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INSIDE THE BUFFER OVERFLOW ATTACK:  
MECHANISM, METHOD, & PREVENTION 
Mark E. Donaldson 
April 3, 2002 
GSEC Version 1.3 
 
ABSTRACT 
The objective of this study is to take one inside the buffer overflow attack and 
bridge the gap between the “descriptive account” and the “technically intensive 
account”.  The intent is to provide a logical, detailed, and technical explanation of 
the problem and the exploit that can be well understood by all, including those 
with little background in the mechanics and methodology of applications 
programming.   

 
We will begin by looking at the “problem” and the problem “mechanism”, and 
then investigate the “means” and the “method”.  Based on what we find, we will 
conclude with recommendations, and a menu for “prevention”.  Hopefully this 
approach may also help bridge the gap between “knowledge” and 
“understanding”.   Although it may never be possible to purge the world of this 
security concern, it is certainly within the realm of possibility that the buffer 
overflow attack be reduced to a level of insignificance through true 
understanding.  Robert Louis Stevenson once wrote: “Look at yourself. Could 
you be a doctor, a healing man, with the things those eyes have seen? There’s a 
lot of knowledge in those eyes, but no understanding.1”  The technology 
community must move from fighting buffer overrun attacks defensively to fighting 
them offensively.  To do this, they must transform their knowledge into 
understanding. 
 
THE PROBLEM 
Problematic buffer overruns2 related to the C programming language data 
integrity model were first recognized as early as 1973.  The first well known 
exploit of this vulnerability occurred in 1988 when the well documented and 
infamous Internet Worn shutdown over 6,000 systems in just a few short hours, 
utilizing an unchecked buffer initialized by the gets() function call in the fingerd 
daemon process.  Despite this lengthy history and simple preventative methods, 
the buffer overflow continues to be a significant and prominent computer security 
concern even today.  For example, buffer overflow problems are implicated in 

                                                 
1 Robert Louis Stevenson from “The Body Snatcher” published in 1881. 
 
2 Buffer overflows have assumed several different names over the years.  These include buffer 
overrun, stack overrun, and stack overflow.  In practice, all these terms share the same definition 
and can be used synonymously and interchangeably.  Additionally, the stack buffer overflow 
exploit is often referred to as “stack smashing” in modern day parlance. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

  Page  2 of 24 

five of the Sans “Top 20” vulnerabilities.3  If one ventured to the SuSE Linux Web 
Site, they would find 22 buffer overflow vulnerabilities since January 2001 that 
require patching (see Table I).  Additionally, of the 44 CERT advisories published 
between 1997 and 1999, 24 were related to buffer overrun issues. 
 

TABLE I 
BUFFER OVERFLOW VULNERABILITIES SUSE LINUX 
Date Vulnerability 

12.03.2002 buffer overflow in zlib library 
04.03.2002 buffer overflow in squid 
28.02.2002 revised: buffer overflow in cupsd 
28.02.2002 buffer overflows in mod_php4 and mod_php 
25.02.2002 buffer overflow in cupsd 
25.01.2002 buffer overflow in rsync buffer overflow in rsync 
16.01.2002 buffer overflow corruption in /usr/bin/at 
07.01.2002 buffer overflow in mutt 
24.12.2001 buffer overflow in glibc globbing functions 
03.12.2001 buffer overflow problems in openssh 
28.11.2001 buffer overflows in wuftpd 
10.10.2001 overflow in lpd/lprold 
20.09.2001 buffer overflow in WindowMaker 
03.09.2001 daemon buffer overflow (nkitb) 
23.08.2001 signedness buffer overflow in sendmail 
17.08.2001 fetchmail buffer overflow 
24.07.2001 (xli) buffer overflow, local+remote 
18.04.2001 exploitable buffer overflow in sudo 
09.04.2001 xntpd remotely exploitable buffer overflow 
27.03.2001 buffer overflow in eperl 
22.03.2001 one-byte-buffer overflow in bsd-ftpd and in timed 
31.01.2001 buffer overflow in bind8 (new problem; January 2001) 

 
Resident and lingering buffer overruns left in program code are often attributed to 
“lazy”,  “sloppy”, or “uncaring” programmers, or to modern compilers that fail to 
perform integrity or bounds checking on their source input or machine output 
instructions.  However, these views may be a bit too simplistic.  The root of the 
problem may run deeper than that.  For instance, despite their prevalence today, 
the buffer overflow vulnerability and attack remain only loosely and informally 
documented in the literature.  From this one might conclude the problem is 
generally not well understood.  This may explain why overrun vulnerabilities 
continue to appear in new software applications. 
 
Some clarification is necessary here. Indeed, the buffer overflow and exploit 
problem are well known.  Unfortunately, “well known” and “well understood” are 
often two entirely different views of the same thing.  For instance, nearly every 
book, article, or white paper worth its salt that focuses on computer security 

                                                 
3 These include W2-ISAPI Extension Buffer Overflows, U1-Buffer Overflows in RPC Services, U3-
Bind Weaknesses, U5-LPD (remote print protocol daemon), and U6–sadmind and mountd.   
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mentions the buffer overflow vulnerability and their enabling factors.  They 
normally even site preventions or defenses against them.  However, they 
typically avoid discussing or describing the intricate details or complex 
mechanisms of their cause and their manipulative use in terms that can easily be 
understood by the novice or inexperienced programmer, system administrator, or 
computer security practitioner or principal. 
 
Certainly, several detailed accounts of the buffer overflow exploit have been 
written.  These were cited by Nicole LaRock Decker in her GSEC paper “Buffer 
Overflows: Why, How and Prevention”.  However, these accounts were written by 
exceptionally brilliant, and perhaps devious, programmers that chose to jump 
straight into the details of the low level machine and assembler code necessary 
to effect the overrun exploit.  A typical reader of these accounts usually becomes 
overwhelmed by the third paragraph, and lays the document to rest. 
 
THE MECHANISM 
Buffer overflow vulnerabilities are often attributed to the combined effects of the 
permissions security features of the UNIX operating system and defects in the C 
programming language.  Such was the premise assumed by Nathan Smith in his 
1997 study “Stack Smashing Vulnerabilities In The UNIX Operating System.”  
However, the vulnerability is not just limited to C or UNIX.  Indeed, both DilDog 
and David Litchfield demonstrated the exploit could be used effectively against 
the Windows NT kernel in their respective papers “The Tao Of Windows Buffer 
Overflow” and “Exploiting Windows NT4 Buffer Overruns.”   The paper  “Windows 
NT Buffer Overflow’s Start to Finish” shows the problem present and able within 
the MFC4 as well.  Hence, this paper views the buffer overflow as a language 
and an operating system independent problem. 
 
Microsoft Corporation defines the buffer overflow attack as follows:  
 

A buffer overflow attack is an attack in which a malicious user exploits an unchecked 
buffer in a program and overwrites the program code with their-own data. If the 
program code is overwritten with new executable code, the effect is to change the 
program's operation as dictated by the attacker. If overwritten with other data, the likely 
effect is to cause the program to crash. 

 
Since Microsoft has produced their fair share of buffer overflow vulnerabilities 
over the years, they should be well versed on the problem and we should not 
doubt the validity of this description.  Thus, we will use this as our official working 
definition.  But what exactly does this mean?  And, how do we get there?  
 

                                                 
4 MFC is the acronym for Microsoft Foundation Class, Microsoft’s C++ OOP library. 
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To answer these questions adequately, we must begin by looking at the high 
level language code and the resultant machine code at the most basic level of 
the “hardware chain”, and investigate how the 80386 processor architecture 
manages and utilizes memory.5 
 
The Buffer Overflow  
A buffer overflow is very much like pouring ten ounces of water in a glass 
designed to hold eight ounces.  Obviously, when this happens, the water 
overflows the rim of the glass, spilling out somewhere and creating a mess.  
Here, the glass represents the buffer6 and the water represents application or 
user data.  Let’s look a simple C/C++ code snippet that overruns a buffer.   
 
In this function we have a buffer capable of holding eight ASCII characters.  
Assuming we are on a 32-bit system, this means 16 bytes of memory have been 
allocated to the buffer.  We then place the 
buffer in an initialization loop and force-
feed 15 “x” characters into it through 
programming error.  Obviously they are not 
all going to fit, and nine of them must spill 
over into some other memory area like the 
water overflows its glass.  Notice there is 
no code in this function to check the 
bounds of the array or to prevent this 
programming error from occurring.  Under 
most conditions, the overrun of a buffer 
does not present a security problem in 
itself.  Typically, a segmentation fault will occur and the program will terminate 
with a core dump.  The buffer overflow itself really is that simple.   As we shall 
soon see though, identifying and exploiting the vulnerability complicates matters 
very quickly. 
 
Types of Buffer Overflows 
The literature defines the “Stack” and the “Heap” as the two primary types of 
buffer overrun situations.  The stack overflow has two basic variations.  One type 
involves overwriting (and thus changing) security sensitive variables or control 

                                                 
5 With the exception of VMS, most computer architectures, including the Spark, handle memory 
use in a similar fashion.  One difference that must be considered is the big-endian, little-endian 
phenomenon.  In big-endian architectures, the leftmost bytes (those with a lower address) are 
most significant. In little-endian architectures, the rightmost bytes are most significant.  Many 
mainframe computers, particularly IBM mainframes, use a big-endian architecture. Most modern 
computers, including PCs, use the little-endian system. The PowerPC system is bi-endian 
because it can understand both systems. 
 
6 In its simplest terms, a buffer is a chunk of memory used to temporarily store user data. 
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flags stored in memory adjacent to the unchecked buffer.  The most common 
type of stack overflow involves the overwriting of function pointers that can be 
used to change program flow or gain elevated privileges within the operating 
system environment.  The more complex heap overrun involves dynamic 
memory allocations, or memory allocated at run time by an application.   
 
In this study, we will place our focus on the Stack Buffer Overflow.  However, in 
either case, one must have a good understanding of how the operating system 
allocates memory, and how the application utilizes this allocation.  Additionally, 
this may be the prudent opportunity to define and demonstrate what the stack 
and heap are and how they work in realistic application. 
 
Structure and Management of Program Memory 
Any application or program can logically be divided into the two basic parts of 
text and data.  Text is the actual read-only program code in machine-readable 
format, and data is the information that the text operates on as it executes 
instructions.   Text data resides in the lower areas of a processes memory 
allocation.  Several instances of the same program can share this memory area.  
 
Data, in turn, can be divided into the three logical parts of static, stack, and heap 
data.  The distinction between these types is 
dependant on when and how the memory is 
allocated, and where it is stored or located.  
When an executable is first loaded by the 
operating system, the text segment is 
loaded into memory first.  The data 
segments then follow.  Figure 1 
demonstrates these relationships. 
 
Static data, located above and adjacent to 
the text data, is pre-known information 
whose storage space is compiled into the 
program.  This memory area is normally 
reserved for global variables and static C++ 
class members.  Static data can be in either 
an initialized or uninitialized state.  Heap 
data, located above and adjacent to static 
data, is allocated at runtime by the C 
language functions malloc() and calloc(), 
and by the C++ new operator.  The heap 
grows up from a lower memory address to a 
higher memory address. 
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The stack is an actual data structure in memory, accessed in LIFO (last-in, first-
out) order.  This memory segment, located above and adjacent to heap data, 
grows down from a higher memory address to a lower memory address.  Like 
heap data, stack data is also allocated at runtime.  The stack is like a “scratch 
pad” that temporarily holds a function’s parameters and local variables, as well 
as the return address for the next instruction to be executed.  This return address 
is of prime importance as it represents executable code sitting on the stack 
waiting for its turn to execute. 
 
A thorough understanding of the stack and how it functions and performs is 
essential to understanding how buffer overflow vulnerabilities can be used and 
exploited for devious and malicious purposes.  This being the case, we need to 
explore the stack and the stack segment in a little more detail.  To do this, we will 
take a temporary and adventurous detour down to the hardware level and into 
the bowels of the Intel 80386 CPU.  Let’s begin with the CPU Registers. 
 
Registers 
Registers are either 16 or 32 bit7 high-speed storage locations directly inside the 
CPU, designed for high-speed access.  For the purposes of discussion, registers 
can be grouped into the four categories of Data, Segment, Index, and Control 
(see Table II).  Certainly, there are some terms here that should seem somewhat 
familiar.  The complete register set is illustrated in Figure 2. 
 

TABLE II 
REGISTER SET INTEL 80386 ARCHITECTURE 

Category Register Function 
Data EAX (accumulator) 

EBX (base) 
ECX (counter) 
EDX (data) 

Used for arithmetic and data movement.  Each 
register can be addressed as either a 16 or 32 bit 
value.  EBX can hold the address of a procedure or 
variable. 

Segment CS (code segment) 
DS (data segment) 
SS (stack segment) 
ES (extra segment) 
FS & GS 

Used as base locations for program instructions, data, 
and the stack.  All references to memory involve a 
segment register used as a base location. 

Index EBP (base pointer) 
ESP (stack pointer) 
ESI (source index) 
EDI (destination index) 

Contain the offsets of data and instructions.  The term 
offset refers to the distance of a variable or instruction 
from its base segment.  The stack pointer contains the 
offset of the top of the stack 

Control EIP (instruction pointer) 
EFLAGS 

The instruction pointer always contains the offset of 
the next instruction to be executed within the current 
code segment. 

 
For instance, the segment registers CS, DS, ES, and SS used as base locations 
for program instructions (text data), data (static and heap data), and the stack 
                                                 
7 32-bit and 64-bit in 64 bits systems such as the Alpha and the new Intel Itanium. 
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(stack data).  The index registers EBP and ESP contain offset references to the 
code, data, and stack registers.  They are, in effect, a compass or positioning 
service that allow the program to keep track of exactly where all of its data and 
instructions are located. 
 
The data registers contain actual data bits and are used for the movement and 
manipulation of this data.  EBX is particularly useful for holding the address of a 
function or variable.  EBX plays a crucial role in the exploitation of a buffer 
overrun.  The control registers are bit-wise storage units used to alert the 
program or CPU of critical states or conditions, within the data or the program 
itself.  EIP is of special importance in that it 
contains the address of the next instruction to 
be executed.  Again, this is a crucial element 
in the exploitation of the buffer overrun. 
 
The Stack 
Our primary interest, of course, is the stack.  
Let’s look at this data structure a bit closer and 
see how it relates to and interfaces with the 
registers. We are forced to look at a little 
assembly language code at this point, but as 
you shall see, it is really not all that frightening. 
 
As mentioned earlier, the stack is a special 
memory buffer outside of the CPU used as a 
temporary holding area for addresses and 
data.  The stack resides inside of the stack 
segment.  Each 16-bit location on the stack is 
pointed at by the ESP register, or stack 
pointer.  The stack pointer, in turn, holds the 
address of the last data element to be added 
to, or pushed onto the stack.   
 
It is important to note that the push operation 
pushes data backwards onto the stack.  This is 
what causes stack memory to grow downward, 
or grow toward the lower memory addresses.  
Now this can truly be confusing and make one’s head spin, but it must be 
understood to execute an attack on the stack.  So please, just hang tight.   
 
Conversely, the last value added to the stack is also the first one to be removed, 
or popped from the stack.  Hence, the stack is a LIFO (first-in, last-out) data 
structure.  For clarity, let’s illustrate this. 
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A push operation copies a value onto the stack.  When a new value is pushed, 
ESP (the stack pointer) is decremented.  ESP always points to the last value 
pushed.  The PUSH instruction is used to accomplish this (Figure 3).  The PUSH 
instruction does not change the contents of EAX, but rather it copies the contents 

of EAX onto the stack.  As more 
values are pushed, the stack 
continues to grow downward in 
memory (Figure 4). 
 
A pop operation removes a value 
from the top of the stack and 
places it in a register or variable.  
After the value is popped from the 
stack, the stack pointer is 
incremented to point to the 
previous value on the stack.  The 
POP instruction is used to 
accomplish this (Figure 5). 
 
Now that we have seen how the 
stack works at the assembler and 
machine code level, let’s examine 
this same process from above 

using C/C++ code. 
 
Stack Operations With C/C++ 
We have now seen how memory is allocated when an executable is first loaded.  
We have also looked specifically at the stack segment, how a program pushes 
and pops runtime data to it and from it, and how the stack pointer (ESP) holds 
the address of the last data element added to the top of the stack.  This is all well 
and good, but it has provided little insight into how buffer overruns are used and 
exploited.  That being the case, it is now time to roll up our sleeves and get down 
to some serious business.  Time is valuable, so lets not mess around any longer.  
Needless to say, though, this is where 
things start to get a bit messy and 
complicated. 
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Enter the stack frame pointer (SFP)8.  The frame pointer always points to a fixed 
location within the stack frame.  Technically speaking, any parameters or local 
variables that are pushed onto the stack 
could be referenced by their offsets 
from the stack pointer (ESP).  However, 
due to the dynamic nature of the stack, 
these offsets are provided their own 
reference and are normally stored in the 
EBP (base pointer) register.  In the 
CPU, this is accomplished by assembly 
instructions involving both the SFP and 
EBP.  Consequently, function 
parameters pushed onto the stack will 
have positive offsets from SFP, while 
local variables will have negative offsets 
from SFP9. 
 
When a function is invoked in the 
C/C++ language, variables already on 
the stack must be saved, and space for 
any new variables must be allocated.  
The opposite is true when a function 
exits.  When this happens, the prior SFP is pushed onto the stack and a new is 
SFP is created.  ESP then operates with reference to the new local variables.  
Let’s illustrate with some actual code to limit the mass confusion that must be 
setting in about now. 
 
The following function fragment is drawn from a program developed specially for 
this study to demonstrate “stack smashing” and the hacking capabilities 
presented by the buffer overflow situation.  It’s amazing the damage just a few 
lines of code can do.  But we are not quite ready to unveil it all as we still have a 
few things to learn first.  At this moment, we are only concerned with the 
sequential order compiled C/C++ code pushes data onto the stack.  From this, 
we may glean some ideas for potential exploits.  So let’s take a look. 
 

                                                 
8 The stack frame pointer (SFP) is sometimes referred to as the local base pointer (BP). 
 
9 Remember it was stated earlier that stack operations were enough to make your head spin. 
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The authenticate() function (shown below) is anything but hypothetical.  It’s going 
to do some real work for us.  However, it has been temporarily modified so we 
can learn from it.  Authenticate() is designed to authenticate a user attempting to 
“login” to a computer system.  Access is then either permitted or denied.  
Authenticate() accepts two string pointers as arguments (passed in as 
parameters).  The two 16 byte parameters consist of a password entered by the 
user, and a password obtained from the system, presumable either from the 
SAM database in Windows NT or the /etc/passwd (/etc/shadow/) in UNIX10. 
 
Additionally, authenticate()  
contains two local 16 byte 
data buffers11 into which the 
password parameter values 
will copied.  Through a little 
programming trickery12 we 
can actually watch the 
parameter values and local buffers be pushed onto the stack.  The compiled 
assembler code, minus the printf() statements, appears as follows: 
 
When executed, this code first pushes the two arguments to authenticate() 
backwards onto the stack.  It then calls authenticate().  The instruction CALL then 
pushes the instruction pointer (EIP) onto the stack13.   Authenticate() is now free 
to execute on its own.  First, it pushes the stack frame pointer onto the stack.  
The current stack pointer (ESP) is then copied into EBP, making it the new frame 
pointer (SFP).  Next, memory space is allocated to the local buffers by 
subtracting their size from ESP.  Finally, the printf() functions kick-in to verify that 
indeed this is what is occurring on the stack.  Here is what we see when we run 
this block of code: 

 

                                                 
10 Windows NT implies any Windows system utilizing the core NT kernel to include Windows 2000 
and Windows.NET.  UNIX includes the feisty UNIX clone, Linux. 
 
11 It is important to note that even though these buffer arrays consist of eight ASCI characters, 
each “char” data type is allocated two bytes (one word) of memory in a 32-bit system. 
 
12 To do this, we will supply the hexadecimal notation (%x) to the C printf() function in place of the 
string notation (%s). 
 
13 Referred to as ret, EIP is now holding the address of the next code to be executed one the 
authenticate() function exits. 
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What we expected would happen, in fact, did happen.  First, parameter 2 (char 
pointer string2) is pushed onto the top of the stack at address 0x12fdd8, thereby 
assuming the highest memory address.  Next, we see parameter 1 (char pointer 
string1) pushed onto the top of the stack, but backwards from parameter 2.  
Since the stack grows downward toward lower memory address, we should 
expect parameter 1 to hold a lower memory address.  In fact, it holds address 

value 0x12fdd4, exactly four bytes down for parameter 214.   
 
Next, although not exposed here, instruction pointer (EIP) and the stack frame 
pointer (EBP) are each pushed in respective order.  
Finally, memory for the two local buffers is 
allocated on the stack.  With the stack continuing to 
grow downward, buffer1 takes address 0x12fdc0, 
and again as expected, buffer2 grabs address 
0x12fdb0 at the top of the stack, exactly 16 bytes 
down from buffer1. 
 
Wow.  What a mouthful.  To simplify this dribble 
and put everything in proper perspective, let’s 
diagram the stack as it exits in its present condition 
(Figure 6).  What we have here is a stack just 
waiting to be “smashed”.  The time has finally 
come to explore the methods and tactics behind 
the buffer overflow attack.  Let’s put on our black 
hats and become the attacker. 
 
THE METHOD 
For a buffer overrun attack to be possible and be 
successful, the following events must occur, and in 
this order: 
 
1. A buffer overflow vulnerability must be found, 

                                                 
14 Since the parameter values were both 16 byte values, you might be wondering why parameter 
1 is four bytes down and not 16 bytes down.  In C++, parameters may be passed either by value 
or by reference.  Since they were passed by reference in this case, they are actually holding the 
32-bit address of the value, and not the value itself.  Had they been passed by value, their 
addresses would be 12feb0 and 12fec0 respectively. 
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discovered, or identified. 
 
2. The size of the buffer must be determined. 
 
3. The attacker must be able to control the data written into the buffer. 
 
4. There must be security sensitive variables or executable program instructions 

stored below the buffer in memory.  
 
5. Targeted executable program instructions must be replaced with other 

executable instructions. 
 
Let’s look at each of these five conditional steps individually. 
 
Step 1: Discovery and Identification 
There are four primary means by which discovery or identification may take 
place: 
 
1. By the reporting of others, albeit by white hat security alert or bulletin, or 

through the black hat underground. 
 
2. By scrutinizing source code. 
 
3. By accident or stroke of luck. 
 
4. By brute trial and error, utilizing intentional and systematic means. 
 
The first two means are quite obvious and warrant no discussion here.  
Accidental discovery may often be unrecognized as such, with the end result 
being a “crash dump” of the UNIX or NT system, or the proverbial MessageBox 
informing the Windows user that their program has either performed “an illegal 
operation and will be shutdown”, or their program “instruction referenced memory 
that could not be read”.  However, the savvy or devious minded user might take 
notice of the potential significance and investigate further by employing brute trial 
and error through intentional and systematic means. 
 
Trial and error tactics might be used from the start by those who have far too 
much time on their hands.  The trail and error process literally involves the 
repetitive feeding of varying length input into a program or application15.  By 
chance, if the “your program has performed an illegal operation and will be 
shutdown” or “your program instruction referenced memory that could not be 
                                                 
15 This is commonly done utilizing looping functions in scripts, effectively “automating” the 
process. 
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read” message arises16, then “Bingo!! At this point, additionally investigation 
through yet more trial and error is required to determine if indeed a buffer overrun 
has been discovered.   Once the overrun is confirmed, the real brainwork begins.  
 
The Demonstration Code 
This may be a good time to break out the full version of our demonstration 
program and begin illustrating the exploit procedure.  Earlier we were introduced 
to the authenticate() function for illustrating stack operation.  Here is the entire 
code block for the program authenticate.exe: 
 
Authnticate.exe is a simple program, and quite frankly, one exactly like it is not 
likely to be found in a production environment.  Let’s hope not anyway.  However, 
it should prove more than adequate to show us how a hacker works on an 
unchecked buffer.  Here is how the program works. 
 

First, main() allocates three array variables to contain the information necessary 
to authenticate a user logging into  to a computer system.  The program requests 
that the user input their name and password.  This information is obtained by 

                                                 
16 It should be noted that many different types of errors may produce these messages.  They are 
not all indicative of a buffer overrun. 
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calling the notoriously flawed17 C subset gets() function.  Once main() has the 
users “username” in hand, it calls the function get_password() to acquire the 
expected authenticating  “password” from the system database.  It then passes 
the “input password” and the “system password” to our old friend authenticate() 
for further processing. 
   
Next, authenticate() promptly copies the two password values into their 
respective buffers using the flawed strcpy() function.  Finally, the contents of the 
two buffers are compared by calling the flawed strcmp() function.  If the two 
values match, the user is authorized, and they are permitted to use the system.  
Now, let’s run it. 
  
Seems to work pretty good to me.  As you can see, the user entered the 
username of  “mark” and the password of “passwd”.  This matched the entries in 
the /etc/shadow file, and the user was successfully authenticated.  So, what’s the 
problem? 
 

                                                 
17 Flawed means it happily and willingly accepts a buffer value as an argument without first 
checking its size or limits.  Notorious means the “flaw” is well known and an easy target for exploit 
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To answer this question, let’s back track to Step 1 (Discovery and Identification) 
of the buffer overrun attack, and begin feeding varying length input into the 
program’s password request.  And Bingo!!  We hit pay dirt. 
 

We just overran a buffer and discovered a overflow vulnerability.  Now Step 2. 
 
Step 2: Determine Buffer Size 
Before we can do much with our newly discovered buffer problem, we need to 
determine the exact size of the buffer.  We can do this through experimentation, 
and by slowly growing and shrinking the number of characters we input into the 
buffer.  As soon as we determine the exact number of characters it takes to crash 
the program, we have completed Step 2.  In this case, it took little work to figure 
out this was an eight character array (seven chars plus one null terminator).  We 
now know at which point the buffer begins to overflow.  Now Step 3. 
 
Step 3: Control Data Written Into Buffer 
Based on what we have learned about this program thus far, this step may be a 
no brainer.  Let’s feed in a series of x’s and see if we are able to control what 
happens within the program. 
 
Seems as though we can.  First, we entered the same username of “mark”.  As 
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an obedient program would, it successfully retrieved the correct password of 
“passwd” for user “mark“ from the /etc/shadow file.   However, instead of entering 
the correct password, we entered 10 x’s.  Something dreadful has happened to 
what the program believes to be the “system password”.  Step 3 completed.  
 
Step 4: Overwrite Security Sensitive Variables Below The Buffer 
There are several possibilities of action once the hacker has reached this stage 
of the process.  In our Step 4, we will attempt to overwrite a security sensitive 
variable by overflowing the vulnerable buffer with input of our choice, thereby 
affecting the outcome of the program.  Here we go.  
 

Observe that we just changed the “system password” from “passwd” to “phony” 
by overwriting it with input of our choice.  We, the hacker, now have complete 
control of this program.  Depending on what we wish to accomplish, there are 
several different directions in which we could go.  First, let’s take another look at 
the stack and see exactly what has occurred to this point (Figure 7). 
 
First, the two password parameters (password and etc_password) were passed 
into authenticate() by reference.  When authenticate() executes, strcpy() is called 
to perform a bit-by-bit copy of etc_password into buffer1.  Next, strcpy() is again 
summands to perform a bit-by-bit copy of password into buffer2.  Unfortunately, 
strcpy() pays no attention to the size or the contents of either password or 
buffer2.  Buffer2 loads up with eight char values, but strcpy() blindly continues to 
pump the additional values from our input into buffer2.  The real problem is they 
don’t fit, but must go somewhere.  Alas, the glass begins to overflow.  Due to the 
inherent nature of stack operation, the additional char values literally overflow 
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buffer2 and spill over into buffer1.  As an end result, we successfully changed the 
“password” value that is to be matched against our input for authentication.  
Thus, we now control both values at will. 
 
Step 5: Replace Targeted Executable Instructions With Other Instructions 
Most black hats won’t be satisfied with this achievement alone however.  They 
are generally seeking larger and more grandeur things, such as elevating their 
privilege in the system by becoming “root” or “administrator”.  That leads us to 
Step 5. 
 
We have learned a great deal about the stack 
up to this point, as well as our demonstration 
code.  For instance, when the CALL to 
authenticate() was made, the program and 
processor needed to mark its trail so they would 
know where to go once authenticate() 
completed its execution.  To accomplish this,  
the instruction pointer (EIP) was pushed onto 
the stack directly after authenticate()’s 
parameters.  EIP holds this “return address”, 
and this is the address of an executable 
instruction.  We observe that EIP also resides 
on the stack below the memory buffer we have 
already proven can be manipulated at will.  This 
indeed presents a tempting situation.  Before 
we proceed, let’s first, let’s take a quick look at 
system processes and privileges. 
 
System Processes and Privileges 
Although the internal mechanism works quite 
differently, both Windows NT and UNIX have a 
commonality in the manner new processes are 
created.  For instance, in UNIX, when a process 
forks or creates a child process, the child 
process generally has the same privilege level 
as its parent process.  Consequently, if a program was configured with SUID 
“root” permissions and made world executable, any process it spawned would 
most likely have identical privileges.  This would include any UNIX shell that 
might be spawned. 
 
Similarly, in Windows NT, when a process starts a child process, the child 
process normally inherits the access token18 of the parent process19.   
                                                 
18 In Windows NT, an access token is a numeric key that determines privilege level and what a 
user can do on that machine. 
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Consequently, if a program running with system or administrative privileges were 
to launch a “command shell”, the newly created shell process would normally 
inherit the access tokens of its parent process.  Now that we know this, we can 
continue with Step 5 of our exploit. 
 
It should now be apparent that our goal, as hacker, is to obtain elevated system 
privilege using the problematic buffer we have been working with.  Since our 
authentication program is doubtlessly running with system privilege, it may be 
very possible to achieve this goal utilizing the executable code EIP will direct us 
to.  Since we are working on a Windows machine, we will attempt to execute a 
Windows command shell “cmd.exe” using the system() function.  Here is the 
game plan20: 
 
1. Push EBP onto the stack as relative stack reference pointer. 
 
2. Create and push a NULL on the stack as string “cmd.exe” must have a null 

terminator.  This is done by “xoring” a register with itself (xor edi, edi; push 
edi). 

 
3. Push the code we want to execute (cmd.exe) onto the stack and use EBP to 

position and track its starting address.  To do this, we will need to push each 
byte individually and in reverse order (exe.dmc). 

 
4. Push the address of the system() command (0x780208C3) on the stack to 

overwrite EIP (0x015DF124) (mov eax, 0x780208C3; push eax). 
 
5. Push the starting address of cmd.exe onto the stack with reference from EBP 

(lea eax,[ebp-08h]; push eax). 
 
6. Call system() with reference to EBP (call dword ptr [ebp-0ch]). 
 
With the stack set up in this fashion, the normal course of program execution will 
call system(), which in turn will launch “cmd.exe.”  Goal achieved.  Game over21. 

                                                                                                                                                 
 
19 There are exceptions.  For instance some processes can be started using the Win32 API 
CreateProcessAsUser() function that will start the new process under the security context of 
another user.  In this case, the new process will have a different access token than the parent 
process. 
 
20 The precise code for this part of the exploit has intentionally been withheld as this is an 
educational presentation, and not a “How To.”   However, for those inclined, enough detail has 
been provided to reproduce it with sufficient effort. 
 
21 This same exploit could be easily be executed on a UNIX box using the execve() function and 
“/bin/sh”, or any other UNIX shell. 
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PREVENTION 
Although we have just demonstrated a nightmare scenario for any system 
administrator, we must bear in mind that ALL such buffer overflow attacks are 
very preventable, and the “disease” that allows them to persist certainly may be 
eradicated in the future.   However, an effective vaccine must first be developed.  
The remainder of this report will focus on cure and prevention.  Please select 
from the menu. 
 
1. Use Different Language Tools.  Language tools that provide automatic 

bounds checking such as Perl, Python, and Java.  True, these are available.  
However, this is usually not possible or practical when you consider almost all 
modern operating systems in use today are written in the C language.  The 
language tool becomes particularly critical when low-level hardware access is 
necessary.  The good news is with languages evolving, language and code 
security has becoming a serious issue.  For example, Microsoft in their .NET 
initiative has completely re-written Visual Basic and Visual C++22 with “string 
safe” security in mind.  Additionally, they have added the Visual C# tool which 
was designed from the ground up with security in mind. 
 

2. Eliminate The Use Of Flawed Library Functions.  Programming languages 
are only as flawed as the programmer allows them to be.  In our 
demonstration, we utilized three flawed functions from the Standard C Library 
(gets(), strcpy, and strcmp).  These are just three of many such functions that 
fail to check the length or bounds of their arguments.  For instance, we could 
have completely eliminated the buffer 
overflow vulnerability in our demonstration 
by changing one line of code.  This simple 
change informs strcpy() that it only has an 
eight byte destination buffer and that it 
must discontinue raw copy at eight bytes. 

 
The persistence of programming errors of this nature may indeed be related 
to the manner in which we train and educate young programmers.  One can 
pick up an introductory college textbook on C or C++ and find this set of 
flawed functions introduced by the third chapter.   Sure, they make great 
training aids.  However, humans are creatures of habit and tend to use what 
they know best and are most comfortable with. 

 
3. Design And Build Security Within Code.  It takes more work, and it takes 

more effort, but software can be designed with security foremost in mind.  If 

                                                                                                                                                 
 
22 Visual C++ is Microsoft’s proprietary version of the C++ language. 
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the previous example, we could have yet added one extra step to assure 
complete buffer safety: 

 
Again, this may go back to how we train programmers.  Is code security 
taught and encouraged?  Are they given the extra time to design security 
within their code?  Typically, and unfortunately, the answer to these questions 
is no23. 
 

4. Use Safe Library Modules.  String safe library modules are available for use, 
even in problematic languages such as C++.  For instance, the C++ Standard 
Template Library offers the Class String in its standard namespace.  The 
String Class provides bounds checking within its functions and be preferred 
for use over the standard string handling functions.  

 
5. Use Available Middleware Libraries.  Several freeware offerings of “safe 

libraries” are available for use.  For instance, Bell Labs developed the 
“libsafe24” library to guard against unsafe function use.  libsafe works on the 
structure of stack frame linkage through frame pointers by following frame 
pointer to the stack frame that allocated a buffer.  When a function executes, 
it can then prevent the return address from being overwritten.  However, 
libsafe is not without security problems of its own as it has been reported that 
libsafe's protections can be bypassed in a format-string-based attack by using 
flag characters that are used by glibc but not libsafe.  Users of libsafe should 
upgrade to version 2.0-12 

 
6. Use Source Code Scanning Tools.  Several attempts have been made to 

design a tool that performs analysis on raw source code with the hope of 
identifying undesirable constructs to include buffer vulnerabilities.  The boys 
at L0pht Heavy Industries (now a white hat group called @atstake) produced 
one such tool called “Slint” a few years back, but it was never released.  
Probably the most successful tool to date is Rational’s 
(http://www.rational.com) PurifyPlus Software Suite that capably performs a 
dynamic analysis of Java, C, or C++ source code.  Although the specialty of 
PurifyPlus is memory leak detection, it is capable of hunting down unchecked 

                                                 
23 It was recently reported in the media that Bill Gates went on a tirade about code security at 
Microsoft  In fact, he reportedly stopped all new code production for one month to train his 
programmers in code security basics.  Until now, Microsoft has stressed form and function at the 
expense of security. 
 
24 Libsafe has apparently now been turned over to Avaya Labs http://www.avaya.com for keeping 
and maintenance. 
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buffers and other coding errors that could possibly lead to buffer overrun 
conditions. 

 
7. Use Compiler Enhancement Tools.  Although a relatively new concept, 

several compiler add-on tools have recently been made available that work 
closely with function return address space to prevent overwriting.  One such 
tool, Stack Shield (http://www.angelfire.com/sk/stackshield), provides 
protection by taking a copy of RET and temporarily placing it in a location not 
subject to overflow attacks.  Upon return, the two address values are 
compared.  If they are different, the return address has been modified and 
Stack Shield terminates the program.  A somewhat similar tool, Stack Guard 
(http://www.immunix.org/stackguard.html), is able to detect a return address 
being overwritten in real time.  When it does, it proceeds to terminate the 
program. 

 
8. Disable Stack Execution.  Although it requires the operating system kernel 

to be recompiled, patches are available for some versions of UNIX that render 
the stack non-executable.  Since most buffer overrun exploits depend on an 
executable stack, this modification will essentially stop them dead in their 
tracks.  A patch for the Linux kernel has been made available by the 
Openwall Project (http://www.openwall.com).  

 
9. Know What Is On Your System. Awareness of what is on your system and 

who has the privileges to execute it is essential.  SUID root executable, and 
root owned world writable files and directories are the favorite target of many 
attacks.  Find them, list them, and know them.  The following few simple 
commands may be your best friend: 

 
Once your list is complete and in hand, programs are available to test each 
for buffer overrun vulnerabilities.  Should a “segmentation fault” be occur 
during testing, chances are you have just discovered a vulnerable program. 

 
10. Patch The Operating System And Application.  Perhaps the very best 

defense is to stay informed and remain “offensive”.  As new vulnerabilities are 
discovered and reported, apply the necessary patches and fixes promptly. If 
you are in a Microsoft shop, this may get very tiresome very quickly.  It may 
even seem like an endless task.  But cheer up.  Knowledge in increasing and 
understanding is improving.  The diseased will be cured. 
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