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Introduction

Intrusion detection has become an essential component of computer security in recent years.  
Security administrators are complementing existing security measures with intrusion detection 
systems (IDSs) to achieve defense in depth [1].  To be useful, an IDS must be selected and 
configured with its environment in mind, and it must be monitored by knowledgeable personnel.  
An effective IDS provides accurate and timely information about ongoing intrusions which is 
necessary to protect today’s networks.

The role of an IDS is to warn administrators of suspicious and potentially malicious computer 
activity.  Most IDSs are passive warning devices that must be monitored by trained professionals. 
Some IDSs, however, feature active response mechanisms to automate the intrusion recovery 
process.  Of the active response IDSs, some target the attacker and launch countermeasures to 
inhibit the attacker system.  The difficulty with launching countermeasures is ensuring the 
authenticity of the attacker.  Hackers often spoof IP addresses or use intermediary hosts during a 
break-in.  Disabling an alleged attacking system in such a scenario disrupts an innocent machine 
and leaves the real attacker system unaffected.  Another approach to active response is to target 
the victim system.  Typical victim responses attempt to repair the system, stop the current attack, 
or prevent the machine from being exploited in the future.  Unfortunately, measures taken against 
the victim system are not always effective because it is difficult to determine the success of an 
attack and the resulting damage. Incorrect responses may have ill effects on the victim system.  
Regardless, repair takes a machine offline which is costly for production systems.  The biggest 
problem with active response mechanisms, however, is the current state of intrusion detection 
technology.

Measuring IDSs

Current IDSs generate too many inaccurate alarms. Acting automatically on such alarms is very 
dangerous. Simply stated, IDSs aren’t good enough yet.  Worse yet, the concept of “good” isn’t 
well defined for the intrusion detection problem.  There are many factors to consider when 
evaluating IDSs such as speed, cost, effectiveness, ease-of-use, scalability, and interoperability.  
Without taking specific environment details into consideration, effectiveness and ease-of-use can 
be used as general metrics to compare IDSs.  Both factors measure general aptitude because they 
are determined by the detection algorithm of the IDS.

Intrusion detection systems use sensors to collect data which is processed into events.  Sensors 
can process information from a variety of sources including network taps, syslog records, and 
audit records.  Sensor-generated events are then processed by a detection algorithm that 
determines whether an event corresponds to an attack.  In some IDSs, the algorithm does not 
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perform a binary classification into the categories “attack” or “not attack,” but assigns a n-valued 
variable to describe event severity.  For such IDSs, extra operator labor is required to determine if 
an event is malicious based on the type of the event and the severity.

The detection algorithm maps incoming events to attacks and normal activity.  The resulting 
classification can be used to determine the effectiveness of an IDS.  Effectiveness, as defined in 
[2], is the ability of an IDS to maximize the detection rate while minimizing the false alarm rate 
(false positive rate).  In other words, a good IDS reports intrusions when they occur, and does not 
report intrusions when they do not occur.  Stefan Axelsson analyzed the intrusion detection 
problem with Bayesian statistics and determined that the base-rate fallacy governs the 
effectiveness of IDSs.  The basic rate of incidence of an event, or the base-rate, is often 
overlooked when calculating conditional probabilities.  Simply stated in terms of intrusion 
detection, the probability that an intrusion is actually occurring, given that an IDS reports an 
intrusion, is dominated by the false alarm rate of the IDS.  The important measure of an IDS is 
not how frequently it detects attacks, but how infrequently it produces false alarms.  He also 
concluded that high false alarm rates found in modern IDSs show that none the products he 
surveyed lived up to real-world expectations of effectiveness.

Given that intrusion detection is still a relatively new field, it is acceptable that none of the 
products available today are extremely effective.  Systems that are somewhat effective at 
determining attacks are still useful, especially because of the computing power required to do 
intrusion detection that makes it impossible to perform manually.  Another important factor for 
measuring IDSs is its ease-of-use.  Because active response is not yet an acceptable technology, 
human intervention is necessary to use IDSs.  It is therefore necessary for IDSs to be intuitive 
and easy to manage. Alarms from an IDS must be investigated by a security officer to separate
the real threats from the false alarms.  The less false alarms an IDS generates, the easier it is for an 
operator to find the real intrusions in his network.  In terms of false alarms, ease-of-use and 
effectiveness are closely related.  However, ease-of-use also includes the user interface, 
interoperability with other products, reporting capabilities, and investigation capabilities.

IDS Classification

A taxonomy was developed in [3] to define the space of intrusion detection technology and
classify IDSs.  The taxonomy categorizes IDSs by their detection principle and their operational
aspects.  The two main categories of detection principles are signature detection and anomaly 
detection.  The remainder of this paper will compare the two categories of detection principles 
and describe a new type of anomaly detection based on protocol standards.  While the taxonomy 
applies to both host-based and network-based IDSs, this paper will focus on network-based IDSs
because protocol anomaly detection is unique to analyzing network traffic.

Signature detection, also known as misuse detection, attempts to identify events that misuse a 
system.  Signature detection is achieved by creating models of intrusions.  Incoming events are 
compared against intrusion models to make a detection decision.  When creating signatures, the 
model must detect an attack without any knowledge of normal traffic in the system.  Attacks and 
only attacks should match the model, otherwise false alarms will be generated.  The simplest 
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form of misuse detection uses simple pattern matching to compare network packets against 
binary signatures of known attacks.  A binary signature may be defined for a specific portion of 
the packet, such as the TCP flags. For instance, an attack signature for the land attack [4] would 
match packets that had the SYN flag set and had the same source and destination IP.  The 
remaining content of the packet is irrelevant.

The signature detection method is good at detecting known attacks.  A well crafted signature will 
always detect the attack it represents.  However, other packets may match the signature and 
generate false alarms.  Signature systems are typically easily customizable and knowledgeable 
users can create their own signatures.  Poorly formed signatures, however, are dangerous because 
they cause false alarms.  Another problem with signature detection is the large number of 
signatures required to effectively detect misuse.  Additional signatures detect more attacks but 
also raise the probability that normal traffic will be incorrectly matched to a signature, thereby 
reducing the system’s effectiveness.  In practice, increasing the signature database reduces the 
bandwidth of a signature-based IDS.  Each packet must be compared against many signatures 
and each comparison uses computational resources.  At some point, when a signature database 
grows too large, not all packets can be processed and some will be dropped, which also reduces 
the detection rate and the overall effectiveness. With a constraint on bandwidth, operators are 
forced to select only those signatures which are most important for their network.  In addition,
new signatures are being developed more rapidly than new attacks are discovered.  Recent 
polymorphic attacks, such as ADMmutate [5] create the need for multiple signatures for a single 
attack.  Multi-functional attacks such as Nimda [6] also require multiple signatures.  Changing a 
single bit in some attack strings can invalidate a signature and create the need for an entirely new 
signature.  It is difficult for operators to incorporate such a multitude of new signatures into their 
performance-limited signature databases.  Despite such problems with signature-based intrusion 
detection, they are very popular and work well in practice when configured correctly and 
monitored frequently.

Anomaly detection, or not-use detection, differs from signature detection in the subject of the 
model.  Instead of modeling intrusions, anomaly detectors create a model of normal “use” and 
look for activity that does not conform.  Deviations are labeled as attacks because they do not fit 
the “use” model, thus the name, not-use detection.  The difficulty in creating an anomaly detector 
is creating the model of normal “use.”  The traditional method, called statistical or behavioral 
anomaly detection, selects key statistics about network traffic as features for a model trained to 
recognize normal activity.  Unfortunately, live networks have very little invariants and are 
anything but normal.  Vern Paxson did a study of internet traffic in [7] and concluded that
statistics such as packet arrival times, connection arrival times, and website hits have much
variation.  Too much statistical variation makes models inaccurate and events classified as 
anomalies may not always be malicious.  For example, a company’s employees might return to 
their desks and check e-mail immediately following a company-wide meeting.   The resulting 
spike in SMTP activity is not normal for that time of the day or week but is not necessarily a 
denial of service attempt against the mail server either, as a statistical anomaly detector might 
label it.  Another problem with this approach is the inability to train a model on a completely 
“normal” network.  Anomaly detection models must be trained on the specific network to be 
monitored.  It is naive to assume that a network with a connection to the Internet is clean when 
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the anomaly detector is being trained.  If a burglar breaks into a house and leaves everything as he 
found it, how will the owners know he was there? An administrator cannot be sure his network 
is clean simply because it appears “normal.”  Traditionally, anomaly detection systems aren’t as 
popular as signature detection systems because of high false alarm rates created by inaccurate 
models of normal “use.”

Protocol Anomaly Detection

A new variant of anomaly detection has been incorporated into IDSs in recent years. Instead of 
training models on normal behavior, protocol anomaly detectors build models of TCP/IP
protocols using their specifications [8,9].  Statistical anomaly detection is plagued by the inability 
to create a normal model of network traffic statistics.  Protocol anomaly detection is much easier, 
however, because protocols are well defined and a normal “use” model can be created with 
greater accuracy.  Protocols are created with specifications, known as RFCs, to dictate proper use 
and communication.  All connection oriented protocols have state.  Certain events must take 
place at certain times.  As a result, many protocol anomaly detectors are built as state machines.  
Each state corresponds to a part of the connection, such as a server waiting for a response from a 
client.  The transitions between the states describe the legal and expected changes between states.  
For example, legal transitions from the “server waiting” state are the “client sends data” state, 
“client cuts connection” state, or the “server timeout” state.

While the specifications in RFCs are not always complete, they give a good starting point for
building a model.  One common addition while building a “use” model is to allow for accepted 
deviations from the RFCs [8,9].  For instance, not all software applications are created with the 
rules of a protocol in mind.  Microsoft may not follow all of the SMTP standards when creating a 
mail server.  However, if the mail server works, and non-malicious traffic for the mail server is
frequently seen on the network, it is acceptable to program the model to recognize such traffic as 
normal.

Most of the benefits of protocol anomaly detection come from the simplicity and elegance of the 
“use” method of detection.  It is much simpler to model the correct use of a protocol than to 
model the misuse of a protocol.  New attack methods and exploits are constantly being 
discovered, many of which violate protocol standards.  The space of malicious attack signatures 
is growing at an incredible rate.  As such, attack signature databases must be updated frequently 
to effectively detect attacks.  In comparison, new protocols and extensions to existing protocols 
are being developed at a much slower rate.  The space of network protocols is well-defined and 
changing slowly.  Protocol anomaly detectors are able to detect most new attacks without being 
updated because the new attacks deviate from the protocol specifications.

The elegance of the “use” model of detection has other benefits as well.  Protocol anomaly 
detection systems are easier to use because they require no signature updates.  Occasionally, new 
protocols will be developed or new protocol extensions will become popular and it is necessary 
to update or add new protocol state machines to an IDS.  However, the frequency of such 
updates is much less than the frequency of current attack signature updates.  Protocol anomaly 
detectors also differ from traditional IDSs in how they present alarms.  Because attacks are 
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detected by deviations from the “use” model, the best way to present such information is to 
describe what part of the state machine was violated.  To interpret this type of information 
requires in-depth knowledge of protocol design which is unrealistic of typical IDS operators.  It is 
therefore necessary for such IDSs to provide documentation to help operators interpret alarms.  It 
is also helpful for the IDS to map well-known attacks to their protocol violations.  Despite the 
difficulty of use, protocol anomaly detection systems are essential for understanding new attacks.  
Without names and prior documentation, new attacks can only be defended against by 
understanding their intrusion methods and their effects.  Protocol violation information is crucial 
to determining the intrusion method.  Another benefit of protocol anomaly detection is increased
efficiency.  Well designed anomaly detectors use less rules to describe acceptable behavior than 
signature detectors use to describe the numerous malicious behaviors. Fewer rules to check each
event against increases the bandwidth of an IDS which increases its detection rate and 
effectiveness.

Protocol Anomaly Detection Example: Nimda

Analyzing a portion the Nimda attack will help illustrate the principle of protocol anomaly 
detection.  On September 18th the Internet was infected with Nimda, a virus and a worm that 
proliferated networks and denied service to many sites.  Nimda, as described in [6] exploited 
holes in multiple Microsoft products including IIS and IE.  Once a machine became infected, 
Nimda attempted to spread itself by probing other computers with multiple attack mechanisms.  
Some of the attempts targeted IIS web servers with the Extended Unicode Directory Traversal 
Vulnerability [10]. Two of the sixteen Nimda web probes are shown below:

GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir

Both of the probes exploit the Directory Traversal Vulnerability using overlong UTF-8 characters.  
IIS incorrectly interprets the Uniform Resource Identifiers (URIs) above and translates the 
highlighted UTF-8 encoded characters to “/” and “\” respectively.  Once decoded, the URIs allow 
remote access to cmd.exe on the local machine.  The URI specification [11] allows the use of 
escaped characters when interpreting URIs.  However, as noted in the Unicode Standard [12],
applications should only interpret “shortest from” unicode strings.  Neither of the strings above 
are the shortest forms of the characters they represent.

A well built anomaly detection engine would include a model for HTTP connections.  The HTTP 
protocol design has been supported by numerous RFCs.  Part of the protocol specification allows 
for encoded URIs, however, unicode encoded URIs are governed by the Unicode Standard.  In 
the HTTP model, when the connection is in the “client request” state, the detection engine would 
validate the transition to the “server send” state.  During validation, the rules built from the 
Unicode and URI standards would indicate that the requests deviated from the model because of 
imbedded overlong UTF-8 characters.  At the outbreak of Nimda, when it proliferated the 
quickest, signature detection systems were unable to detect the attack because the signature did 
not exist.  Some protocol anomaly detection systems, however, were able to detect the attack and 
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provide operators early warning and information about the attack required for further 
investigation. Such educated operators were able to defend their networks against Nimda before 
other operators even knew Nimda existed.

Conclusion

Protocol anomaly detection is a new variant on the existing IDS technology of anomaly 
detection.  Protocol anomaly detection improves on signature detection by modeling the smaller, 
more well-defined space of “use” instead of “misuse.” It also eliminates the need for frequent 
signature updates and provides enhanced performance.  Traditional anomaly detectors have been 
mostly ineffective because of the inability to create an accurate “use” model.  Protocol anomaly 
detection solves this problem by placing restrictions on what is being modeled.  Statistical 
anomaly detection systems attempt to model erratic network statistics, whereas protocol anomaly 
detection systems model well-defined protocol standards.  

Protocol anomaly detection is not a perfect generalized solution to the intrusion detection 
problem, however.  In restricting the nature of the model, many attacks are detected because of 
intrinsic protocol violations.  However, some attacks, such as some viruses, conform to protocol 
standards and are undetectable by protocol anomaly detectors.  In addition, attacks will remain
undetected that are encrypted over the network or visible only to host-based IDSs.  To increase 
the quantity of attacks detected, security administrators must exercise defense in depth with their 
IDSs.  Multiple intrusion detection principles must be employed together.  Not until multiple 
intrusion detection technologies can be correlated and analyzed together will security 
administrators have an accurate view of their network using intrusion detection.
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