
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

A Reverse Proxy Is A Proxy By Any Other Name
By Art Stricek
Version 1.2f
January 10, 2002

You just spent the last few months installing, configuring, testing, and securing your
outside HTTP presence. In the corner of your office lies the empty coffee cups, tattered manuals
and your battered psyche. What you were hoping to do is sit back for awhile sipping your
favorite beverage of your choice, right! Well unfortunately the bad guys are not relaxing, they are
still contemplating, the meaning of life, the universe and how to violate your inter sanctum. So is
there anything else we can do to muddy the attackers water? What about adding a Reverse
Proxy to our defenses.

Overview

This paper will cover the concept of a Reverse Proxy by defining what it is and how it
differs from a forward proxy. We will cover the benefits and drawbacks of using this technology
as a part of our network infrastructure, along with the security advantages and possible risks.
This paper will follow the flow of an HTTP request through the firewall, to the Reverse Proxy, to
our backend HTTP servers and then back to the requestor. We will also discuss two different
Reverse Proxy infrastructure designs and the pros and cons of each of design. And finally we
will cover setting up a working Reverse Proxy using the Apache, showing how the concepts of
a Reverse Proxy are implemented. Apache is used in this paper for our Reverse Proxy since
there is an implementation available for most platforms and it is free. In the end, assuming you
already know how to install Apache, you should be able to implement a working Reverse Proxy
on an Apache Web Server.

What is A Reverse Proxy

So what exactly is a Reverse Proxy? First let’s review what a forward proxy or proxy is
and how it works. A forward proxy acts a gateway for a client’s browser, sending HTTP
requests on the client’s behalf to the Internet. The proxy protects your inside network by hiding
the actual client’s IP address and using its own instead. When an outside HTTP server
receives the request, it sees the requestor’s address as originating from the proxy server, not
from the actual client.

A Reverse Proxy proxies on behalf of the backend HTTP server not on behalf the
outside client’s request, hence the term reverse. It is an application proxy for servers using the
HTTP protocol. It acts as a gateway to an HTTP server or HTTP server farm by acting as the
final IP address for requests from the outside. The firewall works tightly with the Reverse Proxy
to help ensure that only the Reverse Proxy can access the HTTP servers hidden behind it.
From the outside client’s point of view, the Reverse Proxy is the actual HTTP server.

Benefits and Drawbacks of A Reverse Proxy

One of the most immediate benefits of using a Reverse Proxy is that clients now have

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

a single point of access to your HTTP servers. This allows you to add another layer to your
defenses that might just help you catch an attack against your HTTP servers. Another benefit is
that you have a single point of control over who can access and to which HTTP servers you
allow access to. A third benefit is the easy replacement of backend servers or host name
changes. With a Reverse Proxy these types of changes will not affect the outside clients,
because these types of changes are made in the Reverse Proxy rules or mappings; therefore
no more messy waiting for names to be republished to the outside DNS world. The idea of
having a single point of access also helps in load balancing and failover either by using a DNS
round robin scheme or by appliance hardware or software solutions such as F5 Networks Big
IP, Cisco’s Content Switch, or Macromedia’s ClusterCat. Another benefit of the Reverse Proxy is
the ability to assimilate various applications running on different Operating Systems behind a
single facade. Another advantage is that hardware costs can be lowered significantly because
outside and inside clients can access the same servers for the same HTTP requests. This
reduction comes from eliminating the duplication of hardware, as usually there are one or more
servers for inside clients and one or more servers for the outside clients. Using a Reverse
Proxy allows us to secure our backend databases that may be required to service our HTTP
server requests without exposing them to the outside world.

Well there must be some sort of downside to the Reverse Proxy, isn’t there? This really
sounds too good to be true! Yes there are downsides to using a Reverse Proxy; just like
anything else, it is not a perfect solution. First if the Reverse Proxy goes south and you do not
have failover installed, your entire HTTP presence is down the drain in one fell swoop, not to
mention your sleep. Another drawback is that if that an attacker does compromise Reverse
Proxy, the attacker may gain more insight into your HTTP server architecture; or if the HTTP
servers it is hiding are inside the firewall, the attacker might be able to compromise your internal
network. So it is still important to apply all security fixes to your Reverse Proxy and backend
servers as soon as they become available and are fully tested and to install Intrusion Detection
software on your servers and network. One more drawback is that there are a lot of
translations that have to occur for the Reverse Proxy and the firewall to do its translations, so
requests may be fulfilled a little bit slower. Another drawback is that attackers are starting to
conceal their attacks using HTTP protocol. With all our HTTP traffic going through the Reverse
Proxy, we need to start adding content filtering to our arsenal to help ensure that the HTTP
requests are actually not attacks. Finally, if you are using analysis-reporting tools against your
HTTP servers, you will lose the ability to report on demographics. This is due to the fact that the
logs will show that all HTTP requests were from the Reverse Proxy.

How Does the Reverse Proxy Work

Now let’s get into just how a Reverse Proxy works. For this scenario we will be placing
our Reverse Proxy on a DMZ while the HTTP server(s) are inside our firewall on their own
subnet (see Figure 1). The site name is www.mysite.com, which resolves to a static NAT
address of 10.0.1.1 and a real IP address of 192.168.0.1. This site and NAT address is our
Reverse Proxy. Our server inside the firewall is myserver.mysite.com and has a NAT address
of 10.0.100.1 and a real IP address of 192.168.10.1. We set up firewall rules to only allow
192.168.0.1 to access 192.168.10.1 on port 80 (443?) and all port 80 traffic is to be forwarded
to 192.168.0.1. The host file on our Reverse Proxy has an entry for the host name

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

myserver.mysite.com and we associate the static NAT address of 10.0.100.1.

Now let’s get into just how a Reverse Proxy works. For this scenario we will be placing
our Reverse Proxy on a DMZ while the HTTP server(s) are inside our firewall on their own
subnet (see Figure 1). The site name is www.mysite.com, which resolves to a static NAT
address of 10.0.1.1 and a real IP address of 192.168.0.1. This site and NAT address is our
Reverse Proxy. Our server inside the firewall is myserver.mysite.com and has a NAT address
of 10.0.100.1 and a real IP address of 192.168.10.1. We

setup firewall rules to only allow 192.168.0.1 to access 192.168.10.1 on ports 80 and 443 and
all port 80 and 443 traffic is to be forwarded to 192.168.0.1. The host file on our Reverse Proxy
has an entry for the host name myserver.mysite.com and we associate the static NAT address
of 10.0.100.1.

In order for the Reverse Proxy to do its magic we need to define prefix mappings.
There are two types of prefix mappings -- regular and reverse. A regular mapping (see figure 2)
is used to tell the Reverse Proxy which URL prefix is to be proxied and what the real or final
destination URL is.

The reverse mapping translates the URL prefix back to the Reverse Proxy’s URL (i.e.
www.mysite.com). The reverse mapping (see figure 3) is what conceals the actual HTTP

Source: myserver.mysite.com
Destination Source: www.mysite.com

Figure 2

Figure 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

backend server names and allows it to trap for redirects that might have occurred. This is the
most important feature of the Reverse Proxy.

Now for the nitty gritty. First a client sends an HTTP GET request to www.mysite.com
(10.0.10.1). The firewall receives this request, checks it against its NAT rules, which tell it to
forward the request to the Reverse Proxy at IP address 192.168.0.1. The Reverse Proxy
receives the request and checks the prefix URL against its mapping, and finds that the request
needs to be forwarded to myserver.mysite.com. The Reverse Proxy now forwards the request
and again the firewall checks the request against its NAT rules. The firewall sees that the
request is from 192.168.0.1 (our Reverse Proxy) and that this address is allowed to access
192.168.100.1 on port 80, so it forwards the request to the inside server. Now
myserver.mysite.com processes the request and returns the results back to the requestor, the
Reverse Proxy. The Reverse Proxy again checks the request against its reverse mappings and
changes all references in the URL and the HTTP header from myserver.mysite.com to
www.mysite.com. After completing all translations, the Reverse Proxy now forwards the request
back to the client who originally sent the HTTP GET request. From the client side it appears
that the request was satisfied by www.mysite.com, but in reality it was satisfied by
myserver.mysite.com. As you can see it is pretty much a slight of hand game, which makes it
harder for the attacker to gain access to your crown jewels.

Reverse Proxy Infrastructure

There are several considerations to consider in setting up a Reverse Proxy infrastructure.
The first and most important is security. Using static NAT’d addresses to reference all servers is
one of the most important. If an attacker is performing reconnaissance against your site, using
the firewall to translate the NAT addresses to real addresses makes it a lot more difficult to
gather the real information about your infrastructure. The firewall rules also play a major role in
the Reverse Proxy. Setting up the firewall rules to route HTTP traffic to the Reverse Proxy and
only allowing requests to HTTP backend servers to originate from the Reverse Proxy creates a
single gateway allowing us to watch all HTTP traffic from this single point.

Another point to keep in mind is that only the hostname of the Reverse Proxy is
published to the wild, wild Internet. All other HTTP server hostnames that the Reverse Proxy will
be forwarding requests to are stored in the etc/hosts file. Only assign static NAT’d addresses to
the hostnames in the host file on the Reverse Proxy. Intrusion Detection needs to be set up on
the Reverse Proxy and all backend servers that it is forwarding requests to, along with
monitoring all log files. For the proxy server, you can use Apache, Microsoft Proxy, Squid or any
other proxy that supports regular and reverse mapping.

There are at least two ways to set up the Reverse Proxy infrastructure. In this paper we
will cover two of them. The first we have already covered (see figure 1). In this infrastructure
design the backend servers are on our internal network behind the firewall and the Reverse
Proxy is on the DMZ. The backend HTTP servers need to be on their own subnet to segregate

Source: www.mysite.com
Destination Source: myserver.mysite.com

Figure 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

them from the rest of the internal network. If these backend servers are Windows NT or
Windows 2000 servers and are using Windows authentication, then a separate Domain must
be set up. This Domain has no trust relationships with the inside network. This is to ensure that
if they are compromised that the attacker does not gain easy access to our inside network. If
inside clients need to access these HTTP servers, then new userid’s and cryptic passwords
must be assigned to the clients under this Domain. This to prevent an attacker gaining access
to our internal network if he is successful in getting these external IDs and cracks the
passwords. The advantage of this infrastructure is that external and internal clients can use one
set of servers, which reduces hardware costs. No replication of content is required, which
reduces bandwidth costs. Administration costs are reduced because there is only one set of
servers for both inside and outside, plus the servers can be administered just like any other
server on our internal network making the Administrator’s task easier. The drawback of this
infrastructure is that if the Reverse Proxy is compromised and an attacker gains access to the
backend HTTP servers, the attacker could gain access to our internal network. In setting up the
individual server operating systems, follow the SANS guidelines for securing each platform.

So now I know you are saying to yourself, why in the world would I ever implement
such an infrastructure that might allow an attacker to gain access to my internal network! I know
it looks risky at first glance, but lets review the security features of this particular infrastructure.
First no one has direct access to our backend servers, only the Reverse Proxy can access
them directly. Second, in order to access the backend servers, the http request will have to pass
through four intrusion detection points, the firewall, the Reverse Proxy, the firewall and finally the
backend server (see section “How Does the Reverse Proxy Work”). Add content filtering and you
now have five intrusion detection points. Third, Administration work is all done behind the
protection of the firewall, so Administrator userids and passwords are not out in the open for an
attacker to grab. And last but not least, if the Reverse Proxy is compromised, the attacker can
only gain access to servers on that subnet. When combined with the all the benefits of a
Reverse Proxy, then this infrastructure becomes a very attractive alternative.

In the second design we place the backend HTTP servers and the Reverse Proxy on
the DMZ (see figure 4). Once again we NAT all backend HTTP server addresses and do not
include them in our external DNS. Instead we use the etc/hosts file for our hostname to IP
address lookups. If some or all of these backend servers are using Windows NT or 2000, then
we need to set up an external Domain for authentication and follow the SANS guidelines for
securing IIS and Windows 2000. Once again the firewall acts as a traffic cop, making sure
that only HTTP traffic goes to our Reverse Proxy. The difference is that the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Reverse Proxy forwards the requests directly to the backend servers. The advantage of this
setup is that our internal network is totally separated from the outside world and if compromised,

the attacker can gain no

insight to our internal network. We still have a single point of access for all clients, and a single
main point to monitor for attacks. The drawback is that now we have to create a replication
process to keep our HTTP servers in sync with internal servers. We may also have two sets of
servers, servers for inside clients and servers for outside clients. This adds to our costs by
requiring more hardware and administrator costs for maintaining, patching and troubleshooting
more servers. Administrators most likely will need to physically go to the servers to maintain
them, or at best have a restricted toolkit to maintain them.

Setting up the Reverse Proxy

For this paper we will be using the Apache Server as our Reverse Proxy and the
infrastructure we defined in figure 1. In order to configure Apache, you will need to be able to
switch to the root account. To be able to editing the httpd.conf file and the hosts file. Hopefully
no one has the ability to logon directly as root. The httpd.conf file is where all the startup
configuration information is stored for Apache. We will not go into all the settings in the
configuration file, for that is a story for another rainy day. We are only going to deal with those
settings required for setting up and securing the Reverse Proxy. One document on securing
Apache you might want to review is the NSA guide “Secure Configuration of the Apache Web
Server” located at the following URL http://nsa1.www.conxion.com/support/download.htm.
The actual location where the httpd.conf file differs from each distributor of operating vendor, so
you may have to issue a find to locate it.

O.K. let’s rollup our sleeves and get into the real stuff. The first thing we need to do is
tell the firewall what address and port requests are to be forwarded to the Reverse Proxy. We
will also need to tell the firewall what servers the Reverse Proxy can access inside our firewall.

Figure
4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

We are not going to go into how to implement the firewall rules in this paper. Next we need to
edit our hosts file and add the hosts that the Reverse Proxy will be forwarding requests to.

Contents of etc/hosts

127.0.0.1 localhost loopback
#
Local subnet addresses
#
192.168.10.1 www.mysite.com www
192.168.10.2 www.myothersite.com myothersite
#
NAT address for internal hosts
#
10.0.100.1 myserver.mysite.com myserver
10.0.100.2 mydomino.mysite.com mydomino
10.0.100.3 httpappl.mysite.com httpappl

Contents of httpd.conf

If you are using pre-packaged binary of Apache you need to make sure the following modules
are uncommented out in order to implement Reverse Proxying in Apache. If you are compiling
Apache you will need to make sure you include these modules in your compile. The two most
important modules in this list are the rewrite_module and the proxy_module. The rewrite module
is what allows us to implement regular mapping and the proxy module is what allows us to
implement our reverse mapping. This is not a definitive list of what modules should or should
not be included, but it is meant to be a starting point.

LoadModule rewrite_module libexec/mod_rewrite.so
LoadModule proxy_module libexec/libproxy.so
LoadModule vhost_alias_module libexec/mod_vhost_alias.so
LoadModule env_module libexec/mod_env.so
LoadModule define_module libexec/mod_define.so
LoadModule config_log_module libexec/mod_log_config.so
LoadModule mime_module libexec/mod_mime.so
LoadModule negotiation_module libexec/mod_negotiation.so
LoadModule alias_module libexec/mod_alias.so
LoadModule access_module libexec/mod_access.so
LoadModule unique_id_module libexec/mod_unique_id.so
LoadModule setenvif_module libexec/mod_setenvif.so

<IfDefine SSL>
LoadModule ssl_module libexec/libssl.so
</IfDefine>

Note: If you add or remove any module in the above section, you must do the same

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

in the module list below.

ClearModuleList
AddModule mod_vhost_alias.c
AddModule mod_env.c
AddModule mod_define.c
AddModule mod_log_config.c
AddModule mod_mime.c
AddModule mod_negotiation.c
AddModule mod_alias.c
AddModule mod_rewrite.c
AddModule mod_access.c
AddModule mod_proxy.c
AddModule mod_unique_id.c
AddModule mod_so.c
AddModule mod_setenvif.c

<IfDefine SSL>
AddModule mod_ssl.c

</IfDefine>

We now need to define which ports our Reverse Proxy will be listening to for normal http and
secured http requests.

Port 80

<IfDefine SSL>
Listen 80
Listen 443
Listen 7301

</IfDefine>

Next we need to tell Apache what our server name is and where our default
document root is. Since the proxy will not be serving as an actual web server, we
will define a new directory that all our virtual document roots will use.

ServerName www.mysite.com

DocumentRoot "/virtual/mysite/tmp"

Now we want to set the default services and features to be very restrictive. From this
point forward you must specifically allow a particular feature or service.

<Directory />
Options -FollowSymLinks -SymLinksIfOwnerMatch

IncludesNoExec
AllowOverride None

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

</Directory>

The next statement should have the same value you set for the DocumentRoot above

<Directory “/virtual/mysite/tmp">

Options None

The following statement control which options the .htaccess files
can override.

AllowOverride None

The next statement controls who can retrieve from this server

Order allow,deny
Allow from all

</Directory>

AccessFileName .htaccess

#
The following lines prevent .htaccess files from being viewed
by
Web clients. Since htaccess files 0ften contain
authorization
information, access is disallowed for security reasons.
Also,
folks tend to use names such as .htpasswd for password files,
so
this will protect those as well. (Note from HP-UX httpd.conf)
#

<Files ~ "^\.ht">
Order allow,deny
Deny from all

</Files>

Now we need to setup the default logs for Apache. This section defines where log
information goes if you do not specify a log file and directory for a Virtual Host.

ErrorLog /logfiles/default/error.log
CustomLog /logfiles/default/access.log combined

In order for Apache to use a single IP address and port for multiple hosts you need to use the
NameVirtualHost directive.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

If you want to use name-based virtual hosts you need to define at least one IP
address (and port number) for them. This allows you to save on IP addresses.

NameVirtualHost 198.162.0.1:80
NameVirtualHost 198.162.0.1:443
NameVirtualHost 198.162.0.1:7403

Now we need to define our default VirtualHost. This is the host we will publish as our outside
presence and it will be our Reverse Proxy.

Reverse Proxy – www.mysite.com

<VirtualHost 198.162.0.1:80>
DocumentRoot /virtual/tmp
ServerName www.mysite.com
ErrorLog /logfiles/mysite/unsecured_error.log
CustomLog /logfiles/mysite/unsecured_access.log combined

You must add the following statements and set them to on for Reverse Proxying. In order for us
to define a regular map to our Reverse Proxy we need to be able to rewrite the incoming URL
and HTTP headers. We do this by using Apache’s Rewrite module. The RewriteLogLevel can
be set to a value from 1 to 9. The Rewrite log shows us a trace of Apache matching the
URL to each RewriteRule and which rule it matched against. It also shows exactly how the
URL has been rewritten (see figure 7). The level of detail is determined by the
RewriteLogLevel, with a value of one being the least amount of detail and a value of 9 being
verbose.

Do not set ProxyRequests on . Setting this to “on” when using Apache as a
Reverse Proxy permits the abuse of the reverse proxy as a forward proxy

ProxyRequests off

#The next three lines are often not required, as they will only fix up HTTP Redirects
not content based
URLs.

RewriteEngine on
RewriteLog /logfiles/mysite/unsecured_rewrite.log
RewriteLogLevel 1

Turn off all services and features, since they are not needed for Reverse Proxying.

<Directory />
Options None
AllowOverride None

</Directory>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The following statements are what comprise our regular mappings for our reverse proxying the
main site www.mysite.com. In Apache we accomplish this feat by using the rewrite directive.
The rewrite command uses regular expressions to rewrite the client’s request and then send it to
the real backend server. We only need to use the root on for our sites because the virtual has
already recognized the site (www) and domain (mysite.com) and has stripped them off. The
syntax of the rewrite rule is:

RewriteRule pattern substitution [flags]

The way that the RewriteRule works is that it matches the incoming URL to the pattern -- if it
matches then the substitution is made. The flags we will be using are defined in figure 5.
Some basic regular expression symbol meanings are defined below in figure 6.

One rule to try to adhere to when writing the RewriteRule is Keep It Simple. Regular
expressions can be used to compose very complex matches, but the more complicated they
are, the more chance of accidentally creating an opportunity for an attacker. With the basics out
of the way here are the regular mappings of our Reverse Proxy.

The following rewrite rule is used to rewrite a request intended for an HTTP
application. This application has no web pages, but does transmit information via the
HTTP protocol.

URL is www.mysite.com/httpappl2.

RewriteRule ̂ /(httpappl2)/(.*)$ http://myserver.mysite.com/$1/$2
[NC,P]

The next two rewrites are needed to allow the Reverse Proxy to handle Domino
webs. We need to redirect notes because domino expects to find all references

Symbol Meaning

^ Beginning of line
$ End of line
() Keep value between parens as a variable, starting with $1,

and pass it to the substitution
.* Return all remaining characters

Figure 6 – Regular Expression Symbols

Flag Abbreviation Purpose

redirect R Forces a redirect
proxy P Forces the request to be proxied

NC Not case sensitive
last L Last rule; ignore any other rules that follow.

Process what is in the substitution

Figure 5 - RewriteRule Flags

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

relative from the default site. Since the default site here is not a domino server, we
need to redirect it to another site (www3) so that all icons and graphics are
accessible.

RewriteRule ̂ /(mynotes)/(.*)$ http://www3.mysite.com/$1/$2
[NC,R]
RewriteRule ̂ /(mynotes)/(.*)/$ http://www3.mysite.com/$1/$2 [NC,R]

All remaining requests are to be passed to myserver.mysite.com

RewriteRule ̂ /(.*)$ http://myserver.mysite.com/$1/ [NC,P]

The following statements are what comprise our reverse mappings for our reverse proxying.
Apache has the directive ProxyPassReverse to handle the reverse mappings. The syntax for
ProxyPassReverse is:

ProxyPassReverse path virtualhost

Where path is the path to the backend server and virtualhost is the URL of the virtual you want
returned to the client making the HTTP request.

ProxyPassReverse / http://myserver.mysite.com/httpappl2/

</VirtualHost>

The </VirtualHost> ends the host definition.

This next virtual is used by the redirect in our previous virtual host www.mysite.com.
Its sole purpose is to handle Reverse Proxying of Domino web sites.

www3.mysite.com this is a virtual host to handle Lotus Notes Domino

<VirtualHost 198.162.0.1:80>
DocumentRoot /virtual/tmp
ServerName www3.mysite.com
ErrorLog /logfiles/www3/unsecured_error.log
CustomLog /logfiles/www3/unsecured_access.log combined

RewriteEngine on
RewriteLog /logfiles/www3/unsecured_rewrite.log
RewriteLogLevel 1

<Directory />
Options None
AllowOverride None

</Directory>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

RewriteRule ̂ /(domino)/(.*)$ http://mydomino.mysite.com/$1/$2 [NC,P]
RewriteRule ̂ /(.*)$ http://mydomino.mysite.com/$1 [NC,P]

ProxyRequests on
ProxyPassReverse / http://mydomino.mysite.com/
ProxyPassReverse / http://mydomino.mysite/
ProxyPassReverse / http://notesappl.mysite.com/

</VirtualHost>

This next virtual is an example of Reverse Proxying a non-web HTTP application that
used port 7301.

<VirtualHost 198.162.0.1:7301>
DocumentRoot /virtual/tmp
ServerName www.myothersite.com
ErrorLog /logfiles/myothersite /unsecured_error.log
CustomLog /logfiles/myothersite /unsecured_access.log combined

RewriteEngine on
RewriteLog /logfiles/myothersite/unsecured_rewrite.log
RewriteLogLevel 1

<Directory />
Options None
AllowOverride None

</Directory>

RewriteRule ̂ /(.*)$ http://myotherserver.mysite.com/$1
[NC,P]

ProxyRequests on
ProxyPassReverse / http:// myotherserver.mysite.com/

</VirtualHost>

And lastly here is an example of Reverse Proxying a secured socket
(SSL) site.

<VirtualHost 198.162.0.1:443>
DocumentRoot /virtual/tmp
ServerName www.mysite.com
ErrorLog /logfiles/mysite /secured_error.log
CustomLog /logfiles/mysite /secured_access.log combined

RewriteEngine on
RewriteLog /logfiles/mysite/secured_rewrite.log

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

RewriteLogLevel 1

<Directory />
Options None
AllowOverride None

</Directory>

RewriteRule ̂ /(.*)$ http://myserver.mysite.com/$1 [NC,P]

ProxyRequests on
ProxyPassReverse / http:// myotherserver.mysite.com/

</VirtualHost>

Testing Your Reverse Proxy

So now that we have a Reverse Proxy configured, how can we test it. Here are some of the
steps in testing your server.

Change your RewriteLogLevel in your httpd.conf file to a value of 9. This will show you exactly how •
the Rewrite module is rewriting your URL.
Open a browser and request a web page from a web server that is being front-ended by the •
Reverse Proxy. Review of the logs on the Reverse Proxy should show that the request was sent
to the proper remapped backend server.
Do the same if you are accessing an HTTP application server through the Reverse Proxy by •
having the application issue an HTTP GET to a backend server)
Review your Rewrite log file to make sure your rewrite rule is remapping your URL the way you •
want (see Figure 7).

Now look at the backend server’s log and you should see an HTTP request coming from the •
Reverse Proxy’s address.

10.0.0.20 - - [07/Jan/2002:13:16:28 -0500]
[www.mysite.com/sid#4006b2a0][rid#400a8118/initial] (2) init rewrite engine with
requested uri /
10.0.0.20 - - [07/Jan/2002:13:16:28 -0500]
[www.mysite.com/sid#4006b2a0][rid#400a8118/initial] (3) applying pattern
'^/(httpappl2)/(.*)$' to uri '/'
10.0.0.20 - - [07/Jan/2002:13:16:28 -0500]
[www.mysite.com/sid#4006b2a0][rid#400a8118/initial] (3) applying pattern
'^/notes$' to uri '/'
10.0.0.20 - - [07/Jan/2002:13:16:28 -0500]
[www.mysite.com/sid#4006b2a0][rid#400a8118/initial] (3) applying pattern
'^/notes/$' to uri '/'
10.0.0.20 - - [07/Jan/2002:13:16:28 -0500]
[www.mysite.com/sid#4006b2a0][rid#400a8118/initial] (3) applying pattern
'^/(httpappl2)$' to uri '/'
10.0.0.20 - - [07/Jan/2002:13:16:28 -0500]
[www.mysite.com/sid#4006b2a0][rid#400a8118/initial] (3) applying pattern
'^/(.*)$' to uri '/'
10.0.0.20 - - [07/Jan/2002:13:16:28 -0500]
[www.mysite.com/sid#4006b2a0][rid#400a8118/initial] (2) rewrite / ->
http://myserver.mysite.com/
10.0.0.20 - - [07/Jan/2002:13:16:28 -0500]
[www.mysite.com/sid#4006b2a0][rid#400a8118/initial] (2) forcing proxy-throughput
with http://myserver.mysite.com/
10.0.0.20 - - [07/Jan/2002:13:16:28 -0500]
[www.mysite.com/sid#4006b2a0][rid#400a8118/initial] (1) go-ahead with proxy
request proxy:http://myserver.mysite.com/ [OK]
Figure 7 - RewriteLog Example

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Review the address line on the browser. It should have the prefix URL of the Reverse Proxy and •
not the actual backend servers URL.
If you are accessing an HTML page, then view the source for the returned HTML page. You •
should not see any URL references to the backend server.
Send an HTTP GET request via netcat to several server addresses that are not being front-ended •
by the Reverse Proxy. You should not be able to see the backend server’s address, in fact you
should receive a 404 –Not found error.

Troubleshooting

If you received a 404 –Not Found or a timeout, then check your rewrite rule and make sure •
RewriteRule changed the URL correctly.
Check your proxy logs to make sure that it received the request and in deed it really did forward it •
to the backend server
Review your firewall logs to make sure it is not being denied by the firewall.•
If the rewrite rule is correct and there are no denials in the firewall then review your static NAT rules •
to make sure they are defined correctly.

Conclusion

Just to recap here are some of the do’s, don’ts, pros and cons to keep in mind when
setting up a Reverse Proxy.

Do
Place backend servers that the Reverse Proxy will access on a segregated subnet and or •
Domain
Set Firewall rules to only allow outside access to backend servers from the Reverse Proxy•
All HTTP content references should use non-qualified addresses (no domain prefixes)•
Use aliases and static NAT addresses to reference the Reverse Proxy•
If authentication is required, assign different users and cryptic passwords to access backend •
servers that are being accessed by the Reverse Proxy
Install intrusion detection and current patches on the Reverse Proxy and all backend servers•
Use etc/hosts file instead of DNS to reference backend servers•
Review all log files on a regular schedule•

Don’t
Allow trust relationships between inside servers and backend servers that are accessed by the •
Reverse Proxy
Publish backend servers’ addresses and host names in DNS•
Reference the actual IP address of backend servers -- use etc/hosts file with static NAT •
addresses
NEVERuse the same outside network user’s and passwords as the ones assigned for inside •
network access
Place any other web content or web servers on the same server as the Reverse Proxy -- make •
sure that the server is used for ReverseProxying only

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Pro
Single point of control, monitoring and logging•
Clients have a single point of access•
Reduced hardware, software and maintenance costs•
Ability to have single client interface while assimilating different web platforms and OS’s behind it•
Ability to hide backend HTTP servers•
Relatively inexpensive to implement•

Con
In the event of a failure, all connectivity is gone unless failover is implemented•
Attacker may gain insight into your network infrastructure if compromised•
May gain access to internal network if not setup properly•
Firewall and proxy translations may slow down response•

References:

Print References

Laurie, Ben, Laurie, Peter, “Apache The Definitive Guide”Second Edition, O’Reilly & Associates, •
1999, (2, 62-169,170-178)
Wainwright, Peter, “Professional Apache”, Wrox Press Ltd., 1999,(150, 163-182, 286-305)•
Loutonen, Ari, “Web Proxy Servers”, Prentice Hall, 1998 (325-343)•

Web Site References

Engelschall, Ralph S., “Load Balancing Your Web Site”, WebTechniques, 1998,01-17-2001•
http://www.webtechniques.com/archives/1998/05/engelschall/
Netscape Proxy Manual, Reverse Proxy, 01-17-2001•
http://developer.netscape.com/docs/manuals/proxy/adminnt/revpxy.htm
Engelschall, Ralph. S., “URL Rewriting Guide”, December 1997, 01-17-2001•
http://www.engelschall.com/pw/apache/rewriteguide/
Apache Module mod_proxy, 01-17-2001•
http://httpd.apache.org/docs/mod/mod_proxy.html

