
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 1 of 24

INSIDE THE BUFFER OVERFLOW ATTACK:
MECHANISM, METHOD, & PREVENTION
Mark E. Donaldson
April 3, 2002
GSEC Version 1.3

ABSTRACT
The objective of this study is to take one inside the buffer overflow attack and
bridge the gap between the “descriptive account” and the “technically intensive
account”. The intent is to provide a logical, detailed, and technical explanation of
the problem and the exploit that can be well understood by all, including those
with little background in the mechanics and methodology of applications
programming.

We will begin by looking at the “problem” and the problem “mechanism”, and
then investigate the “means” and the “method”. Based on what we find, we will
conclude with recommendations, and a menu for “prevention”. Hopefully this
approach may also help bridge the gap between “knowledge” and
“understanding”. Although it may never be possible to purge the world of this
security concern, it is certainly within the realm of possibility that the buffer
overflow attack be reduced to a level of insignificance through true
understanding. Robert Louis Stevenson once wrote: “Look at yourself. Could
you be a doctor, a healing man, with the things those eyes have seen? There’s a
lot of knowledge in those eyes, but no understanding.1” The technology
community must move from fighting buffer overrun attacks defensively to fighting
them offensively. To do this, they must transform their knowledge into
understanding.

THE PROBLEM
Problematic buffer overruns2 related to the C programming language data
integrity model were first recognized as early as 1973. The first well known
exploit of this vulnerability occurred in 1988 when the well documented and
infamous Internet Worn shutdown over 6,000 systems in just a few short hours,
utilizing an unchecked buffer initialized by the gets() function call in the fingerd
daemon process. Despite this lengthy history and simple preventative methods,
the buffer overflow continues to be a significant and prominent computer security
concern even today. For example, buffer overflow problems are implicated in

1 Robert Louis Stevenson from “The Body Snatcher” published in 1881.

2 Buffer overflows have assumed several different names over the years. These include buffer
overrun, stack overrun, and stack overflow. In practice, all these terms share the same definition
and can be used synonymously and interchangeably. Additionally, the stack buffer overflow
exploit is often referred to as “stack smashing” in modern day parlance.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 2 of 24

five of the Sans “Top 20” vulnerabilities.3 If one ventured to the SuSE Linux Web
Site, they would find 22 buffer overflow vulnerabilities since January 2001 that
require patching (see Table I). Additionally, of the 44 CERT advisories published
between 1997 and 1999, 24 were related to buffer overrun issues.

TABLE I
BUFFER OVERFLOW VULNERABILITIES SUSE LINUX
Date Vulnerability

12.03.2002 buffer overflow in zlib library
04.03.2002 buffer overflow in squid
28.02.2002 revised: buffer overflow in cupsd
28.02.2002 buffer overflows in mod_php4 and mod_php
25.02.2002 buffer overflow in cupsd
25.01.2002 buffer overflow in rsync buffer overflow in rsync
16.01.2002 buffer overflow corruption in /usr/bin/at
07.01.2002 buffer overflow in mutt
24.12.2001 buffer overflow in glibc globbing functions
03.12.2001 buffer overflow problems in openssh
28.11.2001 buffer overflows in wuftpd
10.10.2001 overflow in lpd/lprold
20.09.2001 buffer overflow in WindowMaker
03.09.2001 daemon buffer overflow (nkitb)
23.08.2001 signedness buffer overflow in sendmail
17.08.2001 fetchmail buffer overflow
24.07.2001 (xli) buffer overflow, local+remote
18.04.2001 exploitable buffer overflow in sudo
09.04.2001 xntpd remotely exploitable buffer overflow
27.03.2001 buffer overflow in eperl
22.03.2001 one-byte-buffer overflow in bsd-ftpd and in timed
31.01.2001 buffer overflow in bind8 (new problem; January 2001)

Resident and lingering buffer overruns left in program code are often attributed to
“lazy”, “sloppy”, or “uncaring” programmers, or to modern compilers that fail to
perform integrity or bounds checking on their source input or machine output
instructions. However, these views may be a bit too simplistic. The root of the
problem may run deeper than that. For instance, despite their prevalence today,
the buffer overflow vulnerability and attack remain only loosely and informally
documented in the literature. From this one might conclude the problem is
generally not well understood. This may explain why overrun vulnerabilities
continue to appear in new software applications.

Some clarification is necessary here. Indeed, the buffer overflow and exploit
problem are well known. Unfortunately, “well known” and “well understood” are
often two entirely different views of the same thing. For instance, nearly every
book, article, or white paper worth its salt that focuses on computer security

3 These include W2-ISAPI Extension Buffer Overflows, U1-Buffer Overflows in RPC Services, U3-
Bind Weaknesses, U5-LPD (remote print protocol daemon), and U6–sadmind and mountd.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 3 of 24

mentions the buffer overflow vulnerability and their enabling factors. They
normally even site preventions or defenses against them. However, they
typically avoid discussing or describing the intricate details or complex
mechanisms of their cause and their manipulative use in terms that can easily be
understood by the novice or inexperienced programmer, system administrator, or
computer security practitioner or principal.

Certainly, several detailed accounts of the buffer overflow exploit have been
written. These were cited by Nicole LaRock Decker in her GSEC paper “Buffer
Overflows: Why, How and Prevention”. However, these accounts were written by
exceptionally brilliant, and perhaps devious, programmers that chose to jump
straight into the details of the low level machine and assembler code necessary
to effect the overrun exploit. A typical reader of these accounts usually becomes
overwhelmed by the third paragraph, and lays the document to rest.

THE MECHANISM
Buffer overflow vulnerabilities are often attributed to the combined effects of the
permissions security features of the UNIX operating system and defects in the C
programming language. Such was the premise assumed by Nathan Smith in his
1997 study “Stack Smashing Vulnerabilities In The UNIX Operating System.”
However, the vulnerability is not just limited to C or UNIX. Indeed, both DilDog
and David Litchfield demonstrated the exploit could be used effectively against
the Windows NT kernel in their respective papers “The Tao Of Windows Buffer
Overflow” and “Exploiting Windows NT4 Buffer Overruns.” The paper “Windows
NT Buffer Overflow’s Start to Finish” shows the problem present and able within
the MFC4 as well. Hence, this paper views the buffer overflow as a language
and an operating system independent problem.

Microsoft Corporation defines the buffer overflow attack as follows:

A buffer overflow attack is an attack in which a malicious user exploits an unchecked
buffer in a program and overwrites the program code with their-own data. If the
program code is overwritten with new executable code, the effect is to change the
program's operation as dictated by the attacker. If overwritten with other data, the likely
effect is to cause the program to crash.

Since Microsoft has produced their fair share of buffer overflow vulnerabilities
over the years, they should be well versed on the problem and we should not
doubt the validity of this description. Thus, we will use this as our official working
definition. But what exactly does this mean? And, how do we get there?

4 MFC is the acronym for Microsoft Foundation Class, Microsoft’s C++ OOP library.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 4 of 24

To answer these questions adequately, we must begin by looking at the high
level language code and the resultant machine code at the most basic level of
the “hardware chain”, and investigate how the 80386 processor architecture
manages and utilizes memory.5

The Buffer Overflow
A buffer overflow is very much like pouring ten ounces of water in a glass
designed to hold eight ounces. Obviously, when this happens, the water
overflows the rim of the glass, spilling out somewhere and creating a mess.
Here, the glass represents the buffer6 and the water represents application or
user data. Let’s look a simple C/C++ code snippet that overruns a buffer.

In this function we have a buffer capable of holding eight ASCII characters.
Assuming we are on a 32-bit system, this means 16 bytes of memory have been
allocated to the buffer. We then place the
buffer in an initialization loop and force-
feed 15 “x” characters into it through
programming error. Obviously they are not
all going to fit, and nine of them must spill
over into some other memory area like the
water overflows its glass. Notice there is
no code in this function to check the
bounds of the array or to prevent this
programming error from occurring. Under
most conditions, the overrun of a buffer
does not present a security problem in
itself. Typically, a segmentation fault will occur and the program will terminate
with a core dump. The buffer overflow itself really is that simple. As we shall
soon see though, identifying and exploiting the vulnerability complicates matters
very quickly.

Types of Buffer Overflows
The literature defines the “Stack” and the “Heap” as the two primary types of
buffer overrun situations. The stack overflow has two basic variations. One type
involves overwriting (and thus changing) security sensitive variables or control

5 With the exception of VMS, most computer architectures, including the Spark, handle memory
use in a similar fashion. One difference that must be considered is the big-endian, little-endian
phenomenon. In big-endian architectures, the leftmost bytes (those with a lower address) are
most significant. In little-endian architectures, the rightmost bytes are most significant. Many
mainframe computers, particularly IBM mainframes, use a big-endian architecture. Most modern
computers, including PCs, use the little-endian system. The PowerPC system is bi-endian
because it can understand both systems.

6 In its simplest terms, a buffer is a chunk of memory used to temporarily store user data.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 5 of 24

flags stored in memory adjacent to the unchecked buffer. The most common
type of stack overflow involves the overwriting of function pointers that can be
used to change program flow or gain elevated privileges within the operating
system environment. The more complex heap overrun involves dynamic
memory allocations, or memory allocated at run time by an application.

In this study, we will place our focus on the Stack Buffer Overflow. However, in
either case, one must have a good understanding of how the operating system
allocates memory, and how the application utilizes this allocation. Additionally,
this may be the prudent opportunity to define and demonstrate what the stack
and heap are and how they work in realistic application.

Structure and Management of Program Memory
Any application or program can logically be divided into the two basic parts of
text and data. Text is the actual read-only program code in machine-readable
format, and data is the information that the text operates on as it executes
instructions. Text data resides in the lower areas of a processes memory
allocation. Several instances of the same program can share this memory area.

Data, in turn, can be divided into the three logical parts of static, stack, and heap
data. The distinction between these types is
dependant on when and how the memory is
allocated, and where it is stored or located.
When an executable is first loaded by the
operating system, the text segment is
loaded into memory first. The data
segments then follow. Figure 1
demonstrates these relationships.

Static data, located above and adjacent to
the text data, is pre-known information
whose storage space is compiled into the
program. This memory area is normally
reserved for global variables and static C++
class members. Static data can be in either
an initialized or uninitialized state. Heap
data, located above and adjacent to static
data, is allocated at runtime by the C
language functions malloc() and calloc(),
and by the C++ new operator. The heap
grows up from a lower memory address to a
higher memory address.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 6 of 24

The stack is an actual data structure in memory, accessed in LIFO (last-in, first-
out) order. This memory segment, located above and adjacent to heap data,
grows down from a higher memory address to a lower memory address. Like
heap data, stack data is also allocated at runtime. The stack is like a “scratch
pad” that temporarily holds a function’s parameters and local variables, as well
as the return address for the next instruction to be executed. This return address
is of prime importance as it represents executable code sitting on the stack
waiting for its turn to execute.

A thorough understanding of the stack and how it functions and performs is
essential to understanding how buffer overflow vulnerabilities can be used and
exploited for devious and malicious purposes. This being the case, we need to
explore the stack and the stack segment in a little more detail. To do this, we will
take a temporary and adventurous detour down to the hardware level and into
the bowels of the Intel 80386 CPU. Let’s begin with the CPU Registers.

Registers
Registers are either 16 or 32 bit7 high-speed storage locations directly inside the
CPU, designed for high-speed access. For the purposes of discussion, registers
can be grouped into the four categories of Data, Segment, Index, and Control
(see Table II). Certainly, there are some terms here that should seem somewhat
familiar. The complete register set is illustrated in Figure 2.

TABLE II
REGISTER SET INTEL 80386 ARCHITECTURE

Category Register Function
Data EAX (accumulator)

EBX (base)
ECX (counter)
EDX (data)

Used for arithmetic and data movement. Each
register can be addressed as either a 16 or 32 bit
value. EBX can hold the address of a procedure or
variable.

Segment CS (code segment)
DS (data segment)
SS (stack segment)
ES (extra segment)
FS & GS

Used as base locations for program instructions, data,
and the stack. All references to memory involve a
segment register used as a base location.

Index EBP (base pointer)
ESP (stack pointer)
ESI (source index)
EDI (destination index)

Contain the offsets of data and instructions. The term
offset refers to the distance of a variable or instruction
from its base segment. The stack pointer contains the
offset of the top of the stack

Control EIP (instruction pointer)
EFLAGS

The instruction pointer always contains the offset of
the next instruction to be executed within the current
code segment.

For instance, the segment registers CS, DS, ES, and SS used as base locations
for program instructions (text data), data (static and heap data), and the stack

7 32-bit and 64-bit in 64 bits systems such as the Alpha and the new Intel Itanium.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 7 of 24

(stack data). The index registers EBP and ESP contain offset references to the
code, data, and stack registers. They are, in effect, a compass or positioning
service that allow the program to keep track of exactly where all of its data and
instructions are located.

The data registers contain actual data bits and are used for the movement and
manipulation of this data. EBX is particularly useful for holding the address of a
function or variable. EBX plays a crucial role in the exploitation of a buffer
overrun. The control registers are bit-wise storage units used to alert the
program or CPU of critical states or conditions, within the data or the program
itself. EIP is of special importance in that it
contains the address of the next instruction to
be executed. Again, this is a crucial element
in the exploitation of the buffer overrun.

The Stack
Our primary interest, of course, is the stack.
Let’s look at this data structure a bit closer and
see how it relates to and interfaces with the
registers. We are forced to look at a little
assembly language code at this point, but as
you shall see, it is really not all that frightening.

As mentioned earlier, the stack is a special
memory buffer outside of the CPU used as a
temporary holding area for addresses and
data. The stack resides inside of the stack
segment. Each 16-bit location on the stack is
pointed at by the ESP register, or stack
pointer. The stack pointer, in turn, holds the
address of the last data element to be added
to, or pushed onto the stack.

It is important to note that the push operation
pushes data backwards onto the stack. This is
what causes stack memory to grow downward,
or grow toward the lower memory addresses.
Now this can truly be confusing and make one’s head spin, but it must be
understood to execute an attack on the stack. So please, just hang tight.

Conversely, the last value added to the stack is also the first one to be removed,
or popped from the stack. Hence, the stack is a LIFO (first-in, last-out) data
structure. For clarity, let’s illustrate this.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 8 of 24

A push operation copies a value onto the stack. When a new value is pushed,
ESP (the stack pointer) is decremented. ESP always points to the last value
pushed. The PUSH instruction is used to accomplish this (Figure 3). The PUSH
instruction does not change the contents of EAX, but rather it copies the contents

of EAX onto the stack. As more
values are pushed, the stack
continues to grow downward in
memory (Figure 4).

A pop operation removes a value
from the top of the stack and
places it in a register or variable.
After the value is popped from the
stack, the stack pointer is
incremented to point to the
previous value on the stack. The
POP instruction is used to
accomplish this (Figure 5).

Now that we have seen how the
stack works at the assembler and
machine code level, let’s examine
this same process from above

using C/C++ code.

Stack Operations With C/C++
We have now seen how memory is allocated when an executable is first loaded.
We have also looked specifically at the stack segment, how a program pushes
and pops runtime data to it and from it, and how the stack pointer (ESP) holds
the address of the last data element added to the top of the stack. This is all well
and good, but it has provided little insight into how buffer overruns are used and
exploited. That being the case, it is now time to roll up our sleeves and get down
to some serious business. Time is valuable, so lets not mess around any longer.
Needless to say, though, this is where
things start to get a bit messy and
complicated.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 9 of 24

Enter the stack frame pointer (SFP)8. The frame pointer always points to a fixed
location within the stack frame. Technically speaking, any parameters or local
variables that are pushed onto the stack
could be referenced by their offsets
from the stack pointer (ESP). However,
due to the dynamic nature of the stack,
these offsets are provided their own
reference and are normally stored in the
EBP (base pointer) register. In the
CPU, this is accomplished by assembly
instructions involving both the SFP and
EBP. Consequently, function
parameters pushed onto the stack will
have positive offsets from SFP, while
local variables will have negative offsets
from SFP9.

When a function is invoked in the
C/C++ language, variables already on
the stack must be saved, and space for
any new variables must be allocated.
The opposite is true when a function
exits. When this happens, the prior SFP is pushed onto the stack and a new is
SFP is created. ESP then operates with reference to the new local variables.
Let’s illustrate with some actual code to limit the mass confusion that must be
setting in about now.

The following function fragment is drawn from a program developed specially for
this study to demonstrate “stack smashing” and the hacking capabilities
presented by the buffer overflow situation. It’s amazing the damage just a few
lines of code can do. But we are not quite ready to unveil it all as we still have a
few things to learn first. At this moment, we are only concerned with the
sequential order compiled C/C++ code pushes data onto the stack. From this,
we may glean some ideas for potential exploits. So let’s take a look.

8 The stack frame pointer (SFP) is sometimes referred to as the local base pointer (BP).

9 Remember it was stated earlier that stack operations were enough to make your head spin.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 10 of 24

The authenticate() function (shown below) is anything but hypothetical. It’s going
to do some real work for us. However, it has been temporarily modified so we
can learn from it. Authenticate() is designed to authenticate a user attempting to
“login” to a computer system. Access is then either permitted or denied.
Authenticate() accepts two string pointers as arguments (passed in as
parameters). The two 16 byte parameters consist of a password entered by the
user, and a password obtained from the system, presumable either from the
SAM database in Windows NT or the /etc/passwd (/etc/shadow/) in UNIX10.

Additionally, authenticate()
contains two local 16 byte
data buffers11 into which the
password parameter values
will copied. Through a little
programming trickery12 we
can actually watch the
parameter values and local buffers be pushed onto the stack. The compiled
assembler code, minus the printf() statements, appears as follows:

When executed, this code first pushes the two arguments to authenticate()
backwards onto the stack. It then calls authenticate(). The instruction CALL then
pushes the instruction pointer (EIP) onto the stack13. Authenticate() is now free
to execute on its own. First, it pushes the stack frame pointer onto the stack.
The current stack pointer (ESP) is then copied into EBP, making it the new frame
pointer (SFP). Next, memory space is allocated to the local buffers by
subtracting their size from ESP. Finally, the printf() functions kick-in to verify that
indeed this is what is occurring on the stack. Here is what we see when we run
this block of code:

10 Windows NT implies any Windows system utilizing the core NT kernel to include Windows 2000
and Windows.NET. UNIX includes the feisty UNIX clone, Linux.

11 It is important to note that even though these buffer arrays consist of eight ASCI characters,
each “char” data type is allocated two bytes (one word) of memory in a 32-bit system.

12 To do this, we will supply the hexadecimal notation (%x) to the C printf() function in place of the
string notation (%s).

13 Referred to as ret, EIP is now holding the address of the next code to be executed one the
authenticate() function exits.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 11 of 24

What we expected would happen, in fact, did happen. First, parameter 2 (char
pointer string2) is pushed onto the top of the stack at address 0x12fdd8, thereby
assuming the highest memory address. Next, we see parameter 1 (char pointer
string1) pushed onto the top of the stack, but backwards from parameter 2.
Since the stack grows downward toward lower memory address, we should
expect parameter 1 to hold a lower memory address. In fact, it holds address

value 0x12fdd4, exactly four bytes down for parameter 214.

Next, although not exposed here, instruction pointer (EIP) and the stack frame
pointer (EBP) are each pushed in respective order.
Finally, memory for the two local buffers is
allocated on the stack. With the stack continuing to
grow downward, buffer1 takes address 0x12fdc0,
and again as expected, buffer2 grabs address
0x12fdb0 at the top of the stack, exactly 16 bytes
down from buffer1.

Wow. What a mouthful. To simplify this dribble
and put everything in proper perspective, let’s
diagram the stack as it exits in its present condition
(Figure 6). What we have here is a stack just
waiting to be “smashed”. The time has finally
come to explore the methods and tactics behind
the buffer overflow attack. Let’s put on our black
hats and become the attacker.

THE METHOD
For a buffer overrun attack to be possible and be
successful, the following events must occur, and in
this order:

1. A buffer overflow vulnerability must be found,

14 Since the parameter values were both 16 byte values, you might be wondering why parameter
1 is four bytes down and not 16 bytes down. In C++, parameters may be passed either by value
or by reference. Since they were passed by reference in this case, they are actually holding the
32-bit address of the value, and not the value itself. Had they been passed by value, their
addresses would be 12feb0 and 12fec0 respectively.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 12 of 24

discovered, or identified.

2. The size of the buffer must be determined.

3. The attacker must be able to control the data written into the buffer.

4. There must be security sensitive variables or executable program instructions

stored below the buffer in memory.

5. Targeted executable program instructions must be replaced with other

executable instructions.

Let’s look at each of these five conditional steps individually.

Step 1: Discovery and Identification
There are four primary means by which discovery or identification may take
place:

1. By the reporting of others, albeit by white hat security alert or bulletin, or

through the black hat underground.

2. By scrutinizing source code.

3. By accident or stroke of luck.

4. By brute trial and error, utilizing intentional and systematic means.

The first two means are quite obvious and warrant no discussion here.
Accidental discovery may often be unrecognized as such, with the end result
being a “crash dump” of the UNIX or NT system, or the proverbial MessageBox
informing the Windows user that their program has either performed “an illegal
operation and will be shutdown”, or their program “instruction referenced memory
that could not be read”. However, the savvy or devious minded user might take
notice of the potential significance and investigate further by employing brute trial
and error through intentional and systematic means.

Trial and error tactics might be used from the start by those who have far too
much time on their hands. The trail and error process literally involves the
repetitive feeding of varying length input into a program or application15. By
chance, if the “your program has performed an illegal operation and will be
shutdown” or “your program instruction referenced memory that could not be

15 This is commonly done utilizing looping functions in scripts, effectively “automating” the
process.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 13 of 24

read” message arises16, then “Bingo!! At this point, additionally investigation
through yet more trial and error is required to determine if indeed a buffer overrun
has been discovered. Once the overrun is confirmed, the real brainwork begins.

The Demonstration Code
This may be a good time to break out the full version of our demonstration
program and begin illustrating the exploit procedure. Earlier we were introduced
to the authenticate() function for illustrating stack operation. Here is the entire
code block for the program authenticate.exe:

Authnticate.exe is a simple program, and quite frankly, one exactly like it is not
likely to be found in a production environment. Let’s hope not anyway. However,
it should prove more than adequate to show us how a hacker works on an
unchecked buffer. Here is how the program works.

First, main() allocates three array variables to contain the information necessary
to authenticate a user logging into to a computer system. The program requests
that the user input their name and password. This information is obtained by

16 It should be noted that many different types of errors may produce these messages. They are
not all indicative of a buffer overrun.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 14 of 24

calling the notoriously flawed17 C subset gets() function. Once main() has the
users “username” in hand, it calls the function get_password() to acquire the
expected authenticating “password” from the system database. It then passes
the “input password” and the “system password” to our old friend authenticate()
for further processing.

Next, authenticate() promptly copies the two password values into their
respective buffers using the flawed strcpy() function. Finally, the contents of the
two buffers are compared by calling the flawed strcmp() function. If the two
values match, the user is authorized, and they are permitted to use the system.
Now, let’s run it.

Seems to work pretty good to me. As you can see, the user entered the
username of “mark” and the password of “passwd”. This matched the entries in
the /etc/shadow file, and the user was successfully authenticated. So, what’s the
problem?

17 Flawed means it happily and willingly accepts a buffer value as an argument without first
checking its size or limits. Notorious means the “flaw” is well known and an easy target for exploit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 15 of 24

To answer this question, let’s back track to Step 1 (Discovery and Identification)
of the buffer overrun attack, and begin feeding varying length input into the
program’s password request. And Bingo!! We hit pay dirt.

We just overran a buffer and discovered a overflow vulnerability. Now Step 2.

Step 2: Determine Buffer Size
Before we can do much with our newly discovered buffer problem, we need to
determine the exact size of the buffer. We can do this through experimentation,
and by slowly growing and shrinking the number of characters we input into the
buffer. As soon as we determine the exact number of characters it takes to crash
the program, we have completed Step 2. In this case, it took little work to figure
out this was an eight character array (seven chars plus one null terminator). We
now know at which point the buffer begins to overflow. Now Step 3.

Step 3: Control Data Written Into Buffer
Based on what we have learned about this program thus far, this step may be a
no brainer. Let’s feed in a series of x’s and see if we are able to control what
happens within the program.

Seems as though we can. First, we entered the same username of “mark”. As

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 16 of 24

an obedient program would, it successfully retrieved the correct password of
“passwd” for user “mark“ from the /etc/shadow file. However, instead of entering
the correct password, we entered 10 x’s. Something dreadful has happened to
what the program believes to be the “system password”. Step 3 completed.

Step 4: Overwrite Security Sensitive Variables Below The Buffer
There are several possibilities of action once the hacker has reached this stage
of the process. In our Step 4, we will attempt to overwrite a security sensitive
variable by overflowing the vulnerable buffer with input of our choice, thereby
affecting the outcome of the program. Here we go.

Observe that we just changed the “system password” from “passwd” to “phony”
by overwriting it with input of our choice. We, the hacker, now have complete
control of this program. Depending on what we wish to accomplish, there are
several different directions in which we could go. First, let’s take another look at
the stack and see exactly what has occurred to this point (Figure 7).

First, the two password parameters (password and etc_password) were passed
into authenticate() by reference. When authenticate() executes, strcpy() is called
to perform a bit-by-bit copy of etc_password into buffer1. Next, strcpy() is again
summands to perform a bit-by-bit copy of password into buffer2. Unfortunately,
strcpy() pays no attention to the size or the contents of either password or
buffer2. Buffer2 loads up with eight char values, but strcpy() blindly continues to
pump the additional values from our input into buffer2. The real problem is they
don’t fit, but must go somewhere. Alas, the glass begins to overflow. Due to the
inherent nature of stack operation, the additional char values literally overflow

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 17 of 24

buffer2 and spill over into buffer1. As an end result, we successfully changed the
“password” value that is to be matched against our input for authentication.
Thus, we now control both values at will.

Step 5: Replace Targeted Executable Instructions With Other Instructions
Most black hats won’t be satisfied with this achievement alone however. They
are generally seeking larger and more grandeur things, such as elevating their
privilege in the system by becoming “root” or “administrator”. That leads us to
Step 5.

We have learned a great deal about the stack
up to this point, as well as our demonstration
code. For instance, when the CALL to
authenticate() was made, the program and
processor needed to mark its trail so they would
know where to go once authenticate()
completed its execution. To accomplish this,
the instruction pointer (EIP) was pushed onto
the stack directly after authenticate()’s
parameters. EIP holds this “return address”,
and this is the address of an executable
instruction. We observe that EIP also resides
on the stack below the memory buffer we have
already proven can be manipulated at will. This
indeed presents a tempting situation. Before
we proceed, let’s first, let’s take a quick look at
system processes and privileges.

System Processes and Privileges
Although the internal mechanism works quite
differently, both Windows NT and UNIX have a
commonality in the manner new processes are
created. For instance, in UNIX, when a process
forks or creates a child process, the child
process generally has the same privilege level
as its parent process. Consequently, if a program was configured with SUID
“root” permissions and made world executable, any process it spawned would
most likely have identical privileges. This would include any UNIX shell that
might be spawned.

Similarly, in Windows NT, when a process starts a child process, the child
process normally inherits the access token18 of the parent process19.

18 In Windows NT, an access token is a numeric key that determines privilege level and what a
user can do on that machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 18 of 24

Consequently, if a program running with system or administrative privileges were
to launch a “command shell”, the newly created shell process would normally
inherit the access tokens of its parent process. Now that we know this, we can
continue with Step 5 of our exploit.

It should now be apparent that our goal, as hacker, is to obtain elevated system
privilege using the problematic buffer we have been working with. Since our
authentication program is doubtlessly running with system privilege, it may be
very possible to achieve this goal utilizing the executable code EIP will direct us
to. Since we are working on a Windows machine, we will attempt to execute a
Windows command shell “cmd.exe” using the system() function. Here is the
game plan20:

1. Push EBP onto the stack as relative stack reference pointer.

2. Create and push a NULL on the stack as string “cmd.exe” must have a null

terminator. This is done by “xoring” a register with itself (xor edi, edi; push
edi).

3. Push the code we want to execute (cmd.exe) onto the stack and use EBP to

position and track its starting address. To do this, we will need to push each
byte individually and in reverse order (exe.dmc).

4. Push the address of the system() command (0x780208C3) on the stack to

overwrite EIP (0x015DF124) (mov eax, 0x780208C3; push eax).

5. Push the starting address of cmd.exe onto the stack with reference from EBP

(lea eax,[ebp-08h]; push eax).

6. Call system() with reference to EBP (call dword ptr [ebp-0ch]).

With the stack set up in this fashion, the normal course of program execution will
call system(), which in turn will launch “cmd.exe.” Goal achieved. Game over21.

19 There are exceptions. For instance some processes can be started using the Win32 API
CreateProcessAsUser() function that will start the new process under the security context of
another user. In this case, the new process will have a different access token than the parent
process.

20 The precise code for this part of the exploit has intentionally been withheld as this is an
educational presentation, and not a “How To.” However, for those inclined, enough detail has
been provided to reproduce it with sufficient effort.

21 This same exploit could be easily be executed on a UNIX box using the execve() function and
“/bin/sh”, or any other UNIX shell.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 19 of 24

PREVENTION
Although we have just demonstrated a nightmare scenario for any system
administrator, we must bear in mind that ALL such buffer overflow attacks are
very preventable, and the “disease” that allows them to persist certainly may be
eradicated in the future. However, an effective vaccine must first be developed.
The remainder of this report will focus on cure and prevention. Please select
from the menu.

1. Use Different Language Tools. Language tools that provide automatic

bounds checking such as Perl, Python, and Java. True, these are available.
However, this is usually not possible or practical when you consider almost all
modern operating systems in use today are written in the C language. The
language tool becomes particularly critical when low-level hardware access is
necessary. The good news is with languages evolving, language and code
security has becoming a serious issue. For example, Microsoft in their .NET
initiative has completely re-written Visual Basic and Visual C++22 with “string
safe” security in mind. Additionally, they have added the Visual C# tool which
was designed from the ground up with security in mind.

2. Eliminate The Use Of Flawed Library Functions. Programming languages
are only as flawed as the programmer allows them to be. In our
demonstration, we utilized three flawed functions from the Standard C Library
(gets(), strcpy, and strcmp). These are just three of many such functions that
fail to check the length or bounds of their arguments. For instance, we could
have completely eliminated the buffer
overflow vulnerability in our demonstration
by changing one line of code. This simple
change informs strcpy() that it only has an
eight byte destination buffer and that it
must discontinue raw copy at eight bytes.

The persistence of programming errors of this nature may indeed be related
to the manner in which we train and educate young programmers. One can
pick up an introductory college textbook on C or C++ and find this set of
flawed functions introduced by the third chapter. Sure, they make great
training aids. However, humans are creatures of habit and tend to use what
they know best and are most comfortable with.

3. Design And Build Security Within Code. It takes more work, and it takes

more effort, but software can be designed with security foremost in mind. If

22 Visual C++ is Microsoft’s proprietary version of the C++ language.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 20 of 24

the previous example, we could have yet added one extra step to assure
complete buffer safety:

Again, this may go back to how we train programmers. Is code security
taught and encouraged? Are they given the extra time to design security
within their code? Typically, and unfortunately, the answer to these questions
is no23.

4. Use Safe Library Modules. String safe library modules are available for use,
even in problematic languages such as C++. For instance, the C++ Standard
Template Library offers the Class String in its standard namespace. The
String Class provides bounds checking within its functions and be preferred
for use over the standard string handling functions.

5. Use Available Middleware Libraries. Several freeware offerings of “safe

libraries” are available for use. For instance, Bell Labs developed the
“libsafe24” library to guard against unsafe function use. libsafe works on the
structure of stack frame linkage through frame pointers by following frame
pointer to the stack frame that allocated a buffer. When a function executes,
it can then prevent the return address from being overwritten. However,
libsafe is not without security problems of its own as it has been reported that
libsafe's protections can be bypassed in a format-string-based attack by using
flag characters that are used by glibc but not libsafe. Users of libsafe should
upgrade to version 2.0-12

6. Use Source Code Scanning Tools. Several attempts have been made to

design a tool that performs analysis on raw source code with the hope of
identifying undesirable constructs to include buffer vulnerabilities. The boys
at L0pht Heavy Industries (now a white hat group called @atstake) produced
one such tool called “Slint” a few years back, but it was never released.
Probably the most successful tool to date is Rational’s
(http://www.rational.com) PurifyPlus Software Suite that capably performs a
dynamic analysis of Java, C, or C++ source code. Although the specialty of
PurifyPlus is memory leak detection, it is capable of hunting down unchecked

23 It was recently reported in the media that Bill Gates went on a tirade about code security at
Microsoft In fact, he reportedly stopped all new code production for one month to train his
programmers in code security basics. Until now, Microsoft has stressed form and function at the
expense of security.

24 Libsafe has apparently now been turned over to Avaya Labs http://www.avaya.com for keeping
and maintenance.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 21 of 24

buffers and other coding errors that could possibly lead to buffer overrun
conditions.

7. Use Compiler Enhancement Tools. Although a relatively new concept,

several compiler add-on tools have recently been made available that work
closely with function return address space to prevent overwriting. One such
tool, Stack Shield (http://www.angelfire.com/sk/stackshield), provides
protection by taking a copy of RET and temporarily placing it in a location not
subject to overflow attacks. Upon return, the two address values are
compared. If they are different, the return address has been modified and
Stack Shield terminates the program. A somewhat similar tool, Stack Guard
(http://www.immunix.org/stackguard.html), is able to detect a return address
being overwritten in real time. When it does, it proceeds to terminate the
program.

8. Disable Stack Execution. Although it requires the operating system kernel

to be recompiled, patches are available for some versions of UNIX that render
the stack non-executable. Since most buffer overrun exploits depend on an
executable stack, this modification will essentially stop them dead in their
tracks. A patch for the Linux kernel has been made available by the
Openwall Project (http://www.openwall.com).

9. Know What Is On Your System. Awareness of what is on your system and

who has the privileges to execute it is essential. SUID root executable, and
root owned world writable files and directories are the favorite target of many
attacks. Find them, list them, and know them. The following few simple
commands may be your best friend:

Once your list is complete and in hand, programs are available to test each
for buffer overrun vulnerabilities. Should a “segmentation fault” be occur
during testing, chances are you have just discovered a vulnerable program.

10. Patch The Operating System And Application. Perhaps the very best

defense is to stay informed and remain “offensive”. As new vulnerabilities are
discovered and reported, apply the necessary patches and fixes promptly. If
you are in a Microsoft shop, this may get very tiresome very quickly. It may
even seem like an endless task. But cheer up. Knowledge in increasing and
understanding is improving. The diseased will be cured.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 22 of 24

REFERENCES
Aleph One. “Smashing The Stack For Fun And Profit.” Phrack Magazine. Issue
#49 November 1996. URL: http://destroy.net/machines/security/P49-14-Aleph-
One.

Baratloo, Arash et al. “Libsafe: Protecting Critical Elements of Stacks.” Bell
Labs. December 25, 1999. URL:
http://www.avayalabs.com/project/libsafe/doc/libsafe.pdf.

Cowan, Crispin et al. “Protecting Systems From Stack Smashing Attacks With
StackGuard.” Department of Computer Science and Engineering. Oregon
Graduate Institute of Science & Technology.
URL:http://www.cse.ogi.edu/DISC/projects/immunix/.

dark spyrit. “Win32 Buffer Overflows.” Phrack Magazine. Issue #55 September
1999. URL: http://julianor.tripod.com/P55-15-win32_overflow.txt.

dethy. “How To Write Code Based Exploits.” March 2000. URL:
http://julianor.tripod.com/htce.txt.

DilDog. “The Tao Of Windows Buffer Overflow.” URL:
http://www.cultdeadcow.com/cDc_files/cDc-351.

Farrow, Rik. “Blocking Buffer Overflow Attacks.” Network Magazine. November
1999. URL: http://www.networkmagazine.com/article/NMG20000511S0015.

Frykholm, Niklas. “Countermeasures Against Buffer Overflow Attacks.” RSA
Security. November 2000.
URL:http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html.

Harari, Eddie. A Look At The Buffer Overflow Hack.” Linux Journal. Issue #61
May 1999. URL: http://www.linuxjournal.com/article.php?sid=2902.

Henry, Paul A. “Buffer Overrun Attacks”. Cyberguard Corporation. URL:
http://www.utdallas.edu/~aph3x/docs/programming/security/overruns.pdf.

Kalev, Danny. “Avoiding Buffer Overflows.” ITworld.com Newsletter. December
2001. URL: http://www.itworld.com/nl/lnx_sec/12182001/pf_index.html.

Lamagra. “Buffer Overflows.” URL: http://julianor.tripod.com/lamagra-bof.txt.

Lefty. “Buffer Overruns: What’s The Real Story?” URL:
http://julianor.tripod.com/stack-history.txt.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 23 of 24

Litchfield, David. “Exploiting Windows NT4 Buffer Overruns.” URL:
http://www.atstake.com/research/reports/wprasbuf.html.

Litchfield, David. “Analysis Of The winhlp32.exe Buffer Overrun.” URL:
http://www.cerberus-infosec.co.uk/wpwhlpbuf.html.

Mazidi, Muhammad Ali and Mazidi, Janice Gillispe. The 80x86 IBM PC and
Compatible Computers (Volumes I & II). Upper Saddle River: Prentice Hall,
1998.

Microsoft Security Bulletin MS02-014. “Unchecked Buffer In Windows Shell
Could Lead To Code Execution.” March 7, 2002. URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS02-014.asp.

Mixter. “Writing Buffer Overflow Exploits – A Tutorial For Beginners.” URL:
http://www.11a.nu/stack/exploit.txt.

Mazidi, Muhammad Ali and Mazidi, Janice Gillispe. The 80x86 IBM PC and
Compatible Computers (Volumes I & II). Upper Saddle River: Prentice Hall,
1998.

mudge. “How To Write Buffer Overflows.” URL:
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html.

Smith, Nathan P. “Stack Smashing Vulnerabilities In The UNIX Operating
System.” 1997. URL: http://www.bronzesoft.org/docs/security/bufov/nate-
buffer.pdf.

Sorfa, Petr. “Debugging Memory On Linux.” Linux Journal. Issue #87 July
2001. URL: http://www.linuxjournal.com/article.php?sid=4681.

Taeho Oh. “Advanced Buffer Overflow Exploit.” 1999. URL:
http://online.securityfocus.com/library/1568.

Tarreau, Willy. “Security Under Linux: The Buffer Overflow Problem.” URL:
http://www-miaif.lip6.fr/willy/security/linux.html.

teleh0r. “Buffer Overflows For Kidz.” URL: http://julianor.tripod.com/bof-
forkidz.txt.

Tsai, Timothy and Navjot Singh. “Libsafe 2.0: Detection of Format String
Vulnerability Exploits.” Avaya Labs. February 6, 2001. URL:
http://www.avayalabs.com/project/libsafe/doc/whitepaper-20.pdf.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Page 24 of 24

Unknown. “Stack Overflow Exploits On
Linux/BSDOS/FreeBSD/SunOS/Solaris/HP-UX.”
URL:http://julianor.tripod.com/thc3-en.txt.

Unknown. “Windows NT Buffer Overflow’s From Start To Finish.”
URL:http://www24.brinkster.com/neolabs/papers/bufferoverflows/nt-bofstf.txt.

