
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Developing Secure Software
Practices and considerations to help avoid common security

vulnerabilities
Joshua Tolley February 25, 2002 GSEC Practical Assignment 1.3

Computer vulnerabilities come from an enormous array of sources that
grows larger and more diverse with each new attack and every new
software patch. One compromised system may be poorly configured,
allowing a remote attacker to break in and gain privileged access,
another system might be running malicious software inadvertently
installed by an unsuspecting user, and yet another may simply be
physically stolen from its owner. Of all possible causes for computer
vulnerabilities, the problem of poorly written software is arguably the
most difficult to predict, control, or fix. Such software problems are
particularly open to automated attack, often by internet “worms.” These
so-called “worms,” or software that spreads automatically from one
computer to another, spreading by exploiting some vulnerability, are easy
to find using simple internet search engines. The growing popularity of
such programs among both virus writers and young would-be hackers,
or “script-kiddies,” causes new and more critical security issues every
day. As hacking tools and software become more and more available,
even those with little to no technical skill can cause serious problems for
developers and software users alike, effectively demonstrates the need for
better programming practices in the developer community.

Application and scope:

Perhaps the most pervasive and least obvious problem among software
developers, as in all other fields, is the sheer scope of the issue. Many
people automatically equate computer security solely to network
security, and therefore assume that programs that do not involve
network communication are by that very fact immune to security flaws. I
recently completed the initial versions of a project designed to simplify
medical clinical data harvesting. Although this software uses network
communication extensively, the one major security hole I’ve found to date
was entirely unrelated to the network aspect of the program. In the first
beta release of the software, the user could, intentionally or
inadvertently, run script code of his or her choice on the database server.
Not through a network hole or an encryption weakness, but simply
because certain input was converted into interpreted script, with no
checking as to the validity or effect of the script. Because of the
widespread possibility for security problems, any developer writing
software that targets any computer or any network must take security
into consideration.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Similarly persistent and erroneous is the idea that “it can’t happen
to me.” As has been shown time and time again, hiding behind one’s
relative insignificance, or “security by obscurity,” is really no security at
all. An article by Bruce Perens, for example, tells of a programmer who
noticed a weakness in the encryption used by a certain spreadsheet
program. The programmer broke the encryption, wrote an application to
demonstrate the weakness, and then, as any ethical programmer under
such circumstances should do, informed the software manufacturer of
the flaw. Rather than respond by fixing the problem, however, the
software company threatened the programmer with lawsuits if he
revealed the weakness, or even mentioned to anyone that the program
had a weakness. The problem however, says Perens, is that the software
company “did not consider that someone else might have already broken
the spreadsheet code without telling the manufacturer, and might
already be using the technique to eavesdrop on some rich corporation's
secrets.”1 Many developers, if they consider security at all, live in fear of
the day when some programmer with time to kill will find the flaw they
didn’t want to take the time to fix in the program they just released.
 Another very recent example comes from IDG.net, in a story posted
on February 8, 2002, telling of a hacker who apparently obtained a sales
leads database from a broadband communications company by simply
downloading it from an unlisted page on the company’s web site.
Apparently the site administrators assumed that because the site
contained no links to the particular page, it would remain safe without
further security. "We thought our sites were secure and that our
databases were secure," said a company spokesperson. "We're
investigating how we can make our system more secure."2

Development mistakes and oversights:

THE BUFFER OVERFLOW: Easily the most well-known and widespread
programming mistake leading to security compromise is the buffer
overflow. Easy to overlook and potentially disastrous for the
unsuspecting owner of the software, the buffer overflow can allow an
attacker to run code of his or her choice on the victim’s computer. To
understand the most common buffer overflow situation, one must
understand the string data type, as first implemented in C. C strings
consist of an area of memory one byte longer than the size of the string it
contains. A pointer used to keep track of the string points to the
beginning address in the memory block, and a null character (ASCII code
0) marks the end of the string, and fills the extra byte allocated. Look at
the following code, written in C:

void ShowOverflow(char *inputBuffer)
{
 char outputBuffer[250];

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

// Copy the inputBuffer string into the outputBuffer string
 strcpy(outputBuffer, inputBuffer);
// Do something with the string
}

In this code, a pointer to a string is passed to the function
ShowOverflow(). The contents of that string are then supposed to be
copied to the array outputBuffer. But one must look closely at the
function strcpy(). Notice that it takes as arguments two mere pointers.
Nothing about the pointer reveals anything of the length of the memory
block associated with that pointer, nor even if any memory is associated
with the pointer. So strcpy() simply loops through each byte
sequentially, starting from the source pointer, until it reaches the null
character that indicates the end of the string. It never checks to see what
memory it is overwriting, nor even if the input string has a null character
in it somewhere. If the string in inputBuffer does not exceed the 250
characters allocated for outputBuffer, no problem should arise.
However, if the source string is longer than the allocated buffer,
strcpy() will simply write past the end of the allocated memory into
unknown territory. In some circumstances this may lead to the program
attempting to write into protected memory, causing an exception. On
some platforms, such as the Palm OS, where memory is very closely
managed, this code will always cause an exception when the input string
is too long. On most platforms, however, pointers are not so closely
controlled, and it is simple for a program to write wherever it wants in
the stack.

The immediate implications of such an error are obvious: if the
user is lucky, the area of memory at the end of the allocated block won’t
be vital to the system, and nothing particularly serious will occur.
However, in a large number of cases, this will overwrite important data,
causing whatever is running on the system to malfunction. In other
cases, the “extra” bytes may end up getting interpreted as executable
code. Thus if an attacker can determine the length of the allocated
buffer, or even just get a lucky guess, he or she can execute arbitrary
code on the victim computer.

The Code Red family of worms is a good current example of a
buffer overflow. In mid-July 2001, network administrators began noticing
their web server logs filling up with HTTP GET requests that looked like
the following:

GET/default.ida?NNN
NNN
NNN
NNN
NNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b
%u53ff%u0078%u0000%u00=a HTTP/1.0

As it turned out, this crafted HTTP request was an efficient exploit for a
vulnerability in Microsoft’s Internet Information Server Indexing Service,
discovered a month earlier by eEye Digital Security (www.eeye.com). The
worm wreaked havoc on the internet, jamming internet traffic worldwide
as it spread from one vulnerable server to another. As stated by Sam
Costello of IDG News Service, 11 percent of IIS servers showed signs of
infection by Code Red’s more harmful successor, Code Red II3. A few
months later, the Nimda worm again crippled internet traffic for a few
days as it spread from server to server exploiting a old IIS vulnerability as
it searched for back doors left by Code Red II.
 Fortunately for the programmer, such software problems are easy
to fix. In fact, they are so common that many programming languages
have implemented replacements to their strcpy() and equivalent
commands to account for the possibility of buffer overflows. A simple
conditional check would see if the length of inputBuffer in the function
above is longer than the allocated 250 bytes. There follows a corrected
version of the function:

void ShowOverflow(char *inputBuffer)
{
 char outputBuffer[250];

 if {strlen(inputBuffer) > 250)
 {
 memcpy(outputBuffer, inputBuffer, 250);
 outputBuffer[250] = ‘\0’;
 }
 else strcpy(outputBuffer, inputBuffer);
// Do something with the string
}

This corrected function will copy up to 250 characters from inputBuffer
into outputBuffer, and fix the possibility of a buffer overflow.

“TOO MANY FEATURES”: Often software developers and software users
form two completely different groups. The developer thinks constantly of
improving the software, mainly by adding features and functionality or
improving existing aspects of the program. The user, on the other hand,
often views software from a much more static perspective: “I can’t change
the software myself, so I’ll figure out how to use it best,” thinks the
average user. Thus a new user spends some time initially getting used to
the software and finding the best ways to have it suit his particular
needs, and once those habits are fixed and those methods decided upon,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the user mostly ignores every aspect of his or her new software, using
only those features and functions with which he or she is familiar. Thus,
if the developer releases a new version with new features and
enhancements, the user may spend a few moments glancing over the list
of improvements and, unless one item on the list particularly strikes his
fancy, go back to using the software the same way as before.
 Most of the time this causes few problems, but in some cases this
can lead to certain issues. For example, a favorite feature among
developers is the ability to customize a program, either through skins,
scripts, or other user-definable methods. However often more power is
given the user than the developer intends. For instance, as Java applets
became popular in web pages, people realized that since Java allowed
access to much more than just the web page in question, it could be
used to write malicious code. Not only that, the malicious applet would
run on any Java-enabled computer, independent of hardware or
operating system (in theory, anyway). Developers of web browsers have
been trying to close those holes ever since.
 As if that weren’t already enough of a security problem, Microsoft,
in an effort to ease development by third-parties of software that used
parts of or integrated with Microsoft software, developed the concept of
COM and ActiveX programming. In a nutshell, this extended the idea
championed by object-oriented programming (OOP) several years before:
code reuse. Just the same as in OOP a developer can take an object
written by someone else and plug it in to his or her program without
much or any knowledge of the object’s internal workings, COM and
ActiveX allow programmers to take what amount to full-fledged
programs, complete with user interface, and plug them into their
software. Thus today, a programmer can use the Microsoft Office ActiveX
controls and write a program that controls email using the MS Outlook
control, queries databases using the MS Access control, displays web
pages using the Internet Explorer control, and runs scripts using the
Microsoft Script control. Third party software can even manipulate
objects such as the Outlook address book with no knowledge whatsoever
of how the address book actually functions, by simply implementing an
ActiveX control. All this easy access, though, provides for massive
security holes.
 In March of 1999, an email worm known as the Melissa virus
began clogging email servers around the world. The virus uses the macro
scripting feature built in to Microsoft Word 97 and later versions to
create an instance of the ActiveX object Outlook.Application, and use
it to read the user’s address book and send copies of itself to the first 50
email addresses listed. It also infects the NORMAL.DOT file that Word uses
to define a new document, causing all new documents to be infected. As
a demonstration of just how simple this worm really is, here is an edited
segment of the actual code4:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Set UngaDasOutlook = CreateObject("Outlook.Application")
Set DasMapiName = UngaDasOutlook.GetNameSpace("MAPI")
// ... some code removed
 If UngaDasOutlook = "Outlook" Then
 DasMapiName.Logon "profile", "password"
 For y = 1 To DasMapiName.AddressLists.Count
 Set AddyBook = DasMapiName.AddressLists(y)
 x = 1
 Set BreakUmOffASlice = UngaDasOutlook.CreateItem(0)
 For oo = 1 To AddyBook.AddressEntries.Count
 Peep = AddyBook.AddressEntries(x)
 BreakUmOffASlice.Recipients.Add Peep
 x = x + 1
 If x > 50 Then oo = AddyBook.AddressEntries.Count
 Next oo
 BreakUmOffASlice.Subject = "Important Message From " &
Application.UserName
 BreakUmOffASlice.Body = "Here is that document you asked for
... don't show anyone else ;-)"
 BreakUmOffASlice.Attachments.Add ActiveDocument.FullName
 BreakUmOffASlice.Send
 Peep = ""
 Next y
 DasMapiName.Logoff
 End If

As this code segment shows, with a basic knowledge of ActiveX
programming and macro scripting any programmer can create a virus
that will infect millions of computers simply because Microsoft included
more functionality in its macro scripting language than was necessary.

Many other examples of such vulnerabilities could be given, but
enough has been shown to demonstrate that care and caution must be
exercised by developers racing to add features and flexibility. What
practical reason might anyone have to allow users to access the
Outlook.Application ActiveX component and all its associated
functionality from a Word document macro? In the early days of
computing when each program was a distinct entity, for the most part
entirely separate from all other programs, no feature of one program
could easily combine with a feature of another for better or for worse, so
programs were used more or less exactly as they were intended. With the
advent of component programming, just as much as he or she needs to
check source code for memory leaks, un-initialized pointers, and the like,
the modern developer must also check for unforeseen combinations of
components and features that could cause vulnerabilities. If a particular
program spawns a process to execute a particular file, for example, does
it also check to see that the file is indeed what it is supposed to be? If a
string input by the user tells the computer to get data from a certain
location (for instance, a database query), does the user have the right to
get that data from that location? All these considerations must be

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

addressed during development to avoid potentially major catastrophes
later on.

Along those same lines, developers must avoid giving
unnecessary functions and features to their program, meaning features
that are meaningless in the scope of the software, such as the capability
to send email from a macro in a Word document. Components cannot
simply be “plugged in” to software and allowed to run uncontrolled, but
must be checked and used only for their intended purpose, to avoid
serious problems from some creative attacker.

WEAK ENCRYPTION: Another obvious programming deficiency surfaces
in the “new exploit” lists with surprising frequency. It seems that every
week or two, another server or program will be found to use weak
encryption or even no encryption at all to store sensitive data. Even
large, established software vendors with significant technical experience
and resources are caught storing passwords and other sensitive data
with weak or sometimes no encryption. A quick search for “weak
encryption” in the Neohapsis vulnerability archive returned 333 results
at the time of this writing, up ten from two weeks earlier5. Users might be
surprised to search their computer’s registry or configuration files for
passwords they commonly use; who knows which program might have
stored them as plain text, hoping for “security through obscurity”?
 Encryption has long been a field of mystery to most programmers.
After seeing long, involved postings of new encryption methods developed
by mathematics PhD’s, most programmers shy away from trying to
implement decent encryption for fear of having to actually understand bit
by bit what goes on in the heart of 3DES or Blowfish or other encryption
algorithms. Yet a simple internet search will provide freely-available
encryption code in many programming languages and using many
encryption algorithms. For the more mathematically inclined, a similar
search will provide descriptions of the same algorithms broken down step
by (agonizing) step.
 To implement good encryption, then, the developer must only find
the appropriate algorithm. Unfortunately that might take a little work.
Cryptology has provided ample ground for all interested researchers for
many years, and the resulting field of algorithms is widespread.
Basically, there exist two main types of encryption algorithms: block and
stream. Block encryption algorithms break the plaintext, or unencrypted,
data into segments which it then encrypts. Stream encryption, on the
other hand, encrypts data byte by byte. Block encryption is generally
easier to implement in software, whereas stream encryption is good for
hardware implementations and often necessary for voice or video
applications where data is by nature streamed.

The other major area of concern is cipher strength, or the ability of
the encryption algorithm to withstand attacks of various kinds. Many
people are surprised to learn that DES (Data Encryption Standard)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

encryption, first proposed in the 1970’s6 and the mostly widely used
encryption algorithm in the world, is generally considered insecure. Any
encryption algorithm is vulnerable to some extent to brute force attacks,
or attacks where every possible encryption key is guessed and tried until
the right one is found, but DES is also vulnerable to other kinds of
attacks. As stated by Jim Bidzos, president of RSA Data Security, “we are
quickly reaching the time when anyone with a standard desktop PC can
potentially pose a real threat to systems relying on [DES].” 7

In an effort to set the standard for modern encryption, the US
National Institute of Standards and Technology (NIST) sponsored a
world-wide contest to develop what is now known as the Advanced
Encryption Standard. NIST eventually adopted a block cipher developed
by a Belgian team, known as the Rijndael algorithm. Use of the algorithm
is royalty-free, and reference code is available on the internet. The AES
cipher is probably suitable for most encryption applications where a
block cipher can be used, and (for the time being) is considered secure.

INTELLIGENT TECHNICAL SUPPORT: Though it may seem that technical
support has little to do with the development of secure software, it is an
important consideration for all who intend to write and distribute
software. Too frequently, as in the example of the spreadsheet software
company earlier, software vendors try to avoid fixing problems revealed
by those who submit bug reports. A debate persists in the security world
about how security problems should be reported; obviously someone who
finds a vulnerability should inform the software vendor, but the conflict
arises over what to do next: tell the world or keep it quiet. Proponents of
the first option generally argue that everyone using insecure software
should be duly warned and instructed about problems they might face.
Opponents typically categorize releasing information about exploits
alongside aiding and abetting the enemy, giving hackers everything they
need to create all the exploits they want.

Typically in an attempt to form a compromise, those who find
vulnerabilities report their find immediately to the software vendor, and
submit the exploit to public lists only after giving the vendor adequate
time to verify and respond to the problem. In an attempt to standardize
error reporting, Steve Christey and Chris Wysopal have developed what
they call the “Responsible Disclosure Process,”8 an Internet Engineering
Task Force (IETF) Internet Draft. The draft, available in its entirety at
http://www.ietf.org/internet-drafts/draft-christey-wysopal-vuln-
disclosure-00.txt, proposes among other things, security “coordinators”
who could act as liaisons between software vendors and security experts,
as well as standard methods and rules for software vendors to accept
bug reports. The report gives software vendors seven days to respond to
new bug postings, after which the vendor should post regular updates
and status reports until a problem is resolved.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

To write software that starts secure and stays secure, a developer
must allow his or her users to help find problems, and acknowledge
vulnerabilities when they are reported. Too many developers have
exacerbated security issues by brushing off reports of software flaws.
Developers must remember the old adage, “The customer is always
right,” and responsibly work to resolve any problems with software he or
she creates.

Conclusions:

The world of the software developer changes dramatically over very short
periods of time. With computers available across the world and the
internet growing rapidly to connect them all, many new opportunities for
new applications arise daily, as do new exploits and vulnerabilities. The
modern programmer must undertake the responsibility to not only
provide software that performs well on its own, but that functions well
with other software, without creating vulnerabilities in the systems and
networks running the software. Only through intelligent planning and
thorough testing can a programmer fulfill this duty. The particular
problems introduced in this document are only a sample of the more
common errors made by programmers; every developer should spend
time further studying trends among hackers and exploits, new security
tactics, and emerging technologies to avoid creating problems.

1 Perens, Bruce. “Why Security-Through-Obscurity Won't Work” SlashDot, July 20, 1998
URL: http://slashdot.org/features/980720/0819202.shtml

2 Weiss, Todd R. “Comcast Business Communications site shut after hacker exposes data” February 8,
2002. URL: http://www.idg.net/ic_807653_5055_1-2793.html

3 Costello, Sam. “One in Nine IIS Servers Compromised, Survey Says” IDG News Service, November 5,
2001 URL: http://www.idg.net/crd_iis_734728_103.html

4 URL: http://packetstorm.widexs.nl/9903-exploits/melissa.macro.virus.txt

5 Neohapsis Archives, URL: http://archives.neohapsis.com

6 Rudolph, Dave. “Development and Analysis of Block Ciphers and the DES System” 2000
URL: http://members-http-6.rwc1.sfba.home.net/dave.t.rudolf/prog/crypto/

7 RSA Data Security Conference. “Distributed.Net and Electronic Frontier Foundation (EFF)
DES Challenge III Broken in Record 22 Hours” January 19, 1999
URL: http://www.eff.org/Privacy/Crypto_misc/DESCracker/HTML/19990119_deschallenge3.html

8 Steven Bonisteel, “Disclosure Guidelines For Bug-Spotters Proposed” The Washington Post, February
21, 2002 URL: http://www.newsbytes.com/news/02/174683.html

