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Abstract 

 

Traditional toolsets using atomic syntactic-based detection methods have slowly 

lost the ability, in and of themselves, to	
  detect	
  and	
  respond	
  to	
  today’s well-planned, 

multi-phased, multi-asset, and multi-day attacks thereby leaving a gap in detecting 

these attacks.  

 

Modern toolsets must rapidly detect and respond to attacks that are across multiple 

phases, across thousands of assets, across days of time, and across millions of 

events. Big Data, Semantic-based detection methods, and the Kill Chain model are, 

potentially, the tool, methods, and model of choice for detecting modern attacks. 

 

The question is, do they live up to the potential? If true, then the security community 

must learn, grow, and share these frameworks. The objective is to show that Big 

Data, Semantic-based methods, and the Kill Chain model begin to fill the gap and 

then learn, grow, and share a working framework.  

 

This paper will evaluate a framework that strives to aid in the detection of such 

attacks. A positive evaluation paves the way for the security professional to move 

one-step closer to early attack detection. 
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1. Introduction 

 “A vulnerability is an error or weakness in the design, implementation, or 

operation of a system. An attack is a means [a sequence of actions] of exploiting some 

vulnerability in a system. A threat is an adversary that is motivated and capable of 

exploiting a vulnerability.” (Hollingworth, 2003; Schneider, 1999) Attack detection is the 

ability to detect unauthorized access to, disclosure of, modification of, destruction of, or 

withholding of information (Benson, n.d.).  

Traditional toolsets using syntactic-based (or rule-based) attack detection alone no 

longer detect modern crafted attacks (Cole, 2013).  Syntactic-based or rule-based attack 

detection methods using atomic indicators, such as hashes and IPs, are trivial to collect, 

however, by that very attribute they are also trivial for attackers to change and thereby 

effectively evade detection. (Bianco, 2013)  Modern attacks are rapidly evolving, multi-

phased, multi-asset, multi-day, and are resulting in catastrophic losses (Verizon, 2013).  

Modern toolsets must span large data sets, must utilize semantic-based (or 

pattern-based) detection, and must utilize modern models such as the Kill Chain model   

(Cole, 2013; Bianco, 2013).  Semantic-based or pattern based attack detection triggers on 

attacker's tools, tactics, techniques, and procedures, which are difficult to discern but 

difficult for attackers to change. The combined synergism of Big Data, Semantic 

Methods, and the Kill Chain model offers the potential to aid in the best attack detection. 

The potential impacts are many. To the defender, detection now identifies compromise 

faster resulting in less damage. To an attacker, evading detection becomes more difficult 

(Bianco, 2013; Bijou, 2013; Cloppert, 2010).  

The objective of this paper is to show the practical steps in the creation and 

execution of the framework – understanding events, mapping events to Semantic 

Methods such as behavior analysis and mapping Semantic Methods to the Kill Chain 

Model - all within a Big Data environment (Cole, 2013). 
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1.1. Big Data 

Big Data based attack detection offers hope in detecting crafted attacks across 

multiple domains, multiple assets and multiple days as seen in today’s   modern  

environment (Giura, 2013; Lin, 2013; Yen, 2013; Singh, 2014). Big Data is the ability to 

process large complex sets of data where traditional data processing fails. "Big data is 

high volume, high velocity, and/or high variety information assets that require new forms 

of processing to enable enhanced decision making, insight discovery and process 

optimization" (Laney, n.d.). Big  Data  architecture  originated  with  Google’s  Map  Reduce  

algorithm which uses parallel processing to split and distribute queries (the map step) and 

then gather the results (the reduce step) (Dean, J., Ghemawat, S., 2004). Enterprises are 

producing an unprecedented volume, velocity and variety of real-time machine data from 

every identity and asset that can only be aggregated, correlated, and analyzed broadly and 

quickly using big data technologies.  

1.2. Semantics  

Semantic-based attack detection offers hope in detecting crafted attacks (Cole, 

2013). Semantic-based or meaning-based attack detection methods look for attack 

patterns using mathematics, statistics, artificial intelligence, and disciplines outside of the 

realms of security (Talabis, 2007). These methods can include variants such as behavior-

based methods, stateful-based methods, statistics-based methods, machine learning-based 

methods, data mining-based methods, or baseline-based methods (Cole, 2013; Giura, 

2013; Lin, 2013; Singh, 2014; Yen, 2013). The best methods produce indicators 

triggering on tools, tactics, techniques, and procedures used by attackers. While these 

semantic methods are difficult to craft, they are also difficult for attackers to change 

(Bianco, 2013). In addition, combining semantic methods using a framework of methods 

known as ensembles allows the practitioner to allow for multiple detection methods with 

varying level of detection ability that when combined still detect intrusions (Opitz, 1999; 

Xin, 2013). 
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1.3. Kill Chains 

Kill Chain based attack detection offers hope in detecting crafted attacks across 

multiple phases (Bianco, 2013; Bijou, 2013; Hutchins, 2010; Verizon, 2013). The Kill 

Chain originated as a military targeting concept defined by linked steps described as a 

chain for, among several tasks, detecting and engaging the enemy (Tirpak, 2000).  

Jeffry Carr originated the phase Cyber Kill Chain (Carr, 2008) and Lockheed 

Martin later defined the model (Hutchins, 2010). The Intrusion Kill Chain Model reflects 

the path an attacker uses in an intrusion and consists of reconnaissance, weaponization, 

delivery, exploitation, installation, command and control, and actions on objectives. In 

detail, the Intrusion Kill Chain components are reconnaissance - selecting the target; 

weaponization - creating the exploit; delivery - delivering the exploit; exploitation - 

detonating the exploit, installation – installing remote access; command and control - 

establishing persistent access; and actions on objectives – performing the final 

unauthorized actions. The actions on objectives can include access to, disclosure of, 

modification of, destruction of, or withholding of information (Benson, n.d.). The model 

indicators describe discrete parts of an intrusion. Indicators are atomic, such as an IP 

address; calculated, such as a file hash; or behavioral, such as a collection of atomic and 

calculated indicators. The Lockheed Martin model focuses on moving detection and 

mitigation to earlier phases (Hutchins, 2010). 

Mandiant describes the attack lifecycle as reconnaissance, initial compromise, 

establish a foothold, escalate privileges, internal reconnaissance, move laterally, maintain 

a presence, and complete the mission (Mandiant, 2010; Mandiant 2013). The Mandiant 

model focuses on post compromise actions (Hutchins, 2010). 

2. Building the Framework 

The objective of this paper is to build a framework of attack detection using all 

three components in combination, see Figure 1: Objective. The framework defines 

events, uses semantic methods such as behavior analysis to detect potential attacks, uses 

kill chains to detect potential chain traversal, and executes all of the above using Big Data 



Practical Threat Detection using Big Data , Semantic Methods, and Kill Chains 5 
 

Brian Nafziger, brian @ nafziger . net   

tools. This paper strives to engage in a discussion on the viability of Practical Attack 

Detection Using Big Data, Semantic Methods, and Kill Chains.  

 

Practical Attack Detection: Objective

Kill Chain & Semantics Event Domains, Models, & Elements

Deliver Phishing w/ Exploit Boundary Email Vuln User src_ip user
Deliver Connect  & GET Boundary Proxy  host user dest_ip bytes
Deliver Packed File Boundary IDS src_ip host user file
Exploit Unknown File Endpoint HIPS src_ip host user file
C & C or Exfilt Boundary Proxy host user dest_ip bytes

Domain

Model

E

E

E

E

E

Chain Chain Chain Chain

Semantic Semantic SemanticSemantic
 

Figure 1: Objective 
 

Conceptually, the framework roughly uses the Data Mining concept of 

Knowledge Discovery in Data, which consists of data cleaning, integration, selection, 

transformation, mining, pattern evaluation, and knowledge presentation (Brownlee, 

2014). Data cleaning and integration of events from data sources are implicit in Big Data 

functionality. Data selection and transformation are the processes of mapping event 

elements using semantic methods. Data mining and pattern evaluation is the process of 

detecting attacks and the kill chain progression (Hancock, n.d.). 

Practically, the framework fundamentally uses the Data Mining concept of feature 

selection, extraction, and detection (Hancock, n.d.). The framework uses the process of 

selecting, extracting and detecting potentially relevant features or potential indicators 

from event elements using an ensemble of semantic-based methods. It populates this set 

of indicators across kill chain phases and alerts on a potential attack as a progression of 

indicators across the kill chain.   
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2.1. Events  

Understanding and organizing events are a fundamental requirement for selection, 

extraction, and detection of indicators across event elements – Big Data offers the ability 

to understand and organize these events and elements. Events are any detectable 

occurrence that has significance across the network, system, or application infrastructure 

(UCISA, n.d.). Events typically seen in an infrastructure include Access Services (VPN, 

Wired, and Wireless), Authentication Services (AD, LDAP), Allocation Services (DNS, 

DHCP), Filtering Services (IDS, IPS, Firewall, Proxy, and Spam), Infrastructure Services 

(Routers, Flows and Syslog), and Host Services (Windows, UNIX, AV, FW, IDS, and 

IPS). 

Conceptually, the event landscape organizes into domains, models, and elements 

(Duncan, 2014; Sweden, 2009). Domains organize collections of models that exist in 

similar operational spaces. Models organize collections of elements that originate from 

similar operational controls. Elements represent an atomic or calculated unit originating 

from a singular operational control meant to convey a precise unit of meaning.  

Practically, the typical operational security domains include threat, vulnerability, 

boundary, endpoint, identity, and incident management domains (Robb, 2011). Typical 

models within the boundary domain include, for example, network firewall, network 

intrusion detection, network web filtering, and network email filtering data models. 

Typical elements within the network firewall model include, for example, source IP, 

destination IP and bytes.  

The ability to detect attack commonalities across a variety of domains, models, and 

elements not only requires an understanding and organization of events but also requires 

a lingua franca. A lingua franca is a common language with which to converse across a 

variety of domains, models, and elements.  

Using Splunk as the Big Data environment, Splunk offers a taxonomy using 

models and elements with a common language for elements. The Splunk taxonomy is the 

Common Information Model. From the prior examples, the lingua franca for source is 

src_ip and for destination is dest_ip (Splunk, 2014). Begin the process of Practical Attack 

Detection by building a field manual and document the event taxonomy, as seen below in 

Figure 2: Event Taxonomy with Elements.  
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Practical Attack Detection – Event Taxonomy with Elements

Boundary Domain Proxy Model Event

Element  Description
action The action taken by the server or proxy
bytes_in The number of inbound bytes transferred
bytes_out The number of outbound bytes transferred
category The category of traffic
dest The destination of network traffic, alias dest_ip
duration The time taken by the proxy event, in seconds
site The virtual site which services the request
src The source of the network traffic, alias src_ip
status The HTTP response code indicating the status
url The URL of the requested HTTP resource
user The user that requested the HTTP resource. 

Boundary

Model

 
 Figure 2: Event Taxonomy with Elements (Splunk, 2014) 

 

Using the event taxonomy, an example of a potential event flow is below in 

Figure 3: Potential Event Flow. In this event flow, the user gets an email, initiates an 

outbound HTTP connection, downloads a file from the outbound connection, and finally 

initiates an outbound SSH connection. Singular events are unlikely to develop an 

understanding of what transpired, especially when the attack atomic indicators are new. 

Multiple events begin to develop an understanding of attack pattern. The synergism of all 

the events will develop the best understanding of multiple attack patterns. 

 

Practical Attack Detection - Potential Event Flow

Date / Time Event

4/1 09:00 Boundary Email to user@internal.com containing attachment.pdf
4/1 09:30 Boundary Proxy connection from host user at 10.X.X.X to X.X.X.X
4/1 09:30 Boundary Proxy GET from host user at 10.X.X.X to X.X.X.X
4/1 09:30 Boundary IDS packed executable from X.X.X.X to 10.X.X.X
4/1 09:30 Endpoint IDS unknown file for host user at 10.X.X.X
4/1 12:30 Boundary Proxy SSH from host user at 10.X.X.X to X.X.X.X

 Boundary

Endpoint

 
Figure 3: Potential Event Flow 
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Splunk offers the ability to query the event elements using the Search Processing Language. 

The language offers a variety of functionality, including but not limited to, searching and 
manipulating time series events by piping a myriad array of commands and functions to produce 
alerts, reports, and dashboards (Alspaugh, S., Ganapathi, A., Hearst, M., & Katz, R., 2013). The 
language also provides many complex features to abstract and manage data. A simple example of a 
potential email query is below in   
 

 
 
Figure 4: Potential Email Query. Further Splunk queries throughout are in 

simple terms but derived from actual working queries.  

  

 
 

 
 
 

Figure 4: Potential Email Query 
 

Understanding and organizing event context is also a requirement. Context is an 

ally in comprehensive attack detection for detecting attacks crossing boundaries into 

high-risk areas, for rapid risk assessments of events, and for tying together disparate 

events. The building blocks of context are assets, identities and vulnerabilities (Chuvakin, 

2010). For example, events are of greater value with an understanding of details not 

commonly in events, such as, identification of critical users, identification of critical 

assets, or identification of assets with critical vulnerabilities.  

Splunk offers the ability to build and query context-using databases, using 

directories, using events or using customized commands (Splunk, 2014). Splunk can then 

cache and retrieve context on the local file system using lookups (Splunk, 2014). An 

example of a potential email query with identity context is below in Figure 5: Potential 

Email Query with Identity Context. 

 
 
$SPLUNK_HOME\etc\apps\search\lookup\INFOSEC-CTX-IDENTITY-DB.csv 
email,user 
JohnCalvin@gmail.com,jcalvin 
ThomasHobbes@gmail.com,thobbes  
 
$SPLUNK_HOME\etc\apps\search\lookups\transforms.conf 

 
index=email   
source=external recipient=* action=deliver   
(attachment="*.doc*" OR attachment="*.xls*" OR attachment="*.ppt*") 
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[INFOSEC-CTX-IDENTITY-DB] 
filename = INFOSEC-CTX-IDENTITY-DB.csv 
 
index=email   
source=external recipient=* action=deliver   
(attachment="*.doc*" OR attachment="*.xls*" OR attachment="*.ppt*") 
| lookup INFOSEC-CTX-IDENTITY-DB email AS recipient OUTPUT user 
 

Figure 5: Potential Email Query with Identity Context 
 

This paper strives to focus solely on combining big data, semantics, and kill 

chains into a framework. The configuration, collection, detection, and analysis of data are 

a robust topic. The topic also includes further potential data such as content, session, 

transaction and statistical data. The addition of a full range of data will add valuable 

insight into attacks. Such data adapts well in the big data, semantic methods, and kill 

chain architecture. There are several excellent books covering these and many other 

detailed tasks such as best practices, collecting, monitoring, and low-level analysis 

(Bejtlich, 2013; Bejtlich, 2006; Bejtlich, 2005; Sanders, 2013). 

2.2. Semantics  

Understanding and organizing semantic detection methods within events is the 

next requirement for selection, extraction, and detection of indicators across events. 

Semantic-based methods detect attacks and can include variants such as behavior-based 

methods, stateful-based methods, statistics-based methods, machine learning-based 

methods, data mining-based methods, or baseline-based levels (Cole, 2013; Giura, 2013; 

Lin, 2013; Singh, 2014; Yen, 2013). An ensemble of methods finds potential attacks, not 

necessarily confirmed attacks (Opitz, 1999; Xin, 2013). The accumulation of multiple 

potential attacks across the kill chain model increases the potential of an actual attack.  

Conceptually, the components of event organization, domains, models and 

elements, still apply in discerning attacks and creating semantic detection methods. 

Therefore, these attacks and semantic detection methods exist across the event taxonomy. 

However, it is necessary to classify them to ensure appropriate indicator selection, 

extraction, and detection. Practically, suggested attack indicators include, but are not 

limited to temporality - time of day, day of the week; target - host, service, application, 
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file, user; type - virus, overflow, timing, password, exhaustion; and scope - host, LAN, 

internet (Hollingworth, 2003).  

Using Splunk as the Big Data environment, map event elements to the 

aforementioned attack indicators and create an Attack Taxonomy. In most cases, attack 

elements are implicitly included in the Common Information Model (for instance, 

temporality or time). Document the attack taxonomy as below in Figure 6: Attack 

Taxonomy with Elements. 

 

Practical Attack Detection  - Attack Taxonomy with Elements

Description Elements 

Temporal: time of day, day of the week 
domain, model, elements (time)

Target: host, user, file, service, application
domain, model, elements (host, user, os, file, registry, process)

Type: virus, overflow, timing, password, exhaustion
domain, model, elements (signature, cve, severity)

Scope: host, lan, internet 
domain, model, elements (src_ip, dest_ip, subnet)

Domain

Model

 
Figure 6: Attack Taxonomy with Elements (Hollingworth, 2003) 

 

Semantic Detection Method discernment requires research of known attacks or 

understanding of potentially unknown attacks. Books, journals, blogs, reports, and closed 

sources (private investigations and forensics) offer attack details for observation. The 

intent of this process is to define the value of an ensemble of semantic detection methods 

based on behaviors or other semantic methods. 

Using the attack taxonomy, the continuing example of a potential attack event 

flow with elements is below in Figure 7: Potential Attack Event Flow. The attacker 

sends a Trojanized email to a vulnerable user. The vulnerable user opens the Trojanized 

email, and then the Trojan exploits and initiates an outbound connection. From the attack 

events, one semantic detection method is detecting any potentially exploitable payload 

sent to a vulnerable user. From the events, the semantic detection method indicators are 

time, recipient, attachment, host, and user.  
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Practical Attack Detection: Potential Attack Event Flow

Date / Time System Event

4/1 09:00 Boundary Email to user@internal.com containing attachment.pdf
<payload to a known vulnerable endpoint>

4/1 09:30 Boundary Proxy connection from host user at 10.X.X.X to X.X.X.X
<vulnerable endpoint communicating outbound>

4/1 09:30 Boundary Proxy GET from host user at 10.X.X.X to X.X.X.X
<vulnerable endpoint downloading malware>

4/1 09:30 Boundary IDS packed executable from X.X.X.X to 10.X.X.X
<vulnerable endpoint downloading malware>

4/1 09:30 Endpoint IDS unknown file for host user at 10.X.X.X
<vulnerable endpoint installing malware>

4/1 12:30 Boundary Proxy SSH from host user at 10.X.X.X to X.X.X.X
<vulnerable endpoint establishing c&c or exfiltrating>

 Boundary

Endpoint

 
Figure 7: Potential Attack Event Flow 
 

Splunk offers the ability to query attack elements using the Search Processing 

Language. Using contexts, a complex semantic detection method query could identify 

incoming emails with attachments sent to vulnerable user hosts. An example of an email 

to vulnerable host query is below in Figure 8: Potential Email Semantic (in practice 

as seen later, it is not quite this simple). 

 

 
index=email   
source=external recipient=* action=deliver   
(attachment="*.doc*" OR attachment="*.xls*" OR attachment="*.ppt*") 
| lookup INFOSEC-CTX-IDENTITY-DB email AS recipient OUTPUT user 
| lookup INFOSEC-CTX-ASSET-DB user OUTPUT host  
| lookup INFOSEC-CTX-VULNERABILITY-DB host OUTPUT signature  
| where like (signature,"%")  
| table _time user host signature 
 

Figure 8: Potential Email Semantic Query 
 

Document the available semantic methods as seen below in Figure 9: Semantic 

Methods. 
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Practical Attack Detection:  Semantic Methods with Elements

Semantic Methods Event Domains, Models, & Elements

Phishing w/ Exploit Boundary Email Vuln User time user host

Domain

Model

E

E

E

E

E

 
Figure 9: Semantic Methods with Elements 

  

Once again, this paper strives to focus solely on combining big data, semantics, 

and kill chains into a framework. The analysis of semantic methods as detection 

mechanisms is also a robust topic.   

2.3. Kill Chains  

Understanding and organizing kill chains using semantic methods and events is 

the final requirement for selection, extraction, and detection of indicators across events. 

Kill chains detect a specific sequence of attack patterns or phases of an attack. Lockheed 

Martin and Mandiant offer defined models and distilling the aspects of both models 

offers a simplified kill chain model for use in this paper - delivery, exploit, install, 

command and control and exfiltration where each layer of the model consists of attack 

indicators or elements (Hutchins, 2010; Mandiant, 2010; Mandiant 2013). Document the 

kill chain model as seen below in        Figure 10: Kill Chain Model with Elements. 
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Practical Attack Detection  - Kill Chain Model with Elements

Description: Elements

Delivery:
Temporal, Target, Type, Scope: 
time, host, user, os, file, registry, process, 
signature, cve, severity, src_ip, dest_ip, subnet

Exploit, Install
Temporal, Target, Type, Scope: 
time, host, user, os, file, registry, process, 
signature, cve, severity, src_ip, dest_ip, subnet

Command, Control, Exfiltration:
Temporal, Target, Type, Scope: 
time, host, user, os, file, registry, process, 
signature, cve, severity, src_ip, dest_ip, subnet

Domain

Model

 
       Figure 10: Kill Chain Model with Elements (Hollingworth, 2003; Hutchins, 2010; Mandiant)   

 

Kill Chain discernment only requires determining the location of each semantic 

detection method within the attack kill chain. Using the kill chain model, the continuing 

example of a potential phased attack event flow with elements is below in Figure 11: 

Potential Phased Attack Event Flow. The attacker sends a Trojanized email to a 

vulnerable user – delivery. The vulnerable user opens the Trojanized email, and the 

Trojan exploits and installs malware – exploitation and installation.  Finally, the user 

initiates an outbound connection – command and control or exfiltration.  
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Practical Attack Detection: Potential Attack Event Flow

Date / Time System Event

4/1 09:00 Boundary Email to user@internal.com containing attachment.pdf
<payload to a known vulnerable endpoint - DELIVERY>

4/1 09:30 Boundary Proxy connection from host user at 10.X.X.X to X.X.X.X
<vulnerable endpoint communicating outbound – EXPLOIT/INSTALL>

4/1 09:30 Boundary Proxy GET from host user at 10.X.X.X to X.X.X.X
<vulnerable endpoint downloading malware – EXPLOIT/INSTALL>

4/1 09:30 Boundary IDS packed executable from X.X.X.X to 10.X.X.X
<vulnerable endpoint downloading malware  – EXPLOIT/INSTALL>

4/1 09:30 Endpoint IDS unknown file for host user at 10.X.X.X
<vulnerable endpoint installing malware – EXPLOIT/INSTALL>

4/1 12:30 Boundary Proxy SSH from host user at 10.X.X.X to X.X.X.X
<vulnerable endpoint establishing EXFILTRATION>

 Boundary

Endpoint

 
Figure 11: Potential Phased Attack Event Flow 
 

Splunk also offers the ability to store context in a rolling state table both updating 

and expiring content over time. The Kill Chain is essentially a context with pertinent 

indicators from the semantic methods such as time, host, user, src, and dest. After 

reaching a defined threshold of common indicators across the kill chain, an alert and 

report auto-generate with data from the kill chain, assets, identities, and vulnerabilities 

(Palantir Cyber, 2013). Other potential reporting details include associated AV, IDS, 

DNS, and proxy events (Palantir Cyber, 2013). An example of an email to vulnerable 

user query that generates kill chain indicators, loads previous indicators, and saves 

still valid indicators into a context is seen below in Figure 12: Potential Email 

Semantic Kill Chain Query (again, in practice, as seen later, it is not quite this simple). 

  
 
earliest=-20m@m latest=-5m@m  
index=email  source=external recipient=* action=deliver   
(attachment="*.doc*" OR attachment="*.xls*" OR attachment="*.ppt*") 
| lookup INFOSEC-CTX-IDENTITY-DB email AS recipient OUTPUT user 
| lookup INFOSEC-CTX-ASSET-DB user OUTPUT host  
| lookup INFOSEC-CTX-VULNERABILITY-DB host OUTPUT signature  
| where like (signature,"%")  
| table _time user host signature 
 
| eval chain = "Delivery" | eval semantic = "Mail Recipient Vulnerable" 
| stats min(_time) as firstTime  max(_time) as lastTime  by user host semantic 
chain 
| table firstTime lastTime user host signature semantic chain  
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| inputlookup append=t INFOSEC-CHAIN.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats first(firstTime) as firstTime last(lastTime) as lastTime by user host 
semantic chain 
| table firstTime lastTime user host signature semantic chain  
| outputlookup INFOSEC-CHAIN.csv  
 

Figure 12: Potential Email Semantic Kill Chain Query 
 

Document the kill chain with semantic methods and elements, as seen below in 

Figure 13: Kill Chain with Semantic Methods and Elements. 

 

Practical Attack Detection: Kill Chains with Semantics and Elements

Kill Chain & Semantics Event Domains, Models, & Elements

Deliver Phishing w/ Exploit Boundary Email Vuln User src_ip user
Exploit/Install  Connect  & GET Boundary Proxy  host user dest_ip bytes
Exploit/Install Packed File Boundary IDS src_ip host user file
Exploit/Install File Endpoint HIPS src_ip host user file
Command/Control/Exfiltration Boundary Proxy host user dest_ip bytes

Domain

Model

E

E

E

E

E

Chain Chain Chain Chain

Semantic Semantic SemanticSemantic

 

Figure 13: Kill Chain with Semantic Methods and Elements 
 

2.4. Building Contexts 

Making it practical, context is necessary and adds value in identifying events, 

building semantics and in reporting kill chain events. Create context tables using asset, 

identity and vulnerability data from a variety of sources. Static contexts created from an 

external database or dynamic context created from events that have details unavailable in 

databases. Use the following query templates as the basis for building context. These 
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queries do not account for extraction nuances in databases and events or the higher levels 

of query abstraction available in Splunk 

Create and schedule a current asset context using a remote database query as seen 

below in Figure 14: Context - Asset Database. 

 
 
| dbquery "server" "SELECT * FROM VENDOR-ASSET-DB"   
| table status host user location type manu model  
| outputlookup INFOSEC-CTX-ASSET-DB.csv  
 

Figure 14: Context - Asset Database 
 

Create and schedule a current identity context using a remote active directory 

query as seen below in Figure 15: Context - Identity Database. 

 
 
| ldapsearch domain=AD 
search="(&(objectclass=user)(!(objectClass=computer)))" 
| table status user name department address city state country telephone email  
| outputlookup INFOSEC-CTX-IDENTITY-DB.csv 
  

Figure 15: Context - Identity Database 
 

Create and schedule a current vulnerability context using a local vulnerability 

database query as seen below in Figure 16: Context - Vulnerability Database: 

 
 
| inputlookup VENDOR-VULNERABILITY-DB.csv 
| table status ip dns host os type severity signature cve cvss  
| outputlookup INFOSEC-CTX-VULNERABILITY-DB.csv  
 

Figure 16: Context - Vulnerability Database 
 

Create and schedule a rolling dynamic asset context using an event query as seen 

below in Figure 17: Context - Asset Dynamic. In this example, the context derives 

from host and DHCP events in real-time. 

 
 
| metasearch earliest=-20m@m latest=-5m@m  
| stats min(_time) as firstTime, max(_time) as lastTime by host   
| lookup dnslookup clienthost AS host OUTPUT clientip AS ip | mvexpand ip  
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| append [  
search earliest=-20m@m latest=-5m@m  
source="*dhcpd.log" GrantLease OR RenewLease  
| stats min(_time) as firstTime, max(_time) as lastTime by host ip mac ] 
| table firstTime  lastTime host ip mac 
 
| inputlookup append=T INFOSEC-CTX-ASSET-DYNAMIC.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats min(firstTime) as firstTime max(lastTime) as lastTime by  host ip mac 
| table firstTime  lastTime host ip mac 
| outputlookup INFOSEC-CTX-ASSET-DYNAMIC.csv 
 

Figure 17: Context - Asset Dynamic 
 

Create and schedule a rolling identity context using an event query as seen below 

in Figure 18: Context - Identity . In this example, the context derives from Windows 

Logon events in real-time.  

 
 
earliest=-20m@m latest=-5m@m  
sourcetype=WinEventLog:Security  EventCode=4624 user!=*$ 
| stats  min(_time) as firstTime,  max(_time) as lastTime by host user src_host 
src_ip 
| table firstTime  lastTime host user src_host src_ip 
 
| inputlookup append=T INFOSEC-CTX-IDENTITY-DYNAMIC.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats min(firstTime) as firstTime max(lastTime) as lastTime by  host user 
src_host src_ip 
| table firstTime  lastTime host user src_host src_ip  
| outputlookup INFOSEC-CTX-IDENTITY-DYNAMIC.csv 
 

Figure 18: Context - Identity Dynamic 
 

Create and schedule a rolling vulnerability context using an event query as seen 

below in Figure 19: Context - Vulnerability D. In this example, the context derives 

from vulnerability events in real-time. 

 
 
earliest=-20m@m latest=-5m@m  
index=vulnerabilities | fillnull value=NULL 
| stats min(_time) as firstTime max(_time) as lastTime last(status) as status by id 
ip dns host os type severity signature cve cvss  
| table status id ip dns host os type severity signature cve cvss firstTime lastTime 
 
| inputlookup append=T INFOSEC-CTX-VULNERABILITY.csv 
| where lastTime > relative_time(now(), "-30d") 
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| stats min(firstTime) as firstTime max(lastTime) as lastTime  last(status) as 
status by id ip dns host os type severity signature cve cvss  
| table status id ip dns host os type severity signature cve cvss firstTime lastTime 
| outputlookup INFOSEC-CTX-VULNERABILITY.csv  
 

Figure 19: Context - Vulnerability Dynamic 
 

Document the event contexts, as seen below in Figure 20: Contexts with 

Elements. 

 

Practical Attack Detection  – Contexts with Elements 

Context Lookup Elements

“Assets”  from  a  daily  DB  query  of    assets
host, user, location, department

“Identities”  from  a  daily  DB  query  of  users
user, name, location, department

“Vulnerabilities”  from  a  daily  DB  query  of  vulnerabilities
host, ip, os, severity, signature, cve, 

Domain

Model

CONTEXT

 
Figure 20: Contexts with Elements (Chuvakin, 2010) 

 

2.5. Building Delivery Detection 

Crafted attacks, as described in Shakarian’s   Introduction to Cyber-Warfare 

(Shakarian, 2013), often utilize malware delivery of Trojanized PDF, DOC, and PPT 

email attachments to exploit an existing vulnerability  on  a  user’s  asset. Within the event 

taxonomy, emails with listed recipients and attachments should exist and vulnerabilities 

should exist. Using these indicators, an email based semantic detection method would be 

to notate any incoming email containing a PDF, DOC, PPT, or URL sent to a known 

vulnerable asset.  
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Create and schedule a semantic query as seen below in Figure 21: Delivery Mail 

Recipient Vulnerable. First, identify incoming emails with potentially Trojanized 

attachments. Then identify users with vulnerable hosts receiving those attachments. The 

expanded query below reflects users with multiple assets and multiple vulnerabilities. 

Finally select and save indicators including time, host, user, and optional os, file, registry, 

process, signature, cve, severity, src_ip, and dest_ip.   

 
 
earliest=-20m@m latest=-5m@m  
index=email  source=external recipient=* action=deliver  attachment=* 
| lookup INFOSEC-CTX-IDENTITY-DB email AS recipient OUTPUT user 
| lookup INFOSEC-CTX-ASSET-DB user OUTPUT host | mvexpand host  
| lookup INFOSEC-CTX-ASSET-DB user, host OUTPUT type | mvexpand type 
| lookup INFOSEC-CTX-ASSET-DB user, host, type OUTPUT status | 
mvexpand status 
| rename status as assetStatus | rename type as assetType 
| where like(assetType, "%NOTEBOOK%") AND assetStatus="DEPLOYED"  
| lookup INFOSEC-CTX-VULNERABILITY-DB host OUTPUT signature | 
mvexpand signature  
| lookup INFOSEC-CTX-VULNERABILITY-DB host, signature OUTPUT type | 
mvexpand type 
| lookup INFOSEC-CTX-VULNERABILITY-DB host, signature, type OUTPUT 
status | mvexpand status 
| lookup INFOSEC-CTX-VULNERABILITY-DB host, signature, type, status 
OUTPUT cvss | mvexpand cvss 
| rename status as vulnStatus | rename type as vulnType | rename cvss as 
vulnCvss 
| where like(signature,"%") AND vulnType="Confirmed" AND 
vulnStatus="Active" AND vulnCvss>=7 
| stats last(_time) as _time by user host   
| table _time user host  
 
| eval chain = "Delivery" | eval semantic = "Mail Recipient Vulnerable" 
| stats min(_time) as firstTime max(_time) as lastTime by user host semantic 
chain 
| table firstTime lastTime user host semantic chain  
| inputlookup append=t INFOSEC-CHAIN.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats min(firstTime) as firstTime max(lastTime) as lastTime by user host 
semantic chain 
| table firstTime lastTime user host semantic chain  
| outputlookup INFOSEC-CHAIN.csv  
 

Figure 21: Delivery Mail Recipient Vulnerable 
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Another email based semantic detection technique known as gray listing focuses 

on the propensity of spam for malware delivery using never seen before source IPs 

(Jakhar, 2008). Techniques include variations such as checking a source IP, sender, 

recipient table for past usage and cluster analysis of source IPs. Within the event 

taxonomy, email source IPs, senders and recipients should exist.  Using these indicators, 

a simple email based semantic detection method would be to evaluate and notate new 

incoming emails against a context of previous source IPs, senders and recipients. 

Create and schedule a semantic query with context as seen below in Figure 22: 

Delivery Mail Sender Unique. First, identify incoming emails. Then identify users and 

hosts receiving those emails. The expanded query below reflects users with multiple 

assets. Select and save the earliest time and latest time for the source IP, sender and 

recipient. Then select only those emails never previously seen using the difference from 

the earliest time and latest time. Finally select and save indicators including time, user, 

host and optional src_ip, sender, and recipient. 

 
 
earliest=-20m@m latest=-5m@m  
index=email   
source=external action=deliver src_ip=* sender=* recipient=*  
| eval recipient=split(recipient, " ")| mvexpand recipient 
| stats min(_time) as firstTime max(_time) as lastTime by src_ip sender recipient 
| table firstTime lastTime src_ip sender recipient 
 
| lookup INFOSEC-CTX-IDENTITY-DB email AS recipient OUTPUT user 
| lookup INFOSEC-CTX-IDENTITY-DB email AS recipient OUTPUT user 
| lookup INFOSEC-CTX-ASSET-DB user OUTPUT host | mvexpand host  
| lookup INFOSEC-CTX-ASSET-DB user, host OUTPUT type | mvexpand type 
| lookup INFOSEC-CTX-ASSET-DB user, host, type OUTPUT status | mvexpand 
status 
| rename status as assetStatus | rename type as assetType  
| where (like(assetType, "%NOTEBOOK%")) AND assetStatus="DEPLOYED"  
| table firstTime lastTime user host src_ip sender recipient  
 
| inputlookup append=T INFOSEC-CTX-MAIL-SENDER-UNIQUE.csv 
| where lastTime > relative_time(now(), "-30d") 
| stats min(firstTime) as firstTime max(lastTime) as lastTime by user host src_ip 
sender recipient  
| table firstTime lastTime user host src_ip sender recipient  
| outputlookup INFOSEC-CTX-MAIL-SENDER-UNIQUE.csv 
 
| eval diffTime = lastTime-firstTime 
| where lastTime-firstTime <= 300 
 
| eval chain = "Delivery" | eval semantic = "Mail Sender Unique" 
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| stats min(firstTime) as firstTime max(lastTime) as lastTime by user host 
semantic chain 
| table firstTime lastTime user host semantic chain  
| inputlookup append=t INFOSEC-CHAIN.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats first(firstTime) as firstTime last(lastTime) as lastTime by user host 
semantic chain 
| table firstTime lastTime user host semantic chain  
| outputlookup INFOSEC-CHAIN.csv 
 

Figure 22: Delivery Mail Sender Unique 
 

2.6. Building Exploitation and Installation Detection  

Crafted attacks exploit, install and persist using common load points such as the 

Run and Run Once registry entries (Russinovich, M., & Cogswell, B., 2014). Within the 

event taxonomy, host endpoint protection (and Splunk for that matter) offers file integrity 

and registry monitoring and should include changes to these common load points. Using 

these indicators, a useful semantic detection method would be to evaluate and notate user, 

host, and load entries.  

Create and schedule a semantic query with context as seen below in Figure 23: 

Exploit Endpoint Load Unique. First, identify common load point changes. Identify the 

user and host. Select and save the earliest time and latest time for the host, user, file, and 

or registry. Then select only those changes never previously seen using the difference 

from the earliest time and latest time. Finally select and save indicators including time, 

user, host, and optional file and registry changes.   

 
 
earliest=-20m@m latest=-5m@m  
index=endpoint "common  load  points”   
| stats min(_time) as firstTime max(_time) as lastTime by host user file registry 
| table firstTime lastTime host user file registry 
 
| inputlookup append=T INFOSEC-CTX-ENDPOINT-CHANGE-UNIQUE.csv 
| where lastTime > relative_time(now(), "-30d") 
| stats min(firstTime) as firstTime max(lastTime) as lastTime by host user file 
registry 
| table firstTime lastTime host user file registry 
| outputlookup INFOSEC-CTX-ENDPOINT-CHANGE-UNIQUE.csv 
 
| eval diffTime = lastTime-firstTime 
| where lastTime-firstTime <= 300 
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| eval chain = "Exploit" | eval semantic = "Endpoint Load Unique" 
| stats min(firstTime) as firstTime  max(firstTime) as lastTime by host user 
semantic chain 
| table firstTime lastTime user host semantic chain  
| inputlookup append=t INFOSEC-CHAIN.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats first(firstTime) as firstTime last(lastTime) as lastTime  by host user 
semantic chain 
| table firstTime lastTime host user semantic chain 
| outputlookup INFOSEC-CHAIN.csv  
 

Figure 23: Exploit Endpoint Load Unique 
 

Crafted attacks can also leverage existing common malware exploitations (Aziz, 

A., 2011). Within the event taxonomy, host endpoint protection offers signature, 

reputation and behavioral based monitoring (Symantec, 2012; Symantec, 2013). This 

paper focuses on the detection of attacks using Big Data, Semantics and the Kill Chain, 

however, not to the exclusion of syntactic or signature detection. Using these indicators, a 

useful detection method would be to evaluate and notate user and host with known or 

potential threat entries.  

Create and schedule a query with context as seen below in Figure 24: Exploit 

Endpoint Risk Found. First, identify any known or potential risks. Identify the user and 

host. Select and save the earliest time and latest time for the host, user, and file. Finally 

select and save indicators including time, user, host, and optional threat details.   

 
 
earliest=-20m@m latest=-5m@m  
index=endpoint  "Virus  found"  OR  "Risk  found"  OR  "File  submission”   
| stats min(_time) as firstTime max(_time) as lastTime by host user signature 
filename  
| table firstTime lastTime host user signature filename  
 
| eval chain = "Exploit" | eval semantic = "Endpoint Risk Found" 
| stats min(firstTime) as firstTime  max(lastTime) as lastTime by host user 
semantic chain  
| table firstTime lastTime host user semantic chain name  
| inputlookup append=t INFOSEC-CHAIN.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats first(firstTime) as firstTime last(lastTime) as lastTime  by host user 
semantic chain  
| table firstTime lastTime host user semantic chain  
| outputlookup INFOSEC-CHAIN.csv 
 

Figure 24: Exploit Endpoint Risk Found 
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2.7. Building Command, Control and Exfiltration Detection 

 Crafted attacks, as described in Cole’s  Advanced Persistent Threat (Cole, 2013), 

need to utilize command and control and also have the potential to exfiltrate data. Cole 

describes the potential to identify command and control and exfiltration using: 

 

1) Length of Connections – typical users make short outbound connections 

2) Number of packets – typical connections send a smaller number of packets 

3) Amount of data – typical connections send a smaller amount of data 

4) Destination IP – typical users connect to known domains  

 (Cole, Advanced Persistent Threat, 2013, p. 38,134-135,183-187) 

 

Breaking   down   “Length   of  Connections,“ identify abnormally long connections 

by comparing single user connection duration against the connection duration of all users. 

Within the event taxonomy, proxy filtering offers user and host based connection 

monitoring including duration.  

Create and schedule a semantic query with context as seen below in Figure 25: 

Exfiltrate Proxy Long Connect. First, generate connection duration standard 

deviation across all the proxy events. Then notate any proxy events with a duration 

greater than three times the standard deviation. Finally select and save indicators 

including time, user, host, and optional details such as destination. 

 
 
earliest=-65m@m latest=-5m@m  
index=proxy  
| eventstats  min(_time) as firstTime max(_time) as lastTime avg(duration) as 
avg stdev(duration) as stdev  
| eval notable=avg + 3*stdev  
| where duration > notable 
| where _time > relative_time(now(),"-20m")  
| lookup dnslookup clientip AS src OUTPUT clienthost AS host 
| table _time firstTime lastTime src host user category dest duration notable 
 
| eval chain = "Exfiltrate" | eval semantic = "Proxy Long Connect" 
| stats min(firstTime) as firstTime  max(lastTime) as lastTime by host user 
semantic chain 
| table firstTime lastTime user host semantic chain  
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| inputlookup append=t INFOSEC-CHAIN.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats first(firstTime) as firstTime last(lastTime) as lastTime  by host user 
semantic chain 
| table firstTime lastTime host user semantic chain 
| outputlookup INFOSEC-CHAIN.csv 
 

Figure 25: Exfiltrate Proxy Long Connect 
 

Breaking   down   “Number   of   Packets,“ identify an abnormal number of 

connections by comparing single user connection count against the connection count of 

all users. Within the event taxonomy, proxy filtering offers user and host based 

connection monitoring.  

Create and schedule a semantic query with context as seen below in Figure 26: 

Exfiltrate Proxy Frequent Connect. First, generate connection count standard 

deviation across all the proxy events. Then notate any proxy users with a count greater 

than three times the standard deviation. Finally select and save indicators including time, 

user, host, and optional details such as destination. 

 
 
earliest=-65m@m latest=-5m@m  
index=proxy  
| bucket _time span=15m  
| stats count by _time user src dest category 
| eventstats min(_time) as firstTime max(_time) as lastTime avg(count) as avg 
stdev(count) as stdev  
| eval notable=avg + 3*stdev  
| where count > notable 
| where _time > relative_time(now(),"-20m") 
| lookup dnslookup clientip AS src OUTPUT clienthost AS host  
| table _time firstTime lastTime src host user category dest count notable 
 
| eval chain = "Exfiltrate" | eval semantic = "Proxy Frequent Connect" 
| stats min(firstTime) as firstTime  max(lastTime) as lastTime by host user 
semantic chain 
| table firstTime lastTime user host semantic chain  
| inputlookup append=t INFOSEC-CHAIN.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats first(firstTime) as firstTime last(lastTime) as lastTime  by host user 
semantic chain 
| table firstTime lastTime host user semantic chain 
| outputlookup INFOSEC-CHAIN.csv 
 

Figure 26: Exfiltrate Proxy Frequent Connect 
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Breaking  down  “Amount  of  Data,“ identify an abnormal amount of outbound data 

by comparing single user connection bytes outbound against the connection bytes 

outbound of all users. Within the event taxonomy, proxy filtering offers user and host 

based connection monitoring including bytes outbound.  

Create and schedule a semantic query with context as seen below in Figure 27: 

Exfiltrate Proxy Large Outbound. First, generate connection count standard 

deviation across all the proxy events. Then notate any proxy users with bytes outbound 

greater than three times the standard deviation. Finally select and save indicators 

including time, user, host, and optional details such as destination. 

 
 
earliest=-65m@m latest=-5m@m  
index=proxy  
| bucket _time span=15m  
| stats sum(bytes_out) as bytes_out by _time user src dest category 
| eventstats min(_time) as firstTime max(_time) as lastTime avg(bytes_out) as 
avg stdev(bytes_out) as stdev  
| eval notable=avg + 3*stdev  
| where bytes_out > notable 
| where _time > relative_time(now(),"-30m") 
| lookup dnslookup clientip AS src OUTPUT clienthost AS host 
| table _time firstTime lastTime src host user category dest bytes_out notable 
 
| eval chain = "Exfiltrate" | eval semantic = "Proxy Large Outbound" 
| stats min(firstTime) as firstTime  max(lastTime) as lastTime by host user 
semantic chain 
| table firstTime lastTime user host semantic chain  
| inputlookup append=t INFOSEC-CHAIN.csv 
| where lastTime > relative_time(now(), "-24h") 
 

Figure 27: Exfiltrate Proxy Large Outbound 
 

Breaking  down  “Destination   IP,“ identify any outbound connection to an IP that 

is uncached and untrusted. Within the event taxonomy, proxy filtering offers user and 

host based connection monitoring including the destination.  
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Create and schedule a semantic query with context as seen below in Figure28: 

Exfiltrate Proxy Dest IP28. First, select only those destinations that are IPs. Then 

determine if the destination is untrusted by using the iplocation command to select 

untrusted countries. Select and save the earliest time and latest time for the host, user, and 

destination.  Then select only those IPs never previously seen using the difference from 

the earliest time and latest time. Finally select and save indicators including time, user, 

host, and optional details such as destination and country. 

 
 
earliest=-20m@m latest=-5m@m  
index=proxy  
| rex field=dest "\b(?<ip>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\b" | search ip=*  
| stats min(_time) as firstTime max(_time) as lastTime by src user dest  
| lookup dnslookup clientip AS src OUTPUT clienthost as host 
| iplocation dest | search Country="UntrustedCountry" 
| table firstTime lastTime host user dest Country 
 
| inputlookup append=T INFOSEC-CTX-PROXY-DEST-IP.csv 
| where lastTime > relative_time(now(), "-30d") 
| stats min(firstTime) as firstTime max(lastTime) as lastTime by host user dest 
| table firstTime lastTime host user dest 
| outputlookup INFOSEC-CTX-PROXY-DEST-IP.csv 
 
| eval diffTime = lastTime-firstTime 
| where lastTime-firstTime <= 300 
 
| eval chain = "Exfiltrate" | eval semantic = "Proxy Dest IP" 
| stats min(firstTime) as firstTime max(lastTime) as lastTime by host user 
semantic chain 
| table firstTime lastTime host user semantic chain 
| inputlookup append=t INFOSEC-CHAIN.csv 
| where lastTime > relative_time(now(), "-24h") 
| stats first(firstTime) as firstTime last(lastTime) as lastTime by host user 
semantic chain 
| table firstTime lastTime host user semantic chain  
| outputlookup INFOSEC-CHAIN.csv 
 

Figure28: Exfiltrate Proxy Dest IP 
 

2.8. Triggering and Reporting the Kill Chain 

Trigger the Kill Chain by finding the proper sequence of chain events in the Kill 

Chain context. Splunk offers the ability to track the sequence of events using the 

transaction command. The transitive transaction property allows events missing data such 
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as the user or host to correlate with the chain with the caveat that the missing data be null 

(Garner, 2009). It is the transitive transaction properly that makes Splunk a unique and 

powerful tool. 

Create and schedule the kill chain query as seen below in Figure 29: Kill Chain 

Query29. To enable the transitive property, null the value of fields for data that is not 

fully known such as user=SYSTEM or host=None. Use several transactions to build each 

section of the Kill Chain. Select those chains that match the full path. Finally, display the 

results and any pertinent asset, identity or vulnerability details. 

It is quite possible to simulate attacks traversing the kill chain by a combining a 

variety of actions such receiving unique emails, installing applications that touch load 

points and visiting unique sites. However, the current framework implementation very 

quickly triggered on potential production attacks traversing the kill chain. Even so, the 

ability to inject events using an inject csv file is trivial and is useful for testing transitive 

transactions. Therefore, the inject lookup is included. 
 

 
$SPLUNK_HOME\etc\apps\search\lookup\INFOSEC-CHAIN-INJECT.csv 
firstTime,lastTime,host,user,semantic,chain 
NONE,NONE,TARGET,JOHN,Mail Sender Unique,Delivery 
NONE,NONE,TARGET,JOHN,Endpoint Change Unique,Exploit 
NONE,NONE,TARGET,JOHN,Proxy Long Connect,Exfiltrate 

 
| inputlookup INFOSEC-CHAIN.csv  

 
| COMMENT append inject for testing only, remove for production 
| append [ |inputlookup INFOSEC-CHAIN-INJECT.csv 

 
| eval lastTime = if(chain=="Delivery",relative_time(now(),"-23h"),lastTime)  
| eval host = if(chain=="Delivery","WORKSTATION",host)  
| eval user = if(chain=="Delivery","bnafziger",user) 

 
| eval lastTime = if(chain=="Exploit",relative_time(now(),"-22h"),lastTime)  
| eval host = if(chain=="Exploit",NULL,host)  
| eval user = if(chain=="Exploit","bnafziger",user) 

 
| eval lastTime = if(chain=="Exfiltrate",relative_time(now(),"-1h"),lastTime)  
| eval host = if(chain=="Exfiltrate","WORKSTATION",host)  
| eval user = if(chain=="Exfiltrate",NULL,user) 
] 
 
| eval user = if(user="None",NULL,user) 
| eval user = if(user="SYSTEM",NULL,user) 
| eval tuser = if(isnull(user),"NULL",user) 
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| eval host = if(host="None",NULL,host) 
| eval thost = if(isnull(host),"NULL",host)  
 
| eval _time=lastTime  
| eval _raw = strftime(lastTime , "%Y-%m-%d %H:%M:%S") 

+" host="+thost+" user="+tuser+" semantic="+semantic+" chain="+chain 
 
| transaction host user  

connected=f mvraw=t delim="\n\n" maxspan=-1 keepevicted="t"  
endswith="Delivery" 

| transaction host user  
connected=f mvraw=t delim="\n\n" maxspan=-1 keepevicted="t"  
startswith="Delivery" endswith="Exploit" 

| transaction host user  
connected=f mvraw=t delim="\n\n" maxspan=-1 keepevicted="t"  
startswith="Exploit" endswith="Exfiltrate" 

| transaction host user  
connected=f mvraw=t delim="\n\n" maxspan=-1  
startswith="Delivery" endswith="Exfiltrate" 
 

| table _time _raw  host user | search Delivery Exploit Exfiltrate 
 
| lookup INFOSEC-CTX-ASSET-DYNAMIC Host as host  

OUTPUT lastTime IP MAC 
| eval lastAssetTime = strftime(lastTime , "%Y-%m-%d %H:%M:%S") 
 
| lookup INFOSEC-CTX-IDENTITY-DYNAMIC src_host as host  

OUTPUT lastTime host as src_host src_ip 
| eval lastIdentTime = strftime(lastTime , "%Y-%m-%d %H:%M:%S") 
 
| lookup INFOSEC-CTX-VULNERABILITY-DYNAMIC host  

OUTPUT lastTime signature status type 
| eval lastScanTime = strftime(lastTime , "%Y-%m-%d %H:%M:%S") 
 
| table _time _raw  host user  

lastAssetTime IP MAC  
lastIdentTime src_host src_ip  
lastScanTime signature status type 
 

Figure 29: Kill Chain Query 
 

In the end, numerous events in production triggered potential attacks in the kill 

chain as seen below in Figure 30: Kill Chain Results30 in varying slices of real events. 

Though not included below, additional static details, user full name and address, are easy 

to add using lookups. 
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Figure 30: Kill Chain Results 

3. Conclusion 

Practical Threat Detection using Big Data, Semantic Methods, and Kill Chains 

have previously proven to work individually and consequently at least minimally in 

practice as seen in this framework; however, the tool, methods and model are challenging 

to build and tune in a comprehensive and synergistic manner. The initial results at this 

time are promising and do notate higher risk but not necessarily true positive alerts. Even 

though the initial results are promising, the framework will require continued efforts to 

generate true positive alerts. It is the hope that the community of security practitioners 

continues the efforts.  

Several challenges occurred throughout the exercise though no challenge was 

insurmountable. Two of the challenges were dirty data and latent data. Dirty data, data 

that did not parse properly, required extra effort to extract to a level of usability. 

Numerous regular expressions within the queries extracted the data exceptionally well. 

Latent data, data that slowed in transit, required some delays in the queries to extract all 

the data. Running queries in a delayed manner, gathered the data exceptionally well. 

Several areas of future work exist. More data sources need integrated - firewall, 

IDS, VPN, etc. More contexts need added - high-risk users, high-risk assets, etc. More 

semantic methods need defined - threat data, machine learning, r project integration, etc.  

More semantic method tuning needs completed – standard deviations require bell 

distributions, etc.  More kill chain tuning needs completed - the current kill chains 

focused on post compromise however further kill chains could include pre compromise. 
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The current kill chain focused on time, host and user, further tuning could include scope 

based or other elements. Finally, further tuning could include weighting of semantics.  

“We’re   witnessing   the   end   of   the   data   age, and the first sparks of the age of 

analysis” (Palantir, 2008). 
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