
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1

Critical System Lifecycle: A Security Perspective

Geoffrey A. Pascoe

SANS Institute
Submitted in Consideration for GSEC Certification

(Version 1.3)
29 March 2002

Abstract
IT security threats are becoming more serious and more numerous. As a consequenc e, the
frequency of security patches, antiviral software updates, and new virus signatures is
increasing. This is particularly problematic for critical systems whose failure can result in
the disruption of essential services, large financial losses, or lo ss of life. Applying patches
and updates to critical systems without thorough testing can result in software defects that
cause these systems to fail. But not applying updates and patches in a timely fashion can
result in security failures that are equal ly serious. By addressing security in the way
products are developed, deployed, supported, serviced, and retired, software vendors can
make a significant contribution to the reliability and security of critical systems.

Keywords: Computer Security, Critic al Systems, Product Lifecycle, Software
Development Processes, Reliability

1 Introduction
Critical systems are information technology solutions whose function is fundamental to an
organization’s proper functioning. Failure of these systems could cause irrep arable harm.
An important subset of these types of systems are special purpose, often turnkey, systems
such as ERP for business operations, financial systems for banking and securities trading,
and medical systems for the diagnosis, monitoring, and treatm ent of patients.

There are many ways in which IT systems can fail:

Physical Failure

• A hardware malfunction makes the system unavailable.

• A natural disaster results in the loss of power, communication, or physical
destruction of the hosting facility.

• An employee inadvertently removes power from a critical server. Loss of power
would result in loss of function and possible data corruption.

Operational Failure

• Backup policies are not followed or backup integrity is not verified. When
restoration is needed, i t is not possible.

• Inadequate system monitoring results in performance degradation or exhausted
storage.

• Failure to follow operational policy results in the miscategorization or deletion of
critical data.

Quality Failure

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2

• Inadequate software testing causes unreliable system behavior and crashes.

• The installation and integration of the system into the organization is not
adequately tested. Data communicated between peer systems in the organization is
lost or corrupted.

Security Failure

• The platform on which the system is built has a trap door that is subsequently
exploited by a cracker. The cracker steals sensitive business information.

• A cracker chooses the system for the target of a denial of service attack. The
system cannot be used for its intended purp ose.

• A hostile, or defective, worm infects the system causing the system to crash.

• A user, frustrated with restrictive password selection policies, writes their password
on a piece of paper taped underneath their keyboard. A visitor opportunistically
exploits the password to compromise the system for a subsequent network attack.

(Neumann) describes a wide variety of computer failures from the mid -1980’s and
(Levenson) describes a particularly egregious quality failure in a medical system, resulting
in the injury or death of several patients.

Different types of failures are not independent —one type of failure can lead to another
type and steps taken to prevent or mitigate one type of failure may have a negative
consequence on the ability to prevent or mitiga te another type of failure. An important
dependency is the relationship between security and quality failures. While many security
failures can also be considered quality failures, sometimes an attempt to correct a potential
security failure (i.e., a vul nerability) may lead to a quality failure.

System Patches
It is generally good policy to quickly patch systems when new security vulnerabilities are
discovered (Lucero). Unfortunately, if patches are installed without adequate testing, the
system could fa ll victim to a quality failure. Conversely, not patching the system in a
timely fashion in order to perform more thorough testing could lead to a security failure. It
has been reported that, because of the volume patches released by software platform
vendors, administrators have been hard pressed to simply apply the required security
patches in a timely fashion (Verton) —thorough testing of these patches on critical systems
is far more time consuming.

Antiviral Software
A common measure for preventing cert ain types of security failures is the installation of
commercial antiviral software (“VirusScan”)(“Norton”). One strategy used by antiviral
software is the detection of infections by scanning the system for signatures of known
malicious software using pre -determined virus definitions (a.k.a., virus signatures). Both
antiviral software and virus signatures require periodic updating, and virus signatures
require very frequent updates —some organizations mandate automatic daily virus
signature updates. Simil ar to system security patches, untested software in the presence of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3

antiviral software updates is a significant risk to a critical system. Therefore, the
effectiveness of antiviral software may be limited, or its simple presence not tolerable. 1

Preventin g failures includes, but is not exclusively concerned with security. An important
goal of system administrators and software designers is to minimize system failure,
security or otherwise. Any realistic approach to system security needs to balance these,
sometimes, competing forces.

2 Development Processes
The causes of security vulnerabilities are numerous ranging from inadequate assessment of
risks and non-existent organizational security policies to poor operational compliance with
those security policie s. However, one major cause is simply defects in software systems,
resulting from the way they are specified, constructed, and tested (Ghosh). In the
development of a product, security is closely related to quality. But, instead of being
concerned with h ow the system behaves under normal operation, where failure may be due
to mischance, developers must be concerned with failure due to an intelligent and
malicious agent attempting to force failures. Ross Anderson refers to these two scenarios
as “programming Murphy’s computer” and “programming Satan’s computer,” respectively
(Anderson, Satan)(Anderson, Security). Murphy is bad luck, whereas Satan is actively
trying to get you.

For the most part, IT security has focused on measures taken in deploying organ izations:

The types of approaches and point solutions advocated by computer
security professionals to date have aimed at system administrators, chief
information officers, and other personnel involved in system infrastructure
management. These solutions u sually focus on addressing an enterprise’s
security defenses (such as firewalls, routers, server configuration
passwords, and encryption) rather than on one of the key underlying
causes of security problems —bad software. (Ghosh 14)

To provide security in -depth for critical systems, vendors need to build systems that are
higher quality and more secure. By doing so, they also will create systems that require less
frequent patching, avoiding the “penetrate -and-patch” cycle (Gosh 15) —the need for
frequent patches creates an undesirable tension between the need to fully test systems and
the need to close security vulnerabilities as soon as possible.

To achieve this goal developers must extend the concept of software quality to incorporate
a concern for security. Quality software systems are the result of a quality development
process. It therefore follows that improvement in the security of a system can be addressed
in the processes that are used to develop systems.

It is beyond the scope of this paper to provid e a comprehensive overview of software
development processes. Traditionally, the waterfall model (Boehm, Software) has been
used (see Figure 1). In the waterfall model, development cascades (as if in a waterfall)
from early phases of exploration and requirements analysis through implementation and
operation, with the ability to return to previous phases if deemed necessary.

Figure 1—The Waterfall Model of the Software Life Cycle
(Source: Software Engineerin g Economics —Boehm)

1 Some systems, particularly real -time systems, do not tolerate the presence of antiviral software that scans
persistent storage looking for infections. Data can be lost because an intensive scan interferes with the
system’s ability to respond in real -time.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

4

Unfortunately, the waterfall model suffers from a number of deficiencies. One serious
problem is that developers, users, and managers, have few indications of problems early in
the development process. They do not see the system fun ctioning at all until very late.
The spiral model (Boehm, Model)(Boehm, Development) was developed to address the
deficiencies of the waterfall model (see Figure 2). In the spiral model, development
consists of a series of develop ment cycles, which are repeated. Each cycle results in a
working system, that provides an opportunity for the stakeholders to evaluate and plan the
next cycle. What makes the spiral model fundamentally different from the waterfall model
is that the water fall model assumes that previous phases of development are complete
before proceeding with later phases. The spiral model recognizes that complete

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5

specification and knowledge at any phase is not feasible. Instead, the developers
incrementally refine the system, gaining more knowledge and confidence with each
subsequent cycle.

Figure 2—Spiral Model of the Software Process
(Source: A Spiral Model of Software Deve lopment and Enhancement —Boehm)

Recently the Unified Software Develop ment Process (Jacobson)(“Rational”)(Kruchten), a
spiral-like process, has been gaining acceptance. In the Unified Software Development
Process (also known as the “Rational Unified Process”, or “RUP”) each product release
cycle consists of four phases: inc eption, elaboration, construction, and transition. Each
phase may involve a series of iterations, and each iteration includes a set of activities; the
RUP calls these activities “core workflows”. The RUP defines five core workflows 2:

• Requirements

2 Figure 3 shows different workflows than that in the text, but the definitive RUP source (Jacob son 11)
identifies these five. The author’s opinion is that these five workflows are invariant across almost all
development projects, whereas the other workflows in Figure 3 from (Kruchten) provide a useful, but
expanded view. No t all development projects will do business modeling or be involved in deployment, and
the other supporting workflows are only an adjunct to the main development activities.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

6

• Analysis

• Design

• Implementation

• Test
Figure 3—Phases of the Rational Unified Process

(Source: What is the Rational Unified Process? —Kruchten)

Other development processes define similar activities. But, regardless of the particular
development process, the natural question to ask is “What should be done in each
development activity to help enhance the security of the system to be developed?”

2.1 Risk Analysis
One of the goals of spiral software development processes is the management of risk .
Boehm defines risk this way:

Risks are situations or possible events that can cause a project to fail to
meet its goals. They range in impact from trivial to fatal and in likelihood
from certain to improbable. A risk management plan enumerates the ris ks
and prioritizes them in degree of importance, as measured by a
combination of impact and likelihood of each. For instance, the risk that
technology is unready may be mitigated by an appropriate prototype
implementation in an early cycle (Boehm, Developm ent 3).

This view of risk is very expansive, going beyond security or quality, but encompassing
them. When thinking about security the concept of impact can be viewed as the
consequences of security compromise with respect to confidentiality, availability , and
integrity; the concept of likelihood can be viewed as the probability of a successful attack,
which is a function of the likely threats, the environment within which the system will be
deployed, and the inherent vulnerabilities of the system itself.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

7

What risks are considered acceptable is a policy decision, but generally speaking, high -
severity/high -probability risks are considered unacceptable, whereas low -severity/low-
probability risks are acceptable. Risk can be described by the following equation :

Risk = probability ∙ severity
It is beyond the scope of this paper to detail r isk analysis methodologies and techniques —
however (Trice) provides an example for the use of Failure Mode Effect Analysis (FMEA).

Table 1—Example FMEA Frequency/Impa ct Matrix

 Negligible
Impact

Low
Impact

Medium
Impact

High
Impact

Incredible 1 1 2 3

Remote 1 2 3 4

Occasional 2 3 4 5

Probable 3 4 5 6

Frequent 4 5 6 6

Table 1 shows an example of a FMEA Frequency/Impact matrix, where risks are
categorized in bins that can be assigned descriptions, if desired:

• Category 1 is a Negligible Risk

• Category 2 is an Acceptable Risk

• Category 3 is an Undesirable Risk

• Category 4 is a Tolerable Risk

• Category 5 is a Significant Risk

• Category 6 is an Intol erable Risk

The number of impact columns and frequency rows can be adjusted to suit a project’s
needs. Each risk is categorized and specific actions should be outlined for different
categories of risks.

The spiral model shows risk analysis performed once each cycle (see Figure 2). However,
the character of security risks understood, or introduced, in each development activity
varies widely (e.g., an implementation vulnerability has a different character than one
resulting from inco mplete requirements analysis or specification). As a result, it is the
author’s opinion that risk analysis should be performed during each activity in a cycle,
with risk mitigation strategies designed once per cycle (see Figure 4). Risk analysis is
transitive across all activities, though the emphasis and focus of risk analysis will d iffer in
each activity.

Figure 4—Proposed Risk Analysis Process

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

8

Activity

Implement Risk
Mitigation Strategies

Update Risk
Severity

Identifiy
New Risks

Implement Risk
Mitigation Strategies

Update Risk
Severity

Identifiy
New Risks

Devise Risk Mitigation
Strategies

[New Spiral Cycle]

[Product Ready for Release]

2.2 Requirements
The requirements activity identifies what the system must do and how it should behave.
Requirements can be characterized as functional or non -functional. Functional
requirements are requirements about the useful characteristics of a system (e.g., the system
allows a user to delete accounts, or the u ser logs into the system). Non -functional
requirements are all other requirements (e.g., calculation of the balance sheet must take no
more than one second, or the system must not allow unauthorized users to access
identifying information of the patient).

There are many ways of structuring requirements. The Unified Process employs use cases
and use case diagrams to describe functional requirements —a use case is a functional
requirement (Jacobson 33 -58)(Booch 219 -241)(Rumbaugh 63 -66)(Kulak). Typically, no n-
functional requirements are attached to use cases. Security requirements may be functional
or non-functional. For example, a use case for authenticating a user is a security -related
requirement, but also represents functionality. The need to transfer money from an
external system is a functional requirement, but the security requirement that the transfer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9

be properly authenticated and the communication encrypted is a non -functional
requirement.

Figure 5—Example Use Case Diagram for Access Control

No Information for this
Patient

Deny AccessOverride Access

User Access Patient
Information

<<extend>>

System
Administrator

User is not Permitted
Access to this Patient

<<extend>><<extend>>

<<extend>>

Confidentiality -Availability -Integrity

Confidentiality, availability, and integrity are the three bedrock principles of security
(Northcutt); all must be considered and a weakness in one area can undermine another 3.

Detailed security r equirements should be driven by a statement of the overall security
policy goals and requirements, as well as assumptions about the security environment
within which the system will be deployed (e.g., developers might assume that the intranet
on which the system is deployed will be protected from the internet by a firewall which
filters for IP spoofing attacks). Developers should consider what information should be
protected, the consequences of non -availability of the system, and the impact of
compromised integrity to the operation of the system or the data it manages.

This approach can be systematically applied to detailed security requirements by
considering confidentiality, availability, and integrity for each functional requirement.
This enforces a di scipline of thinking about what risks exist and what measures can be
taken in the functionality of the product to strengthen the system’s security 4.

Risk Analysis in the Requirements Activity

Risk analysis in the requirements activity should take every non -functional requirement
and categorize it according to the project’s frequency/impact matrix. Since the structure of
the system may not yet be known, estimating the frequency of a successful compromise
cannot take into account the inherent vulnerabilities in the system, but an understanding of

3 For an example of how compromising one principle can weaken another see (Shimomu ra).
4 The Common Criteria (“Common”)(Knight) also provides useful, and much more extensive, framework for
specifying and evaluating security requirements. These are referred to as “functional requirements” and
“assurance requirements” in parts two and th ree of the specification, respectively. The recommendation
presented here, and the structuring of security requirements used by the Common Criteria, are not mutually
exclusive.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

10

the likely threats and deployment environment should be sufficient. Impact should be
determined from the system’s security goals.

2.3 Analysis
The purpose of Analysis is to gain a better understanding of the system that is to be built.
Through analysis the developers of a system gain understanding of the system at the
conceptual level. Analysis uses more formal modeling techniques than use cases, helps
refine the requirements, and bridges the gap between the requiremen ts and design.

From a security perspective, analysis provides a means to better understand the security
requirements and discover potential vulnerabilities. For example, a system may require
role-based access controls. By conceptually modeling the relati onships between users,
roles, and the types of access permitted (see Figure 6), the developers can understand what
roles permit access to what information and under what conditions. Developers can ask
and answer questions: Can a us er play more than one role simultaneously? What happens
if a user’s access permissions conflicts with the user’s current role?

Analysis can also help developers understand the dynamics of a system. If the system
interacts with another system, thorough mo deling may uncover opportunities for spoofing
attacks or other security vulnerabilities.

Some risk mitigation strategies may be implemented during analysis. For example, the
simple analysis shown in Figure 6 shows access rights tha t allow a user to change or
review patient information at the granularity of a patient. However, the system’s security
policies and goals may require that patient information be protected at a finer granularity
because some information may be more sensiti ve than others (e.g., the result of an AIDS
test).

Risk Analysis in the Analysis Activity
Revisit all risks and update their severity category and use the analysis model to look for
new risks in the system’s specification by identifying logical holes and i nconsistencies that
may be exploited by an attacker.

2.4 Design
Design determines the structure and dynamics of the system to be built. It differs from
analysis in that the system is decomposed into subsystems or components, reflecting the
technological const raints of the hardware, software platform, and tools with which the
system is to be built. Analysis is conceptual and abstract, whereas design is concrete. The
design is the blueprint for those implementing the system.

Figure 6—Example Class Diagram for Access Control

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

11

+Attending Physician

Individual
Access Rights
change
review

User

name
contact information
authentication credentials
acess override allowed

(from Use Case View)
Patient

name
sex
date of birth
admission date
vip

0..n0..n 0..n0..n

0..n1 0..n1

Role
name
acess override allowed

0..n

0..n

0..n

0..n

Role Access
Rights

change
review

The design may implement risk mitigation strategies. However, the design activity can
expose new security risks that cannot be discovered from the requirements or analysis
activities. For example, the design migh t partition the system into a set of distributed
components and the communication between these components might expose a potential
vulnerability. Or, the design might leverage pre -existing components, which might have
their own vulnerabilities.

Because design vulnerabilities might not be associated with any one requirement (e.g., a
single component may fulfill a wide variety of use cases), confidentiality -availability-
integrity vulnerabilities should be associated with components, subsystems, or the
interfaces between them. Risk analysis can be an extension of the risk analysis started
during the requirements activity.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

12

Risk Analysis in the Design Activity
Update the severity category of risks that have been mitigated during design. Look for
new risks: ex ternal interfaces, third party components, and platform vulnerabilities.
Because the structure and dynamics of the system are defined, it is now possible to look for
vulnerabilities by considering likely vectors of attack (e.g., network communications, us er
authentication, file system, trust relationships, etc.)

2.5 Implementation
Implementation is concerned with the construction of the system. The developers code and
unit test the system in implementation. Just as the design activity can result in security
threats that cannot be discovered in requirements and analysis activities, implementation
defects have a unique character that requires special attention. It is impossible to
enumerate all possible implementation defects, but some common implementation de fects
include (Raynal)(Wheeler):

Failure to adhere to the design
If the implementation does not adhere to the design then the security analysis done during
the design activity will not be accurate.

Improper error detection and handling
If the system does n ot detect or properly handle error conditions, then the system will
arrive at an unknown state, making it vulnerable to attack.

Buffer overflows
Buffer overflow is a common defect, which can easily be exploited when the buffer is
associated with the receip t of network traffic. However, buffer overflows anywhere in a
system can cause unpredictable behavior, leading to a potential denial of service attack, or
more direct penetration.

Incorrect input validation
If input data is not properly validated then th e system can arrive at an unknown state,
making it vulnerable to attack. This may be considered a subclass of improper error
detection that is relatively easy for an attacker to exploit.

Uninitialized variables

Use of uninitialized variables can cause un predictable behavior. Uninitialized variables
can cause crashes resulting in denial of service attacks, but they also provide a determined
attacker a means for getting the system to use a variable that is “ initialized” by the attacker.
For example, if a routine uses an uninitialized stack variable, then by writing to the stack
attackers can initialize that variable to any value they choose.

Format String Attacks
String formatting of the type that became common with the advent of the C language is
enormously powerful because it allows the use of arbitrary format strings to interpret data.
These format strings are also data, so if a defect exists that allows an attacker to input
strings that are used as format strings, the attacker can manipulate the behavi or of a
program in a very flexible way (Newsham).

Race Conditions

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

13

Race conditions occur when a system performs concurrent activities and these activities are
not adequately synchronized. An attacker can exploit race conditions because the order of
operations on common resources can lead to unpredictable, or unforeseen states. A race
condition vulnerability often refers to a condition where a critical piece of sequential code
accesses a resource that is not locked; an intruder acting on a separate thread t hen changes
the resource without the code’s knowledge (e.g., an intruder might change the permissions
on file, or replace the file, in between the time the file is initially examined and the time it
is used).

Security conscious implementation is analogous to multithreaded programming —it
requires a specific mindset. It is difficult to retrofit a system to be thread -safe, just as it is
difficult to retrofit security. (Raynal) describes security -related implementation defects
from a Linux perspective; (Wheel er) is also a useful resource. Developers need to
thoroughly understand these types of security -related defects to avoid them during coding,
and that these defects may be manifested in the acts of an intelligent and malicious agent
(Zeltser), not the resu lt of random events. Even a “normal” defect that causes a system to
crash can be exploited for a denial of service attack. Particular attention should be paid to
defects in subsystems that “touch” the outside world (e.g., users, network traffic, file inp ut,
etc.)

In general, many types of defects can lead to security vulnerabilities, therefore the things
that developers do to reduce defects during implementation, in general, can help address
security vulnerabilities, specifically. In addition to careful consideration during coding,
developers should develop unit test cases with the potential for security exploits in mind.
Code reviews should target previously identified risks with obvious vectors (e.g., code
involved in network communication) (Reiter). F urthermore, code review checklists should
include common implementation defects that impact security.

Risk Analysis in the Implementation Activity
Security conscious code reviews and unit tests will help identify implementation
vulnerabilities. Developers normally address unit test defects immediately, but code
reviews often occur after -the-fact. Vulnerabilities identified during code review should be
used to update the risk analysis.

2.6 Test
The test activity is concerned with testing the system overall (un it tests are performed
during implementation). Tests typically involve integration and complete system tests.

Since the system’s use cases describe the functionality of the system they also guide the
functional testing of the system. The security require ments identified in the requirements
activity should also be rigorously tested.

In addition to testing the system, it is worthwhile to test the security posture of the platform
on which the system runs. Depending on the criticality or sensitivity of the s ystem, this
might extend to the testing of the hardware for vulnerabilities (e.g., physical security,
emissions vulnerability, etc.) (“TAMPER”). More commonly, security assessment tools
that assess software platforms for known vulnerabilities can, and sho uld, be employed
(“Harris”).

Finally, penetration testing (SANS, Penetration) should be employed during the test
activity. Although penetration testing is more commonly done by, or for, system
administrators in an organization, it is also a useful securit y testing technique.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

14

Development organizations and software quality assurance departments that do not have
skills in this area should consider retaining the services of a professional.

While system security tests, security assessments, and penetration tes ts cannot uncover
every security defect, they can help characterize the security posture of the system. It is
not necessary that the systems have no security vulnerabilities, just as it is not necessary
for systems to ship with no known defects. To decid e whether a discovered vulnerability is
acceptable, the testers and developers should examine their risk analysis.

Risk Analysis in the Test Activity
System tests will refine the impact and severity estimates of previously identified risks.
Security asses sment tools and penetration testing can refine estimates of identified risks,
while also discovering new ones.

2.7 Recommendations
A concern for system security should be central in the development of critical systems.
The following table summarizes what deve lopment practices can be used to develop more
secure critical systems.

Table 2—Summary Security Measures Taken During Development

Activity Security Measures

Requirements • Establish overall security policies and goals. What informat ion
are you protecting and why? What are the implications of non -
availability? Are there any regulatory constraints?

• Start the risk analysis:

o Focus on likely threats (frequency).

o Understand the impact of each risk, using the overall
security policies and goals as a guide.

• Attach non -functional security requirements to use cases.
Consider confidentiality, availability, and integrity
vulnerabilities for use case.

Analysis • Update the risk analysis:

o Identify logical unknowns and inconsistencies that can
be exploited.

o Ensure the analysis concepts are consistent with the
system security goals.

• Consider concepts to mitigate risks

Design • Update the risk analysis.

• Design with security awareness.

• Identify new risks:

o Examine interfaces between components and to th e
outside world.

o Test and examine third party components.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

15

o Consider likely vectors of attack.

• Associate design vulnerabilities with components, subsystems,
and interfaces.

Implementation • Code and unit test with security awareness.

• Perform security -aware code reviews.

• Update the risk analysis from code reviews.

Test • Update the risk analysis:

o Refine impact and severity estimates of previously
identified risks from system tests.

o Identify new risks from platform security assessments
and penetration testing.

In addition to refinement of the software development process to accommodate system
security, there are a number of other things that development organizations can do.

Developer Training
Successfully implementing a secure critical system according to the p rocess outlined above
presumes that the developers are familiar with system security concepts and common
system vulnerabilities. Unfortunately, this is not common. Development organizations
should undertake measures to educate their developers through a s ystematic training
program.

Hardened Platforms
Many exploitable system security vulnerabilities are the result of weaknesses in the
platforms on which they are built. There are likely a number of reasons for this. First,
platforms are complex pieces of s oftware that provide many more opportunities for
security -related defects. Second, platforms have a familiarity and commonality that make
them more frequent targets for direct hacking/cracking and malware (malicious software)
attacks. Niche system produc ts do not receive the intense scrutiny of such wide
community, so though they may have vulnerabilities they are far less likely to be
successfully exploited.

To address the problem of platform vulnerabilities, development organizations should
consider a pa rallel effort for platform hardening. A number of reference materials exist for
securing commercial software platforms (SANS, Linux)(SANS, Securing)(SANS,
Windows) and the techniques outlined should be judiciously applied. Technology can also
be used to harden a platform, including host -based firewalls intrusion prevention systems
(“StormWatch”)(“ZoneAlarm”)(“Tiny”).

A parallel secure platform effort would be particularly efficacious for vendors with
multiple product lines on the same platform. The platf orm can be secured, ghosted
(“Symantec”), and reused for multiple products during development and deployment.
Unfortunately, a secure platform is a moving target and the development organization
should plan for a continuous effort of monitoring and correc ting platform vulnerabilities as
they are revealed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

16

Optimized Revision Cycles
Although critical systems require more extensive testing cycles, customers should not have
to wait longer than is necessary for revisions to close security vulnerabilities. Vend ors
should implement concurrent development and testing activities specifically for reacting to
new security threats; utilizing automated regression tests can facilitate a quicker response.
Waiting for the next “planned” product release is no longer an op tion.

Coding Standards

Coding standards are used in development organizations to increase productivity, quality,
maintainability, and understandability. Coding standards can make the resulting system
more consistent, portable, reusable, and testable (Stra ker). Coding standards should
incorporate usage rules that help prevent security vulnerabilities, as well.

Isolated Development Network
Development organizations should consider isolating their development networks from
their corporate networks. If the d evelopment systems are compromised, then every
product developed using those systems is vulnerable. Viral infections are possible, but
they are more easily detected and repaired than the covert installation of Trojans and trap
doors in systems5.

3 Support
A critical issue for vendors is the support infrastructure required for their products. If
support simply involves periodic patches, new software versions, and occasional telephone
consultation, then the security implications are minimal. However, complex remote
support requires that a vendor’s support personnel be able to access and control these
systems. This is potentially a serious security vulnerability, because if remote support
personnel can gain access to these systems, so might malicious unauthor ized individuals.
This is a particularly problematic if, as is often the case, remote support personnel have
administrative access. Using the remote support infrastructure, an intruder can gain control
of a system on an organization’s intranet, putting t he organization’s entire IT infrastructure
at risk.

3.1 Remote Support Techniques
Remote system support requires a communication mechanism, a way to view the system
state, and a way to manipulate the system. Several techniques are commonly employed:

Dial-In Modems
A modem is attached to the system allowing a support engineer to “dial -in” to the system.
This is a particularly dangerous communication mechanism because an intruder can gain
unfettered, unfiltered, and unmonitored access to a system specifically i ntended to allow
the system to be manipulated. Implementing personnel procedures that require local
personnel to activate and deactivate the modem at specific times, for specific purposes, can
provide an additional measure of security. Unfortunately, acc ess is still unfiltered,
unmonitored, and personnel procedures are susceptible to social engineering attacks.

Centralized Remote Access Server

5 (Thompson) describes how a Trojan can be written so that no trace of the Tro jan can be found in the
system’s source code.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

17

A Remote Access Server (RAS) is used in many organizations to allow external access.
RAS can also be used to giv e the vendor’s support engineers remote access to the systems
they support. Connections and traffic on remote access servers can be monitored.
Unfortunately, access provided to the network through a centralized RAS that is general
enough for a wide varie ty of users is too general for support personnel that only need
access to specific systems, violating the “principle of least privilege.” (Saltzer)

Remote Control Software
Software products like pcAnywhere ™ are popular for remote support because they allow
support personnel to fully manipulate the system (“pcAnywhere”). Unfortunately, such
power gives remote personnel effective access to the overall network, again violating the
principle of least privilege. Furthermore, anyone else on the network, either local or
remote, can gain complete access to this critical system. The advantage for the system
developers is that they do not have to build specialized support tools or client -server
software to monitor and control the system; support personnel can have flexible access to
the system in unforeseen circumstances. The risk from unauthorized personnel can be
partially mitigated through the use of secure authenticated and encrypted communication
channels6. Nevertheless, system administrators tend to be nervou s about granting this level
of remote control to someone outside their organization.

Client/Server Support Platform
Specialized access and control mechanisms can be built into systems to allow support
personnel to monitor and control the system in well -defined ways. This can be done
through a web service over http, using a browser at the client site, or with custom client
and server software. This support technique requires more development effort, but it limits
the type of control support personnel can e xert. On the positive side, when administrative
control is limited it’s harder for support personnel or unauthorized people to gain complete
access to the internal network. On the negative side, it is difficult to fully enumerate all the
support function s that will need to be performed; if the necessary support cannot be
provided remotely, because the client/server support platform does not permit it, then a
costly and time consuming on site visit may be necessary.

3.2 Support Organization Security
If remote support organizations need to gain remote access to systems at a customer’s site
then their clients’ system and network and security is only as good as the support
organization’s. If the support organization is penetrated, then penetrating every client’s
site is enormously simplified.

Remote support organizations need to be aware that their vulnerabilities are also their
clients’. Administrative passwords to client systems, especially, need to be secured.
Sadly, it is not unusual for multiple client syst ems to share support passwords. This
simplifies support, but is a huge security vulnerability.

3.3 Recommendations
Secure systems should be developed with the security of the support infrastructure in mind.
Consistent with principle of least privilege, devel opers should consider developing
specialized client/server platform that only permits specific support functions to be

6 pcAnywhere ™ incorporates a number of security features, including embeddable security codes, a variety
of authentication mechanisms, and various forms of encrypted communication.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

18

performed remotely. These support functions should be determined in development during
the requirements activity.

Communications access to internal systems for remote support should use a centralized
remote access server specifically for that purpose, enabling centralized monitoring and
control. However, an internal firewall should isolate the remote access server from the rest
of the internal network and be configured to only allow network traffic for remote support
of specific systems. System administrators should consider procedures that require their
involvement during vendors’ remote support activities, with remote support blocked at all
other times.

Support organizations need to secure their own systems to prevent security compromise of
their clients. Passwords should conform to accepted practices to prevent password
cracking and should be distinct for each system.

Security incident reporting procedures should be implemented to track and correct security
vulnerabilities.

4 Services
Every organization within which a system is deployed has a different security environment
(different security policies and infrastructure), therefore each d eployed system will have
different security risks. It is impossible to take every possible security environment into
account during system development. Vendors should offer services that adapt a system to
the security requirements of their clients’ organ ization. Such services can take many
forms:

Security Assessments
The vendor can perform a security assessment to determine the risks to the system within
the client’s organization. The risk analysis performed during development should be
updated to reflect different threat profiles or reassess the impact of a failure in the deployed
environment. Particular attention should be paid to the assumptions made during the
requirements activity of development to ensure that these assumptions have not been
violated.

Configuration and Installation
The vendor can provide configuration and installation services to ensure that the system is
configured and installed in such a way that it does not violate any assumption relied upon
during development (e.g., physical env ironment, disabled CD or floppy drives, etc.).

Additional Security Infrastructure
To provide additional security in -depth, the vendor can install additional security
infrastructure, including isolated networks, secure perimeters with internal firewalls
(Bridge) and intrusion detection systems.

5 System Retirement
One, often overlooked, phase in the lifecycle of a system is its retirement. When it is
considered, it is usually viewed as the end of the system’s support lifetime. But from a
security perspective , this is not sufficient.

It is possible that a system may be at the end of its support life, but is still deployed at a
customer’s site and, therefore, still vulnerable to security attacks. Even worse, if the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

19

system becomes unused or neglected, it can be come a source for security compromises to
the entire IT infrastructure. Like a rotting corpse in the middle of a busy town square, its
only function is to spread disease.

Both vendors and deploying organizations need to guard against these necrotic system s by
establishing rules for their retirement when they are deployed. Vendors should provide
ample notice of when the system will no longer be supported and system administrators
need to remain vigilant by making plans for the retirement, and possible repl acement, of
outdated, unsupported systems.

6 Conclusion
Critical systems require special measures to secure them —failures of any kind can result in
irreparable damage. Vendors of these systems can make a major contribution to their
systems’ security by chan ging the way they specify, develop, deploy, service, and retire
systems. These changes are fundamental and pervasive, affecting the entire product
lifecycle. It is tempting to think that minor changes to a software product can “fix” the
security problem. Unfortunately, security threats are becoming more serious and more
numerous—simple solutions are not possible. System administrators are becoming more
security conscious and taking measures to secure their IT infrastructure, but they are
becoming overwh elmed by threats and the flood of patches and updates foisted upon them
by vendors caught in an endless and costly “penetrate -and-patch” cycle.

These changes will not be easy, but the cost of not changing can be higher. There is a
bright side, however. B y addressing security directly and pervasively, the frequency of
security breaches can be reduced and vendors can focus on developing products rather than
responding to new security threats with an endless series of security patches. The result
will be mo re satisfied customers, and that is a competitive advantage. Finally, from a
societal perspective, we all benefit when we can rely on our critical infrastructure.

7 References
[1] Anderson, Ross and Needham, Roger. “Programming Satan’s Computer.” Cambridge

University Computer Laboratory . 1995.
URL:http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/satan.pdf (15 March 2002)

[2] Anderson, Ross. Security Engineering: A Guide to Building Dependable Dis tributed
Systems, Foreword by Bruce Schneier. New York: John Wiley & Sons, Inc., 2002:
xxiii-xxiv

[3] Beyond Security, Ltd. “Race Condition in FreeBSD AIO Implementation.” Beyond-
Security’s SecuriTeam.com Monthly Report . 11 December 2001.
URL:http://www.securiteam.com/exploits/6L00E0A3FC.html (26 March 2002)

[4] Boehm, Barry W. Software Engineering Economics . Englewood Cliffs: Prentice -Hall
Inc., 1981: 35-56.

[5] Boehm, Barry W. “A Spiral Model of Software Development and Enhancement.”
IEEE Computer , Vol. 21, No. 5. May 1988: 61 -72.

[6] Boehm, Barry. “Spiral Development: Experience, Principles, and Refinements.”
Spiral Development Workshop . July 2000.
URL:http://www.sei.cmu.edu/cbs/spiral2000/february2000/SR08.pdf (18 March 2002)

[7] Booch, Grady. The Unified Modeling Language User Guide . Reading: Addison
Wesley Longman, Inc., 1999.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

20

[8] Bridge, Steve. “Achieving Defense -in-Depth with Internal Firewalls.” SANS Institute
Information Security Reading Room . 15 August 2001.
URL:http://rr.sans.org/firewall/internal.php (25 February 2002)

[9] “Common Criteria.” commoncriteria.org. URL:http://www.commoncriteria.org/
(29 March 2002)

[10]Ghosh, Anup K., et. al. “Building Software Securely from the Ground Up.” IEEE
Software . Vol. 19, No. 1. January/February 2002: 14 -16.

[11]Jacobson, Iva r. The Unified Software Development Process . Reading: Addison
Wesley Longman, Inc., 1999.

[12]“Harris STAT® Scanner.” Harris, Inc. URL:http://www.statonline.harris.com/
(18 March 2002)

[13]Knight, Jeff. “The Common Criteria for Information Technology Security
Evaluation—In with the new and out with the old.” SANS Institute Information
Security Reading Room . 9 December 2000.
URL:http://rr.sans.o rg/securitybasics/criteria.php (29 March 2002)

[14]Kruchten, Philippe. “What is the Rational Unified Process?” The Rational Edge .
January 2001. URL: http://www.therationaledge.com/ content/jan_01/f_rup_pk.html
(20 March 2002)

[15]Kulak, Daryl and Guiney, Eamonn. Use Cases: Requirements in Context . ACM Press
and Addison -Wesley. 2000.

[16]Levenson, Nancy G. and Turner, Clark S. “An Investigation of the Therac -25
Accidents.” IEEE Computer , Vol. 26, No. 7. July 1993: 18 -41.

[17]Lucero, Angelina. “Three Defenses to a Secure System: Virus Scanning, Applying
Patches and System Monitoring.” SANS Institute Information Security Reading
Room. 18 September 2001. URL: http://rr.sans.org/win/3defenses.php (15 March
2002)

[18]Neumann, Peter G. “Risk to the Public in Computers and Related Systems.” ACM
Software Engineering Notes , Vol. 13, No. 2. April 1988: 5 -18.

[19]Newsham, Tim. “Format String Attacks. ” Help Net Security . 2000.
URL:http://www.net -security.org/text/articles/string.shtml (15 March 2002)

[20]Northcutt, Stephen. “Information Assurance Foundations.” The SANS Institute .
24 October 1999 - 19 June 2000. URL:http://www.sans.org/y2k/iafoundations.pdf
(26 March 2002)

[21]“Norton AntiVirus™ Professional Edition.” Symantec, Inc.
URL:http://www.symantec.com/ (15 March 2002)

[22]“pcAnywhere ™.” Symantec, Inc. URL:http://www.symantec.com/ (15 March 2002)
[23] “Rational Unified Process: Best Practices for Software Development Teams.”

Rational, Inc. URL:http://www.rational.com/products/whitepapers/100420.jsp
(18 March 2002)

[24]Raynal, Frédéric, et. al. “Avoiding Security Holes when Developing an Application,
parts 1 through 6.” LinuxFocus. January 2001 -November 2001.
URL:http://www.linuxfocus.org/English/November2001/article203.shtml
(15 March 2002)

[25]Reiter, Michael. “Security Code Review.” SANS Institu te Information Security
Reading Room. 18 November 2000. URL: http://rr.sans.org/code/code.php
(26 March 2002)

[26]Rumbaugh, James. The Unified Modeling Language Reference Manual . Reading:
Addison Wesley Long man, Inc., 1999.

[27]Saltzer, Jerome H. and Schroeder, Michael D. “The Protection of Information in
Computer Systems.” Proceedings of the IEEE . Vol. 63, No. 9. March 1975: 1278 -

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

21

1302. URL:http://web.mit.edu/Saltzer/www/publications/protection/index.html
(29 March 2002)

[28]SANS Institute. “Penetration Testing.” SANS Institute Information Security Reading
Room. 17 January 2002. URL: http://rr.sans.org/penetration/penetration_list.php
(18 March 2002)

[29]SANS Institute. Securing Linux Step -by-Step. Version 1.0. Bethesda: The SANS
Institute, 2000.

[30]SANS Institute. Windows NT Security Step -by-Step. Version 3.03. Bethesda: The
SANS Institute, February 2001.

[31]SANS Institute. Securing Windows 2000 Step -by-Step. Version 1.5. Bethesda: The
SANS Institute, 1 July 2001.

[32]Shimomura, Tsutomu. “Technical details of the attack described by Markoff in NYT.”
Newsgroups: com p.security.misc,comp.protocols.tcp -ip, alt.security . 25 January 1995.
URL:http://gulker.com/ra/hack/tsattack.html (18 March 2002)

[33]“StormWatch™ Intrusion Prevention Software.” Okena, Inc.
URL:http://www.okena.com/ (26 March 2002)

[34]Straker, David. C Style: Standards and Guidelines . New York: Prentice Hall. 1992:
5-7.

[35]“Symantec Ghost™ Corporate Editi on.” Symantec, Inc.
URL:http://www.symantec.com/ (15 March 2002)

[36]“TAMPER Lab Home Page.” University of Cambridge Computer Laboratory .
URL:http://www.cl.cam.ac.uk/Research/Security/tamper/ (18 March 2002)

[37]Thompson, Ken. “Reflections on Trusting Trust.” Communications of the ACM ,
Vol.27, No. 8. August 1984: 761 -763. URL:http://www.acm.org/classic s/sep95/
(26 March 2002)

[38]“Tiny Personal Firewall.” Tiny Software, Inc. URL:http://www.tinysoftware.com/
(26 March 2002)

[39]Trice, Roland. “ Results of the UKERNA Risk Analysis Programme.” SuperJANET4 .
2 February 2000. URL:http://www.superjanet4.net/risk/ukerna_rep.pdf
(21 March 2002)

[40]Verton, Dan. “ Study: Constant security fixes overwhelming IT managers.” Computer
World. 30 November 2001.
URL:http://www.computerworld.com/storyba/0,4125,NAV47_STO66215,00.html
(15 March 2002)

[41]“VirusScan™.” McAfee, Inc. URL:http://www.mcafe e.com/ (15 March 2002)
[42]Wheeler, David A. “Secure Programming for Linux and Unix HOWTO.” Linux

Documentation Project . 12 March 2002.
URL:http://www.linuxdoc.org/HOWTO/Secure -Programs-HOWTO/ (15 March 2002)

[43]Zeltser, Lenny. “The Evolution of Malicious Agents.” SANS Institute Information
Security Reading Room . 2 May 2000. URL: http://rr.sans.org/malicious/agents.php
(25 February 2002)

[44]“ZoneAlarm® Pro.” Zone Labs, Inc. URL:http://www.zonealarm.com/
(26 March 2002)

