
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Finding dsniff on your network
Richard Duffy
November 28, 2001

Overview

This paper covers some ways to detect dsniff and two of its utilities, arpspoof and macof, on a
network. Arpspoof and macof tools were used with dsniff to determine if dsniff could be
detected. The following programs were used to detect various aspects of dsniff: Arpwatch,
ZoneAlarm, Antisniff and tcpdump. Our existing Fluke network test equipment was connected to
the network to evaluate what indicators each could provide about dsniff and its tools.

Switched networks are no longer secure

For years hubs have been replaced with switches to improve network performance and security.
The protection against packet sniffing that I assumed the switches provided can be easily
circumvented by a widely distributed collection of tools known as dsniff. Two papers I found in the
SANS reading room, “Introduction to dsniff” by Lora Danielle and “Penetration Testing with
dsniff” by Christopher R. Russel, provide a good overview of dsniff and its uses. Since I had no
knowledge of how dsniff would affect the network I decided to install and run dsniff on one of our
test networks. This addressed local security issues and eliminated the possibility of taking down our
production routers during the testing. Instead of using our assigned IP (Internet Protocol) range, I
chose a range of private IP addresses. This allowed further testing so that the following questions
could be answered: Are there any signs that would indicate that dsniff is running and your data is
being sniffed? What steps should be taken to protect your network from having unauthorized users
run dsniff to breach the network security?

Preparing to run dsniff

Many steps had to be taken just to get my system ready to install dsniff. My daily duties
normally include configuring routers, troubleshooting network problems and installing new
hardware. I had never before managed a Linux system or installed the operating system. I
installed Red Hat 7.1 and disabled all the unnecessary services. I then retrieved the files needed to
get dsniff and fragrouter up and running. The installation of dsniff and fragrouter was simplified
by the step-by-step instructions by Lora Danielle in her paper mentioned above.

Written Permission

The GSEC course material repeatedly warned network administrators to secure written
permission before scanning any network. Since lacking the proper permission can cause instant
termination I had to investigate the actual policy at our University. As it turned out, the
University’s acceptable use policy states that network staff members in our department have
permission to run packet sniffers as necessary.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Dsniff and associated programs

There are too many programs associated with dsniff to explore each in this paper, so my testing
was limited to the following programs: arpspoof, dsniff, macof and fragrouter. I found fragrouter
easy to use and help is readily available by typing man fragrouter or fragrouter -help. Below you
will find a list of descriptions for the various dsniff programs. This text was taken from the dsniff
“README” written by the author Dug Song.

Arpspoof - redirect packets from a target host (or all hosts) on the LAN intended for
another local host by forging ARP replies. This is an extremely effective way of sniffing
traffic on a switch. kernel IP forwarding (or a userland program which accomplishes the
same, e.g. fragrouter :-) must be turned on ahead of time.
Dnsspoof - forge replies to arbitrary DNS address / pointer queries on the LAN. this is useful
in bypassing hostname-based access controls, or in implementing a variety of man-in-the-
middle attacks (HTTP, HTTPS, SSH, Kerberos, etc).
Dsniff - password sniffer. handles FTP, Telnet, SMTP, HTTP, POP, poppass, NNTP,
IMAP, SNMP, LDAP, Rlogin, RIP, OSPF, PPTP MS-CHAP, NFS, VRRP, YP/NIS,
SOCKS, X11, CVS, IRC, AIM, ICQ, Napster, PostgreSQL, Meeting Maker, Citrix ICA,
Symantec pcAnywhere, NAI Sniffer, Microsoft SMB, Oracle SQL*Net, Sybase and
Microsoft SQL auth info.
dsniff - automatically detects and minimally parses each application protocol, only saving
the interesting bits, and uses Berkeley DB as its output file format, only logging unique
authentication attempts. full TCP/IP reassembly is provided by libnids(3) (likewise for the
following tools as well).
filesnarf - saves selected files sniffed from NFS traffic in the current working directory.
macof - flood the local network with random MAC addresses (causing some switches to
fail open in repeating mode, facilitating sniffing). a straight C port of the original Perl
Net::RawIP macof program.
mailsnarf - a fast and easy way to violate the Electronic Communications Privacy Act of
1986 (18 USC 2701-2711), be careful. Outputs selected messages sniffed from SMTP and
POP traffic in Berkeley mbox format, suitable for offline browsing with your favorite mail
reader (mail -f, pine, etc.).
msgsnarf - record selected messages from sniffed AOL Instant Messenger, ICQ 2000,
IRC, and Yahoo! Messenger chat sessions.
sshmitm - SSH monkey-in-the-middle. proxies and sniffs SSH traffic redirected by
dnsspoof(8), capturing SSH password logins, and optionally hijacking interactive
sessions. only SSH protocol version 1 is (or ever will be) supported - this program is far
too evil already.
tcpkill - kills specified in-progress TCP connections (useful for libnids-based applications
which require a full TCP 3-whs for TCB creation).
tcpnice - slow down specified TCP connections via "active" traffic shaping. forges tiny
TCP window advertisements, and optionally ICMP source quench replies.
urlsnarf - output selected URLs sniffed from HTTP traffic in CLF (Common Log
Format, used by almost all web servers), suitable for offline post-processing with your
favorite web log analysis tool (analog, wwwstat, etc.).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

webmitm -HTTP / HTTPS monkey-in-the-middle. transparently proxies and sniffs web
traffic redirected by dnsspoof(8), capturing most "secure" SSL-encrypted webmail logins
and form submissions.
webspy - sends URLs sniffed from a client to your local Netscape browser for display,
updated in real-time (as the target surfs, your browser surfs along with them,
automagically). a fun party trick. :-)

Details on the commands used

Arpspoof
Issuing the command arpspoof -t 10.10.30.0 10.10.30.1 from the system running the arpspoof
tool resulted in all packets that were destined for the router 10.10.30.1 from all hosts on the
network to be rerouted to the system running the command. By changing the target (-t) address
to a single host address instead of the entire network range it will reroute the information from
that single host to the system running arpspoof. See example 1 for a sample of the output of the
arpspoof screen. Here, the system running arpspoof (MAC (Media Access Control) address
0:20:e0:69:a5:51) is sending out broadcast ARP (Address Resolution Protocol) replies stating it
has IP address 10.10.30.1. Also captured on that same screen are the ARP replies sent by
arpspoof as the program is terminated. To restore IP forwarding back to the actual router the
arpspoof program broadcasts ARP replies using the router’s actual MAC address
(0:30:7b:81:aa:61).

Example 1 (Output from the arpspoof screen)
Arpspoof running -- MAC address of the spoofing box
0:20:e0:69:a5:51 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.10.30.1 is-at 0:20:e0:69:a5:51
0:20:e0:69:a5:51 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.10.30.1 is-at 0:20:e0:69:a5:51
0:20:e0:69:a5:51 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.10.30.1 is-at 0:20:e0:69:a5:51
Arpspoof stopped -- actual router MAC address
0:30:7b:81:aa:61 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.10.30.1 is-at 0:30:7b:81:aa:61
0:30:7b:81:aa:61 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.10.30.1 is-at 0:30:7b:81:aa:61
0:30:7b:81:aa:61 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.10.30.1 is-at 0:30:7b:81:aa:61

Fragrouter
Warning, before running arpspoof, you must start a program to forward packets from the
spoofing system back to the real router. The command fragrouter –B1 will forward packets to
the original router.

Tcpdump
Running the tcpdump program will allow you to see communications of other systems on the
switched network and determine if arpspoof is working. The command tcpdump –n will send the
data to the screen. The –n option tells tcpdump not to convert IP addresses or port numbers to
names. Another command, tcpdump –n –w filename will write the data to the specified file. All
the data goes directly to the file not to the screen. The file can be read with the command
tcpdump –n –r filename. Note that tcpdump only sees half of the conversation (the local side)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

so if you want to see all of a conversation then monitor the switch port to the router.

Macof
The command macof will start flooding MAC and IP addresses to the network. At this point,
some switches were overwhelmed with the load and were difficult to communicate with until the
macof stream was stopped.

Dsniff
Dsniff can be run with the command dsniff –c –m. This command seemed to work best for my
testing. The man page for dsniff explains all the flags but the –c tells dsniff to do half duplex on
TCP (Transmission Control Protocol) reassembly. The –m flag enables automatic protocol
detection. Captures of the dsniff screens for a telnet, ftp and a web login are found in example 2.
Notice the port numbers after the IP addresses for the source and destination.

Example 2 (dsniff capture)

11/19/01 14:36:50 tcp 10.10.30.13.2247 -> 10.10.31.64.23 (telnet)
rduffy
y!n_g%I!
exit

11/19/01 14:37:17 tcp 10.10.30.13.2248 -> 10.10.31.64.21 (ftp)
USER rduffy
PASS y!n_g%I!

11/19/01 14:37:51 tcp 10.10.30.13.2271 -> 10.10.32.101.80 (http)
GET / HTTP/1.0
Host: 10.10.32.101
Authorization: Basic c2VjdXJpdHk6cjEwZ3JBbmRF [rduffy:y!n_g%I!]

Some ways to detect dsniff

To minimize the costs existing test tools were used to detect dsniff. Our network consists of
about 75 subnets segmented out of our class B address space. It is impractical to install
permanent equipment on every subnet to detect the presence of dsniff. My first goal was to
identify the indicators of dsniff running on the network using our standard test equipment while
in the field. The second goal was to determine what information we could get out of our switches
or routers that would help indicate dsniff is on the network. The third goal was to find other
inexpensive tools to detect dsniff. We commonly use the following network test equipment:
Fluke OptiView, One-Touch Series II, and the 683 Enterprise LANMeter. The other test tools I
used for dsniff detection were Arpwatch, ZoneAlarm 2.6 Pro and AntiSniff version 1 by L0pht
Heavy Industries.

Desktop Detection with ZoneAlarm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

One inexpensive and good indicator that dsniff is on the network is to install and properly
configure ZoneAlarm on the pc’s within the network. Although any personal firewall can cause
problems accessing certain programs and network resources, it provides excellent protection for
the pc at a very low cost. If users remember to disable ZoneAlarm when troubleshooting
application and network problems it should reduce the impact on help desk trouble calls.
Considering how many problems ZoneAlarm will stop, it is well worth the small inconvenience.
ZoneAlarm 2.6 Pro installs with local network protection set to medium and the Internet
protection set to high. I found these settings to work well in most cases. After the installation you
can define the systems trusted by your system by host IP address, IP range, IP subnet or domain
name. Properly configuring trusted hosts or IP ranges reduced the false alarms considerably.

ZoneAlarm did not flag arpspoof running on the network, but it did prevent it from spoofing the
default gateway for the specific system running ZoneAlarm. The reason for this is the spoofing
system tried to communicate with the system running ZoneAlarm. ZoneAlarm blocked these
packets since the arpspoof system was not listed as a trusted host in the ZoneAlarm configuration
table. Zone Alarm is very helpful in detecting the macof program. Macof is used to flood a
switch’s forwarding table with MAC addresses until the switch cannot determine which MAC
address is on each port. This often results in the switch sending packets to all ports just like a hub.
This provides for easy sniffing of what should be “secure” data on a switch. In addition to
sending out MAC addresses macof also sends out random IP addresses. ZoneAlarm logs the
many attempts for random systems trying to talk to each other, none of which belong on the
subnet. This is a huge clue that something is very wrong! For an example of the random IP
addresses that ZoneAlarm logged see the short sample of the ZoneAlarm error log in example 3.

Example 3 (ZoneAlarm log. Note: none of these addresses belong on my local subnet, 10.10.30.0)
FWROUTE,2001/11/09,11:29:07 -7:00 GMT,70.35.0.91:2574,78.239.172.48:13766,TCP (flags:S)
FWROUTE,2001/11/09,11:29:07 -7:00 GMT,248.198.235.26:7780,37.177.83.50:29599,TCP (flags:S)
FWROUTE,2001/11/09,11:29:07 -7:00 GMT,104.4.35.97:15198,69.134.238.14:26626,TCP (flags:S)
FWROUTE,2001/11/09,11:29:07 -7:00 GMT,163.204.5.28:28599,183.214.3.124:11393,TCP (flags:S)
FWROUTE,2001/11/09,11:29:07 -7:00 GMT,49.106.45.94:24203,162.145.188.28:13002,TCP (flags:S)
FWROUTE,2001/11/09,11:29:07 -7:00 GMT,61.70.16.78:26786,41.10.170.93:32061,TCP (flags:S)
FWROUTE,2001/11/09,11:29:07 -7:00 GMT,104.84.224.75:31877,98.33.206.91:11554,TCP (flags:S)
FWROUTE,2001/11/09,11:29:07 -7:00 GMT,39.53.134.16:50324,189.96.47.35:44337,TCP (flags:S)

Promiscuous mode detection using AntiSniff

Antisniff is a program by L0pht Heavy Industries that runs on Windows 95/98 or NT systems. It
will also run on Linux, but it is my understanding that the GUI (Graphical User Interface) is not
available. For this test I installed it on an old Windows 98 system. Antisniff is designed to detect
NICs (Network Interface Cards) running in promiscuous mode. Promiscuous mode allows a
network card to listen and receive network traffic not destined for that system. The Antisniff
package also has the capability of sending emails as alerts are triggered. This program takes little
effort to run and provides helpful information that someone may be sniffing traffic on the
network. A license for 95/98 or NT costs about $350.00. You can download AntiSniff free for a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

fifteen-day trial before purchasing the product. In order for a system to use the dsniff tools the
NIC must be in promiscuous mode. Knowing a system is in promiscuous mode can give you the
information to track down the offending system. By using the MAC address of the offending
system, search the switch’s forwarding tables until you find at which port the MAC address is
located. At this point you could disable the switch port or manually track the system from the
port to the end location. Keep in mind not every system that is in promiscuous mode is sniffing
data from the network but it is always a good practice to know why the system is in promiscuous
mode.

Running Arpwatch

Arpwatch was part of the Red Hat 7.1 installation. It comes in handy to watch the network for
arpspoofing. It will detect a given IP address and MAC address pair changing to another MAC
address. This happens during arpspoofing of the default gateway or a singe host. The command
arpwatch –dN seemed to work well. (See the man pages for more descriptions of all command
options). Example 4 shows the arpwatch screen after a single MAC address change of a given IP
address. This is extremely helpful since the router MAC address should not change without
changing router hardware. Arpwatch will also detect new systems on the network, which is
beneficial to know if you did not add any systems. Another thing arpwatch finds is duplicate IP
addresses. When it finds a duplicate, it logs the old MAC address and the new MAC address.

Example 4 (Arpwatch showing changing MAC address changing for a given the same IP)
From: arpwatch (Arpwatch)To: root Subject: flip flop

hostname: <unknown>
ip address: 10.10.30.1

ethernet address: 0:20:e0:69:a5:51
ethernet vendor: PreMax PE-200 (NE2000-clone card, sold by InfoExpress)

old ethernet address: 0:30:7b:81:aa:61
old ethernet vendor: <unknown>

timestamp: Tuesday, November 13, 2001 11:22:41 -0500
previous timestamp: Tuesday, November 13, 2001 11:22:40 -0500

delta: 1 second

From: arpwatch (Arpwatch) To: root Subject: flip flop
hostname: <unknown>

ip address: 10.10.30.1
ethernet address: 0:30:7b:81:aa:61
ethernet vendor: <unknown>

old ethernet address: 0:20:e0:69:a5:51
old ethernet vendor: PreMax PE-200 (NE2000-clone card, sold by InfoExpress)

timestamp: Tuesday, November 13, 2001 11:22:48 -0500
previous timestamp: Tuesday, November 13, 2001 11:22:47 -0500

delta: 1 second

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Field Detection using the Fluke 683 Enterprise LANMeter

The Fluke 683 Enterprise LANMeter will assist in detecting macof. This meter has an IP address
conversation matrix that will show the IP addresses of the top conversations. Normally this table
will include local IP addresses paired with the IP address of the destination machine. If macof is
running the table will be full of conversations between pairs of IP’s not belonging on the local
net. Another indicator of macof is the meter limit of 512 conversations will almost immediately
be reached. A warning will be displayed indicating the limit has been reached. This would be
normal on very few networks within our campus. Knowing the normal baseline for each subnet is
a big advantage when testing during network problems. Although LANMeter reliably detects
duplicate IP addresses, while arpspoof is running, it did not detect duplicate IP or notice the
MAC address was changing from the actual router to the system running arpspoof.

Field Detection using the Fluke OneTouch Series II Network Assistant

The OneTouch has limited capability to detect macof. If macof is running the meter will indicate
the station list is greater than 500. If you look at the list you will find the majority of the IP
addresses don’t belong on that subnet. The OneTouch did not notice the MAC address change
from the actual router to the MAC of my system running arpspoof and spoofing the router
address. OneTouch saw the actual router but not my system running fragrouter as a second
router. This is because the system running fragrouter doesn’t respond to SNMP and doesn’t send
OSPF packets.

Field Detection using the Fluke OptiView Integrated Network Analyzer

The OptiView does detect the IP address of the router changing from one MAC address to
another while arpspoof is running. It flags the IP that has the problem showing the conflicting
MAC address for the same IP. This meter gathered information from the network devices under
test and seemed to detect more problems if it is on the network for a while. Since the OptiView
can be remotely controlled it is easy to connect to a remote network and randomly check for
problems. If macof is running on the network the OptiView can show a list of MAC addresses
that it sees. It was noticeable that there were more than 16,000 local MAC addresses found. Since
our campus has a total of approximately 16,000 unique MAC addresses there should not be
16,000 MAC addresses on a single subnet. It is difficult to determine which MAC addresses
belong on the subnet so running the TCP capture is very helpful. The TCP screen showed
thousands of IP addresses that did not belong on the local subnet. This meter has a layer 2
traceroute that is just great. If you have the MAC address of the system you want to find, it can
be entered and traced by the meter. It will trace from the meter through all the switches showing
port numbers and switch IP address all the way to the system you want to find. This tool can
save hours locating systems. If you have ever had to check every switch on a large subnet to find
a single MAC address you will appreciate this tool. Note the meter does have to be attached to
the same local subnet as the MAC address that you’re searching for.

Indicators of dsniff on the switch

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Normally the traffic activity lights on most switches are not lit solid. This may be an indication of
things such as a broadcast storm or loop in the network. While macof is running the traffic
activity lights are lit solid on all connected ports. The other thing to look at is the forwarding table
on the switch. The 3COM 3300 switch had 12,000 entries in the forwarding table when macof
was run for a while. There were eight devices connected to the switch that showed 12,000 MAC
addresses. On a HP 4000 switch I was never able to find the maximum number of MAC
addresses allowed in the forwarding table. The forwarding table had many pages of addresses on
the port that was connected to the system running macof.

Indicators of dsniff on the router

During the testing my original thought was that there would be entries for each of the bogus
MAC addresses and IP addresses in the router’s ARP table while macof was running. This was
an incorrect assumption on my part since there were no incorrect addresses in the ARP table. I
believe that since the router never forwarded any packets off the subnet for the incorrect IP and
MAC addresses, it does not enter them in the ARP table. The next thing I checked was the Cisco
router’s debug ARP command. I found there were some definite indicators listed by debug. The
debug ARP command is a useful tool but can be very CPU intensive and should be used with
caution. With macof running, debug ARP output showed pages of “failed to create incomplete
entry for IP address xxx.xxx.xxx.” These IP’s should not be on the subnet so that is also a good
indicator that dsniff may be running on the network. A sample of the debug ARP while running
macof is shown in example 5. The debug ARP command is also capable of detecting arpspoof,
as it shows packets with the router’s IP address and another systems MAC address. See example
6 for a sample of the router’s debug ARP output.

Example 5 (Output from debug ARP on the router while macof was running)
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.221.127.112 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.158.83.62 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.243.95.117 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.105.248.91 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.38.42.110 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.53.51.53 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.19.150.93 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.64.78.115 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.47.231.115 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.222.144.67 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.166.10.25 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.200.22.117 interface EOBC0^M
24w6d: IP ARP: failed to create incomplete entry for IP address: 127.135.188.124 interface EOBC0^M

Example 6 (Output from debug ARP on the router while arpspoof was running)
24w6d: IP ARP: rcvd rep src 10.10.30.1 0020.e069.a551, dst 10.10.30.0 Vlan10
24w6d: IP ARP: rcvd rep src 10.10.30.1 0020.e069.a551, dst 10.10.30.0 Vlan10
24w6d: IP ARP: sent rep src 10.10.30.1 0030.7b81.aa61,
24w6d: IP ARP: rcvd rep src 10.10.30.1 0020.e069.a551, dst 10.10.30.0 Vlan10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

24w6d: IP ARP: rcvd rep src 10.10.30.1 0020.e069.a551, dst 10.10.30.0 Vlan10
24w6d: IP ARP: sent req src 10.10.30.1 0030.7b81.aa61,
24w6d: IP ARP: rcvd rep src 10.10.30.1 0020.e069.a551, dst 10.10.30.0 Vlan10
24w6d: IP ARP: sent req src 10.10.30.1 0030.7b81.aa61,
24w6d: IP ARP: rcvd rep src 10.10.30.1 0020.e069.a551, dst 10.10.30.0 Vlan10
24w6d: IP ARP: rcvd rep src 10.10.30.1 0020.e069.a551, dst 10.10.30.0 Vlan10

Stopping dsniff

I did check for ways to keep arpspoof from being able to spoof the router, but I was unsuccessful
in preventing this from happening. Since arpspoof sends out ARP replies associating the router’s
IP address with the MAC address of the spoofing system I don’t think there is a way you can
stop the spoofing. There are a few ways to successfully detect the presence of macof and
arpspoofing. If nothing else, Arpwatch is a simple program to implement at a very low cost.
Having a good baseline for your network makes it easier to troubleshoot when your network is
experiencing unusual activity.

Securing your data

Encrypting data will reduce the threat of someone running dsniff on your network. One of the
best ways of securing your data is to use a VPN (Virtual Private Network). Since the data is
encrypted from your system until it reaches the VPN concentrator in the event your data is
captured at the local gateway the encryption will provide sufficient protection. It is not impossible
to capture and decrypt the data but it does make it very difficult. Using SSH, a secure telnet
connection is also a good idea. There are ways that one of the dsniff tools can still capture your
data if your SSH is not setup properly but your data is more secure using SSH than applications
that send plain text data.

Conclusion

The two dsniff utilities arpspoof and macof cannot be stopped but there are many ways to help
protect systems and monitor the network for dsniff. By knowing what to look for while
conducting network diagnostics with standard test equipment dsniff can be detected, traced to the
offending system and stopped. Daily monitoring of your network with arpwatch will provide
valuable details in detecting dsniff. Data encryption through the use of a VPN will provide a layer
of protection in case dsniff is not immediately discovered. Documentation and a thorough
understanding of what is “normal” for each subnet is invaluable in troubleshooting network
abnormalities.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

.
References

Song, Dug. “dsniff.” V2.3. 17 Dec. 2000. URL:
http://www.monkey.org/~dugsong/dsniff/ (5 Nov. 2001).

Danielle, Lora. “Introduction to dsniff.” 1 Jun. 2001. URL:
http://www.sans.org/infosecFAQ/audit/dsniff.htm (5 Nov. 2001).

Russel, Christopher. “Penetration Testing with dsniff.” 1 Feb. 2001. URL:
http://www.sans.org/infosecFAQ/threats/dsniff.htm (5 Nov. 2001).

Dunston, Duane. “Network Monitoring with Dsniff.” 29 May 2001. URL:
http://www.linuxsecurity.com/feature_stories/feature_story-89.html (5 Nov. 2001).

McClure, Stuart. & Scambray, Joel. “Switched networks lose their security advantage due to
packet-capturing tool.” 29 May 2000. URL:
http://www.infoworld.com/articles/op/xml/00/05/29/000529opswatch.xml (5 Nov. 2001).

Loeb, Larry. “On the lookout for dsniff:.” Part 1. Jan. 2001. URL:
http://www-106.ibm.com/developerworks/library/s-sniff.html (5 Nov. 2001).

Silverman, Richard. “dsniff and SSH.” 22 Dec. 2000. URL:
http://sysadmin.oreilly.com/news/silverman_1200.html (5 Nov. 2001).

Edwards, Mark. “Think You're Safe from Sniffing?” 1 Jun. 2000. URL:
http://www.secadministrator.com/Articles/Index.cfm?ArticleID=8878 (5 Nov. 2001).

Fluke Corporation URL:
http://www.fluke.com/ (26 Nov. 2001).

Zone Alarm URL:
http://www.zonealarm.com/ (26 Nov. 2001).

Antisniff URL:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

http://www.securitysoftwaretech.com/antisniff/ (26 Nov. 2001).

Arpwatch URL:
http://rpmfind.net/linux/RPM/Red_Hat_Linux.html (26 Nov. 2001).

