
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Jeffrey Widom 
SANS Security Essentials Practical Assignment Version 1.2f (amended August 13, 2001) 
Title:  Confidentiality:  Can anyone read this message? 

Introduction 
 
Imagine the following conversation taking place between a father and son over the Internet. 
 
Son:  Hi dad! 
 
Dad:  Hi son, how are you? 
 
Son:  Fine, question for ya, can I please have some money to buy my books for next semester’s 
classes? 
 
Dad:  Sure, use my credit card.  Here’s the number 2222 2222 2222 2222. Exp 3/03 
 
Son:  Thanks dad, you’re the greatest!! 
 
In today’s society, with the ability to communicate in near real time, with anyone around the 
world, the thought of a parent and child having this type of discussion is not far fetched. 
 
Recently, I had the opportunity to download and install Microsoft’s MSN Messenger.  A free 
Internet chat program which allows users to communicate via instant messages, establish voice 
sessions, and send files.   During my first discussion via MSN Messenger I was surprised with 
the warning that was presented on the screen: 
 

“Never give out your password or credit card number in an instant message 
conversation.” 

 
My installation of MSN Messenger coincided with the recent release of Microsoft Chairman Bill 
Gate’s memorandum entitled Trustworthy Computing[1].  After reading Mr. Gate’s memo, I 
wondered if MSN Messenger would be included in Mr. Gates’s vision for a secure computing 
experience.  In the future “.Net World”, will Microsoft provide applications which do not have  
built-in security features to protect the confidentiality of a user’s information?   That curiosity 
lead to this paper.   
 
The purpose of this paper is to briefly demonstrate why Microsoft currently recommends that no 
passwords or credit card numbers are sent via their chat application.  

Definition 
 
The National Information Systems Security (INFOSEC) Glossary,  NSTISSI No. 4009[2], 
provides the following definition of confidentiality:  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

“Assurance that information is not disclosed to unauthorized persons, processes, or 
devices.” 
 

 
For the purpose of this paper, I asked the myself the following question: 
 

“Is the information sent via MSN Messenger conducted in a manner which protects the 
confidentiality of the data and is not easily interpreted by an outside source?” 

How does this stuff work? 
Have you ever asked yourself, “ When I am chatting over the Internet, how are my words 
making it half way around the or world?”  Before performing a specific test on MSN Messenger,  
let’s briefly describe how this process is accomplished. 
 
Using the example provided in the Introduction, we’ll assume the son is sitting in his dorm room 
located in Los Angeles, California.  His computer is connected to the university’s computer 
backbone and all users of the systems must first login to a centralized server prior to accessing 
the Internet. 
 
The father in this scenario is located in Detroit, Michigan.  His computer is located at his office, 
but because this is a personal matter, he has chosen to use his laptop’s modem to dial-in to his 
local Internet Service Provider (ISP) in order to open his chat application and talk to his son.   
 
The diagram below (Figure 1) illustrates how a basic connection appears to an end user.  For 
example, in our example, the father and son simply appear to have the ability to communicate 
with each other by opening their chat application.  Each types their text into the box provided, 
and the words “magically” appear at the other end. 
  

Father
Son

Un iverisity Server ISP

Internet

 
Figure 1 

 
Unfortunately, although this may look simple to people chatting, this configuration does not 
accurately display the complexity of this session.   In reality there are many more components to 
this discussion between father and son. (Figure 2) 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Router

Router

RouterSon

Un iverisity Server

Hub

Student A

Student D

Student B

Router
Administration

Department

Admissions
Department

ISP ISP

Router

Father

ISP

 
Figure 2 

 
Although very primitive, the image displayed in Figure 2 more clearly depicts the complexity of 
chatting over the Internet.  In our scenario, each word sent between father and son is relayed or 
passed via various components.  In the son’s environment, his Internet connection is actually 
being shared with multiple people: students in his dorm, the Administration department, and the 
Admissions department.  Conversely, the father is simply creating a one-to-one connection with 
his ISP, but as you can see, his words still pass along multiple routers and paths. 
 
Why is this concept being introduced? 
 
When protecting the confidentially of data, it is important to understand your system and how the 
data is passed between users.  At some points in the transmission, you (the user) may have no 
control over how the data protected.  For example, once the son pressed the ‘Send’ key to initial 
the initial greeting to his father, how did the bits and bites of his message arrive on his father’s 
screen?  In terms of MSN Messenger and the demonstration provided in the subsequent portion 
of this paper, it is imperative to have a clear understanding that although the conversation taking 
place may be only displayed as one-to-one, the process and complexity of the communications 
path is enormous.   

Identify the threat 
When using any type of application over the Internet, it is important to understand the different 
threats.  Applied to this paper, there are two main types: Internal and External.  Each type of 
threat is defined below: 
 
Internal -  Security personnel, system user, or malicious attacker located within the operational 
environment of the network being assessed.  For example, any student located within the college 
would be considered an internal threat to the system. 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
External -  Security personnel or malicious attacker who is not directly connected to the network 
being assessed, but is able to gain access to the network communications path via hacking, 
cracking, operating system vulnerabilities, or by any other means. 

Confidentiality:  Can anyone read this message? 
 
The steps listed below explain the process utilized to determine the risks associated with using 
MSN Messenger.  The goal of this demonstration is to determine if sensitive information can be 
easily captured while chatting via the Internet.   The test was conducted via a dial-up connection 
on a personal computer running Windows 98 and MSN Messenger. 
 
1.  The first requirement for conducting an assessment on MSN Messenger was to locate an 
application which would be able to monitor (“sniff”) the data being sent to and from my local 
computer.  I had to find a way to clearly identify if unencrypted data was being sent over the 
Internet while chatting with my friends.  The requirements for the monitoring program were as 
follows: 
 

• Cost:  Any monitoring software downloaded and installed for this test would need to be 
free or a fully functional trial version.  

 
• Functionality:  The monitoring software would need to include built-in support for the 

MSN Messenger protocols 
 

• Ease of Use:  Because I am not familiar with command line applications, the software 
would need to provide a simple Graphical User Interface (GUI) 
 

• Windows Based:  The test being conducted would be run from a computer running a 
Windows based Operating System (OS) 

 
Based on the above requirements, an extensive search on the Internet resulted in locating the 
“Ethereal” program.  This application not only met the basic prerequisites, but also included built 
in support for the MSN Messenger protocol[3]. 
 
2.  Installing Ethereal was done with a standard installation wizard.  The only additional software 
required for using Ethereal was the WinPcap Packet Capture Architecture for Windows.  The 
packet filter is a device driver that adds to Windows 95, Windows 98, Windows ME, Windows 
NT and Windows 2000 the ability to capture and send raw data from a network card, with the 
possibility to filter and store in a buffer the captured packets. 
 
3.  Next, I opened Ethereal, and selected Capture from the menu bar, then Start.  (Figure 3) 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Figure 3 

 
4.  Selecting Start opened the Capture Preferences screen. (Figure 4)  For the purpose of this 
scan, I decided not to modify the basic selections determined by Ethereal.   

 
Figure 4 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5.  Next, I opened MSN Messenger, double clicked on one of my contacts, which displayed a 
basic chat window.  For the purpose of this paper, the contact’s identity has been concealed.   
(Figure 5) 
 

 
Figure 5 

6.  Before sending a message via MSN Messenger, I returned to Ethereal and clicked OK in the 
Capture Preferences screen.  Once started, Ethereal provided a real-time monitor of the total 
number of packets captured.  (Figure 6) 
  

 
Figure 6 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

7.  Subsequently, with Ethereal monitoring my conversation, I sent a basic test message via MSN 
Messenger.  (Figure 6 ) 
 

 
Figure 7 

 
8.  After sending the message via MSN Messenger, I returned to Ethereal and clicked the STOP 
button in the Capture window. 
 
9.  Upon clicking STOP, Ethereal proceeded to compile the information collected and present the 
data in sequential order.  A sanitized display is shown below. (Figure 8) 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Figure 8 

10.  Scrolling down to packet number fifty-three (53), I was able to clearly identify the 
conversation I was performing with my contact. The (sanitized) information captured is listed 
below: 
 

Frame 53 (284 on wire, 284 captured) 
Ethernet II 
Internet Protocol, Src Addr: xx5555 (xx.x.252.13), Dst Addr: msgr-sb44.xxx.xxxx.com 
(xx.x.xx.193) 
    Version: 
    Header length: 20 bytes 
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) 
    Total Length: 270 
    Identification: 0xc183 
    Flags: 0x04 
    Fragment offset: 0 
    Time to live: 128 
    Protocol: TCP (0x06) 
    Header checksum: 0xe58f (correct) 
    Source: xx5555 (10.4.252.13) 
    Destination: msgr-sb44.xxx.xxxx.com (xx.x.xx.193) 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Transmission Control Protocol, Src Port: 1091 (1091), Dst Port: 1863 (1863), Seq: 
3643520148, Ack: 2279486975 
Data (230 bytes) 
 
0000  4d 53 47 20 31 34 35 20 4e 20 32 31 35 0d 0a 4d   MSG 145 N 215..M 
0010  49 4d 45 2d 56 65 72 73 69 6f 6e 3a 20 31 2e 30   IME-Version: 1.0 
0020  0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20   ..Content-Type: 
0030  74 65 78 74 2f 70 6c 61 69 6e 3b 20 63 68 61 72   text/plain; char 
0040  73 65 74 3d 55 54 46 2d 38 0d 0a 58 2d 4d 4d 53   set=UTF-8..X-MMS 
0050  2d 49 4d 2d 46 6f 72 6d 61 74 3a 20 46 4e 3d 4d   -IM-Format: FN=M 
0060  53 25 32 30 53 68 65 6c 6c 25 32 30 44 6c 67 3b   S%20Shell%20Dlg; 
0070  20 45 46 3d 3b 20 43 4f 3d 30 3b 20 43 53 3d 30    EF=; CO=0; CS=0 
0080  3b 20 50 46 3d 30 0d 0a 0d 0a 54 68 69 73 20 69   ; PF=0....This i 
0090  73 20 61 20 74 65 73 74 20 6f 66 20 74 68 65 20   s a test of the 
00a0  70 72 6f 67 72 61 6d 2e 20 20 57 69 6c 6c 20 69   program.  Will i 
00b0  74 20 73 65 65 20 6d 79 20 6d 65 73 73 61 67 65   t see my message 
00c0  20 73 65 6e 74 20 69 6e 20 70 6c 61 69 6e 20 74    sent in plain t 
00d0  65 78 74 20 6f 76 65 72 20 74 68 65 20 69 6e 74   ext over the int 
00e0  65 72 6e 65 74 2e                                                     ernet. 
 

11.  Once finished with the scan of the MSN Messenger conversation, Ethereal provided an  
excellent assortment of file formats to store the data including libcap, Red Hat Linux 6.1 libcap, 
and Nokia libcap. (Figure 9) 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Figure 9 

 
Additionally, by selecting File from the menu bar, and then Print, Ethereal allowed me to “Print” 
the information collected to either a plaintext or Postscript file format.  (Figure 10) 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Figure 10 

Assessment 
 
Although I had never conducted any type of monitoring in the past and after analyzing the data, I 
was able to clearly recognize Ethereal’s ability to capture the conversation and present the 
information without any requirement to decrypt the data.  If this information had been classified 
or proprietary in nature, any malicious attacker with access to my network (internally or 
externally) would have the ability to easily see all conversations. 
 
As currently designed, MSN Messenger provides no means to secure the information provided 
when chatting.  Moreover, the help features included with MSN Messenger provide no 
explanation of the initial warning banner received when initializing a chat session.   
 
Finally, a review of Microsoft’s .NET Messenger Service Statement of Privacy[4] states: 
 

“ Please keep in mind that if you directly disclose personally identifiable information or 
other sensitive data to other users through the .NET Messenger Service, this information 
may be collected and used by the recipient(s). Note: Microsoft does not read any of your 
private online communications, your .NET Messenger Service messages are completely 
confidential.” 
 

This statement, although technically correct, may lead a new user of MSN Messenger to assume 
that this “confidentiality” applies to all communications made via MSN Messenger, rather than 
just the portion controlled by Microsoft and it’s affiliates.  The statement assumes that personally 
identifiable information is being disclosed willingly to another user via Microsoft’s .Net 
Messenger Service.  No where in Microsoft’s document do they address responsibility for the 
unintentional loss of confidentiality due to information being sent in plain text.   



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Conclusion 
 
The process used in the demonstration above may be applied against many types of Internet chat 
applications.  From a major overflow vulnerability in AOL’s Instant Messenger[4] to a security 
flaw in X-Chat[5], hackers will certainly continue to look for new means to intercept and exploit 
chat applications.  Will this architecture change in the future?  Only time will tell. 
 
The concept of a secure chat environment is not new.  In their paper, the Internet Engineering 
Tasks Force (IETF) discusses the development of a standard Internet message format which can 
be signed or encrypted using MIME security multiparts in conjunction with an appropriate 
security scheme.  Does the IETF have the ability to enforce these standards?  Many questions 
still remain unanswered. 
 
In closure, the features and tools offered by today’s communications applications are 
phenomenal.  Just remember, as demonstrated above, it doesn’t take a lot of time, money or 
effort to gather the tools necessary to invade your privacy when using these programs.  Until 
they are explicitly protected by encryption, it is important not to disclose personal or confidential 
information via these types of applications. 
 
References: 
 
[1]  Gates, Bill. Trustworthy Computing, Microsoft Memorandum,  
URL:  http://zdnet.com.com/2100-1104-817343.html?legacy=zdnn (January 15, 2002) 
 
[2]  National Information Systems Security (INFOSEC) Glossary,  NSTISSI No. 4009, 
URL: http://www.nstissc.gov/Assets/pdf/4009.pdf (September 2000) 
 
[3]  Ethereal, Version 0.2.80, Product Features, 
URL:http://www.ethereal.com/introduction.html#features 
 
[4]  Microsoft, .NET Messenger Service Statement of Privacy, 
URL:  http://messenger.microsoft.com/support/privacypolicy.asp  
 
[5] Conover, Matt. AOL Instant Messenger overflow, w00w00!, URL: 
http://www.w00w00.org/advisories/aim.html  
 
[6]  BUGTRAQ, ID # 3830, X-Chat CTCP Ping Arbitrary Remote IRC Command Execution 
Vulnerability, URL: http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=3830, 
(January 2002) 
 


