
machine is rebooted, or otherwise), a trusted administrator must enter the passphrase in
order to decrypt the signing key. The signing key is only stored into volatile memory
(such that it disappears when power is removed) and never stored unencrypted into
permanent storage, such as flash memory, a hard drive, etc. This technique has been used
in the past for certificate authority servers, where security is paramount.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 14

Integrity Detection5.5

All critical data and files stored within the device may be digitally signed, including
software, firmware, and microcode. When the Time Stamp device is powered up, the
integrity of these files are verified by checking the digital signatures.

This power up self-check feature should be implemented into read-only hardware, such as
ROM or password protected read-only flash memory (e.g., DiskOnChip [14]).

Authenticating the Public Key6

The device’s public key is used to authenticate signed time certificates. However, there is
no specific authentication mechanism implemented for the public key itself. Therefore, it
is possible for someone to forge a public key and claim that it belongs to the device.

As indicated in §5.1 above, the physical device is the root of all trust, and the device will
always advertise its public key when requested. Therefore, as long as the public key is
always obtained directly from the device and not from some other source, its authenticity
is assured.

Special care must be taken to ensure another device cannot intercept the request and
spoof a forged public key advertisement. This is most easily accomplished by using a
direct link-level connection (point-to-point) to the device, thus physically isolating it from
any other networks and devices.

More versatile forms of link security and authentication are possible; however, these
features are outside the scope of the initial design for this device.

Secure Clock7

The real-time clock must be accurate. Otherwise, the Time Stamp device generates time
stamps using the wrong date & time and is worthless.

Despite how accurate the hardware clock may be, it is insufficient to rely solely on its
accuracy without performing periodic recalibration. Furthermore, there should be
mechanism for certifying and auditing the accuracy of the clock.

Time Recalibration7.1

The clock may be synchronized against known secure time sources, such as GPS, NIST
WWV/WWVH/WWVB broadcasts [9], NIST Internet Time Service [8], or secure
networked time servers.

A GPS or time broadcast radio receiver (such as NIST WWV, WWVH, & WWVB in the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 15

United States) may be built into the Time Stamp device. If a GPS is built in, then
longitude and latitude information is recorded and securely logged as well.

The device can use other time protocols in order to synchronize against known time
servers. The IETF (Internet Engineering Task Force) is currently developing a Secure
NTP protocol (stime) [12]. Unfortunately, it is currently only in draft form and not yet an
official standard.

Time Certification7.2

The Time Stamp device may be certified by an approved certification lab against a known
time source. Once the device is recalibrated and certified, then the lab will download a
signed recalibration certificate (signed using the private key of the certification labs) into
the device to be stored and securely logged.

Time Audit Logs7.3

Every time the value of the real-time clock is changed, the event is recorded to a secure
log, including: the old value of the clock, the new value, source of the new time value
(GPS, NIST, a specific NTP server, etc.), and so forth.

The device periodically records the current time and current GSN (Global Sequence
Value, see §8 below) to a secure log (and, of course, increments the GSN in the process),
thus enabling detailed auditing and forensic analysis on the accuracy of the real-time
clock if necessary.

Secure Logs8

The device records a number of secure logs, including:

Time logs, indicating every time the built-in real-time clock is updated, how much •
the time was changed, etc.
System logs, indicating when the device is powered on or rebooted, when the •
firmware or software is updated, etc.
Hardware logs, indicating if/when the device has been tampered, opened, etc.•
Periodic internal self-check logs.•
And so forth.•

Each log is securely signed by the Time Stamp device, protecting it against tampering.
Individual entries in a log may be individually signed. Nonces are added as necessary to
protect the security of the digital signature algorithm.

The device generates a monotonically increasing sequence of integers (e.g., 1, 2, 3, …)
called the Global Sequence Number (GSN). Every time a new entry is recorded into a
secure log, the current GSN value is incremented and recorded with the entry. Thus, it is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 16

always possible to determine the precise order of events recorded across multiple log files.
This is essential for auditing the device and forensic analysis.

GSN numbers are used instead of date/time values to audit the precise order of events
because the real-time clock can be modified and therefore is not guaranteed to be
monotonically increasing.

Conclusion9

This paper used the design of a Secure Time Stamp device to illustrate several important
security engineering principles and techniques, listed in §1 above.

It also illustrated the importance (and complexity!) of logically analyzing security
protocols, such as initial beliefs (the root of trust) and belief inferences (the chain of trust),
and how these logic proofs can be used to identify assumptions, security weaknesses, and
limitations that may have been otherwise overlooked.

Bibliography10

Applied Cryptography, Second Edition, Bruce Schneier, John Wiley & Sons, ©1.
1996, pages 237-242.

Devices to Supply (1) Authenticated Time and (2) Time Stamp and Authenticate 2.
Digital Documents, U.S. Patent #5,189,700, http://patft.uspto.gov/netacgi/nph-
Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/srchnum.htm&r
=1&f=G&l=50&s1='5189700'.WKU.&OS=PN/5189700&RS=PN/5189700, Robert
Blandford.

FIPS 140-1, Security Requirements for Cryptographic Modules, 3.
http://www.itl.nist.gov/fipspubs/fip140-1.htm, NIST.

FIPS 186-2, Digital Signature Standard, 4.
http://csrc.ncsl.nist.gov/publications/fips/fips186-2/fips186-2.pdf, NIST, appendix 3.

Handbook of Applied Cryptography, Alfred Menezes et. al, CRC Press, © 1997, pg 5.
369-371.

The Intel Random Number Generator (whitepaper), 6.
http://developer.intel.com/design/security/rng/techbrief.htm, Intel Platform Security
Division.

ISAAC, A fast cryptographically random number generator, 7.
http://www.burtleburtle.net/bob/rand/isaacafa.html, Bob Jenkins.

NIST Internet Time Service, http://www.boulder.nist.gov/timefreq/service/its.htm, 8.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10/17/01 17

NIST.

NIST Radio Station, http://www.bldrdoc.gov/timefreq/stations/wwv.html, NIST.9.

Reasoning About Belief in Cryptographic Algorithms, 10.
http://java.sun.com/people/gong/papers/gny-oakland.ps.gz or
http://citeseer.nj.nec.com/gong90reasoning.html, Gong, Needham, & Yahalom.

The Scope of Logic Authentication, http://citeseer.nj.nec.com/burrows90scope.html, 11.
Burrows, Abadi, & Needham.

Secure Network Time Protocol (stime), http://www.ietf.org/html.charters/stime-12.
charter.html, Tim Polk & Patrick Cain.

Security Engineering, The Guide to Building Dependable Distributed Systems, Ross 13.
Anderson, Wiley Press, © 2001, pages 83-84.

Write Protecting the DiskOnChip by Software,14.
http://www.m-sys.com/files/Appnotes/doc/App_Note_011_Rev_2.0.pdf, M-Systems
Inc.

