
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Designing Capability-Based Applications For The Web

by

Timothy Wood

submitted for satisfaction of

SANS Security Essentials GSEC Practical Assignment v1.3

1. Introduction
This paper is submitted in partial satisfaction of the SANS Institute’s GIAC Security
Essentials Certification requirements. It is also intended as a resource for information
technology personnel to incorporate Capability-based design, and the security assurances
it can bring, into their development efforts.

2. Abstract
The Capability security model confers several important assurances on the design of a
computing system. In particular, the Capability model guarantees that no entity in the
system has any access rights except those implied by the object references, or
Capabilities, that the entity holds [1]. The Capability model is elegantly simple. In place
of reliance on authentication protocols and access-control lists to produce access
decisions, the Capability model provides that one’s access rights are manifest and in-hand
at all times. It is never necessary to consult an authority to obtain an access decision. One
obtains access to an object straightforwardly by invoking one’s Capability (if one
possesses it) to the object. One may of course create one’s own object, which yields the
creator a Capability to that object. The creator may then hand to other entities Capabilities
to the object. Capabilities used in appropriate combinations allow work to be done
efficiently with large numbers of objects.

In the Web computing world, many technologies at various levels of abstraction, based
on different security models, cooperate to implement applications and services. The
challenge of designing a Capability-based application in this environment is considerably
greater. But the potential rewards to Capability design: very high security assurance; fine-
grained access control; high performance; flexible administration; and extensibility make
the challenge worthwhile.

3. Capabilities in Theory

3.1. Confinement
A major consequence of the Capability model is that an entity cannot even express an
attempt to access an unauthorized object. An entity either possesses a Capability, which
contains within it particular authorizations, or the entity does not, hence it cannot even

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

express the access attempt. Thus Capability security supports confinement [2], [3], a key
property of high-security systems. Confinement guarantees that an invoked program
cannot access any objects except those objects to which the invoker grants the program
access. In particular, the program cannot utilize any channel that would allow exporting,
or leaking, data from the invoker’s objects. Complete confinement is difficult to achieve
in systems not architected for it. Many of the prevalent browser and email-client
vulnerabilities stem from untrusted software (embedded in Web pages, contained in
attachments, etc.) being allowed to execute in an unconfined context [10].

3.2. The Confused Deputy
Capabilities also solve the Confused Deputy problem [6]. The Confused Deputy problem
is a least-privilege problem. It arises when an entity sees ambiguity about which of its
access rights to use, those of the entity’s invoker, or those pre-allocated to it to perform its
function. This ambiguity can lead to damaging misuses of authority. Non-Capability-
based systems typically authenticate a user, then make the user’s access rights currently
active in the session available to all programs (processing entities) the user initiates. In the
example in [6], the user may specify a debug-output file to a compiler, which also runs
with its own permission to write temporary files in a system area. If the user specifies the
wrong debug-output filename (or a rogue version of the compiler was installed earlier
surreptitiously), the compiler could damage critical files in the system area.

In contrast, Capability systems prevent the confusion because the compiler will hold a
Capability that implements writing a temporary file (name irrelevant, but unique) to the
system area, and be given another Capability by the user for writing debugging output.
The compiler’s temporary file Capability can even limit the maximum file size, to forestall
a denial-of-service attempt. Since the user has no Capability for the system area, the
Capabilities are independent, the compiler uses each for a specific function, so the
compiler cannot use an authority for the wrong purpose.

Systems which rely on ambient authority, that is authority determined by group
membership, user id or other environmental information, are vulnerable to Confused
Deputy problems. Access control lists (ACLs) are generically vulnerable to Confused
Deputy because no matter how detailed the grant (or deny) information in the list, the
available authority depends both on properties of the subject and on properties of the
entity acting on the subject’s behalf. Confusion about which authority to apply can arise
unpredictably from the dual dependency.

3.3. Capability Mechanics
What does a Capability “look like”? Intuitively, it’s an encapsulated object reference.
Like any object reference, the holder can use it to invoke methods on the referent object.
Unlike an ordinary reference, though, the reference may only activate a subset of the
methods defined on the object. Thus, varying levels of authority on an object can be
expressed by creating different Capabilities to the object with varying subsets of methods
active. An analogy is the familiar GUI dialog box with some of its controls grayed out.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

How does an entity obtain Capabilities? Four ways are explained in [11]:

1. At birth;

2. To each object the entity creates;

3. Passed to the entity from another entity (as depicted in the “Granovetter
diagram”);

4. In the initial conditions—ambient (or replicated to every primordial object). E.g.,
everyone with working lungs has a Capability to the oxygen in the air.

3.4. Requirements and Non-Requirements on Capabilities

3.4.1. Requirements: Non-Bypassable, Non-Forgeable, Complete,
Transferable

Since invocation of a Capability is the sole security primitive, systems that implement
Capabilities must protect the integrity of Capabilities.

Capabilities must be non-bypassable: It must be infeasible to obtain a valid Capability
except by invocation of another Capability whose contract provides the requested
Capability. Capabilities must be non-forgeable: It must be infeasible for an entity to
fabricate a Capability which the entity does not already hold. Capabilities must be
complete: It must be infeasible to message any object except through a valid Capability,
and that Capability defines exactly the messages that may be sent. The Capability itself is
the authorization to access the referenced object.

An entity is free to share or transfer its Capabilities with another entity with which it has a
Capability to communicate. The model places no transfer restrictions on the holders of
Capabilities. At first, this appears to pose a significant risk of misappropriation of
authority, or misattribution of actions by a user. However, the risk posed is no greater
than with ACL-based systems, and in practice will be less.

In ACL-based systems, a user’s identity is checked against the access list associated with
an object to find a list item which specifically grants (or denies) access to that user. This
is the basic security check for all access attempts. If the user gives his authentication
tokens to another user, or the tokens are stolen, the receiving user can immediately act
with the full authority of the first user. The principle of Least Privilege is not maintained
because a user can either transfer no authority (by not sharing authentication tokens) or
too much authority (by sharing them) [17]. Sharing authority at a fine-grained level is
difficult with ACLs because they usually require an additional entry by the object owner
to grant authority or to allow a user to grant authority to someone else. In contrast, a
Capability gives a specific authority on the object it references, but transitively allows
transfer of that authority to others. A user can even give another user a subset of the
authority in a Capability by creating a new object that uses the original Capability in
limited ways, then handing a Capability to the new object to the other user. In 3.4.3
below, we discuss how to maintain accountability for the results of such transfers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

3.4.2. Non-Requirement: Revocability
Revocability, or the ability of an entity to invalidate outstanding Capabilities to an object
the entity owns, is not a requirement of the Capability model. However, most practical
security policies will require the ability to revoke at least some Capabilities. An object
owner will not in general be able to recall outstanding Capabilities to its objects, because it
would be difficult to limit the authority of the message to discard a given Capability, and
the entity receiving the message could just ignore it. Instead, the owner must destroy the
object whose Capabilities the owner wishes to revoke. If the owner wishes to revoke
from some entities but not others, the owner must organize the shared objects and hand
out Capabilities to them according to a pattern that allows revocation to the desired degree
of generality. Specific examples are discussed in Section 5, below.

3.4.3. Non-Requirement: Accountability
Capabilities, as the combination of object reference with authorization, make either object
owners or the Capability infrastructure responsible for maintaining accountability, usually
by use of a logging service API.

If the object owner is responsible for logging, then the owner must know the stated
identity of the subject to which it gives a Capability to an object, and arrange to log
accesses to the object. But Capabilities are transferable between entities, so use of a
Capability by other entities would be incorrectly associated with the original holder
(though the delegation of the authority is relevant). This misleading association presents
no greater risk than ACL-based systems, however. Recall from 3.4.1 that a subject can
transfer its authentication tokens to another subject, just as easily as the subject can
transfer its Capabilities to another subject. Either way, the second subject’s actions can
be misattributed to the first. The risk with Capabilities is actually less, because
Capabilities only give access rights to their particular referenced objects. Whereas
transferring a subject’s authentication tokens allows someone else to act with all the
authority of that subject.

If the infrastructure is responsible for logging, then any access to any object may
potentially cause logging. Some form of subject authentication, security sessions and
services to manage them would be necessary to associate a Capability use with a subject.
These dissimilar architectural approaches illustrate the flexibility of the Capability model
toward accountability mechanisms.

4. Capabilities in Current Practice
Capability operating systems have sufficient control over the computing domain that the
above axioms can be implemented using established system programming techniques.
Capability-based machines (proposed [4], and implemented [5]) implement Capability
addressing in the CPU architecture and memory-management unit. It is a simpler
problem to implement a secure operating system on a single Capability machine, or a
secure application on a Capability OS, because the machine or OS have the ability to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

confine the application.

4.1. Operating Systems

The KeyKOS Operating System [7] was a commercial product for the IBM System 370
line of mainframe computers. Its feature set focuses on:

• Minimal kernel footprint and overhead,

• Very high performance of primitive operations (e.g., calling through a Capability),

• An integrated persistence facility, where a subset of, or the entire low-level state of the
system could be saved to mass storage for later restart.

KeyKOS is not a full-service operating system; it does not contain a file system, network
stack, or user interfaces. Rather, KeyKOS is a hardware multiplexor, capable of hosting
virtual operating system instances, or OS components such as file systems, within
domains. The domain in KeyKOS is the basic client of the KeyKOS kernel. All non-
kernel code runs within one or more domains. The KeyKOS kernel’s responsibilities are
to perform Capability calls and returns and manage the persistent store. The primary
strength of KeyKOS is to support mutual confinement of domains with high assurance.

The EROS Operating System ([8], [9]) brings the KeyKOS architecture to the PC in an
open-source implementation. This system can be used as a virtual server platform, where
multiple, isolated instances of various commercial operating systems can run within a
collection of domains. The Capability architecture allows communication channels
among the operating systems to be specified exactly and arbitrarily limited. The
persistence feature allows restart of the system and resumption of processing with very
little latency.

4.2. Programming Languages and Libraries

4.2.1. Netscape Capabilities API
The Netscape Capabilities API, [12], addresses a prevalent security problem: protecting a
client computer from damage caused by executing software downloaded from the World
Wide Web. The API allows a Java applet writer to enumerate the privileges the applet
may wish to have on the client machine, as the applet executes within the Netscape
browser. At runtime, the applet may prompt the user to authorize the applet to use a
particular privilege. This model is in contrast to the earlier, rigid, “sandbox” rule for
applets, which imposed a restrictive blanket policy on all access by the applet to the client
system. It also avoids the all-or-nothing proposition of ActiveX, where downloaded code
has privileges up to the full extent of the user’s authorizations on the client system if the
user expresses trust in the stated creator of the downloaded code. Besides not supporting
the principle of least-privilege, the ActiveX authentication scheme is vulnerable to a
particular human error with improperly-issued certificates [13].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Paradoxically, the Netscape Capabilities API does not quite offer Capability security. In
particular, it does not generate encapsulated object references to the objects that the
applet writer wishes to get authorization to use. Rather, the programmer uses the
netscape.security classes to enable ambient privileges within a critical section of
code (a method subgraph or just a portion of a method). The presence of privilege is
reflected in the stack frames of the active method calls, so the privilege is restricted to the
thread that obtains it. The Java 2 Privileged Block API [16], works in a similar manner,
except the higher privilege takes effect in the run() method of a separate object created
for the purpose of executing the privileged operation.

4.2.2. The E Programming Language
The E programming language ([14], [15]), is an interpreted, Capability-based
programming language with some important influences from Smalltalk, such as runtime-
only type-checking. It also features the ELib subcomponent, written in Java, which
implements the distributed communication features of E. E itself is currently implemented
on top of the Java Virtual Machine, that is, the E compiler and interpreter generate JVM
opcodes. An E programmer can make use of the standard Java Runtime Environment
classes via an import mechanism.

E promulgates a model of distributed computing that is:

• Capability-based, and
• Deadlock-free.

E (via the ELib library) preserves the requirements of Capabilities discussed earlier (non-
bypassability, non-forgeability, completeness and transferability) across distributed
components by use of encryption and unguessable identifiers, also called Swiss numbers.
Such numbers may be generated by a pseudo-random number generator periodically
reseeded from a source of highly random bits.

Recall that a Capability is an encapsulated object reference. The referent of the Capability
may be a local or remote object. The system must guarantee that messages to the object
only propagate via a Capability. The encryption protects the authentication between two
parties that need to communicate across the distributed link, and ensures that the
communication between the parties is safe from eavesdropping and tampering. The
unguessable identifiers make it infeasible for either party to successfully fabricate a
Capability to some other object on the remote side in lieu of receiving it via a message.

E (or a Java program written to the ELib API) prevents distributed deadlock by replacing
synchronous calls across components on the network with event-loop concurrency
executing in a Promise-based architecture. Event-loop concurrency replaces the multiple
threads that may be activated to handle concurrent service requests with a single thread,
called a vat, that services an event queue, reminiscent of GUI programming models. The
primary rule of event-loop programming is that the service thread must not block, except
in the event mechanism when awaiting a new event. In traditional synchronous
programming, the service thread could make a call to a remote component that would
block the thread. Since there is only one service thread, this is unacceptable. Instead,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

calls across components do not block, but immediately return placeholder objects called
Promises. A Promise represents a commitment by its maker (the called component) to
either provide the actual object requested (a fulfilled Promise) or provide indication that
the call has failed (a broken Promise). The fulfillment of a Promise by a called component
is asynchronous; the fulfillment (or breaking) of the Promise is simply queued to the
caller’s event queue via the communication layer. If the caller is ready to service the call
immediately, it simply returns a fulfilled (or broken) Promise to the caller. The Promise
acts as a wrapper around the requested object or object reference (if fulfilled) or error
indication (if broken). A Promise can be requested with a timeout, so that the Promise is
automatically broken if there is no fulfillment or break received in the timeout period.

Figure 1 below depicts an interaction diagram for a hypothetical, simple securities trading
system. All distributed components of the system are designed as ELib-managed event
loops. The Client component wishes to fetch a stock quote and pass it to a rule-based
Portfolio Service for possible trading action. The “active” periods for each component
each indicate one pass of the internal event loop. Event loop passes are independent; any
number (limited by system resources) may take place in a time period.

The Client requests a quote from the Quote Service. The ELib call to make the request
immediately returns a Promise for the result and forwards the request with the ID of the
issued Promise to the Quote Service. The Client, in the same event loop pass, then
requests a trading action from the Portfolio Service, passing quotePromise as an
argument to the call. The Client receives tradeResultPromise, then returns from
the event loop pass. Meantime, the Quote Service is obtaining the quote. This is likely an
asynchronous action, but not necessarily an ELib exchange. When the Quote Service has
a Quote, it calls ELib to fulfill the QuotePromise that ELib within the Client has
associated with the request. At this point, the Client can fulfill quotePromise held by
the Portfolio Service, and allow that service to make its trading decision based on the
Quote. Finally, the Portfolio Service fulfills the Client’s TradeResultPromise
issued earlier and the Client may now use the TradeResult.

Note that the Client runs concurrently with the other two services when setting up the
request. Because the Promise architecture allows a pending object (the unfulfilled
Promise) to be passed to other calls (which may in turn yield other Promises), the system
as a whole can exhibit a lot of concurrency with a constant number of threads.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Event Loop (Vat) Event Loop (Vat) Event Loop (Vat)

Client
Client

Quote
Service

Portfolio
Service

tradeResultPromise =
portfolioService.tradeStrategy(quotePromise)

Receive a QuotePromise.

quotePromise
= quoteService.getQuote

(tradeableSymbol)

Receive a
TradeResultPromise

.

Request quote for
symbol from

exchange feed
(asynchronous).

. . .

Queue processing of
request pending
fulfillment of

QuotePromise.Fulfill
QuotePromise
with a Quote.

Fulfill
QuotePromise with

the Quote.

Use the Quote to make
tradeResult
(buy/sell/hold).

Fulfill
TradeResultPromise
with a TradeResult.

Display the
TradeResult.

Figure 1. Interaction diagram for simple trading scenario

The major effect of event-loop concurrency and Promises on system design is to
drastically simplify the system synchronization protocol, a very valuable effect as
synchronization problems are notorious for being among the most difficult to diagnose.
These design features reduce the static and dynamic frequency of thread blockage. The
lower frequencies lead to higher thread duty cycles, fewer context switches, and lower
resource consumption than designs that use a worker-thread pool approach.

5. Techniques for Application Design Using Capabilities
Extending the Capability architecture to distributed applications and services on today’s
major platforms is a harder class of problem, because the basic properties of Capabilities
must be preserved across machine, operating system, network, middleware and
application technologies not designed with Capabilities in mind. The remainder of this
paper focuses on this problem, some existing technologies that address aspects of it, and
offers some further approaches to solving it.

5.1. Facets
A logical service on the network may define a complex, feature-rich interface. Security

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

policy may require that subsets of the interface are made available to subjects according
to the subjects’ access rights. Facets provide a convenient pattern for supporting this
policy in the design of the service [18]. A subject is given a Capability to a facet, or
interface subset, of the service upon request if the subject is authorized to use the facet.
The Capability references the facet object, which implements some subset of all the
messages defined for the service. Clearly, one could create a facet for every possible
combination of messages taken from the full interface. However, the pattern is most
economical when the full service interface is divided into a manageable number of major
facets which are each associated with certain access rights. For example, a simple policy
would divide the interface to a service into general query, privileged query, update, and
administrative groups of methods. The service implementation has wide latitude in
choosing design patterns for its constituent objects. It is only necessary to ensure that a
subject with a Capability to one facet cannot message another facet, except through
another Capability that references that facet.

The below diagram shows a basic multi-faceted network service in use by several clients.
Each client already has authenticated to some service that issues an authentication token,
serving as proof (to some degree) of identity. Each client has a Capability to the
Director/Authorizer, which hands out Capabilities based on authorizations granted to a
holder of an authentication token. Some Capabilities are public, meaning that no
authentication token is needed to obtain them.

Multi-faceted Network
Service

Shared
objects

Facet
A

Facet
B

Facet
C

Directory/Authorizer

Client 1

Client 2

Client 3

Authentication token

Authentication token

Capabilities

Capabilities

Null authentication
token

(Public) Capability

Figure 2 - Use of a multi-faceted network service

5.2. Façades

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

If facets decompose a large interface into smaller interfaces in order to authorize use of
each interface separately, then a façade has the converse purpose: To aggregate facets of a
service’s interface into a larger interface, possibly with more abstract methods in place of
the specific methods of the facets. This abstraction can make authorization and
invocation more convenient [19]. However, Capabilities make the pattern stronger than
described in the reference. A Capability to a façade does not confer Capabilities to the
interface facets that make up the façade, though those facets can still be authorized
separately.

5.3. Protecting Capabilities in Existing Application
Frameworks

There is a great variation in security policies in today’s application frameworks. Support
ranges from native Capability security in E and ELib to responsibility being left entirely to
the programmer (CORBA, RMI). The challenge of implementing Capability-secure
systems lies in preserving the requirements of the Capability model across the collection
of technologies used to build the system. This section will demonstrate that it is easier to
use the framework security features only to meet the requirements of Capabilities rather
than to compose the framework policies together with Capabilities and try to make sense
of the resulting hybrid model.

The examples depicted below focus on only a client and a server tier, for simplicity. For
multi-tier applications, intermediate tiers function as servers of some classes of objects
and clients of others. The client and server patterns discussed can be reapplied between
those tiers.

5.3.1. CORBA
The CORBA remote object framework implements inter-object distributed invocation and
object reference lookup services [20]. A C++ or Java programmer specifies an interface
for network-visible objects in Interface Definition Language (IDL), and generates “stub”
and “skeleton” classes from the IDL with a generator program. The stub classes
implement the client object reference to the remote object. The skeleton classes take care
of dispatching calls received on the server side, from remote references, to the actual
object implementation. The object request broker (ORB) handles binding of a client stub
instance to a remote object instance. Once the binding is established, stub and skeleton
code communicate directly via the Internet Inter-ORB Protocol (IIOP).

CORBA does not specify a security policy. The Borland implementation offers an SSL
add-on that applies the SSL feature set (one- or two-way certificate-based authentication
and encryption of traffic) to communication between clients and ORBs and stubs and
skeletons. A security service that implements password and certification authentication, a
Gatekeeper middle tier, and an API for server objects to create ACLs for authorization are
also offered.

The CORBA security features include the familiar mechanisms of SSL, password-based
authentication and ACL-based authorization. We now examine possible ways to use the
CORBA security features to design a Capability-secure application, and some pitfalls that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

could arise in realizing Capability security in a non-Capability system.

CORBA uses a name service that clients query to obtain references to remote objects.
The name service must only know about objects that are public, i.e. ambient Capabilities.
Otherwise objects responsible for handing out other Capabilities could be bypassed by
asking the name server. Even with the Security Service add-on, once a client
authenticates, it can obtain a reference to any remote object by name because the name
service does not require authorization for references before returning them.

Rule: Only ambient Capabilities should be registered with the CORBA name
service.

CORBA’s IIOP sends object references over the wire in “stringified” (e.g., serialized)
form. Unless the object reference strings are unguessable, e.g. by incorporating Swiss
numbers, a client could construct a Capability to an unauthorized object if the client
knows how to name the object in this manner. This violates the unforgeable property of
Capabilities. Even if valid Capabilities to specific objects could not be feasibly
constructed, clients could go on “fishing expeditions” for valid object references unless
the space of object reference strings is extremely sparse and the strings are uniformly
distributed in the space.

Rule: Objects that dispense Capabilities must name the referent object in a way that
makes it infeasible for a client to fabricate a valid CORBA reference to the object.

The next diagram shows one possible arrangement for implementing revocable
Capabilities in CORBA. The “shadow objects” are the ones to which clients actually
receive references (Capabilities). (From the point of view of the Service Object, the
shadow objects themselves are Capabilities.) References to shadow objects may be
shared between clients, and separate shadow objects may be created to allow individual
revocation. Each shadow object can be set up with particular methods enabled or
disabled depending on the client’s authorizations. Moreover, it is straightforward to
generate the shadow object class definitions from the same IDL file used to define the
actual CORBA object on the network, with a tool similar to the existing idl2cpp or
idl2java. This model can be composed with the Facets approach (5.1), by creating a
shadow object class for each facet. A CORBA Authorizer component would need to be
written to hand out Capabilities to shadow objects to authorized clients [3].
Messages
Messages
Messages

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Client

Stub
1

Stub
2

Stub
3

Skel
1

Skel
2

Skel
3

Shadow
2

Shadow
1

Shadow
3

Service

Client

Service Object
Facet

Classes
generated by
idl2cpp

Classes
generated by
“idl2cap”

Figure 3 - Capabilities implemented with shadow objects

5.3.2. Java Remote Method Invocation (RMI)
The Java RMI facility [21] is similar in architecture to CORBA. It uses client side proxy
classes (“stubs”) generated by a compile-time tool, rmic, to message remote instances.
Unlike CORBA, RMI does not use separate, server-side adapter classes (the “skeletons”).
Services register with a name service, the RMI Registry, which clients use to find remote
objects. RMI allows for another dimension of flexibility in that the service can use the
Java class loader and serialization mechanisms to load the object instance from a method
call argument, or from a file or the Internet.

The same rules for managing Capabilities in CORBA apply to RMI. The facet and
shadow object patterns for a Capability-based design apply as well.

5.3.3. Comparing Frameworks
It is worth noting here that CORBA and RMI still operate on the synchronous-call model,
unlike the E language and ELib library. That is, a remote object invocation blocks the
thread that makes it. So even though CORBA and RMI solve important problems in
designing distributed systems, they do not natively protect object references nor do they

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

offer a model for creating deadlock-free systems, as E and ELib do. On the other hand, E
and ELib do not contain a pre-built facility for dispensing Capabilities to (authorized)
clients, where as CORBA and RMI have basic, if insecure ones.

Whichever framework is used, attention must be paid to preserving Capability semantics
at layers below the framework. Saving an object instance or Capability in a persistent
store requires that no subject that is not authorized for the Capability be able to access
that store. SSL or another means of protecting traffic and authenticating the
correspondent must be used for exchanging Capabilities over the network. Clients must
be protected from code on the network that would misappropriate Capabilities. Note that
enforcement stops short of explicit client action to share Capabilities, just as it is
impractical to prevent a person from sharing his or her password.

5.4. Capabilities on the Web
Most of the discussion of distributed object frameworks in this paper covers server-tier
and middle-tier components, because most distributed object technology is deployed in
those components. But the Web is an end-user medium, with the Web browser the most
familiar software artifact.

5.4.1. Client Framework Components
A Web page that is part of a Capability-based application can dynamically download a
software component to execute within the browser. Such component may be a Java
applet, a plug-in, or a compiled ActiveX control that is coded to the framework API and
uses the techniques discussed. However there are well-known tradeoffs to this design,
such as trust issues with accepting downloaded code to run in the user’s security context
(or some narrower context); and user experience issues with latency and errors in the
actual download or instantiation.

5.4.2. HTTP Cookies and Object References
Probably the bulk of Web pages delivered to browsers is coded in the HTML and
Javascript scripting languages. These languages fall well short of supporting basic object-
oriented properties of encapsulation, inheritance, polymorphism, etc. The challenge for a
Capability application designer is to model the system so that Web pages can exchange
some form of object references without an object-oriented framework.

The widely-used HTTP Cookie construct [22] specifies a format for exchanging state
information between client and server. A Web page can dispense Capability
“equivalents” via Cookies to the user’s browser. (The Cookie string would be an
“equivalent” because it would not be an object reference in the framework.) If the Cookie
string contains a Swiss number that designates a particular object in the server, and the
Cookie is exchanged via SSL, then the Capability requirements of 3.4.1 are met. (The
session ID Cookie exchanged by many sites is one type of object designator.) The
completeness requirement here intends that the Cookie strings act as Capabilities for
objects covered by the security policy. “Objects” not known to the distributed
framework, such as HTML blocks and Javascript variables, should contain no Capability

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

equivalents.

Note that some sites use URL parameters rather than Cookies to exchange state
information. The problem here is that misbehaving Javascript could lift a Capability
equivalent from such a parameter and POST it anywhere, whereas Cookie exchange can
be restricted to a particular, SSL-authenticated server trusted not to introduce such code
[3].

6. Conclusion
A distributed system is subject to myriad threats. The Capability security model is simple,
consistent, flexible, and expresses a wide range of policy, which are all major
countermeasures to the threats. There are production-quality tools becoming available
that support end-to-end implementation.

In contrast, an application security model composed from the various security features of
the implementation platforms is vulnerable to platform-specific attacks and changing
behavior of the security features. An end-to-end, platform-independent Capability-based
design should be considered at the outset for any substantial system to be exposed to the
Web.

7.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References
1 Steigler, M., Capabilities As Security Solution, Introduction to Capability-Based

Security, http://www.skyhunter.com/marcs/capabilityIntro/solmodel.html.

2 Lampson, B. W., A Note on the Confinement Problem, Comm. ACM 16, 10 (Oct.
1973), 613-615.

3 Hardy, N., Factories, http://www.cap-lore.com/CapTheory/KK/Factory.html.

4 Fabry, R., Capability-Based Addressing, Comm. ACM 17, 7 (July 1974), 403-412.

5 Bayko, J., CPU History, General Technical Information, Toronto Microelectronics,
Inc., http://www.tme-inc.com/html/service/general.htm#432.

6 Hardy, N., The Confused Deputy (or why capabilities might have been invented),
Operating Systems Review (Oct. 1988), pp. 36:38. Also http://cap-
lore.com/CapTheory/ConfusedDeputy.html.

7 Hardy, N., The KeyKOS Architecture, Operating Systems Review, September 1985,
pp. 8-25. Updated at http://www.cis.upenn.edu/~KeyKOS/OSRpaper.html.

8 Shapiro, J., Hardy, N., EROS: A Principle-Driven Operating System from the Ground
Up, IEEE Software (Jan. 2002), p. 26-33. Also http://www.eros-os.org/papers/IEEE-
Software-Jan-2002.pdf.

9 Shapiro, J., EROS: The Extremely Reliable Operating System, http://www.eros-
os.org.

10 Microsoft Corp., Internet Explorer Critical Updates,
http://www.microsoft.com/windows/ie/downloads/critical/default.asp.

11 Miller, M. et al, An Ode to the Granovetter Diagram, Proceedings, 4th Int’l Financial
Cryptography Conference (Feb. 2000) ISBN 3-540-42700-7. Also
http://www.erights.org/elib/capability/ode/overview.html.

12 Netscape Corp., Object Signing, Introduction to the Capabilities Classes,
http://developer.netscape.com/docs/manuals/signedobj/capabilities/index.html.

13 Microsoft Corp., Erroneous Verisign-Issued Digital Certificates Pose Spoofing
Hazard, http://www.microsoft.com/technet/security/bulletin/MS01-017.asp.

14 Miller, M., ERights Home Page, http://www.erights.org.

15 Stiegler, M., E in a Walnut, http://www.skyhunter.com/marcs/ewalnut.html.

16 Sun Microsystems, Inc., API for Privileged Blocks,
http://java.sun.com/products/jdk/1.2/docs/guide/security/doprivileged.html.

17 Stiegler, M., private correspondence with the author, Mar. 2002.

18 Hardy, N., Objects and Facets, http://www.cap-lore.com/CapTheory/ObExp.html.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

19 Gamma, E. et al, Design Patterns. Addison-Wesley, Reading, MA, 1995, p.185-193.

20 Borland Corp., Programmer’s Guide to Visibroker, Version 4.5. Borland Corp.,
Scotts’ Valley, CA, 2001.
http://www.inprise.com/techpubs/books/vbcpp/vbcpp45/programmers-
guide/vbcpp45programmers-guide.zip,
http://www.inprise.com/techpubs/books/vbj/vbj45/programmers-
guide/vbj45programmers-guide.zip.

21 Wollrath, A., Waldo, J., Trail: RMI, The Java Tutorial. Sun Microsystems, Inc.,
Mountain View, CA. http://java.sun.com/docs/books/tutorial/rmi/index.html.

22 Netscape Corp., Netscape Cookies,
http://www.netscape.com/newsref/std/cookie_spec.html. Also
http://developer.netscape.com:80/docs/manuals/js/client/jsref/cookies.htm.

