
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Gerald W. Gordon
GSEC Practical Assignment version 1.3

SYN COOKIES, AN EXPLORATION

Abstract

SYN cookies are a method for defeating a SYN flood attack. A SYN flood attack is a
denial of service attack against an internet TCP server (CERT 1996). A SYN flood attack
is implemented by misusing properties of the TCP connection initiation handshake to
create many bogus pending connections in the victim, so many pending connections that
the victim’s TCP connection resources become saturated with the attacker’s bogus
connections and the victim must deny legitimate connections, thus denying service to the
victim’s intended clients. This attack cannot be stopped by a packet filtering firewall that
stops all TCP connection requests from clients since the server’s job is to accept these
connection requests and subsequently serve the clients. Dan Bernstein and Eric Schenk
(Bernstein 1996, 1997) responded to this dilemma by adding a feature to TCP, the SYN
cookies method to detect and defeat a SYN flood attack. In this report I describe and
discuss the SYN flood attack, why SYN cookies are still an important topic, the
properties of TCP that allow the attack, and the SYN cookies defense against the SYN
flood attack.

Introduction

Kevin Mitnick in 1994 seems to have been the perpetrator of the first widely known SYN
flood. In that case the SYN flood took a system off the network so that Mitnick’s
attacking host could impersonate it. Gulker (1997) quotes Shimomura (Mitnick’s victim)
on the analysis of the attack. CERT (1996) took official notice of the SYN flood attack in
1996 shortly after an ISP, Panix, suffered a disabling SYN flood attack on September 6.
The SYN flood is a low bandwidth attack that can be successfully defended, for example
by SYN cookies. Random dropping of pending connections during a SYN flood attack
allows some service to be provided even in the absence of SYN cookies. Random
dropping has been much improved by storing pending connections in a hash table instead
of the original list (Lemon). High bandwidth attacks such as the various distributed denial
of service attacks are dominating the news (Gibson 2002a). Nevertheless SYN flood
attacks are still receiving attention. Chris Brenton (2002) spent time on the SYN flood
attack as part of a talk on firewall techniques in a recent SANS webcast. Steve Gibson
(2002b) recently created his own version of stateless SYN processing apparently in the
absence of knowledge of the prior existence of SYN cookies. Even though due to SYN
cookies and the improved random drop, no system need be shutdown by a Panix style
SYN flood (Steenbergen 2001) there may still be many vulnerable systems since SYN
cookies, though part of the kernel, are disabled by default in Linux (Bernstein 1997). In

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

addition, security mavens Brenton and Gibson are still devising defensive strategies.
Therefore I feel comfortable in choosing SYN cookies for the topic of this report. SYN
cookies have in addition the attraction that they are a good starting point and motivator
for developing a deeper understanding of TCP and exploring some of its intricacies.
Because the “documentation” for SYN cookies is sparse, written by and for experts, and
in some instances inconsistent, I have endeavored to make this report understandable to
someone at my own level. Details of the TCP protocol I have largely taken from RFC-
793 (Postel 1981). For implementation details I have used Linux as the source.

Background: TCP and Establishing a TCP Connection

TCP is a connection oriented protocol for communication between two processes. Each
process is associated with a TCP port, a number that identifies the process to TCP. The
port is analogous to a mailbox where the process can deposit outgoing data and look for
incoming data. TCP allows communication between different hosts that are each
identified by a unique IP address (a number). The port number assigned to a process may
be duplicated on a different host. In order to uniquely identify the port it is concatenated
with the host IP address to define a unique TCP socket. TCP forms a connection by
associating two sockets and delivering data received from one socket to the other socket
in a structure called a segment. A segment consists of a header, shown in Figure 1,
followed by the data. Therefore a connection is uniquely defined by two sockets, each
socket being defined by a port number and host IP address. TCP maintains a connection
table in which each connection exists as a data structure called a Transmission Control
Block (TCB) that stores the state of the connection.

The TCP header, shown in Figure 1, adapted from RFC-793, contains the source port and
the destination port but not the source and destination IP addresses. TCP segments are
encapsulated in an IP datagrams for transmission to the destination. It is in the IP
datagram header that the source and destination IP addresses are found. When a TCP
segment is extracted from an IP datagram, a pseudo-header containing the source and
destination IP addresses is prefixed to the TCP header so that TCP will have access to
them. IP does not use connections and therefore does not need the port numbers used in
TCP, but IP and TCP both need the IP addresses.

Three segments pass between client and server in order to establish a connection. First
the client sends a segment requesting a connection. The server replies with a conditional
agreement. The condition is met and the connection is established when the client replies.
This is called the “three-way handshake” and has been likened to establishing
communications in a telephone call (“Ring”, “Hello”, “Hello”).

Next we consider in more detail the process of establishing a TCP connection since a
SYN flood exploits by misuse the three-way handshake. The goal of a SYN flood is to
exhaust a necessary resource and thereby create a denial of service attack. SYN cookies

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

are a method of allowing TCP to function even when the resource is exhausted thus
protecting against that denial of service attack.

When a process wishes to provide a service to other processes via TCP, TCP associates
the server process with a port and opens the port for listening. A listening port is a TCB
containing the host IP address and port number of the server process but an unspecified
(all zeros) port and IP address for the as yet unknown client. The TCB of a listening port
has the connection state set to LISTEN. When a segment arrives to a listening port, the
segment specifies the source and destination sockets, thereby specifying a unique
connection. TCP first searches the TCBs of the existing connections (TCBs with state not
equal to LISTEN) in the connection table for a match to the incoming segment. If a
match is found there is no need to establish a new connection and the segment is handled
in the context of the existing connection. If no match is found then TCP searches the
TCBs with state equal to LISTEN for a match to the destination socket. If a match is
found then TCP will enter the process of establishing a new connection. This process is
shown as a diagram in Figure 2 and described below.

Source Port (16 bits) Destination Port (16 bits)
Sequence Number (32 bits)

Acknowledgement Number (32 bits)
Data

Offset
(4bits)

Reserved
(6 bits)

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window (16 bits)

Checksum (16 bits) Urgent Pointer (16 bits)
Options (24 bits) Padding

There are six flag bits in the TCP header (Figure 1), URG, ACK, PSH, RST, SYN, and
FIN. The ACK, RST, SYN, and FIN flags are set at the source to tell the recipient how to
change the state of the connection. The client indicates its desire to have a new
connection with the server by sending a segment with the SYN flag set and the ACK and
RST flags unset to a listening port on the server. A segment with one or more flags set is
called by the names of all the set flags so a segment with SYN only set will be called a
SYN segment. SYN is short for “synchronize sequence numbers” and indicates the
importance of sequence numbers as part of the state of a connection. Each direction of
data flow in a connection has an independent sequence number that counts the bytes of
data sent. For every TCP segment the current sequence number of the source appears in
the header field called sequence number. In the header field called acnowledgement
number the sender puts the sequence number of the next byte it expects to receive thereby
acknowledging the last byte received.

Figure 1. The structure of the TCP header adapted from RFC-793. The fields involved in
the SYN Cookie defense are discussed in the text.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

More specifically, when a segment is delivered to a listening port, also referred to as a
TCB in the LISTEN state, the port first checks the RST (reset) flag and if set drops the

no

 LISTEN

SYN
set?

drop segment

send RST

yes

yes

no

yes

no

send SYN-ACK

ACK
Set?

valid
ACK #

?

ESTABLISHED

no

no

yes

yes
send RST
drop segment

SYN-RCVD

RST
set?

ACK
set?

SYN
set?

no

no

SYN-RCVD

no

no

no yes
yes

yes

queue
full?

recent
overflow

?

LISTEN

RST
set?

ACK
set?

drop segment
yes

yes

no

yes

no

send SYN-ACK

ACK
Set?

valid
ACK #

?

no

yes

yes
send RST
drop segment

drop segment

valid
cookie

?

reconstruct the
SYN segment

record time
make cookie
send SYN-ACK

ESTABLISHED

Figure 2. SYN Cookies
disabled: Establishing a TCP
connection.

Figure 3. SYN Cookies enabled: Establishing a
TCP connection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

segment; then it checks the ACK (acknowledge) flag and if set sends a RST segment to
the client thereby telling the client to reset (close) the connection since an ACK would be
sent to acknowledge what the server has sent and the server hasn’t sent anything. Then
the port checks for the SYN (ring) flag and if set sends the client a SYN-ACK (hello)
segment and allocates a new TCB for the connection in the SYN-RECEIVED state. In
the SYN-RECEIVED state a connection is half open or half connected and waiting for
the appropriate response (hello) from the client. The server’s TCB for this connection
now stores the SYN arrival time, both sockets, both sequence numbers, and other
information from the client’s TCP header. The connections in the SYN-RECEIVED state
are sometimes called the backlog queue, the SYN queue, the SYN-RCVD queue, or the
open request queue. (Whether these connections truly are a queue would depend on
implementation details though there doesn’t seem to me to be any value in implementing
them as a queue data structure since they will not necessarily be processed in the order
they are received. In fact the SYN queue now seems to be implemented as a hash table.)

The connection in the SYN-RECEIVED state is waiting for a reply from the client. If the
connection receives a segment with the ACK flag unset then drop the segment and send a
RST. If the ACK flag is set then verify the acnowledgement number (the field in the TCP
header). If the acnowledgement number is incorrect then drop the segment and send a
RST and do not change state. If the acnowledgement number is one more than the
sequence number sent in the SYN-ACK then accept the segment and change the
connection to the ESTABLISHED state. The SYN flag set in the SYN-ACK counts as
one byte sent to the client so the client must increment the sequence number to form its
acnowledgement number.

We have now passed through the process of establishing a new connection on the server
for a client. The process is summarized in Figure 2, which is adapted from RFC-793
(Postel 1981). RFC-793 contains many other details of this process of less relevance to
the SYN flood attack.

The SYN Flood Attack

The number of TCBs (connections) in the SYN-RECEIVED state has a maximum value.
The choice of a small maximum is justified in that for a legitimate connection request the
connection will typically remain in the SYN-RECEIVED state for only milliseconds,
since the client will usually send its ACK immediately. And in that a very large
maximum SYN queue size could still be filled by an effective SYN flood and would use
more of the finite resources available at the expense of other functions. If a SYN segment
arrives and matches a TCB in state LISTEN but the number of TCBs in state SYN-
RECEIVED is at the maximum, then no new connection is created and the SYN segment
is dropped. This is the basis of the SYN flood denial of service attack: First the attacker
sends the server many SYN segments with incorrect (spoofed) IP addresses. The server
then allocates a TCB for each half open connection and sends a SYN-ACK to the spoofed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

client host. If the attacked server receives no replies to the SYN-ACKs, it will continue to
allocate TCBs in the SYN-RECEIVED state until the maximum number is reached. The
server then must drop all requests, including legitimate requests, for new connections
while waiting for the bogus connections to timeout.

Since the spoofed clients did not send the SYN segments they will never send ACKs and
the server will never promote these connections to the ESTABLISHED state. If the
server’s SYN-ACK reaches a listening (open) or a non-listening (closed) port on the
spoofed client, the port will send a RST causing the server to de-allocate the TCB in the
SYN-RECEIVED state. If the server’s SYN-ACK reaches a firewall protected port the
response depends on the firewall. The usual firewall drops segments destined for
protected ports. In this case no response is sent to the server and its TCB will remain
allocated until the timeout. The lack of response makes the SYN flood attack more
effective. Brenton suggested in a SANS webcast (Brenton 2002) that firewalls could be
configured to reject segments destined for protected ports which still entails dropping the
packet but in addition sending a RST. This is a “good neighbor” firewall configuration
which if universally applied would make SYN flood attacks ineffective. If the spoofed
client does not exist it cannot reply but the router for the subnet of the spoofed IP address
should return an ICMP host-unreachable to the server causing the de-allocation of the
TCB in the SYN-RECEIVED state (Stevens). The SYN flood attack is effective at a low
rate of successful creation of orphan TCBs that must timeout, roughly max size of SYN
queue/20 per second (Schenk in Bernstein 1996) and many hosts are protected with
firewalls that drop segments destined for protected ports. Therefore the attack strategy of
using random IP addresses for the spoofed clients can work since even a single protected
port on a spoofed client could provide enough traffic to SYN flood the victim. It probably
wouldn’t be hard to develop a list of firewall protected ports that drop segments to make
the SYN flood attack maximally effective.

The SYN Cookies Defense

The key to the SYN flood attack is the filling of the victim’s SYN queue. The SYN
cookies defense allows the victim to continue accepting connection requests when the
SYN queue is full. The SYN cookies approach is to detect when the SYN queue is full
and if full, create a cryptographic cookie (a 32 bit number) from information in the SYN
segment and then drop the SYN segment. The cookie will be used as the initial sequence
number in the SYN-ACK sent to the client. The cookie (plus one) will be returned to the
server as the acknowledgement number in the ACK from a legitimate client. The returned
cookie can be validated and the most important parts of the SYN segment can be
reconstructed from the cookie thus allowing the attacked port to bypass the SYN-
RECEIVED state (the SYN queue) and to allocate a TCB for a validated (legitimate)
connection directly in the ESTABLISHED state. Since the spoofed clients of the SYN
flood never send ACKs, no TCBs are allocated for them in any state when SYN cookies
are in use. Thus the SYN cookies defense allows the port to accept new connections

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

when the SYN queue is full, defeating the SYN flood attack. Figure 3 shows a diagram of
this process in which the dotted lines indicate paths and actions taken only during a
perceived SYN flood attack.

Detecting the SYN Flood Attack

When a SYN arrives and SYN cookies are enabled the port decides whether a SYN flood
is in progress based on whether the SYN queue is full and will only use SYN cookies if
the queue is full. Before generating a cookie to send to the client, the time of the current
overflow event is recorded for use in ACK processing. When an ACK arrives that does
not belong to an existing connection, further processing will occur only if there has been
a recent overflow. If an ACK is not preceded by a remembered SYN, a new connection
should only be considered if we are, or have recently been, under attack as indicated by
the last overflow time recorded during SYN processing.

Construction of the Cookie

The key to not allocating storage while waiting for the ACK from the client is in the
construction of the cookie. Since the cookie will be returned to the server in the client’s
ACK, part of the cookie encodes some recoverable information from the SYN segment so
that the server will not need to allocate a TCB to hold that information while waiting for
the ACK. This information consists of a three bit value that is an index into a table of
commonly used MSS (maximum segment size) values. (The MSS option of the TCP
segment header contains a 16 bit value for the MSS which if included in the 32 bit cookie
would not leave enough bits in the cookie for its cryptographic functions.) The MSS
option is important in using as large a segment as possible without causing fragmentation
but it is normally used only in the SYN containing segments used in the initial handshake
establishing the connection. Therefore in order not to always use the default MSS while
SYN cookies are in use, the largest value in the table not larger than the client’s MSS is
encoded in three bits of the cookie. Unlike MSS, the Window field of the TCP header can
be specified in each segment, but the commonly used Window Scale Factor Option (that
provides a multiplier for the value of Window field) is normally only used in the SYN
containing segments of the initial handshake (Stevens 1994). No information about the
Window Scale Factor Option is encoded in the cookie; therefore the usefulness of the
Window field is greatly reduced when SYN cookies are in use. Because not all features
of TCP are available when SYN cookies are in use, when SYN cookies are enabled they
are used only when the SYN queue is full indicating that the system is probably under
attack.

Another component of the cookie is a time based counter to allow rejection of non-recent
or stale cookies. In addition the cookie contains cryptographic information to allow
validation of the cookie and make cookie forgery very difficult. If stale cookies are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

accepted, a forger has a bigger window of opportunity. By predicting a series of cookie
values, an attacker could send a large number of valid ACKs that would result in the
same large number of connections in the ESTABLISHED state on the server. The forged
ACK attack in conjunction with the SYN flood attack elevates the SYN flood attack
(being successfully defended by SYN cookies) to a connection table overflow attack
possibly causing denial of service. Therefore it is necessary to make prediction of the
series of cookie values very difficult while still allowing the server to validate the
returned cookie values. When SYN cookies are in use, there is no TCB storing the SYN-
ACK sequence number (the cookie) or the time the SYN arrived. Therefore the server
must determine from the client’s ACK whether the acnowledgement number is valid, that
is, whether the acnowledgement number is the cookie (plus one) that the server sent.

The statements by Dan Bernstein on his web site disagree on the exact formula for the
cookie (Bernstein 1996, 1997). I’m considering the following formula as implemented by
Andi Kleen (1997) and used in Red Hat Linux 7.2:
Cookie = hash1 + sseq + count << 24 + ((hash2 + mssindex) & ((1 << 24) – 1)).

• Where hash1 is an SHA hash of the source port, source IP, destination port,
destination IP, and a SYN cookie secret chosen at first call of the function.

• Where sseq is the sequence number of the client’s SYN.
• Where count is the current value of a 32 bit minute counter.
• Where hash2 is a an SHA hash of count, the source port, source IP, destination

port, destination IP, and a different secret also chosen at the first call of the
function.

• Where mssindex is the 3 bit index coding an approximation of the MSS value
from the client’s SYN.

Here is a slightly graphical formula for the cookie:

cookie =
 | hash1 32 bits |
 + | sseq 32 bits |
 + |count << 24 |(hash2 + mssindex) & 0xFFFFFF 24bits|
 8 bits

Validation of the Cookie

When the ACK comes back from a client the acnowledgement number is validated in a
series of steps outlined next. Subtract one to get the putative cookie. Calculate hash1
from the ports and IPs in the ACK. Subtract hash1 from the putative cookie to get
intermediate1. Subtract one from the ACK’s sequence number to get what should be the
sequence number of the client’s SYN (sseq in the cookie formula). Subtract this from
intermediate1 to get intermediate2. Isolate the top 8 bits of intermediate2, shift it down
and subtract the result from the low 8 bits of the current count value. The difference
represents the time in minutes since the cookie was created. If the difference is greater

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

than three, the cookie is invalid. Otherwise subtract the difference from the current 32 bit
count to reconstruct the 32 bit count used to construct the cookie originally. Calculate
hash2 with the reconstructed 32 bit count and the ports and IPs from the ACK. Subtract
the low 24 bits of hash2 from the low 24 bits of intermediate2. This result should be the
MSS index and if it is out of range (the range is 0-7) the cookie is invalid. Otherwise the
cookie is considered valid and a new connection will be created in the ESTABLISHED
state.

Attacking the Cookie Cryptography

If the attacker is not sniffing the traffic between the client and server, the attacker must
guess the 32 bit cookie value to forge a connection. The probability of success depends
on how many of the 4 billion guesses can be tested in the 3-4 minutes available before the
cookie expires. At 100 microseconds per guess (ten threads at 1000 Hz each) there would
be 2,400,000 guesses or an average of 0.00056 successes in each 4 minute period. This
rate is not great enough to mount a denial of service attack but there are other attacks
using connection forging (Bellovin).

If the attacker can sniff the traffic then the attacker could attempt to break the secrets by
analyzing a series of connections at different times and therefore with different count
values. First guess the first secret until the extracted count values increment in a fashion
corresponding to the times of collection of the segments. At this point the attacker can
predict 8 bit count values for any future time. Now knowing the 8 bit count values, guess
the high 24 bits of the count and the second secret until the MSS index is within range for
more than one segment. At this point the attacker is in a position to forge connections
and, for example, launch the connection table overflow attack described above. Resetting
the counter and the secrets, by rebooting if no other method is available, could thwart the
attack. I don’t know how to evaluate the SHA hash in the context of SYN cookies, but at
full power SHA is believed to be infeasible to break (FIPS 1995). SYN cookies secrets 1
and 2 are 448 bits and 416 bits long respectively (Andi Kleen, 2002 personal email
communication). An optimistic attacker could maximize the chances of breaking the
secrets by using a compromised system to collect cookies on its own connections to the
server so the MSS value would be known; and then distribute the job of breaking the
secrets to a flotilla of other compromised computers. There are currently easier ways to
create a denial of service attack, for example the distributed reflection denial of service
(Gibson 2002c).

Cookies as Initial Sequence Numbers

One of the practical requirements of initial sequence numbers and therefore SYN cookies
is that a new one should never be slightly smaller than a recent one. This prevents overlap
of the sequence number space of two instances of the same connection and therefore

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

prevents mistaking a delayed segment from a previous instance of that connection for a
segment belonging to the current instance. RFC-793 (Postel) says that TCP should use
initial sequence numbers that are tied to a clock, which seems to mean monotonically
increasing. RFC-793 suggests a 4 microsecond clock that for a 32 bit counter would roll
over every 4.77 hours. This statement of the requirement avoids the need to define
“slightly smaller”. The high 8 bits of a SYN cookie are the sum of the highest 8 bits of
hash1, which is constant, plus the highest 8 bits of the client’s sequence number, which is
assumed to be tied to a 4 microsecond clock, plus the lowest 8 bits (shifted up) of the
server’s minute clock. The 8 bit minute clock will roll over every 4.27 hours. The sum of
the two variable components can be constant for as long as a minute and will roll over at
about 2.5 hours. The second hash dominates the lower 24 bits of the cookie. The second
hash is not constant since its inputs include the 32 bit minute counter. In fact the second
hash and therefore the lower 24 bits of the cookie are essentially random in the range of 0
to about 16 million. When the high 8 bits roll over, the value of the cookie drops by about
4 billion and a new cookie will not be slightly smaller than a recent cookie. However,
during a period in which the highest 8 bits are constant and the lower 24 bits are
bouncing around, it would be possible to issue a two initial sequence numbers with the
second one slightly smaller than the first. And since the actual maximum segment
lifetime may be as long as two minutes (at least in 1981 when RFC-793 was written)
there could be segments from the first instance of the connection still arriving while the
second instance of the connection is active. But, there is a timeout of twice TCP’s
maximum segment lifetime (MSL) value after the two parties in a connection agree to
close it and before TCP actually closes it. Since Linux sets the MSL to 30 seconds
(Stevens) the 2MSL value is 1 minute allowing enough time for the high 8 bits of the
cookie to be incremented and to therefore prevent issuing two cookies of which the
second is slightly smaller. SYN cookies have the advantage that a cryptographic initial
sequence number is difficult for an attacker to predict. Normal initial sequence numbers
can also benefit from cryptography (Bellovin; T”so).

Conclusion

This report is unified by the desire to understand TCP and SYN cookies. There are
several disparate ideas woven together on the TCP and SYN cookies threads. I hope you
have been interested in the factual material and amused by the analysis. Even though
most TCP implementations have a common ancestor, the details depend on the operating
system and even the version of the operating system. Therefore any attempt at a general
discussion will need to make some assumptions for the sake of being definite and the
conclusions may not apply to all implementations or even in precise detail to any current
implementation. For the record, I have taken a Linux centric approach and perhaps I
could have made fewer assumptions had I spent more time in the source code.

References

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Bellovin, S. “Defending against sequence number attacks.” RFC-1948 1996. URL:
http://rfc.sunsite.dk/rfc/rfc1948.html

Bernstein, Daniel. (archive of newsgroup designing SYN cookies) 1996. URL:
http://cr.yp.to/archive.html

Bernstein, Daniel. “SYN cookies.” 1997. URL:
http://cr.yp.to/syncookies.html

Brenton, Chris. “Firewalls and perimeter protection.” 2002. URL:
http://sans.digisle.tv/audiocast_050102/brief.htm

CERT®. “TCP SYN Flooding and IP Spoofing Attacks.” CERT® Advisory CA-1996-21
Original issue date: September 19, 1996. URL:
http://www.cert.org/advisories/CA-1996-21.html

FIPS. “Secure hash standard.” FIPS PUB 180-1 1995. URL:
http://www.itl.nist.gov/fipspubs/fip180-1.htm

Gibson, Steve, “The Strange Tale of the Denial of Service Attacks Against GRC.COM.”
2002a. URL:
http://grc.com/dos/grcdos.htm

Gibson, Steve. “The Genesis of GENESIS.” 2002b. URL:
http://grc.com/r&d/nomoredos.htm

Gibson, Steve. “Distributed reflection denial of service.” 2002c. URL:
http://grc.com/dos/drdos.htm

Gulker, Chris. “Tsutomu Shimomura's newsgroup posting with technical details of the
attack described by Markoff in NYT.” 1997. URL:
http://www.gulker.com/ra/hack/tsattack.html

Kleen, Andi. “secure_tcp_syn_cookie() in random.c.” kernel-2.7.4-10.src.rpm 1997.
(From the SYN cookie code in Red Hat Linux 7.2) URL:
http://distro.ibiblio.org/pub/Linux/distributions/redhat/7.2/en/os/i386/SRPMS/kernel-
2.7.4-10.src.rpm

Lemon, Jonathon. “Resisting SYN flood DoS attacks with a SYN cache.” URL:
http://people.freebsd.org/~jlemon/papers/syncache.pdf

Postel, Jon. Editor. “Transmission Control Protocol.” RFC-793 1981. URL:
http://rfc.sunsite.dk/rfc/rfc793.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Steenbergen, Richard A. “Understanding Modern Denial of Service.” 2001. URL:
http://www.e-gerbil.net/ras/projects/dos/dos.txt

Stevens, W. Richard. TCP/IP Illustrated, Volume I 1994. Addison Wesley

T’so, Theodore. “secure_tcp_sequence_number() in random.c.” kernel-2.7.4-10.src.rpm
1997. (Red Hat Linux 7.2) URL:
http://distro.ibiblio.org/pub/Linux/distributions/redhat/7.2/en/os/i386/SRPMS/kernel-
2.7.4-10.src.rpm

