
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Alternate Data Streams for Managers

Introduction

Ok, Ok, don’t get too spun up over the title. Just a poke at managers, like me, who have
wandered away from day to day tech stuff but still want to keep their hand in the game a little.
When this topic came up over lunch one day, I had the deer-in-the-headlights look. So I decided
to do something about it. Read a ton of tech articles, read through some code, tested some
software and want to share some of my enlightenment. I encourage you to browse through some
of the references at the end of this paper. Many of them were very informative reads and had
some solid technical background behind them.

So what, you say. Who cares about his thing called ADS or whatever? Well…. Maybe you, when
your system becomes glacially slow. Maybe you, when your administrator informs you that you
have exceeded your storage limits on the machine and you haven’t been storing anything other
than a few text files. Maybe you, when your machine is acting like a virus hit it and nothing, no
admin tools, no virus checkers, no disk de-fragmentation or anything else helps. So read on
McFly!

How did this all get started?

It turns out that there has been an on-going controversy over Alternate Data Streams that has
been raging on since the vulnerability aspect was originally introduced around late 1997. One of
the first posts on NTBUGTRAQ1 was on 3/20/1998. So, you can see this is not a new topic.
However, it is still a hot topic and if you spend some time searching the Internet for articles,
you’ll find that there are still many new posts regarding the vulnerability and exploitability of
this “feature” of Windows NTFS. I will spend some time reviewing this vulnerability (or is it
feature?) of the NTFS based operating systems. We will go over the basics of the technology and
then delve into the avenues of exploiting Alternate Data Streams for potentially devious
purposes. Should we worry or not worry? Even Anti-Virus companies don’t seem to agree. This
paper will present issues at the “30,000 foot” viewpoint addressing as many relevant discussion
areas as possible. Detailed sections will have voluminous references for anyone wanting to dig
into the inner workings of ADS. So, that being said, let’s start at the beginning.

It appears when Microsoft designed and built early Windows they were, at least, aware of Apple
Computer and of the Macintosh PCs. New functionality was added in the release of Windows 3.1
to provide support for Macintosh file storage. Briefly, the Mac file storage structure has two
basic parts, the resource fork and the data fork. Data for the file is in the data fork and the
resource fork determines how the data is to be handled. Windows does this same thing through
file associations. The file extension (.doc, .exe, .html, .ppt, etc.) is normally “associated” with a
particular application that will know how to handle the data. In order to accomplish this Mac
compatibility, Microsoft implemented Alternate Data Streams. The hidden stream is used for the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

resource fork and the main stream is used to store the data fork. However, this isn’t the only
reason for ADS.

Every program needs to store data, but data can be stored in many different ways to optimize
how each application can utilize it. Applications need to save their state from one session to the
next session. Things like user settings and program configuration information need to be retained
to eliminate the need to have the user re-enter all this information each and every time they
invoke the program. Word processors, graphics editors, sound files, database records, etc. all
have different file formats and different storage requirements. Something other than the standard
flat DOS file structure was needed. Some flexibility had to be added to handle these differing
data storage needs. So, Microsoft built in the data stream concept. This diversion from the
original DOS file structure paved the way for the Object Linking and Embedding (OLE)
structured storage system. It is interesting to note that ADS, in its present implementation, may
not be with us for long. According to Microsoft’s HOWTO bulletin in Dec,20002

“Alternate data streams are strictly a feature of the NTFS file system and may not be supported
in future file systems. However, NTFS will be supported in future versions of Windows NT.
Future file systems will support a model based on OLE 2.0 structured storage (IStream and
IStorage). By using OLE 2.0, an application can support multiple streams on any file system and
all supported operating systems (Windows, Macintosh, Windows NT, and Win32s), not just
Windows NT.”

Without getting deeper into OLE 2.0, and understanding how it’s utilized by the various OSs, it
is uncertain to me whether OLE 2.0 presents new avenues for malicious code or not. This is an
area deserving of its own research and paper.

Thumbnail sketch

Since NTFS is at the heart of this discussion lets take a look there. Information about a file in
NTFS is located in a data construct called the Master File Table (MFT). The MFT contains all
the information that describes the files and the directories. Each file entry has “attributes” that
describe the file. Below is a table of just a few of the many attributes and their description.

Sampling of some Attributes of the NTFS Master File Table (MFT)
Attribute (Field) Description
Standard Attributes
(Standard Information)

Contains standard file attributes, such as file creation time,
archive status, data links, etc.

Filename Contains the Unicode file name and the DOS 8.3 file name

Security Descriptor Contains information on ownership, access rights, and other
security-related information.

Data
Contains file data for files up to about 1.5K long. Otherwise,
a pointer to the data. The default data is an unnamed stream.
NTFS offers a mechanism for additional named streams.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The DATA attribute is the interesting one for this discussion. Below are two simple diagrams
showing the different ways that the DATA attribute can be used. Data can be stored directly in
the MFT if the volume of data is small enough (less than about 1500 bytes). If the volume of
data is larger, the DATA attribute is used as a pointer. This is the interesting part. As mentioned
above, the DATA attribute can point to multiple pieces of data. It can point to multiple files. It
can point to the main file or stream, as well as additional files or Alternate Data Streams (ADS).
The point to highlight here is that the DATA attribute is how and where alternate data streams
are made possible.

H = Header
I = Standard Information
F = File name
DATA = Data in residing in MFT
S = Security Descriptor

Small Files residing in the MFT

F I H DATA S

H = Header
I = Standard Information
F = File name
DATA = Pointers to Data not residing in
 MFT
S = Security Descriptor

Data Data Data

F I H DATA S

Larger Files not residing in the MFT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Alternate Data Streams are not visible to file viewing functions like DIR or Windows Explorer.
They can’t be directly accessed through Notepad or MS Word. So they are more or less hidden
and attached to the main stream through the DATA attribute pointers. The hidden part is what
stirs up the controversy. If these were designed as legitimate data storage structures, why are
they hidden? I was unable to find out any information, or even theories, as to why.

Examples of stream generation

To create an alternate stream is very simple. Windows notepad, echo, and type are ADS
compliant commands (when run from the cmd window) and are the most commonly referenced
tools in all of my reading material to do this study. Notepad is capable of reading an ADS and
can create and write an ADS. Start by using Notepad as you usually would through the Windows
toolbars. Create a text file called “main.txt”. Save it in a file folder where you can easily get to it
through the old DOS directory (CD) commands to save yourself some typing (I used C:\ for this
example).∗

Exit Notepad and go to the ‘cmd’ window by entering,

Start>run>”cmd”

Once in the command window, do a DIR command to see your main.txt file. Note the size of the
file. You can now directly create the first ADS by using the ‘echo’ command

C:\ echo “Hidden data stream” > main.txt:sneaky.txt

Done!
You have just attached “sneaky.txt” to the end of main.txt. Once again, do a DIR command to see
your main.txt file. The file size has not changed. Now type in the command string

C:\ notepad main.txt:sneaky.txt

VOILA! You now have the contents of the hidden file on your notepad screen.
You can also use notepad from the command line to create an ADS directly. Go to the command
window again and make a new main stream.

C:\ notepad good.txt

Answer YES to create the file. Type in a few words, ‘Save’ it and exit the Notepad window.
Do a DIR to see your good.txt file. Now create an ADS

C:\ notepad good.txt:bad.txt

Answer YES to create the file and….

∗ (Note: I did all of this testing through virtual machines in VMWare so that anything I did could be easily wiped out
without affecting the rest of my host PC. Be careful where you attach any ADS you wish to experiment with.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

You’ve done it again! Check it out by running

C:\ notepad good.txt:bad.txt

If later you edit sneaky.txt through notepad.exe via the point and click method, don’t use “Save
as”. Even though notepad.exe can read and write alternate streams directly through the
command line, it can not browse through the NTFS file system for an ADS. It has a file name
checker that won’t allow :sneaky.txt or :bad.txt to pass. Because of this, if you run notepad via
the point-and-click method on the Windows desktop, it will not work.

Malicious? What’s wrong with ADSs?

There are several things that invite trouble with ADSs. Let’s discuss each area.

- They can attach themselves to files AND directories
- Detecting streams can be difficult
- Deleting streams can difficult.
- Available disk space calculated by DIR and Explorer doesn’t consider space used by any

ADS.
- Executable files can be stored in an ADS
- Anti-virus programs have difficulty in detecting ADSs
- File wiping utilities have problems eliminating ADS streams.
- They can be used as a Covert data channel
- Disk de-fragmentation and file integrity software won’t clean-up or detect hidden streams

They can attach themselves to files AND directories

As shown above you can attach hidden streams to file but one really annoying thing you can also
do is to attach an ADS to a directory of a drive. Including the root directory!!

The same methods used for files are used for directories so,

C:\ echo “This is now stuck to you root directory” > :annoying.txt

has now attached annoying.txt to you main c:\ directory name. As we’ll discuss later, this can
become more than just an annoyance.

Detecting streams can be difficult

It is, but it is also becoming a bit easier with newer ADS checking software. Incredibly, the
Windows operating system doesn’t give you any tools to find them but several aftermarket
vendors are supplying tools, even freeware, that can detect an Alternate Data Stream. So, what is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

available to detect these things? What do I look for if I don’t know what file they are attached to?
Well, a sampling of tools I found available on the Internet is shown below.

LADS3

This is one of the earliest freeware tools that I found in my searching. First released in 1998. I
was able to run LADS /s (scan through subdirectories) with a scan from the root directory C:\
and it found all the test files I had created. It runs well in a subdirectory or folder if Lads.exe is
resident in that same folder. However when I tried to scan a particular named subdirectory on my
XP system outside of where Lads.exe resides, it returned “could not find directory
c:\xxxx\xxxx\...” whatever the complete path name was. That being said, LADS is fairly quick
and does give a summary of total number of alternate data streams found and the total of all
bytes found in those files. It’s free and works well on a full system scan, finding all the streams I
created, including ADS attached to directories.

 I decided to check how well the ADS checkers reacted to encryption and compression. Even

when a file was encrypted, the LADS tool found them - sometimes. It appears that LADS
detection tool can not be fooled by attaching an encrypted file to a main stream. However,
another experiment I tried was to create an ADS, and then encrypt it with PGP. It turns out that
the LADS detection program did not find the ADS stream. Also, if you attach a plain text file to
an existing encrypted file, you can not detect it either. Interestingly, notepad could! I could attach
a plain text file to the end of an encrypted file and with notepad.exe, read and write to the file. I
also tried to find an ADS in which I had compressed the file pair (main:alternate) and LADS
was unable to find it.
Encryption Detection Summary:
 plain_text.doc:plain_text.doc - found
 plain_text.doc:encrypted.doc - found
 encrypted.doc:plain_txt.doc - not found
 encrypted (plain_text.doc:plain_txt.doc) - not found
 compressed – not found

CrucialADS4

I set up the same test files as done for LADS. Crucial is a Windows based freeware utility. It also
doesn’t allow for scanning of folders or directories directly. You have to scan the entire file
system starting at the root directory. It is a very straightforward interface. You basically just have
to point it in the right direction with the selection of which drive you want to scan and go.

It picked up a bit more of the encrypted file combinations than LADS did but was also not able
to determine when an ADS existed if the main stream and alternate data stream were encrypted
as a pair. CrucialADS detected an ADS when there was an ADS attached to a directory name.
For instance it would find an ADS created as :sneaky.txt in any folder or directory. Also tried to
rename the main filename, but the scan picked it up under the new name.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Encryption/Compression Detection Summary:
 plain_text.doc:plain_text.doc - found
 plain_text.doc:encrypted.doc - found
 encrypted.doc:plain_txt.doc - found
 encrypted (plain_text.doc:plain_txt.doc) - not found

 compressed – not found

TDS-35

Although not freeware, this is a very polished program to detect alternate data streams with
many other malicious code detection features added. It even has a voice interface! Its many
other functions won’t be discussed here however. The ADS detection part is equal to that of
CrucialSecurity with a bit more ease of use thrown in. You can scan specify directories, and for
each ADS found you can view it, dump it to a file, delete it, delete the stream and associated
host file, or view its properties. You can fix it with a mouse click and it also warns you of
impending doom if you allow it to fix ADSs attached to your directories themselves. I found
this site to be one of the most informative on Alternate Streams.

Encryption/Compression Detection Summary:

 plain_text.doc:plain_text.doc - found
 plain_text.doc:encrypted.doc - found
 encrypted.doc:plain_txt.doc - found
 encrypted (plain_text.doc:plain_txt.doc) - not found

 compressed – not found

Streams6

 Stream is another command line driven utility that is very similar to LADS. However I
found this utility difficult to use. Like LADS, it does not accept directory names with spaces, etc.
and when I ran it on C:\, it returned nothing. This was obviously in error due to several test files I
had created on many different directories. Also when I did run it inside a directory that had
known ADSs, it gave me the names of the ADS but didn’t specify the full path name. This is a
problem because I put multiple hidden streams with the same name to see if ADS checkers
would catch all of them. I have no idea, in this case, which one it found.

There were several other ADS checkers that were on the Internet. These are a few that seemed to
be visible throughout many of the Internet search engines.

Deleting streams can be difficult.

To delete a stream you must delete its parent (file or directory). This can be somewhat disturbing
if you really want to get rid of it because of the fact that you must delete the directory or file that
it is attached to. This means that for an infected root directory, you would have to reformat the
disk and start over. This could get ugly if the ADS file (or files) attached to the root directory

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

were to be large enough to use a significant portion of the available disk space on your hard
drive. It could be even more irritating if a virus dropper were to attach an encrypted or
compressed alternate stream to each and every folder name in your file system.

However, I did find through some simple experiments that, if you can find the ADS, you can
mitigate the impact it might have by creating a empty file (<10 byte file) and overwriting the
discovered alternate stream. Suppose that you find a large stream attached to your root directory.
For this example let’s use humungousfile.exe. Well, you can’t get rid of it but you can reduce its
size to a null file and effectively eliminate it. First create a simple empty file in the ‘cmd’
window,

C:\ echo “” > cleanup.txt
C:\ type cleanup.txt > :humungousfile.exe

Now you’ve just overwritten the big file that was discovered hanging off your C:\ directory!
Also, the disk space used by the ADS is now released back to the OS and you don’t have it
counting against your disk quota anymore (see next section). The ADS remains, it just exists
under the name of cleanup.txt. Another method is to copy all files into another temporary
directory (if you have the space on your drive), delete the infected folder, create a new one and
move all of the files back. An annoyance for sure, plus it can get really painful if you find that
several thousand ADS have been attached to the directory name or an ADS has been attached to
every folder on your disk.

Available disk space calculated by DIR and Explorer doesn’t consider space used by any
ADS.

This is a really good way to drive someone nuts. The built-in OS utilities that tell you how much
space you have are telling you that you have lots of space. So why can’t I store anything?? Well,
maybe it’s because malicious code has created a large number of alternate data streams and use
up most of your available space. A test was once conducted to see how many ADSs could be
attached to one main data stream. Turns out to be 67487. This was a quick and dirty, non-
scientific test but it shows that a large number of streams can be created for each host file.
However, each ADS could be a larger stream, or multiple bogus files could be created with 6748
ADSs apiece. This is a good place to note that ADSs have a hierarchy that is only one level deep.
You can’t create an ADS with a filename of goodfile.txt:badfile.txt:hidden.exe.

Windows NT, 2000, and XP have a disk usage limitation feature called Disk Quotas. Limits can
be placed on how much storage space a user can store information in a system. This function is
tied to ownership. If you own a file or a directory, the disk storage space it uses is counted
against the space the Administrator has allowed for you to use. ADS files can cause a bit of
confusion when monitoring disk space utilization. It turns out that if you share any of your files,
someone can attach and ADS to an existing file, hiding any malicious code behind a valid
application or user file. That way, the rogue user can hide malicious code within a file system
that is not traceable to them. As shown before, the file listing will not show the ADS. However,
the disk space that it uses will be counted against the victim’s quota. So the victim’s file listing

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

can show a single small file and the Administrator will show the user as exceeding their space
quota. The Administrator will also not know what file is causing the problem since disk quota
tool only shows total usage and not file specifics. It was not possible to create a new ADS file in
another user’s space without permission. Only those files that were made public were
susceptible. Looks like clever way to increase your own personal storage limits if you, on a low
level, store some of your stuff on another person’s file system!

Executable files can be stored in an ADS

Just like any other file, executables can be stored as an ADS. You can even execute an ADS
from the command line. You can’t run it directly as in

C:\some_directory\outlook.exe:evilcode.exe

However, Windows does allow you to execute it through the ‘Start’ command. So if you (in
command line mode) were to type in

Start C:\some_directory\outlook.exe:evilcode.exe

The malicious code would execute. You can execute alternate streams from other programs.
Diamond Computer Systems has written a free, downloadable test program that will execute
hidden stream code (non harmful to your system I must add!) to demonstrate how easily this is
done. So What? Well, through a virus dropper program, someone could “infect” a lot of
machines by introducing encrypted or compressed ADSs. The ADS detection software wouldn’t
pick it up, so it would statically sit in your system until a trigger were to occur. This trigger could
be a one line command as seen above. Would a virus detection program trip on a one line
command? Doubtful. There are no signatures to look for. Does it show up on the task manager?
No, the task manager window will only show the main file as executing and not the hidden
stream. So, theoretically speaking, you could use a one line command, delivered by another
method, and trigger thousand of machines that have been thought to be safe and clean from
viruses. If the files were encrypted or compressed, the trigger file would indeed need to be larger.
Virus writers try to write small, compact, less detectable code. With this approach, virus code
could be a huge, multipartite beast that is hidden in plain sight.

On the positive side, this only worked under NT4.0. I was unable to get this same command to
run under Windows 2000 or Windows XP. It appears Microsoft has addressed this issue, at least
from the ‘Start’ command aspect. I also tried to run an ADS batch file from another batch file
with no success and the CALL function also does not allow you to execute an ADS batch file
from another batch file.

These are simplistic approaches to executing hidden streams. There are direct program methods
to start an ADS. Diamond Computer Systems5 offers a couple of good, free programs to check
out your system’s ability to work with ADSs. There may be other avenues of executing code in
2000 and XP such as through application macros. This looks like another good avenue for virus
research.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Anti-virus programs have difficulty in detecting ADSs

Visiting many of the major AV company websites, I get the impression that they don’t view
ADSs as much of a problem. Their general philosophy is that you can not directly execute
alternate streams. You have to have a companion program that call or executes the alternate
stream. Besides, any file that is run will eventually have to be brought into system memory and
will then no longer be hidden so that AV software will then discover it. Well, maybe. They are
absolutely correct in that can not execute a file through a direct command such as

c:\temp\good.txt:sneaky.exe

As briefly mentioned before, you can split a potential virus into two parts. One being a very
small “visible” part that in turn calls the alternate stream where the bulk of the evil code could
reside. AV software will look for virus signatures. Since the visible part will be minimal code
consisting of possibly little more than something like a ReadFile() function, it will look like any
other normal file calling program and could elude any signature based recognition. This
potentially could be a very stealthy virus. All this assumes you have the AV software in
constant-monitoring mode. Otherwise, for scheduled or spot scans, it goes undetected.

Another really interesting way to accomplish an attack was proposed by Dartmouth8. This
approach is exactly opposite to convention attack mentality of the malicious code doing the
damage. This one uses your own defenses against you. Very clever! Make the assumption that a
new virus has been created that is truly malicious and very easily detected in nature. However,
instead of directly releasing it upon Internetdom as is typical, the virus is put into another
delivery system, like a worm. The worm will then stealthily deliver the virus to many systems
without the direct intervention of a user. The worm will covertly place the virus in an alternate
data stream that is attached to a critical system file like taskmgr.exe, winlogon.exe, C:\, or
anyone of a multitude of system executables that nobody knows exactly what they do. The
attacker then gives the worm time to spread and deliver the virus code undetected. After a period
of time, the attacker then releases the virus into the wild. AV companies then develop the
signature recognition and release countermeasures or updates to their AV software. Here comes
the good part. When one of the worm infected critical files is called upon to be executed, the file
and its associated alternate data streams are loaded into memory. The virus that was hidden in
the stream is now exposed for the AV software to see it. The AV scanner recognizes the
signature of the new virus but does not know how to handle an ADS. How the AV software
reacts would depend on how it’s designed and configured. If it is set up to automatically delete
infected files, the AV software you have on your machine to protect you has just deleted your
critical system file! If the AV software moves the “bad” file to a quarantined directory, you have
just moved you critical file to a place where the OS might not be able to find it and use it, thus
the dreaded Blue Screen of Death. As Dartmouth points out, you now have a situation where an
alternate data stream was used to bring down a system even though it was not executed directly,
or called from a visible file, or even executed at all!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

File wiping utilities have problems eliminating ADS streams.

This is a situation where a virus or worm could use ADSs to cause permanent problems. If some
malicious code were to write to a large number of ADSs and chew up significant amount of data
storage area, the only real option would be to wipe the disk and start over. Unfortunately, many
of the most popular programs for file wiping or disk cleaning are still not ADS aware. Thus the
data area used by ADSs will remain after disk wiping and your problems remain. Some have
updated and some have stated they will be updated, so this problem is slowly going away (as far
as the recovery part goes). Presently however, there remains the possibility that disk may still
contain remnant sensitive data. There was an interesting find on the Internet regarding this. Paul
McCartney had a significant amount of his personal cash dealings discovered on computers that
were discarded by his bank9 . I can see this opening up a whole new area for lawyers to jump
into. What liabilities fall to the holder of personal information with regards to their upgrading
computing equipment and the removal of old equipment? What legal recourse might be
forthcoming if a company or individual who is privy to personal information does not use all
known precautions and remedies for elimination of sensitive information?

They can be used as a Covert data channel

This is a problem that would present itself in an environment where security procedures and
policies prevent unauthorized use of business owned computers. Without aftermarket tools,
system administrators will not be able to find streams that could contain any number of variety of
files not intended or allowed for corporate use. It also presents potential problems for computer
forensic efforts. If disks are being analyzed for possible legal or maybe even counter-intelligence
issues, the original disks are usually kept safely stored away while all the real work is done on
imaged disks. If the disk imaging software is not ADS aware, critical information might be lost
in the transfer. Another interesting possibility might be for data harvesting. Anything of value
from passwords, to financial data, to maybe even keystroke capture could be stored in a hidden
stream just waiting to be picked up at a later date.

Disk de-fragmentation and file integrity software

The best I can determine is that this is a second order effect of ADSs. It can lead to inefficient
use of disk space and essentially result in a degrading of system performance. I wasn’t able to
find any threat scenarios relating directly to de-fragmentation problems and couldn’t come up
with one myself other than a slow denial of service attack. Another possible problem may arise
from the use of a different possible virus defense tools or integrity checkers, in that they may not
detect when a file has been changed with the addition of a hidden stream. Integrity checkers,
such as TripWire, execute some CRC-like algorithm that develops a checksum or numerical print
of the file system at any given point in time. Once that reference is established, any changes in
the file system will trigger an alert. If only the main stream is used in the calculations for the
system print, adding a hidden stream will elude detection by an integrity checker.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Summary

Through research and bit of primitive testing, it appears that Alternate Data Streams do indeed
present a threat in the sense that malicious code can be hidden on a users system and executed at
will through another companion process. Since it needs a companion process or human
intervention, this makes it virus-like in nature. As long as it needs a companion process that has
to reside in memory, there is the possibility of detection. There are no indications that it can have
worm like characteristics where it can run and replicate under its own control. ADSs do not
transport easily between differing file systems. File transfer protocols don’t handle alternate
streams. They can’t be transferred to diskettes. Only the main stream is transferred. So, at least in
their present form, Alternate Data Streams do not appear to have the ability to quickly spread and
infect large numbers of systems. For now that is.

There are other ways that an Alternate Stream can be used to do damage to users system. The
proposed scenario by Dartmouth being the most plausible, possible, and damaging at this point in
time. Bear in mind however, that this is an opinion not based on a deep understanding of the
internals of Windows OSs and advanced software program writing ability. It is apparent though
that the ability to read/write/modify information in an ADS is trivial and is presently available in
nice GUI form. .

Detecting ADSs was easily done for non-encrypted or non-compressed streams. But, the fact
remains that encrypted and compressed ADSs went undetected. Not sure this is a fair test
however since either PGP encrypting or WinZip compressing an ADS main:stream file pair
creates a single file. In any case this represents a method of hiding an ADS without fear of
discovery from scanning or integrity checking tools.

A couple of ADS attacks have already been developed. One (W2K.stream)10 was harmless. The
other (IIS :$DATA)11 was able to retrieve information from user’s systems. So it is apparent that
attackers are looking for ways to exploit this technology.

So, I go away with the impression that with that much storage ability that can remain undetected
through encryption or compression with readily available tools like PGP and WinZip, it poses a
very inviting target for malicious code writers and, IMHO, a matter of time before new exploits
appear.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Acknowledgements

1 Security Focus Online, BUGTRAQ Archive, Mar 20 1998
http://online.securityfocus.com/archive/1/8822

2 HOWTO: Use NTFS Alternate Data Streams (Q105763)
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q105763

3 LADS - List Alternate Data Streams
http://www.heysoft.de/nt/ep-lads.htm

4What is CrucialADS?
http://www.crucialsecurity.com

5 Wayne Langlois’ TDS:Trojan Defence Suite, The World’s most comprehensive Anti-Trojan System
http://tds.diamondcs.com/au/

6 Sysinternals Freeware – Information for Windows NT and Windows 2000- Miscellaneous Tools for Windows
http://www.sysinternals.com/ntw2k/source/misc.shtml

7 Creation of Many File Streams on NTFS
http://www.cerias.purdue.edu/coast/ms_penetration_testing/v50.html

8 NTFS Advisory – Investigative Research for Infrastructure Assurance (IRIA)
http://www.ists.dartmouth.edu/IRIA/knowledge_base/NTFS_Advisory.htm

9 Cullen, Drew. “Paul McCartney account details leaked on second user PC.” The Register, 09/02/2000
http://www.theregister.co.uk/content/archive/9137.html

10 Sophos virus analysis: W2K/Stream
http://www.sophos.com/virusinfo/analyses/w2kstream.html

11 “::$DATA” Data Stream name of a File May Return Source
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q188806

References:

NTFS ADS Viruses
http://www.cknow.com/vtutor/vtntfsads.htm

Detecting Alternate Data Streams
http://www.ntsecurity.net/Articles/Print.cfm?ArticleID=16189

NTFS Streams
http://biznix.org/whylinux/windows/ads.html

Some antivirus scanners blind to alternate data streams
http://www.securitywatch.com/scripts/news/list.asp?AID=3826

Windows wipe utilities fail to shift stubborn data stains
http://www.theregister.co.uk/content/55/23759.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Windows, NTFS and Alternate Data Streams
http://rr.sans.org/threats/win_NTFS.php

Alternate Data Streams, the Hidden Threat
http://rr.sans.org/win/ADS.php

NTFS Alternate Data Streams
http://win2000mag.com/Articles/Print.cfm?ArticleID=19878

Windows 2000 Streaming Virus
http://rr.sans.org/win2000/streaming_virus.php

An In-depth Look at W32.Winux and W2K.Stream and the Ever growing “Proof of Concept” Virus
http://rr.sans.org/malicious/w2kwinux.php

What Forensic Analysts/Investigators should know about NT MULTIPLE DATA STREAMS
http://www.dmares.com/maresware/multdata.htm

