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Summary

Buffer Overflows are responsible for many vulnerabilities in operating systems and 
application programs, actually dating back to the famous Morris worm in 1988. 
Descriptions of buffer overflow exploitation techniques are, however, in many cases either 
only scratching the surface or quite technical, including program source code, assembler 
listings and debugger usage, which scares away a lot of people without a solid 
programming background.

This paper tries to fill the gap between those two categories by striking a good balance 
between depth and breadth of the presentation, covering the stack smashing, frame 
pointer overwrite, return-into-libc, and heap based overflow techniques as well as 
possible countermeasures.
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Typographic Conventions:

The first time a term is introduced it is emphasized by italics.

Terms and names which are related to the C programming language are provided in 
Courier New font, e.g. main().
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1 More precisely, a buffer (often called an array as well) is a segment in memory that holds a number of 

Introduction1
Buffer Overflow based exploits are featured on all security related web sites and mailing 
lists. For example, the SANS Windows Security Digest dedicates a regular section to 
buffer overflows, stating

Buffer overflows can generally be used to execute arbitrary code on the victim 
host; as such, they should be considered HIGH risk. Many buffer overflows 
are discovered each month. [16]

A recent CERT Security Improvement Feature backs this view:

Even though the cause [The Morris Worm of 1988] was highly publicized, 
buffer overflows are still a major cause of intrusions today. In fact, the first six 
CERT® Coordination Center advisories issued in 2002 describe buffer 
overflow flaws in several common computer programs. [28]

Although many people are aware of the high risk posed by buffer overflows, insight into 
this topic is not exactly easy to gain. Many sources of information require a rather solid 
background in topics as the C programming language, assembler code and using a 
debugger on assembly level, e.g. [1], [19], or [24]. On the other hand some papers 
describe buffer overflows only on a quite abstract level, focusing mainly on the stack 
smashing technique, which we will describe in section 7.

This paper explains several common buffer overflow exploitation techniques. Its focus is 
to strike a good balance between depth and breadth of the presentation. Using this 
approach we will sometimes deliberately omit technical details or provide a simplified 
model. If technical details are desired, the references should provide a good starting 
point.

The underlying model of the paper are the C programming language and the Linux 
operating system on the widespread Intel x86 architecture, sometimes called IA32 as 
well, which includes in particular all Pentium and the corresponding AMD processors.

Actually all other current operating systems and architectures we are aware of are, 
however, vulnerable to buffer overflows too, but technical details will differ.

So what’s a Buffer Overflow, after all?2

The ultimate purpose of any program that runs on a computer is to process data of some 
kind. Most don’t operate on fixed data, but on data that is ultimately provided by a user, 
possibly preprocessed in some fashion. The program needs to store the data somewhere 
in the computer’s memory, and this is the point where the problems start. Many 
programmers implicitly assume that the user input will be “reasonable” to a certain extent. 
This assumption holds in particular for the length of character input, commonly called 
strings. It seems for instance unreasonable that the address of a web page will be longer 
than say 500 characters. In most cases programmers add some safety margin, e.g. 
multiply by 2 or even 10 and assume that this should now really be an upper bound on the 
length of any address that a web surfer might provide. Based on this assumption, the 
programmer of a web server reserves memory for a web page address that could hold up 
to 5’000 characters. This reserved memory space is commonly called a buffer1.
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identical objects. In our example the objects are mostly characters, but they could be of any other pre- or 
programmer-defined type.
2 Note that in many circumstances the best choice would actually be to dynamically allocate enough memory 
for the actual input data during program execution, which requires, however, slightly more work, has some 
other drawbacks (as discussed below) and is hence rarely done.
3 How does the program recognize that it read all its data? Normally the end of the data is marked by special 
data values; for strings normally the NULL character with a decimal value 0. The processing of data stops 
with the first NULL character read, which terminates the input.

So far everything is more or less ok with this approach. Now comes the crucial part, 
namely: Is the implicit assumption of “reasonable” length explicitly checked?!? This 
means, does the programmer just assume “5’000 characters will do”, and process the 
input as provided by the user in the address field of his browser without further question, 
or will he explicitly check that this address is not longer than 5’000 characters?

In many, many cases there is no check at all (due to laziness, guilelessness, an 
“aggressive” development schedule or simply obliviousness of the programmer) – the 
data is just processed as is2. So what happens if a user unintentionally or intentionally 
provides a web address with say 5’500 characters in it? After writing the 5’000 “good”
characters in memory, and thus filling up the allocated buffer, the remaining 500 
additional “bad” characters3 will be placed in the memory following the buffer, resulting in 
a buffer overflow.

Please note that any method for providing user input to a program can be (ab)used for 
buffer overflow purposes. This includes, but is not limited to:

Data typed or pasted into text fields of the program’s graphical user interface (as in the a)
previous example of input to a web server)

Data sent to the program via a networkb)

Data provided in a filec)

Data provided on the command line when invoking the program via a command line d)
interpreter (any shell in Unix or cmd.exe in Windows)

Data provided in environment variables (e.g. %TMP% in Windows or $TMP in Unix –e)
the directory used for temporary files)

…f)

Note that a), b), and c) are examples for buffer overflows that can probably be exploited 
remotely, while the others are targeting a local system.

Depending on a number of factors, including the method of memory reservation chosen 
by the programmer (see section 6 below), the internal memory organization of the 
computer running the program, and the actual input, the result of a buffer overflow may 
be:

Corruption of other program data, resulting in incorrect output for the input data, e.g. a)
for a program doing some sort of calculation a wrong result (in our web server 
example, assuming that the provided web address is indeed valid, incorrect output 
would be for instance a “404 - Document Not Found” http-error).

Corruption of control flow structures of the program, generally leading to premature b)
program termination (On Unix systems, this often triggers the error message 
“segmentation violation”, on Windows Systems “general protection fault” or “access 
violation” – all meaning that the program tried to access memory locations outside the 
memory range reserved for it by the operating system).
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Shutdown of the computer running the program, if the involved program was e.g. part c)
of the operating system.

This certainly doesn’t sound desirable, but actually you might be better off if you 
encounter only those cases! The sad truth is, however, that by carefully crafting the data 
causing the overflow, an attacker might 

Be able to execute code of his choice on the computer running the program!d)

This threat is the reason why potential buffer overflows are not only annoying, but actually 
a huge threat to anyone running a vulnerable program!

To understand how case d) can be accomplished, we need to discuss some 
fundamentals of computer programs and architecture.

Programs, Libraries, and Binaries3

Any of the programs we use day-by-day are built from constants, variables and 
instructions that deal with the data to be processed. The instructions are normally 
grouped in small units called modules, (sub-)routines, or, in the case of the C 
programming language, simply functions, which each implement a certain functionality. 
Fortunately many common tasks don’t need to be programmed in detail, but are available 
as functions already in libraries; collections of useful routines offered both by the 
underlying operating system and from third parties.

A special program called a compiler is used to translate the high level instructions of a 
programming language like C into machine code – byte sequences that the targeted 
processor executes to accomplish the program’s target. Note that you can by means of 
disassemblers convert the machine code back into so called assembler code, which is a 
very basic, not to say cryptic sort of programming language, but even so better readable 
by humans. Another program, called the linker (sometimes embedded in or otherwise 
directly invoked by the compiler) is used to integrate all parts of the program, including all 
referenced functions from libraries. The result of all those activities is commonly called a 
binary.

When the user invokes by whatever means the binary, the execution starts (by convention 
of the C programming language) at the machine code equivalent to the first line of code of 
the main() function (which hence needs to be present in any C program!). For any non-
trivial program, main() will call another function, which in turn might call a third one, 
which may, after performing its task, transfer control back to the second function and so 
on and so on, until the binary either exits on its own behalf (e.g. by reaching finally the 
end of the main() function or calling the exit() function) or is explicitly closed by user 
input.

The Threat4

Each execution of a binary has a certain context that determines which privileges are 
granted to this running instance of the binary. Type and granularity of privileges are highly 
dependent on the operating system and the configuration of the computer. Typical 
examples are the permission to read or write files, to open network connections on 
specific ports or to shut down other binaries or the whole computer. Often the context is 
solely dependent on the user starting the binary, meaning that the binary can basically 
perform all actions programmatically that the user could perform manually, and nothing 
more.
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4 Note that this section is mainly based on [24].

Some programs, however, require extended privileges to accomplish their task. Consider 
for instance a program that permits users to change their password. This program needs 
to be able to write the corresponding data into a password file or database. Under Unix 
Systems, the way to accomplish this is through the use of suid programs that use the 
privileges of the binary’s file owner instead of the user invoking it.

Even more attractive targets in particular for remote attacks are, however, certain 
programs that are started already at boot time and run silently in the background all time. 
These daemons (Unix term) or services (Windows term) often run with extended 
privileges (which are for instance required on Unix systems for access to the server ports 
1-1023). This and the “always on” property are a combination that suits many attackers.

Basically in the same category fall server applications like web servers, which share the 
“always on” property. In particular Microsoft’s Internet Information Server (IIS) has a bad 
record of buffer overflow (and other) vulnerabilities see for instance [14].

So the goal of an attacker utilizing buffer overflow techniques is generally to abuse a 
binary (and thus its privileges – the more, the better) by running code of his choice on the 
target machine.

Basics of Computer Architecture5

On an abstract level, any computer consists of 

a central processing unit, CPU, which does the real data processing, •

memory, that is sequentially numbered starting with address 0, •

some means for non-volatile storage of data  – usually provided by hard disks, and•

input and output devices like keyboard, mouse, network cards, etc.•

The CPU, often referred to as the computer’s (main) processor (e.g. a Pentium 4), holds a 
number of so called registers, which can hold and process/manipulate data. One 
particular register, called the instruction pointer, IP, is responsible for keeping track of 
program execution by holding the address of the next instruction to be executed. Note that 
a pointer is generally an entity containing a memory address.

The smallest unit of information that a CPU and thus a computer can deal with is a bit
(Binary Digit). Dealing with single bits is, however, not exactly efficient. Hence very early 
in computer history the notion of a word was created, identifying the number of bits a CPU 
was able to deal with concurrently (still including the possibility to manipulate only one bit 
in a word). Early computers used nibbles, 4 bits, as words, later on bytes, 8 bits, were 
used, and currently the majority of systems (including all x86 and thus Pentium systems), 
deal with words of 32 bits. Actually a number of processors use already a word length of 
64 bit, starting with DEC’s/Compaq’s Alpha processor already in 1993. Intel entered into 
the competition in 2001 with its Intel® Itanium™ processor series.

Memory Organization46

If a program is compiled and linked into a binary and then run, the different parts of it, 
namely program code, constants and data are placed in different segments of memory, 
as illustrated by Figure 1.
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5 It is actually good programming practice to use as few global variables as possible in favor of local 
variables.
6 You might just decide to strike back by innocently asking why on earth computer scientists can’t even 
generally proof whether a program will on certain input data eventually stop or run forever. The fact that this 
is indeed not possible is known as the “Halting problem”, proven the first time by Alan Turing in 1935 (see 

Code

Data

BSS
Heap

Stack

Low
Addresses

High
Addresses

Figure 1: Memory layout of a binary (adapted from [24])

Code6.1

First of all there is the Code segment, containing all those strange byte patterns whose 
meaning only the CPU and some blessed individuals can fully understand. This memory 
segment is read-only, which enables it to be shared by all users running the binary 
concurrently. So the Code segment is definitely no target for buffer overflows; any attempt 
to write into it will result in a memory access violation error and termination of the 
program.

Note that the other memory segments described below, which contain user data, are for 
obvious reasons not shared, but specifically created and reserved for each running 
instance of a binary.

Data and BSS6.2

The Data and BSS segments contain global variables, which are accessible from any 
code in any function. The main difference between the Data and BSS segments is that 
the former contains variables which have been assigned an initial value in the program 
code, while uninitialized global variables reside in the BSS segment. Since variables 
shouldn’t contain executable code, these memory segments are not executable; meaning 
that directing the instruction pointer of a binary by whatever means to them will cause 
premature program termination.

Stack6.3

As you might already have guessed, the counterpart to global variables are local 
variables, which are used only in one function and thus only accessible by instructions in 
this function5. Local variables are placed in the memory segment called the stack, which 
makes dealing with them easy and efficient, as we will see below.

Computer scientists may try to impress you by calling a stack an abstract data type. Don’t 
be intimidated6; although they are right, a stack is actually a nice, easy to comprehend 
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e.g. [34]). Trying to recall the proof and explain it will certainly keep your friend busy for some time and thus 
prevent him from bugging people. ☺
7 Note that the term used in the x86 processor family is actually extended stack pointer, %esi, where the 
term extended is used to indicate that this is a 32 bit architecture, no longer 16 bit (cf. section “The 
registers” in [24]).
8 Note that the Java programming language has for reasons of safety and robustness explicitly disapproved 

thing. As stated in [23]:

The usual physical example of a stack is to be found in a cafeteria: a pile of 
plates or trays sitting on a spring in a well, so that when you put one on the 
top they all sink down, and when you take one off the top the rest spring up a 
bit.

Other names for a stack are last-in-first-out (LIFO) lists or push down lists. These terms 
describe one fundamental property of stacks: You are only able to access the topmost 
element, the top of the stack, and either move the element on top of it somewhere else 
and advance thus to the next element below, or put a new item on top of this element. 
These operations are known as pop and push, respectively, where pop takes as 
argument a destination where to put the popped element, while push uses the value that 
should be pushed as argument.

In our context, the stack is located at the end of the memory accessible by the program 
(cf. Figure 1) and growing downwards, so the topmost element is actually the one with 
the lowest address. Nevertheless it is still called the top. The CPU contains a special 
register that just keeps track of the top of the stack when it is growing and shrinking 
again. This register is called the stack pointer7, SP.

Actually not only local variables are placed on the stack, but a number of other interesting 
objects as well – we’ll cover these in a minute in the section “Smashing the stack”.

Items that are pushed on the stack can, incidentally, only be put at word boundaries, 
meaning that the address must be a multiple of the word length. Hence if the program 
contains a local variable using only one byte, then nevertheless a full word is used to 
store this variable!

Heap6.4

The final memory segment we need to cover is the heap. The heap is the memory area 
where you can allocate memory during the execution of a binary (by means of a system 
function called malloc(), memory allocation). You (well, the programmer) can just say: 
“I now need 5’000 bytes of memory” and there it is, if you have been blessed by the 
operating system! This is particularly helpful if you can’t predict how much space you will 
actually need, since this will depend on the input to the program (do you recall our 
discussion of fixed buffer length in the “So what’s a Buffer Overflow, after all?” section? 
Great!). The counterpart to malloc() and the memory allocation is incidentally the 
free() function, which returns the memory to the operating system.

The heap is actually closely related to the already mentioned concept of a pointer in the C 
language, a memory address that holds no “real” data, but another memory address. Part 
of the magic of malloc() is that it provides you with the lowest address of the memory 
region you have been granted – how could you otherwise access it? Variables holding 
memory addresses are of pointer type, hence the address returned by malloc() is for 
future use stored in such a pointer. This can on the one hand be very useful, but has on 
the other hand been a constant source of various problems with C programs8, in particular 
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pointers in its design!

if pointers are not properly initialized or operations on pointers are done wrong.

Smashing the stack7

Exploitation Technique7.1

Equipped with the information provided in the previous sections we are now in the 
position to discuss the simplest or most straightforward buffer overflow attack, commonly 
called stack smashing. 

The “classical” papers discussing these exploits first were published by “Mudge” in 
October 1995, see [19], and by “Aleph One” in the Phrack Magazine in November 1996, 
see [1]. Apart from these papers this section benefits again from [24] and [25], in 
particular regarding the figures.

To understand the fundamental technique of stack smashing we need to dig a little bit 
more into what happens when a function is called by another function, i.e. when a source 
code line like
my_func(param1, param2, …, paramn);
is executed, which uses local variables var1, var2, …, varm and is called with certain values 
for its parameters param1, param2, …, paramn.

Before the call of my_func(), the stack appear as shown in Figure 2.

As discussed before, the stack pointer SP contains the address Y of the top of the stack, 
and the instruction pointer IP the address Z of the next machine code instruction to be 
executed, in this case the first of a series of instructions to actually prepare the call of 
my_func(). But what is the function of the BP register? 

Although we stated above that the stack is used to store local variables, in truth it holds 
more information than that. Actually the whole context of a function is pushed onto the 
stack, containing its parameters, its local variables and some other information which 
we’ll handle below. The whole bunch of memory dedicated to a function is called its stack 
frame.

Registers

Z

Y

X

IP

SP

BP

Low
Addresses

High
Addresses

X

Y SP

BP

Figure 2: Stack before function call
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Now the processor needs some means to address both the parameters and local 
variables in such a stack frame. As it turns out, one clever way to accomplish this is to 
identify a fixed location in each stack frame. This reference point is the contents of the BP 
register, which stands for base pointer (sometimes, i.e. for other processors, called frame 
pointer as well).

But back to our call to my_func(). The first thing to do is to pass the actual arguments, 
that is the values for param1, param2, …, paramn to it. This is for obvious reasons 
actually the responsibility of the function calling my_func(). By convention the 
parameters are passed in reverse order, starting with paramn, down to param1.

The next problem we are faced with is that after my_func()has done its job, we would 
like to continue the execution in the calling function. To accomplish this, we just push the 
address V of the next instruction after the call on the stack as well (this is the time to 
admit that such a stack is really a handy thing!).

Figure 3 shows how our stack looks now after parameter and return address pushing has 
been performed. Please note that this figure doesn’t scale; actually the size required for 
each parameter does normally differ widely, depending on the type of each parameter.

Registers

U

W

X

IP

SP

BP

X

Y

SP

BP

W

paramn

param1

V

Figure 3: Stack after Pushing of Parameters and Return Address

The next instruction at address U is the actual call of my_func(), which just copies the 
address of the first instruction of it into the IP register.

Now finally comes the hour of fame of the called function! Before it can start its real work, 
however, it must make sure that 

the old base pointer is stored by pushing it on the stack – note that this is a 1.
prerequisite for properly transferring control back to the calling function!

the base pointer register is updated by copying the value of the stack pointer register 2.
to the base pointer, and that

stack place for the local variables is reserved by sliding the stack pointer down 3.
according to the required memory size of all local variables, in our example for var1, 
var2, …, varm.
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9 Recall from section 6.3 that the smallest addressable unit on the stack are actually words!
10 This enables experienced assembler programmers to distinguish between those two types of variables by 
just looking at the assembler instructions.

Note that the first two steps are handled by the same machine code / assembler 
instructions for all function calls (although the actual values stored from or kept in the 
registers will of course differ). In step 3 only the number of words9 to reserve on the stack 
differs between function calls.

These three steps, which constitute the generic part at the beginning of all function calls, 
are called the prolog of a function.

X

Y

W

paramn

param1

V
XW' BP

SP

var1

varmT

Registers

S

T

W'

IP

SP

BP
S

tack Fram
e of my_func()

Figure 4: Stack after function prolog

Figure 4 shows the stack after the function prolog (again not explicitly indicating the 
different size requirement for the local variables). Note that the IP holds the address S of 
the first “real” instruction in the function and that the address W’, to which BP points, is 
actually the value of W minus the number of bytes in a word.

Please note that the parameters and local variables of the function are arranged in a 
symmetric fashion above and below the base pointer. As a side effect, the relative offset 
of the parameters is positive with regard to BP, and the local variables have a negative 
offset10.

As you might have guessed: If there is a prolog, then there must be an epilog as well. Its 
purpose is to clean up after the function has done its “real” work.

This involves again three steps:
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11 Note that the actual result or side effect of calling the function manifests in changed value of registers or 
global variables or e.g. by some output in the graphical user interface of the program.

To copy the value W’ of the base pointer into the stack pointer, thus discarding the 1.
local variables.

Copy the saved value X of the base pointer location of the calling function back into 2.
BP (done by a pop instruction, since SP now points to the stack address holding this 
value). As a comparison of Figure 5 with Figure 3 shows, the stack is again back to 
the status it had before the function’s prolog, if we neglect the possibly changed 
values of parameters and local variables of the called function. With regard to the 
registers, the only difference is that the instruction pointer contains now the address 
R. 

R points to another pop operation which will copy the return address, V in our 3.
example, back to the instruction pointer.

Registers

R

W

X

IP

SP

BP

X

Y

W

paramn

param1

V
XW'

BP

SP

var1

varmT

Figure 5: Stack after step 2 of the function epilog

The instruction at this address V (in the calling function – we are back!) will actually 
increment the stack pointer by the same amount it was effectively increased by pushing 
all parameters param1, param2, …, paramn on the stack prior to the function call. With 
regard to the stack we have now eventually reached the same situation as shown in 
Figure 2 before the function call was made11. 

So far everything seems alright, so where is the problem or threat?

Imagine that one of the innocent looking local variables var1, var2, …, varm might actually 
be a buffer of any kind. By convention buffers are placed in memory in such a way that 
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12 Note that in this and the other examples of this section, injecting the code somewhere in memory and 
arranging to get it executed is done in one single step. This needs not necessarily be the case, but is 
obviously convenient, if possible!

the first item in the buffer has the lowest address. In other words, the buffer grows in the 
direction of higher addresses, upwards in our figures.

Imagine further that the length of input to this buffer isn’t checked. The excess data will 
first overwrite other local variables, if any, and then proceed to provide new values for the 
stored values of the base pointer and the return address to jump to after the function 
epilog has been executed. Well, this offers indeed interesting opportunities! Imagine that 
we provide buffer data to the program that will overwrite this return address with the 
address of some carefully crafted machine code which we put into the buffer either after 
the faked return address or before it12. If properly done, control flow of the attacked 
program will continue with this “injected” code after the epilog of my_func()!

Registers

P

T

W'

IP

SP

BP

X

Y

W S
W' BP

varmT

S
attacker's

code

SP

Faked return address

Start of buffer
arbitrary

data

Figure 6: Stack after buffer overflow

Figure 6 shows the stack after the buffer overflow (whose extent is indicated by hatching) 
occurred, where the attacker’s code was put after the faked return address. 

On Unix systems, the most prevalent type of code used by attackers, is so called 
shellcode. A Shell is a program providing a command line interface to Unix Systems. The 
default shell program is the Bourne Shell, which is located under /bin/sh in the Unix 
filesystem. The goal of the shellcode is to execute the /bin/sh binary on behalf of the 
attacked binary, which provides the attacker with an interface to execute arbitrary 
commands under the privileges of the attacked program (recall our discussion in section 
4 above).
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Examples for such shellcode for various system are widely available on the Internet, e.g. 
in references [1], [19] or [24]. One of the advantages of shellcode is that it is usually quite 
small – the example provided in [24] actually fits into less than 60 bytes! This minimizes 
the risk that the buffer overflow data exceeds the attacked program’s memory space or 
that other unwanted side effects (from the attacker’s perspective) occur!

For Windows system, the term shellcode is used as well, but normally in a different 
meaning. As stated in [10]:

…the problem with most win32 remote overflow exploits stems from the 
payload, the current trend is to have the shellcode download an external file 
and execute.

This is probably due to the fact that exactly this approach was chosen in the “classical”
paper [12] on exploiting buffer overflows in Windows.

Reference [10] shows, however, an example for shellcode that is the equivalent of the 
traditional shellcode for Unix systems for W indows systems.

In any case there are some obstacles for exploiting a buffer overflow vulnerability even if 
the shellcode as such is bulletproof, meaning that it would indeed provide a shell to the 
user if run in the context of a “normal” program on the target machine. These obstacles 
include, but are not limited to:

Guessing the right value to put into the faked return address1.

Guessing the location of the return address on the stack (W in our examples) relatively 2.
to the overflowed buffer (in case you don’t have access to the source code of the 
vulnerable program and hence can’t just look up the offset)

Ensuring that the shellcode doesn’t contain any zeros, since string copying functions, 3.
which are responsible for the majority of buffer overflow vulnerabilities, will stop 
copying data (in this case the shellcode) after they encounter the first byte containing 
zero, interpreted as the special NULL character.

Issues 1 and 2 are normally handled simultaneously. The key idea is 

to prepend a number of so called NOP instructions (short for No Operation – an 2.
instruction that does exactly this – nothing!) in front of the shell code and 

to repeat the estimated (well, “guestimated” would be the more appropriate term) start 3.
address several times in the data used to overflow the buffer.
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start address

start address

start address

NOP

NOP

NOP

...

...

"real"
shellcode

Figure 7: Buffer filled up for exploit (adapted from [25])

Figure 7 shows a buffer whose payload for an exploit is arranged according to this 
scheme. By this approach we have first increased the probability that the start address 
will indeed overwrite the return address of the stack frame. Moreover it is now no longer 
required to exactly hit the beginning of the “real” shellcode with the start address, but it is 
sufficient that the start address points somewhere into the NOPs, since the CPU will just 
advance through them till it reaches the “real” shellcode. More details on these 
techniques and other issues, which are beyond the scope of this paper, can be found e.g. 
in [1] and [25].

Issue 3 can be tackled e.g. by using register operations in the shellcode to generate zeros 
as register content and use it in the appropriate place; see [1] or [24] for a detailed 
discussion of this approach. 

Another possibility is in some cases to “mask” part of the shellcode by e.g. setting a 
specific bit that was 0 for all bytes in the original data to 1 in all bytes and reversing this 
operation by the shellcode. This approach is discussed in [11].

Note that it is even possible to write shellcode for the x86 architecture that uses only 
bytes that are alphanumeric, meaning that the shellcode would look like garbage from 
digits and upper and lower case characters, when loaded into a text editor (see [26]). 
Such approaches have the additional advantage (for a possible attacker!) that they 
escape the shellcode identification routines of advanced intrusion detection systems that 
look for suspicious byte sequences contained in “standard” shellcodes.

Countermeasures7.2

Software Development7.2.1

Since the root cause of stack smashing vulnerabilities are programming flaws, proper 
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13 See the section on “Using n functions” in [25] and the examples in [33] for more information on proper and 
improper usage.

care in software development is the ultimate line of defense. Recommendations include, 
but are not limited to

Make security a top priority of your development efforts, even if this might conflict with •
the number of features you plan to implement or with the development schedule.

Use appropriate code review techniques to ensure the quality of code (and try •
generally to improve the quality of your software development process in other 
important areas as well!)

Use other programming languages like Java or Ada95, which are not vulnerable to •
buffer overflows, for a new product, or to port your existing application to such 
languages. If this is not feasible (as is sadly true for quite a large number of 
applications, which will still be around for years to come) then the measures listed in 
the following bullets should be applied.

Perform proper bounds checking on all input data and in loops processing data (we •
will discuss possible problems with loops below in section 8.1).

On top of using, if possible, appropriate technical means (like libsafe, see below), •
avoid the implicit problems of C-functions like strcpy() and strcat() and friends 
by properly13 using their bounds checking equivalents, in this case strncpy() and 
strncat() which take as additional argument the maximum number of characters 
that will be copied.

Use dynamic variables, i.e. put the buffers on the heap instead of the stack. This •
trades the problem of stack smashing for that buffer in for an increase in lines of code, 
possible memory leaks and general problems with memory management. So this is 
more sort of a workaround than a real countermeasure. , Moreover, as concluded in 
[25]: “Again, this doesn't correct the problem, the exploit just becomes less trivial.”
We’ll cover some related exploits in the section on Heap Overflows below.

Tools and Technical Means7.2.2

An interesting approach to avoid a number of unsafe C functions on Linux is the Libsafe 
project of Avaya Labs Research (formerly Bell Labs), see [3]. Libsafe is a library which 
contains safe re-implementations of functions like strcpy(), strcat(), and gets(). 
After installing libsafe, calls to such function are intercepted and executed with libsafe’s 
version instead of the default implementation. “Safe” basically means that the functions 
ensure that the saved base pointer will not be overwritten. Hence buffer overflows 
corrupting other local variables on the stack are still possible, but both the base pointer 
and the return address are save. Naturally, this protects only from buffer overflows for 
functions that are re-implemented in libsafe!

“Traditional” run-time memory usage tools like Rational’s Purify or Compuware’s 
(previously NuMega) BoundsChecker enable the test and debug of an application in its 
system test, including possible buffer overflows if they occur in the test. They provide in 
particular convenient and efficient support for locating the source of errors quickly.

Further on in the tools section, two compiler enhancements for the popular GNU C 
Compiler (GCC) for the Linux  operating system are available:

The first one, StackGuard (see [6] and [8]), changes 
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14 For those after the gory details: This is done by XORing the canary value with the return address both in 
the prolog and epilog of the function.
15 Released in February 2002

the prolog of every function to place a so called canary value just below the saved 1.
return address, as shown in Figure 8 (compare to Figure 4!) in the hatched area and

checks in the function’s epilog that this value hasn’t been changed during the 2.
execution of the function. If the value has been changed, this will be flagged as a 
possible stack smashing attack before any malicious code will be executed.

The effectiveness of this approach relies on the fact that it is not possible for the attacker 
to guess the canary value and incorporate it into the attack code. To prevent this (or more 
precisely, to make this highly unlikely), two different options for canaries are employed. 
The first one is based on the usage of common string terminators of the C programming 
language, while the second one is based on randomization of the canary value (see [8] for 
details). Note that an additional layer of defense in an updated StackGuard version (see 
[9]) is reached by the fact that the randomized canary value depends as well on the return 
address which it should protect14. This enables the detection of changes to the return 
address that are not based on a (direct) buffer overflow, like the one discussed in [6]. 

"canary"

Registers

S

T

W''

IP

SP

BP

X

Y

W

paramn

param1

V

XW'' BP

SP

var1

varmT

Figure 8: Stack after function prolog with StackGuard protection

The second GCC enhancement, Stack Shield (see [6]), basically stores away the value of 
the return address in the function prolog, and copies it back to the original memory 
location in the epilog, thus ensuring that the execution resumes in the calling function.

In the recent15 version 7 of its Visual C/C++/.Net compiler, Microsoft has incorporated a 
/GS compiler option that can be seen as an adaptation of the StackGuard approach 
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16 Note that the "Code Red" .ida worm relied on an executable stack (see [22])!
17 Note, though, that smaller overflows have a greater chance to succeed since they reduce the risk to 
leave the program’s memory space and end up with a memory access violation instead of a successful 
exploit.
18 The most common example is to get the terminating condition for a for loop wrong, that is to use 
for(i=0;i<=BUFSIZE;i++) (note the <= operator!) instead of using the standard idiom 
for(i=0;i<BUFSIZE;i++) for processing all elements of the buffer.

(though Microsoft claims that “both technologies were invented independently.”, see [5]). 
A minor difference is that the so called cookie (equivalent to the canary in StackGuard) is 
placed before the saved base pointer and the saved return address, i.e. in analogy to 
Figure 8 the sequence would be “cookie, X , and V. See [4] for more details.

A comprehensive countermeasure exists on operating system level: Disable execution of 
any code in the stack memory segment, meaning that jumping to any shellcode put 
there will result in forced program termination. This option is available for a number of 
Unix flavors, including Linux (see either [31] or [32]) and Solaris (see [21]), but notably not 
for Microsoft’s Windows operating systems16. 

As discussed in [8] and section 14.1 of [13], a non-executable stack has some side 
effects, which may however be negligible compared to the security improvement gained.

Note that neither the compiler enhancements nor the non-executable stack will be able to 
prevent general data corruption (see case a) on page 0).

Software users7.2.3

Software users should, apart from favoring products from software companies that give 
security a high priority, 

frequently check for product patches and updates that eliminate vulnerabilities in •
programs

subscribe to security information sources both from software suppliers and 3rd parties •
to keep up to date with detected vulnerabilities and act accordingly.

Off-by-one or frame pointer overwrite buffer overflows8

Exploitation Technique8.1

As we have seen in the last section, stack smashing vulnerabilities typically result from 
inappropriate or completely missing bounds checking on buffer data. As a consequence 
the exploit code has no predefined length limit17.

Another common programming error in C, known as off-by-one error, is to exceed the 
buffer size by just one byte. Typically this happens in loops that try to process all buffer 
elements18. So this can duly be regarded as the minimal possible buffer overflow! 

On a cursory look one might be tempted to assume that nothing reasonable can be done 
with this single byte. In fact, though, even this situation bears exploitation potential, as 
shown in reference [15], which provides the basis for the remainder of this section.

Imagine a scenario where the first local variable in the stack frame is a buffer, which is 
subject to an off-by-one error while reading or processing user input. If no padding occurs 
(meaning that there are some extra bytes added to the buffer due to the alignment of 
stack values on word boundaries), then this extra byte might – cf. Figure 4 – overflow one 
byte of the saved based pointer of the previous stack frame, the value X in Figure 4. 
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19 Provided that it hasn’t been changed or overwritten in the meantime!

The good news is that the saved return address, the value V in Figure 4, is way out of 
reach, so there is no immediate way to execute any shellcode which might have been 
injected in the buffer.

The bad news is that only a small detour is required to achieve this goal. Let’s first note 
that the x86 architecture is a little endian architecture, meaning that the four bytes that 
make up a word are stored in such a way that the byte with the lowest significance 
comes first or has the lowest address, respectively. If we take an analogy to the decimal 
system and imagine that numbers would be stored digitwise, then little endian would 
mean that 1234 would be stored with the digit 4 in the lowest and 1 in the highest 
memory location.

Let’s further assume that the off-by-one overflow happens in a function bad_func() that 
is called from the function good_func(). Then the overflow enables us to change the 
lowest byte (corresponding to the digit 4 in our example) of the saved base pointer of 
good_func() in the previous stack frame. Why is this important? Imagine that the byte 
order would be reverse (which is, incidentally, called big endian). Then any modified value 
of the base pointer would point to an address way off the current context (in our example, 
the nearest values would be either 234 or 2234), which would most probably lie outside of 
the memory space of the running binary. But with the lowest byte at our discretion 
(meaning that the resulting number in our example would be 123x), we have a good 
chance to change the value of the base pointer to an address that is under our control, 
namely inside the buffer we are overflowing.

Since, as explained above, the base pointer is the reference to access both parameters 
and local variables of the function, the first result of changing the base pointer for the 
stack frame of good_func() will be that the instructions in good_func() following the 
call to bad_func() up to the end of the function will operate on the wrong data and thus 
produce garbage. If the instructions include pointer operations, the odds are that the 
binary will throw in the towel due to trying to access data outside its memory space (cf. 
case b) on page 0). From the security perspective, this must again be considered the 
better end, since the alternative is that we reach the function epilog of good_func(). As 
described on page 0 (see as well Figure 5), the third step of the epilog, the final pop 
instruction, copies faithfully the value just above the base pointer of the stack frame back 
to the instruction pointer! 

So the only thing necessary to execute our shellcode in the overflowed buffer19 is to 
change the value of the saved based pointer of good_func()to point to an address just 
one word below a memory location in the buffer where our (guestimated) start address for 
the shellcode is.
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Figure 9: Exploiting off-by-one errors

Figure 9 illustrates the exploit, using arrows to indicate where memory addresses point to 
before and after the exploit, and indicating the buffer overflow area again by hatching.

Countermeasures8.2

The countermeasures against this overflow attack are basically the same as for stack 
smashing attacks (see page 0), but it is at least one order of magnitude more difficult for 
programmers to take precautions or to spot vulnerabilities while reviewing code.

Note that the technical countermeasures – StackGuard, Stack Shield, Microsoft’s /GS 
compiler switch and non-executable stack – are effective against this attack as well.

Incidentally, in this case the minor difference of canary/cookie setting between 
StackGuard and the /GS switch will result in earlier detection by the latter, namely already 
in the epilog of bad_func(), since instead of the targeted saved base pointer the cookie 
value will be changed, compared to a failed canary check for StackGuard in the epilog of 
good_func().

Return-into-libc buffer overflows9
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20 To be precise, this alone won’t help much. See [30] and [31] for a combination of measures including non-
executable stack that will prevent such exploits on Linux.
21 Note that the name “return-into-libc” for this variant of buffer overflows stems from the fact that the quoted 
Unix functions are found in the libc system library.

In the light of the discussion in the sections 7.2.2 and 8.2 it looks as if non-executable 
stacks are a true bastion against any kind of buffer overflow exploits. You don’t rely on the 
use of special compilers or compiler options, but just assert “Thy stack shalt not be 
executable!”.

Sadly enough, this won’t help much against the buffer overflow exploitation technique 
described in this section20.

Exploitation Technique9.1

Let’s have again a look at Figure 3, which shows the stack just before the call to 
my_func(). From the perspective of my_func(), or in fact of any other called function, 
the stack contains first the return address it should use, and then the parameters as 
expected by the function. As we discussed in the section on the stack smashing exploit, 
the ultimate target of such an attack is to run shellcode to obtain a shell. Typically such 
shellcode relies on calling functions like system() or execve() on Unix systems or 
WinExec() on W indows systems21. These functions basically take as parameter a 
program name and/or path (more precisely, the memory address of such a string) and run 
it on behalf of the calling binary. 

So an alternative to the direct stack smashing approach is to just fake the call to the 
desired function directly, which has the definite advantage that it can’t be prevented by a 
non-executable stack, since the called function is a perfectly reasonable code address!

To accomplish such a fake, it suffices to overwrite the saved return address with the 
address of the targeted library function, insert an arbitrary dummy value for the return 
address of the function call just afterwards and adding the parameters for the library 
function (and indeed overwrite the (remaining) parameters of the original function with 
them).
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Figure 10: Return-into-libc exploit

Figure 10 shows the stack and register status after a return-into-libc buffer overflow (the 
extent of which is again indicated by hatching) just after step 2 of the function epilog –
compare to the original situation in Figure 5! The start address Q of the targeted function 
libfunc() will be put into the instruction pointer by step 3 of the epilog – the pop 
instruction at address R. Note that compared to the situation in Figure 5 the parameters 
for the call to libfunc() are shifted upwards by one word due to the need to put a 
dummy return address for it on the stack. An interesting observation is, moreover, that the 
forged value P of the base pointer will be put again on the stack by the prolog of 
libfunc().

Depending on the operating system, architecture and targeted function, 
obtaining/guessing the right address and putting the right parameters on the stack might 
not be particularly easy, but it can definitely be done.

References [20] and [30] provide detailed information on the gory details for Unix, and [18]
an example exploit for Windows.

Countermeasures9.2

Apart from the fact that you can’t rely only on a non-executable stack as single protection 
measure, the same countermeasures as discussed in section 7.2 apply. 

Actually the two implementations of non-executable stacks mentioned in section 7.2.2
contain already reinforcements to protect against return-into-libc exploits:

The Openwall kernel patch (see [30] and [31]) added a protection layer by ensuring that 
function addresses contain a zero byte, which prohibits buffer overflow attacks based on 
string functions, as the zero byte (interpreted as NULL) will stop the overflowing, meaning 
in this case that at the worst a function without any parameters can be called, which 
shouldn’t pose a real threat to the system.
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22 Recall, however, from section 6.2 that these memory segments are by default non-executable and are 
hence not suitable for placing shellcode!

The PaX Linux kernel patch (see [32]) has added a feature that basically changes the 
address of library functions each time a binary is run. Although this approach certainly 
increases the security, it is not impossible to defeat it, as [20] has shown. 

So we need in both cases to be aware of the fact that no measure can provide absolute 
security (or, more precisely, that there is no such thing as “absolute security”), but that a 
Defense-in-Depth approach is required.

Heap Overflows10

Exploitation Technique10.1

This paper would be incomplete without at least touching on the topic of heap overflows. 
Recall from section 6.4 that a program can request memory of a certain size on the heap 
by means of the malloc() function and needs  to return this memory later on by the 
free() function.

Since you can put buffers on the heap as well, buffer overflows are again a concern. The 
implications of buffer overflows and the way to exploit them are, however, different from 
their stack related siblings. In particular there is neither a base pointer nor a saved return 
address to be found that could be (ab)used to directly (or in two stages, like in the frame 
pointer overwrite attack) jump to code the attacker has supplied.

Unfortunately this doesn’t preclude exploits, see e.g. the recent problems with Microsoft’s 
Internet Information Server, described in [14].

The basic scenario is again that you have a buffer, which is not properly protected by 
bounds checking, and some other interesting data of the program allocated behind this 
buffer’s allocated memory space, that you would like to fill with data of your choice.

The “classical” paper on heap overflows, the first one that published actual exploits, is 
reference [7], which states,  

“W hen we refer to a ‘heap-based overflow’ in the sections below, we are 
most likely referring to buffer overflows of both the heap and data/bss 
sections.”

So we need to take the data/bss section into account as well22! The paper presents first 
an example where the overflow was used to replace the string representing the name of a 
temporary file to which the program was writing. An exploit could e.g. provide the name of 
a configuration file for a security control like a firewall or an intrusion detection system. 
Depending on the level of input validation and/or error checking in the targeted 
application, this could lead to subsequent security  breaches. More opportunities manifest 
if an attacker could on top of this influence the data written to the file. [7] demonstrates 
this by compromising the .rhosts file, which is used to establish trust relationships 
between Unix hosts.

The next example in [7], that comes a good deal closer to the stack overflow techniques 
described above, is to overwrite a function pointer. A function pointer contains the start 
address of a function. The type declaration of the function pointer in the program specifies 
the number and type of parameters the function expects and processes, and what type of 
return result, if any, it will deliver. Such function pointers are handy if you have a number 
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of functions available that perform the same task, but would like to be able to specify the 
actual function that should be used on the input data at run-time. Typical examples are 
sorting routines, since each sorting algorithm has its specific strengths and weaknesses.

An attacker, however, doesn’t care much for the parameters etc. The feature of interest is 
that eventually the binary will jump to the address provided in the function pointer. So she 
will try to overwrite this pointer with the guestimated address of the shellcode that she 
inserted in the buffer (or some other memory location). Note that the techniques 
described in the section on stack smashing above (see Figure 7), can again be used, 
namely to increase the probability of a successful exploit by repeating the start address of 
the shellcode several times and prepending the real shellcode with NOP operations.

An extension of the function pointer overwrite technique to the C++ programming 
language is to overwrite or replace, respectively, an array of  pointers holding the 
addresses of C++’s equivalent of functions, class methods. See [27] for more details.

Moreover the actual implementation of the heap memory management may be vulnerable 
to buffer overflows attacks as well. This is due to the storage of management information 
with or in between the chunks of memory allocated for a binary. If this management 
information is overwritten with carefully crafted data, eventually arbitrary memory 
locations may be overwritten, including again return addresses and function pointers, thus 
again enabling the execution of arbitrary code on the binary’s behalf. Please see [2] for 
more details, which are way beyond the scope of this paper.

The same applies to another approach for overwriting arbitrary memory that is based on 
the so called format string vulnerability found in the default implementations of the 
printf() function and its relatives. See [29] for more details.

Countermeasures10.2

From the programming and user perspective, the same countermeasures as discussed in 
the section on stack smashing apply again.

The appropriate technical measure to protect against code execution on the heap, is, not 
surprisingly, to make the heap non-executable. In this respect the PaX kernel patch for 
Linux systems (see again [32]) stands out, since it offers not only a non-executable stack, 
but can also render the heap non-executable! 

Note though, that being able to overwrite a function pointer of suitable type and being 
able to tamper with the parameters used to call this function may still compromise a 
system hardened with PaX in a return-into-libc like fashion.

Conclusion11

We have discussed several types of buffer overflow exploitation techniques, starting from 
simple stack smashing over frame pointer overwrites and return-into-libc to heap 
overflows, finally touching on advanced techniques how to use either heap management 
or format string vulnerabilities to write to arbitrary memory locations.

We have seen that certain technical countermeasures exist. Notably the Open Source 
Community has contributed to this with enhancements to the Linux Operating System and 
the GNU C Compiler. Microsoft has finally made a very first step to catch up with this by 
introducing protection against stack overflow exploits by means of the /GS compiler 
switch for its Visual C/C++/.NET compiler. It remains to be seen whether Microsoft’s 
“Trustworthy Computing Initiative” will cover this area and trigger more support!



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

References

27 / 1

Although technical countermeasures surely help to diminish the threats posed by buffer 
overflows and should certainly be applied as part of the Defense-in-Depth approach, it 
must be clearly stated that the root cause for buffer overflows are programming errors and 
negligence. This can to a certain degree be attributed to the missing awareness of 
software developers regarding the problems buffer overflows can pose, and to laziness 
and normal error rates of developers. 

To be fair, however, it should be pointed out that both software development companies 
and their customers are currently mainly interested in software functionality and short 
version cycles. The resulting enormous pressure on developers to deliver required 
functionality according to an “aggressive” schedule inevitably compromises quality –
which includes security. As long as this attitude continues and (inherent) security of 
products is at most a nice-to-have feature instead of a strong plus in competition, we’ll 
probably largely stick to the detect-and-fix loop for buffer overflows instead of tackling the 
roots of the problem.

So your vote counts – cast your ballot for prevention instead of cure!
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