
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

A tool for running Snort in dynamic IP address assignment environment
Shin Ishikawa
February 16, 2002

Introduction
The purpose of this paper is to detail the creation of a small tool program which aids

the operation of the Snort IDS in dynamically assigned IP address environment. The
configuration file of Snort (snort.conf) specifies IP numbers for the monitored network
and servers. For the non-permanent IP address subscriber sites, which are the case for
the most of ADSL users, these parameters need be updated every time the data link
connection reset and new address is assigned. A set of small programs is written to
automate Snort configuration update for the connection using PPPoE.

A program monitors the IPCP traffic and dumps PPPoE frames with IPCP
negotiations. A script interprets the IPCP negotiation and sees if new IP addresses are
agreed upon. If it is, snort.conf file is updated with the new IP addresses for
HOME_NET and DNS_SERVERS variables and signal is sent to the running Snort
process to restart and reflect the change. This paper examines the program form the
secure code writing point of view and also discusses the meaning of running Snort IDS
in home user environment in the age of "always connected to the Net".

Hardware and Software Environment of sample Home User
Figure 1 shows the environment for running the Snort IDS. The tool programs run in

the same box the Snort IDS running.

This home user site is connected to ISP with 1.5Mbps(down) and 512Kbps(up) ADSL.
To use mobile note PC with wireless card, a router with wireless interface is installed.
The built in four port switch of the router make it impossible to monitor all traffic inside
LAN. Because of these, the best monitoring point for the traffic between the site and
the Internet is between the router and the ADSL modem. Normally, straight cable is
used to connect the two devices. In our situation, in order to attach a monitoring PC, a
hub is placed. A monitoring PC is running snort-1.8.3 package port for FreeBSD 4.3-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Release. Its NIC(ed0) is not configured to any network layer protocol. It is used to
"sniff" traffic in promiscuous mode.

The network between the ADSL modem and the router is 10Base-T Ethernet and the
PPPoE protocol is used. Although tcpdump(version 3.5/libpcap version 0.5) interprets
ether frames on the LAN at PPPoE level, the Snort IDS 1.8.3 has no problem in
monitoring IP payload within the PPPoE frames. The router is a low end product for
home use, priced around two hundred dollars, and does not support SNMP or other
useful management interfaces. Browser access from inside LAN is used to setup and
monitor the configuration of the router device.

The tcpdump has been running on the monitoring PC (the blue box in Figure 1)
from the day one of ADSL connection. There are no servers in the site and the
router filtering is so configured that FTP is the only protocol that is allowed to
have TCP active open into the home LAN. The actual traffic is examined from
tcpdump header traces to see this is working as advertised and expected so
far.
Placing Snort IDS was the next step, but the changing IP address posed a
problem. If the router is really a Unix box, by running Snort in it, the detection of
assigned IP address change would have been easier. A posting on the internet
"Host attack countermeasures (Japanese)" mentions a script which periodically
examines interface address. Taking the infrequency of the change of the DNS
server addresses from the ISP, that is an acceptable solution. Some of the
dynamic DNS servicers, such as "NO-IP.com", provide DNS entry update client
programs that also use periodical change detection.

In the above home user's case, the router product is so simple and featureless
that workaround that does not depend on it was necessary.

Overview of the Tool program
Figure 2 shows the overview of the tool program and its relation to the Snort process.

These are running in the blue box in the Figure 1.

There are three programs. First one is PPPoE packet sniffer called watchipcp. This
process sniffs the traffic between the ADSL modem and the router using libpcap and
writes IPCP packets to a text file. Second one is an awk script, which reads the file and
examines the IPCP negotiation. An ad hoc IPCP request/confirm matching is used to
detect new address negotiation completion. It is far too much to implement the full

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

IPCP negotiation in a tool like this. Third one is a shell script that modifies snort.conf
file and sends SIGHUP signal to the running Snort process to restart with the new
configuration.

PPPoE traffic sniffer - watchipcp
This little program is actually a modification of the udpcksum and writepcap example

programs found in the Stevens' textbook [1] and accompanying web site [2],
respectively. More novice-friendly tutorial on programming with libpcap [6] is also
useful.

 PPPoE and IPCP packet formats
Because we are interested in the IPCP negotiation over PPPoE only, an
appropriate filter will be applied to libpcap. To see how those packets look like
tcpdump trace was observed;

 # tcpdump -n -l -ied0 -ex
tcpdump: WARNING: ed0: no IPv4 address assigned
tcpdump: listening on ed0

and resetting the router, among other lines, following packet trace appeared.

 20:36:36.468102 0:3:32:a9:f0:38 0:40:26:ed:81:63 8864 60: PPPoE [ses 0xbd50] IPCP
1100 bd50 000c 8021 0101 000a 0306 0a2f
a043 fc0d e863 2033 4480 ffff ffff ffff
ffff ffff ffff 0045 5ec0 5010 81d0

By consulting "PPPoE RFC2516" as well as base PPP RFCs, the above dump can
be interpreted as follows;

The IPCP payload contains configuration request(offset 22 = 0x01) with one
option;

Option code = 0x03 (IP Address)
Option length = 0x06 (including two bytes of Option code and Option length)
Option value = 0x0a2fa043 (four bytes of IP Address(note: value changed!))

From the above observation, following filter definition will be applied to the
pcap library in watchipcp program. 'ether proto 0x8864 && ether[20:2] = 0x8021'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 IPCP Options
RFC 1332, 1877 and 2290 defines IPCP configuration options[7].

Option Type Configuration Option
 1 IP Address(deprecated)

2 IP Compression protocol
3 IP Address

4 Mobile IPv4
129 Primary DNS server IP Address
130 Primary NBNS server IP Address

 131 Secondary DNS server IP Address
132 Secondary NBNS server IP Address

Because watchipcp program is interested in IP address and DNS address
assignments, option types 3, 129 and 131 will be checked.

 Intermediate file format
IPCP configuration packets' contents will be formatted into text and will be
appended to an intermediate file (watchipcp.out in Figure 2). The interpretation
of ongoing configuration negotiation is left to an outside script suitable for text
handling. An entry for one IPCP packet in the file looks like as follows;

 code 2 ID 03 plen=18
 optCode 3 optLen 6 value 0a2fce93
 optCode 129 optLen 6 value 0a2fa201
 optCode 131 optLen 6 value 0a2fa209
 ++*+

 The last line delimits one packet data.

Although this program is small, simple and lightweight for the intended purpose, the
sniffing of LAN packets is duplicate task with Snort already running in the same box.
Writing this function as a Snort plugin would be more elegant.

IPCP negotiation examiner - a simple comparison awk script
PPP IPCP configuration negotiation is a complicated process. Full implementation of

it is too
far beyond the reach of the current project, so, an ad hoc and trivially simple method
was sed. For the same ID, when the requested option is exactly the same as its ack,
an agreement is reached. This is from the observation of PPP negotiation like this:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

After some negotiations, the last two frames with ID=0x03 shows agreement of
request made by Router and Ack from Modem(Server).

An awk script (watchipcp.awk) compares configuration request and corresponding
ack/nak for each ID. tail command with -f option continuously reads the output of
watchipcp process from the intermediate file and feeds them to the awk program.

Restarting Snort – a shell script
When new IP addresses for the Router and DNS servers determined, a shell script is

invoked from inside of the awk program using system(). The script first updates
snort.conf file with new HOME_NET and DNS_SERVERS variable definitions. A sed
command does that using a template configuration file. Then, a SIGHUP signal is sent
to the process using kill command. Snort daemon’s PID is kept in
/var/run/snort_ed0.pid file.

Execution
The tool consists of three processes running background and a restart shell script.

Execution output example is shown in Appendix A1.3.
(1) watchipcp

This process is invoked from the shell and its standard output is redirected to
an intermediate file.

watchipcp –ied0 –v >watchipcp.out &

(2) tail command and awk command
Intermediate file is read by tail command and its contents are piped to awk
command.
They are invoked from the shell;

tail –f watchipcp.out | awk –f watchipcp.awk

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

(3) restart sehll
Invoked from the awk script with appropriate arguments.

restart.sh IP PrimaryDNS_IP SecondaryDNS_IP

Performance
To see the CPU resource consumption, the CPU Time of Snort process and

watchipcp process are compared. After two day’s run, Snort used CPU for 17 minute
46 seconds and watchipcp used 1 minute 21 seconds. This is about 13:1 and the
added load was negligible. The monitoring PC is a 48M bytes memory Intel 486DX2.
As a home ADSL user with 1.5Mbps downlink, the traffic is so light that a low spec old
machine can monitor it.

Discussion
In Japan, the number of ADSL user is growing at a remarkable rate. Major ISP and

Teleco provide low price services starting as low as twenty dollars a month. Magazines
and media emphasize the danger of "always connected" Internet environment. How so,
is not so clearly understood by most users, however. Threat of viruses in e-mail
attachments and downloaded files are well recognized and anti-virus software is one of
best selling retail packages.

The possibility of being abused by crackers and becoming one of offenders without
knowing is new. Always powered up PCs directly connected to ADSL modem with no
security precaution is becoming a horrible reality. Home users with several PCs will
have to install host based IDS on each of his PC or set up network based IDS. With
either IDS monitoring, it becomes possible to detect such cases.

Making the operation of Snort IDS easier for home users environment is an attempt
to help such effort less demanding.

New programs can introduce new risks in the environment in which they run.
Programmers need be aware of the environment in which the product runs. At least
clear statement of how much efforts and consideration regarding security have been
put into the program and what assumptions are made about the environment they run
should accompany functional description. Just as every Internet RFC has Security
consideration section, every software needs to have security assumption description in
its specifications and manuals.

There are ongoing efforts to provide “checklist” for writing secure code, or more
practically, avoiding dangerous pitfalls. The classic on this subject is Grafinkel and
Spafford[8]. Among recent ones are [9] and Open Source community's Internet
resources, such as [10]. Microsoft’s recent emphasis on secure code is expected to
mark the major change of tide toward quality software. The endless patching on
program bugs is not a sound state of the industry.

As for the buffer overflow bug, “The best defense is often a good education on the
issues”([9] p137). The book states rules for C programmers, which may be
summarized as follows.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Basic rule Always do bound checking.
Corollary Always validate input from user and other programs.
Individual rules

1 Never use gets().
Avoid (mis)use of standard library functions(Table 7-1, p 152).2
Beware of internal buffer size for common functions.3

4 Don’t assume anything about the behavior of someone else’s software.

Those rules seem to be demanding too much for ordinary programmers. How hard will
it be to build programs without trusting someone else’s work? The book even states,
“The rest is up to you”. The recognition of the difficulty of writing quality code free from
buffer overflow in C or C++ may be one of the reasons of Java’s wide acceptance. Java
also frees programmers from the burden of the allocation/disposal of memory storage.

Some compilers for C or C++ have the option of producing runtime bound checking
code. Either approach have some performance penalty, though. The quality
implementation of the JVM or compiler must come first. Putting efforts into the infra-
structural part of the software development would be right thing..

In this spirit, watchipcp program and the tool is examined from the security
programming point of view. The assumption for the tool’s execution environment is, a
stand-alone Internet unreachable machine. So, it should never be used in machines
reachable from the Internet or connected to inside network. The program needs to have
root privilege to access network capture device /dev/bpf. A call to setuid(getuid()) is
made at the program startup after establishing access to the network device. This
makes the process run in the non-privileged mode. So, watchipcp program file is SUID
root.([1] p714).

The examination of watchipcp code easily reveals a bug; the bug resides in the
portion written by the current author. The original code (udpcksum) from the textbook is
considered flawless.

The watchipcp program naively assumes every “sniffed” message is correctly
formatted. That is, the length of option value in the option-length byte field is used
without validity checking. This is violation of the basic rule of "every input needs be
validated for boundary checking". The bad coding is located in check_ipcp() function in
watchipcp.c file. See A 1.2 (5) of Appendix.

How dangerous can this be? Even if the NIC is not configured for upper layer
network protocol, programs are not free from the buffer overflow DOS attacks[11].
watchipcp program examines PPPoE frames, so malformed PPP message can cause
the code to crash. It is not easy to send malformed IPCP frame to the remote site, but
it is not impossible; for example, an attacker may take hold of the PPP server in the
ISP’s location.

The awk script uses system() function, which must be used with care. The argument
command string passed to it is constructed using the input data. By looking at how the
formatting of the command string is done shows that only fixed pattern of output is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

allowed. The use of system() here seems safe.

Lessons learned
The libpcap plays an important role in the network packet monitoring tools. This

tutorial showed its usage in checking the PPPoE frames. By the need to update IP
addresses for Snort configuration, IPCP packets of PPPoE are examined. Actual
configuration negotiation sequence was examined using the tcpdump command.

The presented program was found to contain a bug that can cause buffer overflow.
Writing secure code, even of this small size, requires much more effort and time.

Really, a little learning is a dangerous thing.

References
[1] R. Stevens. UNIX Network Programming, Volume 1, Second Edition: Networking

APIs: Sockets and XTI, Prentice Hall, 1998, pp. 708-725
[2] W. Richard Stevens' Home Page http://www.kohala.com/start/unpv12e.html
[3] Snort Home Page http://www.snort.org/
[4] NO-IP.com Home Page http://www.no-ip.com/
[5] Host attack countermeasures(Japanese)

 http://www.geocities.co.jp/SiliconValley-Cupertino/5128/500_compu/ids.html
[6] Packet Capture With libpcap and other Low Level Network Tricks

 http://www.cse.nau.edu/~mc8/Socket/Tutorials/section1.html
[7] M. Nozaka. Internet Numbers in a Nutshell(Japanese), O'Reilly Japan, 1999, pp 51-

60
[8] S. Grafinkel and G. Spafford. Practical UNIX and Internet Security, 2nd ed

,O'Reilly,1996, pp 701-719
[9] J. Viega and G McGraw.Building Secure Software, Addison Wesley, 2002
[10] Secure Programming for Linux and Unix HOWTO

 http://www.dwheeler.com/secure-programs/
[11] L-122: FreeBSD tcpdump Remote Buffer Overflow Vulnerability

 http://www.ciac.org/ciac/bulletins/l-122.shtml

Appendix

A 1. watchipcp source code

The program was compiled and run on FreeBSD 4.3-Release.
As described in the text, this program is basically a little modification of textbook
example. So, for those 'almost copied' codes, only the modified parts are pointed out
here instead of reproducing the whole source code. watchipcp.c, which implements
IPCP packet sniffing using pcap library, is presented in a whole.
A 1.1 Source code preparation
Download unpv12e.tgz from Reference URL and expand. Top of the expansion
directory will be unpv12e.

(1) Make unpv12e/watchipcp directory.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

(2) Copy unpv12e/udpcksum/*.c, unpv12e/udpcksum/*.h and
unpv12e/udpcksum/Makefile to unpv12e/watchipcp.

(3) Modify/create source files as described in A1.2 below.
(4) make

A 1.2 watchipcp specific codes
(1) Header file

Rename udpcksum.h to watchipcp.h .
Add following function prototypes:

void dump_frame(char *, unsigned char *ptr, int len);
void watch_ipcp(void);
void check_ipcp(unsigned char *ptr, int len);

(2)main.c file
Change header file name from "udpcksum.h" to "watchipcp.h".
In main() function,

Remove argc<2 test.
Remove cases for 'l' and '0' in getopt() select loop.
Remove lines from

if (optind != argc-2)
to

Setsockopt(rawfd, IPPROTO_IP, IP_HDRINCL, &on, sizeof(on));
Change "test_udp()" to "watch_ipcp()" .
Change usage() description as appropriate.

(3)pcap.c file
Change header file name from "udpcksum.h" to "watchipcp.h".
In open_pcap() function,

No need to construct filter string.
Instead, define constant CMD and pass it to the third parameter of

pcap_compile();

 #define CMD "ether proto 0x8864 && ether[20:2] = 0x8021"
:

 if (pcap_compile(pd, &fcode, CMD, 0, netmask) < 0)

Remove lines from pcap_lookupnet() to one line above pcap_compile() .
Set promiscuous flag parameter =1 in pcap_open_live()

/* hardcode: promisc=1, to_ms=500 */
if ((pd = pcap_open_live(device, snaplen, 1, 500, errbuf)) == NULL)

:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

(4) cleanup.c
Change header file name from "udpcksum.h" to "watchipcp.h".

(5) Create watchipcp.c file
Add the following lines to watchipcp.c file.

#include "watchipcp.h"

void
watch_ipcp(void)
{

int len;
unsigned char *ptr;

for (; ;) {
ptr = next_pcap(&len);
if(verbose) dump_frame("111", ptr, len);
check_ipcp(ptr, len);

}
}

void check_ipcp(unsigned char *ptr, int len) {

struct ether_header *eptr;
int plen;
int pos;
int optLen;
int i;

eptr = (struct ether_header *) ptr;
if (ntohs(eptr->ether_type) != 0x8864)

err_quit("Ethernet type %x not PPPoE", ntohs(eptr->ether_type));

/* skip ether header = start of ppp header */
 ptr = ptr + 14;

len = len - 14;
/* if(verbose) dump_frame("222", ptr, len); */

/* examine ppp header fields */
if (ptr[6]==0x80 && ptr[7]==0x21) { /* this is IPCP frame */

ptr = ptr + 8;
printf("code %d ", ptr[0]);
printf("ID %02x ", ptr[1]);
plen = ptr[2]*16 + ptr[3] -4;
printf("plen=%d\n", plen);
ptr = ptr + 4;
pos = 0;
while(pos < plen) {

optLen = ptr[pos+1];
printf("optCode %d optLen %d value ", ptr[pos], optLen);
for(i=pos+2; i<pos+optLen; i++) printf("%02x", ptr[i]);
printf("\n");
pos += optLen;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

}
printf("*+*+*+\n");
fflush(stdout);

}
}

void
dump_frame(char *str, unsigned char *ptr, int len) {

int i;

fprintf(stderr, "%s ---------------------- %d\n", str, len);
 for(i=0; i<len; i++) fprintf(stderr, "%02x", ptr[i]);
fprintf(stderr, "\n----------------------\n");

}

(6) Makefile
Change the following lines. Note that libpcap.a is in /usr/lib in FreeBSD 4.3.

OBJS = main.o pcap.o watchipcp.o cleanup.o
PROGS = watchipcp
watchipcp: ${OBJS}

${CC} ${CFLAGS} -o $@ ${OBJS} /usr/lib/libpcap.a ${LIB}

A 1.3 Example run of watchipcp

./watchipcp -ied0 -v
device = ed0
datalink = 1
111 ---------------------- 60
004f17f39252000332a9f03888641100e251000c80210101000a03060a2fa0434f55b0f420334480ffffffff
ffffffff07be2e308b9e19c750104246

code 1 ID 01 plen=6
optCode 3 optLen 6 value 0a2fa043
++*+

:
:
:

111 ---------------------- 60
000332a9f038004f17f3925288641100e251001880210103001603060a2fd34081060a2fa20183060a2f
a20900000000000000000000000000000000

code 1 ID 03 plen=18
optCode 3 optLen 6 value 0a2fd340
optCode 129 optLen 6 value 0a2fa201
optCode 131 optLen 6 value 0a2fa209
++*+
111 ---------------------- 60
004f17f39252000332a9f03888641100e251001880210203001603060a2fd34081060a2fa20183060a2f
a2091a1319d720335080ffffffffffffffff

code 2 ID 03 plen=18

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

optCode 3 optLen 6 value 0a2fd340
optCode 129 optLen 6 value 0a2fa201
optCode 131 optLen 6 value 0a2fa209
++*+
^C

27 packets received by filter
0 packets dropped by kernel
#

A 2. Awk script

watchipcp.awk

BEGIN {
dec["0"]=0; dec["1"]=1; dec["2"]=2; dec["3"]=3; dec["4"]=4; dec["5"]=5; dec["6"]=6; dec["7"]=7;

dec["8"]=8; dec["9"]=9; dec["a"]=10; dec["b"]=11; dec["c"]=12; dec["d"]=13; dec["e"]=14; dec["f"]=15;

optCode[3]="IPADDR"; optCode[129]="DNSPRI"; optCode[131]="DNS2ND";

currentID = 0
confReq = ""

}
{

if($1 != "code") next
if(currentID != $4) {

currentID = $4
confReq = ""
if($2 != 1) next
new configuration request
confReq = saveConf()

} else { # same ID
if ($2 == 1) {

confReq = saveConf()
} else if($2 == 2) {

ackReq = saveConf()

if(confReq == ackReq) {
print "New session has started with configuration=" confReq
resetConf()

}
}

}
}

function saveConf() {
conf = ""

while(1) {
getline

 if($1 == "*+*+*+") break
conf = conf " " $0

}
print currentID, conf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

return conf
}

function resetConf() {
n = split(confReq, F)
if (n!= 18) panic()
optValue[F[2]] = F[6]

optValue[F[8]] = F[12]
 optValue[F[14]] = F[18]

for(i in optValue) {
print i, optCode[i], dotdecimal(optValue[i])

}
cmd = "/usr/local/share/snort/restart.sh " dotdecimal(optValue[3]) " " dotdecimal(optValue[129]) " "

dotdecimal(optValue[131])
print cmd
system(cmd)

}
function dotdecimal(hex) {

val = ""
for(j=0; j<4; j++) {

val = val "." dec[substr(hex,j*2+1,1)]*16 + dec[substr(hex,j*2+2,1)]
}

return substr(val,2)
}

function panic() {
print "unexpected situation!"
exit(1)

}

A 3. Shell script

cat restart.sh
(cd /usr/local/share/snort; sed "s/IPADDR/$1/g" snort.conf.tmp | sed "s/DNSPRI/$2/g" | sed
"s/DNS2ND/$3/g" >snort.conf; kill -HUP `cat /var/run/snort_ed0.pid`)

Here, snort.conf.tmp is a template file including three lines as shown below;

grep ^var snort.conf.tmp
var HOME_NET IPADDR/32
var EXTERNAL_NET any
var DNS_SERVERS [DNSPRI,DNS2ND]
#

