
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Submitted to fulfill the practical assignment: SANS Security Essentials GSEC
Practical Assignment, Version 1.3

Improving Software Security During Development
Robert W. Usher
March 26, 2002

Abstract

A great deal of work has gone into making computer and network systems
secure. This paper will explore the basis for creating secure software and
systems during development. Software security directly correlates to the quality
of the development process and leadership focus on security. Unfortunately, the
market drives demand, so the primary effort is spent on feature rich software
rather than secure by default systems. This has made the information security
industry what it is today; long checklists to correct default insecurity, expensive
audits to discover vulnerable systems and layers of defensive measures to
protect against attack.

Software is extremely complex. Each line of code is written by hand and a single
system can have large teams of coders all contributing a bit of hand written
code. By understanding the concept of Unbounded Systems we can better
understand the issues faced by customers and developers. Fortunately there are
some methodologies and data that may help improve the quality of systems
while they are in development. The Software Engineering Institute (SEI)
Capability Maturity Model (CMM), first published in 1993, contains vital practices
to improve the software development process. Comparing the CMM with
Extreme Programming (XP) we find reinforcement for best practices in
development that can lead to better security. A process cannot be altered or
controlled unless valid metrics are available. To reinforce the need for change
we will examine the results of two studies based on real world data. Evolution of
software toward improved security is inevitable, however it will take time.

Penetrate & Patch Securing Unbounded Systems

Security issues tend to focus on network communications. This makes sense
since a computer that is not part of a system, communicating in some way, is
much less vulnerable to attack. The availability of inexpensive communications
(the Internet) has created a requirement for devices to participate in a system of
some kind. The rapid adoption of the Internet by business created a need to
understand what could happen after joining a public unregulated network. This
created the security practice of penetration testing. If the good guys can get in to
the system then we know what to fix to prevent the bad guys from gaining the
same access.

On the surface this seems like a great idea. Catch the issues before anyone

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

else so that you can fix them. Unfortunately this process spirals out of control
because we are working in the realm of the Unbounded System.

According to David Fisher from the SEI: “An unbounded system is any system in
which the participants (human or computerized) have only incomplete or
imprecise information about the system as a whole. They include human
participants as well as automated components.” [1] Consider the assumption
about how software will be used. The human input component is impossible to
predict. Even a single computer with all the programs required for a specific
business can qualify as an Unbounded System. The human input and the
interaction of the diverse programs that were never tested together make it
impossible to have precise information about the system as a whole.

Once a system connects to the Internet, it becomes a small piece of a larger
Unbounded System. The vulnerabilities that are analyzed and corrected to
improve security, are actually unpredicted and undesirable states of functionality
built into the system. The number of available system states will determine the
potential to secure the system.

To secure part of an Unbounded System the system states must be
continuously tested: the corollary of penetration testing. When an undesirable
state is discovered the state must be eliminated: the corollary of patching. When
a patch is applied the system itself is altered and the cycle must be repeated to
insure no new undesirable states exist. In addition, any functional change to a
system may produce more unknown states that must be accounted for. This
never-ending cycle of penetrate and patch is critical to maintaining system
security by eliminating vulnerabilities (undesirable states of functionality).

Poor quality leads to security problems just as the unplanned use of well-coded
features can. For every change that is made, another test must be used to re-
verify the system is functioning correctly. Even with continuous testing there will
always be a limit to anticipating the element of human innovation.

Quality is Security

The software economy is driven by customer requirements for new features.
Software developers also drive the market when they bring technology
innovation to the market first. [2] Software development is done by hand.
Although we use words like engineering or science in relation to software and
computers, it may be more accurate to think of it as a handcrafted art form. [3]
What can be done to create better software and systems?

“Complexity is the worst enemy of security, and systems that are loaded with
features, capabilities, and options are much less secure than simple systems
that do a few things reliably.” according to Bruce Schneier and Adam Shostack.
[4] This seems like common sense but we should remember that software,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

being written by hand, could become complex even in a simple form.
Particularly when relying on a complex operating system.

The need for mission focused software to reduce the default level of complexity
is evident in the checklists that are required to make a system secure. In the
SANS Auditing Windows 2000 checklist [5] for example there are 19 steps
required to audit the security of Windows 2000. The Auditing Unix [6] checklist
has 21 steps and in both cases each step in the checklist may have more than
10 actions or considerations that need to be understood and acted upon. The
effort that must be put forth helps demonstrate how increased complexity and
flexibility can have a negative impact on security not to mention manageability.

With software that requires extensive configuration management, both for
security and day-to-day operations, quality will also be an issue. As the amount
of code increases and the number of code writers increase the maturity of the
development process must also increase to provide a process capable of
producing quality.

Process Creates Quality

Since being published in 1993 the SEI Capability Maturity Model (CMM) has
been an excellent guideline for software development organizations. The CMM
outlines what to do to create quality software by creating a process and
supporting organization. It does not specifically focus on security, however many
security issues, like buffer overflows, are a direct result of the quality of the
code.

The CMM has 5 levels of increasing maturity that an organization can strive for.

Level 1 – Initial – Based on the pure ability of people with no formal •
process or organizational structure. If you write your own programs or
scripts, this is you.

Level 2 – Repeatable – The organization has formal project management, •
tracking, planning, oversight, and quality assurance.

Level 3 – Defined – Increased organizational awareness including: •
process focus and definition, training, integrated software management,
product engineering, inter-group coordination and peer reviews.

Level 4 -- Managed – Metric driven management resulting in quantitative •
process management and software quality management.

Level 5 – Optimizing – The inward looking stage of continual •
improvement including defect prevention, technology change
management and process change management.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

A process called Extreme Programming (XP) has gained some attention as a
better way to create software. Contrasting XP and the CMM, Mark Paulk from
the SEI concludes that the CMM and XP are complementary. [7] XP
compliments the CMM because it both fulfills many of the specific goals of the
CMM while providing a disciplined process to create software. The CMM is a
guide on what to do whereas XP is a guide on how to do it.

Comparing the XP process to elements of the CMM we see why XP is
complementary to CMM.

XP (Extreme Programming) Process CMM Goals (Level)
Planning Game: Customer focused release
scope planning; includes business
priorities/dates and technical estimates.

Project planning (2)

Small Releases: Put simple system into
production on two-week release cycle.

Project planning (2)
Project tracking (2)
Configuration management (2)
Defect Prevention (5)

Metaphor: Guide development with shared
story of system functionality.

Requirements management
(2)
Project tracking (2)
Project engineering (3)

Simple Design: smallest, simplest code
possible to do the job.

Project engineering (3)
Defect Prevention (5)

Testing: Continuous unit testing. Unit test is
done prior to coding.

Project engineering (3)
Defect Prevention (5)

Refactoring: Restructure system to remove
duplication and simplify.

Project engineering (3)

Pair Programming: All code written by two
programmers at one machine.

Quality assurance (2)
Inter-group coordination (3)
Peer reviews (3)

Collective Ownership: Anyone can improve
any code at any time.

Configuration management (2)

Continuous Integration: Code is integrated at
least every day. Continual regression testing
of system.

Requirements management
(2)
Configuration management (2)
Project engineering (3)

40-hour Week: Work no more than 40 hours
per week. Never work overtime two weeks in
a row.
Onsite Customer: An actual customer is
onsite full time to answer questions.

Requirements management
(2)
Inter-group coordination (3)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Coding Standards: Agree on rules that
emphasize communication throughout the
code.

Project engineering (3)

The XP process meets many of the CMM goals for Levels 2 and 3. Use of XP
would not hinder and organization from attaining the higher CMM levels. We
should be interested in how the critical software we depend on is created and
the process that is used. An increased understanding of the software
development process will help refine perceptions about secure software.

Although the combination of the CMM and XP may help an organization create
better software, supporting data is required to provide evidence that these
processes need to view security as a quality issue. Supporting data can be
found in the Hoover Project and SEI research on Survivability. Both quality and
complexity of software design are tied together in many ways. Increased
complexity may lead to lower security due to pure quality issues, increased
number of system states and overly complex configuration scenarios. With real
data, realistic decisions can be made.

Hoover Project

Taken from 18 months of e-commerce consulting engagements the Hoover
Project compiled a vast amount of customer data to discover differences in
software development techniques. The best-designed software produced 82%
less risk than the worst. [8] The differentiating factors and recommended actions
that resulted from the best/worst analysis clearly show security can be mitigated
during development.

Differentiating Factors

Early design focus on user authentication and authorization – Similar to •
the SANS/FBI Top 20 topic, “Accounts with no passwords or weak
passwords” [9], authentication remains one of the most important security
issues. The development of customized e-commerce systems requires
as much attention as the authentication security for an operating system.
The development team can use different types of authentication
databases and techniques. The most important factors that created the
best results were password encryption and a strong authentication
database. The best implementations reduced business risk by 88% vs.
the worst.

Mistrust of user input – Initially this seems very specific to e-commerce •
where input could contain code, like html, with a malicious purpose. This
point can be extrapolated to all software when we consider that human
input cannot be predicted. Increasing the stability of software systems by
adding input protection decreased business risk by 77%.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

End-to-end session encryption – To produce a 90% business risk •
reduction, session encryption is critical. Without proper session
management and encryption, applications are susceptible to session
hijacking where a replay of the current session identifier can give the
attacker the privilege of the user.

Safe data handling – Similar to the data security required while data is on •
the network, data must be also be encrypted and segmented wherever it
is stored. Nothing is more embarrassing than customers seeing each
other’s data! Focus on the use of proven encryption reduced business
risk by 93%.

Elimination of administrator backdoors, miss-configurations and default •
settings – The SANS/FBI Top 20 lists “Default installs of operating
systems and applications” [9] is at the top of the list. Following this best
practice reduced business risk by 82%.

Security quality assurance – The Hoover Project did not report any hard •
data on this, but does note that making security part of the quality
assurance process helped the high achievers create the better
applications. Also noted is the reduced post-production impact due to an
emphasis on security within the development team.

Although this data was taken from e-commerce projects its applicability is more
general. Combined with other sources, like the SANS/FBI Top 20, software
developers should be able to justify building security into products early. The
actions that the Hoover Project concluded are also useful for development
teams and customers to consider.

Actions

Stop depending on the firewall – Certainly good advice if you want to •
think about your true security posture. Without the firewall we would all
be in trouble, however the firewall is still going to allow some access to
your systems. That access may lead to a targeted application attack that
the application must be able to withstand without failing. If systems are
designed to with stand attack, continue their mission, and recover then
the firewall will be obsolete. Attaining this level of Survivability [10] is
going to take some time.

Act up – This guidance from @stake is addressing the fact that •
customers must provide feedback to software developers. This is a
market issue. Customers can increase their knowledge about a software
purchase by educating themselves and asking appropriate questions. The
best feedback is revenue. Cash flow can fund better security or complex

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

features. Expenditures will convey the desire of the market, as long as the
market has complete access to the pertinent information.

Educate application developers/Engage Finance and Audit – Focus on •
the root causes during development and let the boardroom create the
security focus through leadership. The entire weight of the issue cannot
be dropped on the developers alone. Looking at the CMM, XP, and other
quality management programs like ISO 9000 and TQM one point is clear:
Leadership makes the difference. Quality and security are not going to
change until the change is made at the top.

Assess early and often – Avoid post-production surprises with constant •
assessment during development. Penetration testing will become part of
development. The XP programming process has 3 places for ongoing
assessment: Developer Unit Testing, Integration Testing, and Coding
Rules. By focusing the XP process on security the process will drive out
security defects.

Get outside help – Security skills are rare. Seeking out the expertise that •
exists outside the organization can enhance understanding secure
software development. Outside help is also available in written form.
Read everything you can to make better decisions.

Survivability

The SEI research on systems survivability has provided an empirical study
based on the reported CERT incidents from 1988 to 1995. [10] The modeling of
this real data is a positive way to create better understanding of the need for
system security. In addition a cost/benefit analysis was preformed to determine
the effect of increased security spending. Unlike the Hoover Project that focused
on security during development, this study examines security based on
configuration and external defenses.

Cost is the aggregate of additional defensive measures (like firewalls) and
potential reduction of desired functionality (like disabling a useful feature) in
trade for a more robust security posture.

Survivability is the ability of a system to maintain a functional (although possibly
compromised) state that still fulfills the mission of the system. An example
would be a mail server that still sends mail even though the local web service
has been crashed.

Survivability Research Summary

Damage is directly proportional to the rate of attack. The faster the attacks occur
the more damage will result. This is still the case even when the attacks are not

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

sophisticated, however the number of weaker attacks over time must be greater.

Survivability is inversely proportional to the number of available system states.
The more states a system can have the less likely it is to survive under attack.
This reinforces the early statement that complexity is the enemy of security. It
also supports the XP process elements: Simple Design and Refactoring that
help eliminate superfluous code.
Survivability is not as affected by attack strength or attack rate. If there are few
available system states, the attacks have a minimal chance of success. If the
system has 1000’s of different functional states there will as many successful
attacks discovered for that system.

Cost of Survivability is a curve. Initial spending creates a dramatic increase in
Survivability. At some point the curve starts to flatten and a similar increase in
spending will now produce only a quarter of the initial result. The cost figure is
theoretical, but indicates an optimal level of expenditure on defensive measures.

Common Criteria

As an example of additional sources of input to improve the development of
secure software we could incorporate concepts from the Common Criteria
Evaluation Assurance Levels (EAL) into the CMM/XP process. Common Criteria
evaluations are based primarily on Protection Profiles and Security Targets.

Protection Profiles, simply stated, are written by a customer to define the
security requirements for a product. [11] To inject the Protection Profile into the
combined CMM/XP process we look to the XP element of the Onsite Customer.
Giving the Onsite Customer guidelines for planning the security requirements
will help produce more secure software.

Security Targets, on the other hand, are written by the developers to detail how
the software will meet the Protection Profile. [11] This fits well into XP test plans
and developer unit testing. Both the Protection Profile and the Security Target
requirements would dictate the plan in Continuous Integration testing phase.

Even if the development process does not require a formal evaluation under the
Common Criteria, further understanding by developers and managers can help
promote a security conscious development organization.

Conclusion

Quality and complexity both have a role in the security of software and systems.
The software development process can be guided by the CMM and XP when
taken in the context of real historical data. Improving the process while
understanding the data should produce better, more secure, software and
systems. The development lifecycle process will change slowly. Thus the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

current security practice will continue to evolve. Everyone who touches software
or systems must make a commitment to improve the state of security.
Understanding the development process and the inherent challenges are part of
the cycle of continuous improvement.

Future study

With the vast amount of research and activity underway to improve system
quality and security, the need for continued research is evident. A correlation of
the SEI Survivability data with the Hoover Project to understand the impact of
proactive application security vs. external defenses would be valuable.
Validation of the development process through analysis of additional real world
data will be critical. Whatever data is gathered should always be used as a
reference point to guide the process. Software development organizations could
analyze and publish security data in support of specific process elements.
Although competition might prevent such disclosure, academic research may be
able to attain the same goal through long-term corporate engagements. A topic
not covered here is the legal aspect of software and system security. There are
issues that may impact quality and security found in current legislation, which
may be worthy of future exploration. [12]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

[1] Fisher, David A. “Survivability and Simulation”, Software Engineering
Institute, November 14, 2000
URL: http://www.cert.org/easel/survsimesl.html

[2] Baskerville, Levine, Pries-Heje, Ramesh and Slaughter, “How Internet
Software Companies Negotiate Quality”, May 2001, IEEE Computer
URL: http://computer.org/computer/homepage/may/baskerville/index.htm

[3] Hayes, Will and Over, James W. “The Personal Software Process (PSP): An
Empirical Study of the Impact of PSP on Individual Engineers “December 1997
URL: http://www.sei.cmu.edu/pub/documents/97.reports/pdf/97tr001.pdf

[4] Schneier, Bruce and Shostack, Adam. “Results, Not Resolutions, A guide to
judging Microsoft's security progress.” January 24, 2002
URL: http://online.securityfocus.com/news/315

[5] SANS, “Auditing Winodws 2000”
URL: http://www.sans.org/SCORE/checklists/AuditingWindowsNT.doc

[6] SANS, “Auditing Unix (Solaris)”
URL: http://www.sans.org/SCORE/checklists/AuditingUnix.doc

[7] Paulk, Mark C. “Extreme Programming from a CMM Perspective” IEEE
Software November/December 2001
URL: http://www.sei.cmu.edu/cmm/papers/xp-cmm.pdf

[8] Jaquith, Andrew. “The Security of Applications: Not All Are Created Equal”
February 2002
URL: http://www.atstake.com/research/reports/atstake_app_unequal.pdf

[9] SANS/FBI Top 20 – “The Twenty Most Critical Internet Security
Vulnerabilities” Version 2.502 January 30, 2002
URL: http://www.sans.org/top20.htm

[10] Konda, Moitra. “The Survivability of Network Systems An Empirical
Analysis”
December 2000
URL: http://www.cert.org/archive/pdf/00tr021.pdf

[11] Aizuddin, Ariffuddin. “The Common Criteria ISO/IEC 15408– The Insight,
Some Thoughts, Questions and Issues” October 1, 2001
URL:http://rr.sans.org/standards/ISOIEC_15408.php

[12] Braucher, Jean and Henerson, Roger. “The Uniform Computer Information
Transactions Act (UCITA): Objections From The Consumer Perspective” August
21, 2000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

URL: http://www.cpsr.org/program/UCITA/braucher.rtf

