
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

SANS Security Essentials GSEC Practical Assignment
version 1.3

"Java Smart Cards Are Here To Stay: Benefits And Concerns"

Sonia Otero

February 16, 2002

Introduction
The combination of smart cards plus the Java Card architecture (Java smart
cards) could potentially provide millions of consumers with multiple beneficial
applications in terms of confidentiality, authentication, integrity and non-
repudiation. Nevertheless, as with any new technology, they have stirred up a
bit of controversy due to possible privacy issues and lack of a yet broad based
understanding and infrastructure. However, smart Java cards seem to be bound
to gain momentum and become a permanent fixture of our routine life. In this
paper, I will describe the extensive security layers involved in this powerful
combination, as well as their vulnerabilities. I will show that benefits seem to
outweigh the disadvantages, since certain sectors of society have already
accepted the risks.

What is a smart card?
A smart card is a credit card sized device, embedded with an integrated circuit
chip providing memory storage and computational power. It is equipped with
tamper-resistant features, protected from mechanical stress (i.e. bending) and
the effects of static electricity. There are 3 types of smart cards:

- Memory card: Also known as store value cards because they only have
memory capacity. They are the oldest and currently most widely used type of
smart card; a phone card is an example.

- Microprocessor card: The chip on the microprocessor include RAM, ROM and
EEPROM, typically 32KB of memory with an 8- or 16-bit processor. This card
can add, delete and manipulate information as well as run applications. It also
includes security features such as a Personal Identification Number (PIN), for
circumstances where strong authentication or authorization are needed.

- Cryptographic card: A more sophisticated microprocessor specialized in
cryptographic operations (manipulation of large numbers), such as hashing,
digital signatures, private key capabilities.

Smart cards, unlike magnetic stripe cards, can carry all pertinent functions and
information on the card. Therefore, they do not require access to remote
databases in order to complete transactions.

The International Standards Organization (ISO) 7816 established industry
standards of interoperability among smart cards, software and readers, so that a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

smart card from a certain vendor works on a reader of another vendor. Although
full compliance has not been reached, it should be noted that most of the key
manufacturers (Oberthur, Schlumberger, Gemplus) are working towards this
goal.

From the manufacturer to the cardholder, the production of a smart card goes
through different phases, each with its own quality control:

1. Fabrication: The chip manufacturer produces the silicon integrated circuit
chip. A fabrication key (KF) is added to protect the chip from fraudulent
modification until it is assembled into the plastic card support. The KF is unique
and derived from a master manufacturer key.

2. Pre-personalization: The card supplier mounts the chip on the plastic card
and connects it appropriately with the printed circuit. For secure delivery of the
card to the card issuer, the fabrication key is replaced by a personalization key
(KP). Also, physical memory access instructions are disabled to protect
modification of the fabrication area. From this point on, only logical memory
addressing is available.

3. Personalization: The card issuer completes the creation of logical data
structures and the loading of data files and applications. The card holder
identity, PIN, and unblocking PIN are stored as well. A utilization lock is written
to indicate the card is ready to be used.

4. Utilization: The cardholder enjoys full functionality while the card is activated,
following the stipulated security policies.

5. End-of-life: It could be initiated by an application by writing an invalidation
lock, or by an irreversible block produced because both the PIN and unblocking
PIN become blocked. In the former situation, writing is disabled by the
operating system leaving reading privileges for analysis purposes. In the latter
one, all operations (writing and reading) are disabled. In most smart card
operating systems, the PIN will be blocked after a fixed amount (around 3) of
invalid PINs are presented consecutively.

In terms of storage, a smart card can be viewed like a disk drive with a
hierarchical filesystem, where there is one master file (MF) under which there
can be elementary files (EFs) and subdirectories called dedicated files (DFs)
with their own EFs. However, to provide greater security control, each file is
enhanced with access control attributes, ranging from no restriction to PIN-
verification to forbidden access.
The smart card infrastructure requires the presence of a reader or card acceptor
device (CAD), which serves as the power supply, and a terminal or host, which
serves as an extension of the computational or functional power for the
application, like a friendlier input/output interface. The communication between
the chip and the CAD is a 9600-baud bi-directional half-duplex serial line, while
the communication between the CAD and the host could be a 56K-baud or

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

faster dedicated serial line.

How is Java involved?
Java Card platform came into the picture 5 years ago as a means to eliminate
the problem of multiple, noninteroperable platforms, applying the main
advantages of the Java language to a new realm. Java Card is and will continue
to be the product of shared experience in an open collaborative forum among
the experts in the field, and so it complies with ISO specifications as well as
with industry-specific standards such as GlobalPlatform, Europay-MasterCard-
Visa (EMV), European Telecommunications Standards Institute (ETSI) and the
Third Generation Partner Project (3GPP).

Java Card technology defines a runtime environment (JCRE) on top of the
hardware and the smart card native operating system. This runtime
environment provides a high-level, standard interface to smart card applications,
and as a result, it allows for rapid application development. Java's platform-
independence characteristic allows the same application to run on any card
incorporating a Java Card interpreter. More than 100 million cards were
estimated to have been shipped as of last year.

Obviously, the full-fledged Java 2 set of libraries is far too large to fit on a
resource-constrained device such as a smart card. Therefore, Java Card's
solution consists of a minimal subset of the Java API plus some special-
purpose card commands, which deeply affect programming style and testing
concerns.

Java Card has many features familiar to Java developers:
+ Small primitive data types: boolean, byte, short, int (optional)
+ One-dimensional arrays
+ Packages, classes, interfaces
+ Object-oriented features: inheritance, virtual methods, overloading, dynamic
object creation, access scope, binding rules.
+ Exceptions

But it does not support other elements of Java:
- Large primitive data types: long, double, float
- Characters and strings
- Multidimensional arrays
- Dynamic class loading
- Security manager
- Threads
- Cloning
- Garbage collection
- Finalization
- Serialization

The Java Card virtual machine (JCVM) is implemented in two distinct pieces,
the on-card bytecode interpreter and the off-card converter. Given a compiled

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

regular class file as input, the converter behaves as the standard class loader
counterpart, with the difference that it produces a special file (CAP) per
package. Once the CAP file is transmitted to the card, the interpreter simply
executes the code found in it controlling memory allocation and ensuring
runtime security.

The Java Card Runtime Environment (running inside the card), is responsible for
resource management, network communications, applet execution and security.
The communication between a Java smart card applet and a host application is
performed via Application Protocol Data Units (APDUs), which are data packets
containing either a command from the host to the applet or a response from the
applet to the host.

From its inception, the Java Card platform was designed to enable multiple
applications to reside on a single card plus complement the inherent security
features of smart cards' functionality. All operations and transactions are
atomic, an all-or-nothing proposition so that incomplete or failed operations are
returned to their previous state. Each application is isolated and protected by an
applet firewall to ensure their integrity and eliminate program tampering, either
by individuals or through program interference. Only one applet can run at a
time. Building on the fact that smart cards give the flexibility of updating
information as the user's needs change, multiple applets from different vendors
can also be updated dynamically for maximum customization after initial
issuance.

Security model of a smart card
As explained earlier, unlike conventional computers, processor, I/O, data,
programs and network in smart cards may be controlled by several, possibly
hostile, parties. There is not a clear boundary. Let's look at the particular
threats and risks derived from this situation, keeping in mind that a cardholder
acts as if carrying a computer under somebody else's control, and therefore,
there is no room for trust because any of the participants might feel inclined to
cheat. These are the conventional role splits:

- Cardholder: chooses when and where to use it.
- Data owner: controls the data.
- Terminal: peripheral with which the smart card interacts with the world
(keyboard, display).
- Card issuer: controls the operating system and any data initially stored.
- Card manufacturer: produces the physical smart card; could be subcontracted
among third parties.
- Software manufacturer: produces the software that resides on the smart card;
could also be subcontracted.

Let's imagine an attack by the terminal against the cardholder or data owner.
Known as the "terminal problem", this situation is directly caused by the fact that
smart cards rely totally on external display capabilities during critical
transactions. This display must be trustworthy and unspoofable; otherwise, for

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

example, a displayed purchase believed to be $10 is authorized by an unwitting
customer, resulting on a true charge of $100 in the smart card, due to a corrupt
vendor. CADs could contain I/O enhancements, such as LEDs that show values
directly read by the smart card owner, though this increases the cost of the
smart card. Another suggestion has been to use a Personal Digital Assistant
(PDA) to interact with the smart card as a trusted portable reader, but since
these devices often connect with notoriously insecure PCs, they are equally
vulnerable to similar attacks. In fact, one excellent reason for using smart cards
at all is that PCs can not be trusted. Since information stored in the card can be
kept completely confidential (PINs, sensitive personal data, private keys) and
encryption/decryption can take place on the card itself, the secret data is never
transmitted unsafely and is not so easily stolen if the PC is compromised. A
possible prevention of the terminal problem is for the back-end system (card
issuer) to monitor and detect suspicious behavior between cards and terminals,
or better yet to establish a secure connection directly between the card and the
back-end processing system through the terminal.

To accomplish secure communication, protocols like SSH and SSL with or
without PKI (Public Key Infrastructure) integration have started to provide an
interface for smart cards. They are known to ensure both authenticity and
secrecy without danger of man-in-the-middle attacks. The client versions ask
the user to enter the PIN, which is sent encrypted from the terminal/PC to the
card, where once authenticated by the card, allows the user's public key to be
retrieved and verified with the corresponding private key.

Same prevention steps should apply in the case of a terminal attacking the card
issuer, but what if the card issuer and terminal are owned by the same company
joining forces against the cardholder? The problem becomes a matter of
institution reputation towards its clients, just as it does in a normal business
environment. In general, it is presupposed that the card issuer holds the best
interests on behalf of the cardholder, but that is not necessarily the case when
we think of privacy invasion attacks, a constant source of concern and alertness.
To prevent these kinds of attacks, the system must be carefully designed to
maintain the anonimity and unlinkability of the owner with respect to the issuer.
A good example of this approach is the fingerprint recognition system chosen by
O'Hare International Airport for its existing building access control. Employees
will register their fingerprints via a sensor which captures and converts the
fingerprints into templates (similar to 40-digit security codes) and stores each
individual template on each employee's smart card. Privacy is protected
because fingerprints cannot be reconstructed from the template, and fingerprint
images are never stored anywhere on the system. Employees insert their smart
cards into the readers and place their finger on the optical sensor. The
comparison between the template generated by the sensor and what is stored
on the card grants or denies access based on the employee's access
permissions.

Card issuers are positioned with clear advantage at the time of influencing
software updates, where the user lacks freedom of choice without the proper

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

knowledge or ability to discern the security impact of any change coming from
"above". Some updates might even happen without the user's consent.

In commerce transactions, or access controls, the cardholder might not be
allowed to know the data, and even if he or she does, it would certainly be
prohibited from changing it, since he or she could effectively mint his own
money or make copies of his access card. An attack of a cardholder against the
data owner implies the construction of a fake card, which is difficult to achieve
due to the expensive cost, with tools available only on well funded laboratories.
Nevertheless, we need to be aware of certain research successes for the sake
of defeating tamper-resistance or accomplishing reverse-engineering. I'm
referring to exposing the card to unusual voltage and temperature levels to trap
the secret key or alter the random generation capacity to result on keys
containing almost all 1's. Other methods involve physically removing the chip
from the plastic card and pour nitric acid on it to expose the silicon surface for
manipulation, or erasing the security lock by shining ultraviolet light on the
EEPROM. A quite complex but widely published algorithm, called Differential
Power Analysis (DPA), deals with the measurement of energy activity or power
consumption associated with card operations as a means to detect patterns
during key encryption/decryption, leading to the discovery of the PIN and secret
key. To counteract this approach, smart card manufacturers should include
digital noise to mask power consumption, by adding extra calculations into the
mix or randomizing the order of card computations, so they do not follow a fixed
easy-to-isolate pattern.

Attacks by the cardholder or data owner against the card/software
manufacturers are a long shot given the anti-tampering measures taken during
the manufacturing process, as explained previously. More worrisome and
probable is the reverse situation: manufacturers faced with the traditional
challenge of providing a secure kernel. For the last thirty years, we have grown
used to the irrefutable and ingrained idea that somebody will always find a
successful way of breaking into conventional operating systems, so we cannot
assume smart card operating systems would be any less susceptible to
exploitable security holes (intentional or not). The vulnerability increases by
allowing and encouraging the ability of running multiple programs on the same
card. The I/O dependence of the smart card on an external device exacerbates
the cardholder's lack of control when it comes to know what program is running
when the card is inserted into a terminal, or how to ensure that your program is
talking to the terminal and not through another program (i.e. a Trojan horse
version). Yet another challenge is to ensure the card would truly invalidate itself
(complete memory destruction) if it were able to detect the presence of a hostile
environment. The fact that the smart card deals with far more secret or valuable
information puts the manufacturer in an tremendously advantageous position.

Having the card stolen is probably the most obvious, frequent and fearsome
attack that comes to people's mind, since it is something consumers are most
familiar with. However, given the perimeter defense of a smart card,
conventional credit card thieves would have a tougher time impersonating the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

real cardholder to make fraudulent purchases. Having a PIN, that provokes a
self-denial of service on the smart card after several incorrect PIN attempts, as
the first layer in this perimeter defense will require thieves to become a lot more
sophisticated, as we have previously seen.

Security model of Java Card
I will identify the characteristics that increase or decrease security in a smart
card due to Java's involvement. The goal is to prevent any Java bytecode to
subvert the interpreter to perform illegal or malicious operations. To begin with,
for maximum transparency, Java's source code for the compiler and interpreter
is totally available for public examination, subject to all kinds of independent
scrutiny, a pivotal premise to achieve and maintain system security.

Java Card lessens security risks by several venues: Java is a very strictly
defined language, meaning that all primitive types are guaranteed to be a
specific size and all operations are guaranteed to be performed in a certain
order. Also, Java forbids pointer arithmetic; there is no way a programmer can
access a predetermined memory offset, all methods and instance variables in a
class file are accessed via symbolic names.

Furthermore, because Java is a very strongly typed language, its extensive
compile-time checking enables it to find bugs earlier by checking that objects
are truly of the correct type as required by the methods and variables. The
compiler also checks for permission violations classes might incur accessing
methods and variables (distinguishing private, protected or public status), and
ensures no access to uninitialized variables. The next layer of defense occurs
when the virtual machine invokes the class loader, which is responsible for
preventing untrusted classes from impersonating trusted classes. The class
loader provides a protected unique name-space, such that two equally named
classes cannot be loaded into the same name-space. Next, classes go through
a bytecode verification process determining that they have the right format: there
are no stack overflows or underflows, all memory accesses are valid, all
parameters are correct and there is no illegal data conversion.

The absence of dynamic class loading (the ability of programs to acquire new
dynamically loaded JVM code and extend their own functionality during
execution) on Java Card makes type safety easier to enforce; there is less risk
for the virtual machine to get confused about the type of object it is
manipulating. It should be noted that many of the standard Java security
problems arose from type safety resulting from dynamic class loading. Lack of
threading is another advantage, as it makes the code security analysis much
easier.

Turning our attention to the factors that increase security risks, Java Card
increases security risks or poses special programming challenges by removing
what are generally considered good features. Garbage collection is a
particularly conspicuous loss. Limited memory capacity on smart cards
compounded with the inability to free allocated memory sounds like an invitation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

to memory leaks (memory becoming full when objects are inefficiently created
and destroyed), which could lead to a denial-of-service attack by rendering the
card useless through memory exhaustion. Hopefully, as chips become more
powerful, one can expect the incorporation of garbage collection into the Java
Card architecture.

Since Java Card allows multiple and possible competitive or cooperative applets
to be resident on the same smart card, the potential for security problems is
evident. This means we must trust (with a grain of salt) that applet firewalling
and memory isolation management is perfectly implemented. An applet firewall
confines an applet to its own designated area, preventing access to objects
owned by other applets. However, a high-demand beneficial feature in terms of
code reuse given the memory shortage, object sharing, has introduced a
loophole, by allowing context switching between the currently active applet and
the applet whose object needs to be accessed, and the context switching can
be nested. The troublesome situation is this: applet A shares its object x with
applet B; applet B shares its object y with applet C. A method of object y
(shared with C) invokes a method on object x (since B and A allow sharing), so
effectively, applet C is indirectly invoking an object of A (with which no explicit
sharing had been established). Underneath, all depends on the quality of the
underlying JCRE implementation, which enjoys the absolute privilege of being
able to access any applet's context, making it an attractive single-point-of-failure
target for breaking.

But, by far, the greatest risk lies on the potential ability for a vendor to add and
use native code on the platform, which is usually necessary for performance
reasons (Java's version is not fast enough). Though an applet would cease to
be portable to other cards, all protection mechanisms provided by the Java
virtual machine deteriorate or disappear when native code is executed in a lot
less restrictive environment. Native method calls would most probably be an
attackers' first choice.

Ideas for usage
Endless possibilities. Prices have decreased to the point of less than three
dollars a piece, and readers costing just about magnetic-stripe readers do.

- Secure transactions over the web. Netscape and Microsoft are developing
APIs for smart card interfaces. The idea is to use a smart card to store
cryptographic data for use with existing protocols such as SSL, creating sort of a
personal portable identity portal.

- The U.S. Department of Defense plans to issue 4.3 million cards as their
access control to physical locations and computer network resources for all
military personnel and eligible contractors. They will manage all credential data
by implementing PKI certificates accessible through one PIN. It even facilitates
email decryption.

Same concept could be applied to IT administrators searching to consolidate all

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

authentication (and non-repudiation) mechanisms a company has to manage: a
picture ID card, PKI certificate, remote access token, a number of static
passwords (along with their associated systems, resources). It eliminates the
password login by creating an environment favorable for digital signing.
Effective against the disgruntled employee.

- Smart mobile phones with built-in financial capabilities (m-commerce): mobile
banking, stock trading or gambling.

- The Taiwan government plans to issue 24 million Java smart cards as their
new health insurance ID card. Patients can carry their medical history;
extraordinary reduction of administrative costs.

- Visa mostly and American Express spearhead the movement towards wallet
cards, to integrate credit/debit card payment, loyalty programs or frequent flier
miles applications. Service levels could be upgraded remotely transparently
securely to cardholders, without having to issue a new card. The biggest
motivation is the reduction of credit card fraud.

- Replacement for the paper form of passport and visas. A much more reliable
form of identification than visual human inspection, and much harder to forge.

- College students can combine the services of library, gymnasium, dorm
access and cash payment cards.

- Contactless mode for mass transit: tolls, parking.

- Set-top boxes attached to televisions with smart cards that not only secure
them from piracy but also convert the television into an e-commerce center with
a remote control (t-commerce).

- Rental cars: choose one, unlock it with a smart card and drive away without
standing in line or filling out paperwork.

Conclusion
It is widely known that passwords are often the weakest link in any security
scheme. If for nothing else, smart cards seem the best bet to strengthen this
first defense perimeter. Since smart cards are intrinsically secure devices for
storing valuable information, they may therefore become a convenient solution
in many other desirable areas. It is unreasonable to expect anything to be 100%
hacker-proof, and so it is a community requirement to continuously perform
extensive testing and analysis of the whole smart card paradigm. As one of the
estimated 2 million Java developers in the world, I'm looking forward to
observing and benefiting from the growth of this promising development
platform.

References
McGraw, Gary, and Felten, Edward. "Securing Java." Wiley Computers

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Publishing, John Wiley & Sons, Inc., 1999.

Chen, Zhiqun. "Java CardTM Technology for Smart Cards: Architecture and
Programmer's Guide." Addison Wesley, June 2000.

Schneier, Bruce, and Shostack, Adam. "Breaking Up is Hard To Do: Modeling
Security Threats for Smart Cards." Proceedings of the USENIX Workshop on
Smartcard Technology, May 1999. 175-185.

Elo, Tommi. "A Software Implementation of ECDSA on a Java Smart Card."
Master's Thesis, Helsinki University of Technology, April 2000.

Yellin, Frank. "Low Level Security in Java." 1996.
URL: http://java.sun.com/sfaq/verifier.html (21 Jan. 2002).

Itoi, Naomaru, Fukuzawa, Tomoko, and Honeyman, Peter. "Secure Internet
SmartCards." Java Card Workshop, Canes, France, September, 2000.
URL: http://www.citi.umich.edu/techreports/reports/citi-tr-00-6.pdf (21 Jan.
2002).

Chan, Siu-cheung Charles. "An Overview of the Java Security." 1997.
URL: http://home.hkstar.com/~alanchan/papers/javaSecurity/index.html (21 Jan.
2002).

Chan, Siu-cheung Charles. "An Overview of the Smart Card Security." 1997.
URL: http://home.hkstar.com/~alanchan/papers/smartCardSecurity/index.html
(21 Jan. 2002).

Chan, Siu-cheung Charles. "Electronic Smart Passport/Visa." 1997.
URL: http://home.hkstar.com/~alanchan/papers/smartPassport/index.html (21
Jan. 2002).

Kayl, Kammie. "Java Card (tm) technology turns five: Celebrating Leading Smart
Card Technology." 29 October 2001.
URL: http://java.sun.com/features/2001/10/javacardbday.p.html (21 Jan. 2002).

"O'Hare International Airport Chooses Fingerprint Recognition by SecuGen Corp
to Beef Up Security." 3 October 2001.
URL: http://www.secugen.com/company/doc/01ohare.htm (21 Jan. 2002).

Dailey, Heidi. "Revolutionizing the United States Military Id Badge." 26 March
2001.
URL: http://java.sun.com/features/2001/03/card.p.html (21 Jan. 2002).

Dunlap, Charlotte. "The Smart Card Glitch." 7 December 2001.
URL:
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2830921,00.html
(21 Jan. 2002).

