
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GSEC Practical V.1.4
Paul Fontenot
June 23, 2002

Introduction
 We will be utilizing the freely available operating system OpenBSD ver. 3.1 for
centralization of Unix syslog data. We will be using the MySQL SQL database engine
for collection and storage of the syslog data, the Apache web server for displaying
the web pages, Perl with DBI and DBD for collection and insertion of syslog data, and
the Apache web server with PHP for display of syslog data.

 We will not be changing the syslogd configuration (/etc/syslog.conf) on the
central server; this is to avoid possible syslog “bombing” which could render our
centralization efforts nil. The MySQL database engine can handle the flow of large
amounts of data much better than the syslog facility. We will be changing the syslogd
configuration on the remote servers to allow for logging of syslog data to another file
for processing by Perl. The DBI / DBD scripts will pick up and insert data in the
MySQL database.

OpenBSD 3.1
 We will be doing an initial installation of OpenBSD from a network source.
After we have downloaded the boot disk installation image and written it to a
formatted floppy disk. I used a Linux machine for the creation for the floppy disk with
the following command:

 # dd if=floppy31.fs of=/dev/fd0 bs=126k

 The above command says that we will using an input file called floppy31.fs.
This is an image file so just copying it to a disk doesn’t work. We are telling it to use
an output file of /dev/fd0 or the floppy disk, and bs=126k means to write the image in
126k blocks.

 During the installation of OpenBSD you will need to label your disks. If you are
not familiar with UNIX disk labeling, think of it as partitioning. I set my disks up in this
example with a simple scheme, a /, swap, and /usr partition. After the disk partitioning
is done OpenBSD will make the file systems, format them in other words, and move
to configuring the network. After the network configuration you will be asked to enter
a root password. The installation program wants to know if you will be running the X
window system, for my installation I answered no. The installer then wants to know if
you are doing an ftp, http, tape, cd-rom, or local installation. I chose ftp and none for
my proxy, as I don’t have one. After answering the rest of the questions the installer
moves into the actually installation phase. It will reboot when complete.

 After the initial installation of OpenBSD we will utilize the cvs program that is
included with OpenBSD to update source and ports trees. We will need to set the
variables for CVS_RSH and CVSROOT as well as issue the cvs commands to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

update the source and ports trees. The default shell for OpenBSD is csh so at the
command prompt type the following:

setenv CVSROOT anoncvs@anoncvs1.usa.openbsd.org:/cvs
setenv CVS_RSH /usr/bin/ssh
cvs –q get –rOPENBSD_3_1 src ß updates source code
cvs –q get –rOPENBSD_3_1 ports ß updates the ports collection

At this point we will compile a new kernel and reboot the system to utilize the

new kernel. After reboot we will recompile the entire operating system. This will allow
us to incorporate all the latest changes, security patches and updates to the system.
You can either roll your own kernel, by copying /usr/src/sys/arch/i38/conf/GENERIC
to /usr/src/sys/arch/i386/conf/WHATEVER and editing the copy or you can simply “cd
/usr/src/sys/arch/i386/conf” and type “make GENERIC”. For my example I only
recompiled the GENERIC kernel, this kept my system in a known state and makes it
easier to get support from openbsd’s mailing lists. It also applied all the up to date
kernel source code patches. The steps for doing this are outlined below:

cd /usr/src/sys/arch/i386/conf
config GENERIC
cd ../GENERIC
make depend
make clean
make
make install
shutdown –r now

When the system comes back up after the reboot, log back in as root and type:

cd /usr/src
make World ßTakes a LONG time
shutdown –r now

 This is the actual “full system rebuild” that will rebuild all the operating system
binaries from the patched source code.

After reboot the base operating system will be ready for you to start turning

things on and will be patched for all known vulnerabilities up to this point. We will
begin utilizing the PF facility in OpenBSD to control access to the server. This is a
very capable packet filter that we will configure to allow only ports 22 (ssh for
administration), 443 (https), 3306 (MySQL server).

You will need to enable pf in /etc/rc.conf. You should read the man page for pf
to understand all the options available to you. Change the NO to YES on the
following line in /etc/rc.conf:

pf=NO # Packet filter / NAT

This activates the kernel pf module on reboot. If you need it now, and have a

working /etc/pf.conf file then type the following:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

pfctl –R /etc/pf.conf -e

The “R” tells pfctl what configuration file to load for the packet filter and the “e”

enables packet filtering. The /etc/pf.conf file that was used in this configuration is
located here.

MySQL 3.23.49
 The easiest way to get MySQL installed, up and running is by using the ports
collection. We “fetched” the ports collection when we where issuing cvs commands
above. We need the MySQL server package for our example so we will need to pass
some environment variables to the make command, specifically the “–server” tag.
Type the following at the command prompt:

env SUBPACKAGE=”-server” make ß makes the MySQL server package

When complete, you pass the same variables to the make install command:

env SUBPACKAGE=”-server” make install ß installs MySQL package

 We now have MySQL installed and now need to start it up and configure it for
our application. By default MySQL comes with no administrative passwords and a
“blank” account. We’ll be setting the administrative password and restricting the
administrative access to the localhost, removing the blank account and setting up the
SYSLOG database with a user and password.

Setting the administrative password in MySQL is done with the following
command:

/usr/local/bin/mysqladmin –u root password ‘YOUR_PASSWORD’

You will see nothing if successful. If you see an error like:

 # /usr/local/bin/mysqladmin –u root password ‘YOUR_PASSWORD’
 mysqladmin: connect to server at ‘localhost’ failed

error: ‘Can’t connect to local MySQL server through socket
‘/var/run/mysql/mysql.sock’ ‘(2)’
Check that MySQL is running and that the socket:
‘/var/run/mysql/mysql.sock’ exists!

 This means that MySQL has not been started. You start mysql by issuing this
command:

 # /usr/local/bin/safe_mysqld &
 [1] 28883 ß Process id for the server
 # Starting mysqld daemon with databases from /var/mysql

After mysqladmin changes the password, you will see nothing and

mysqladmin will give back the console. Now you should be able to log into the mysql
server and check the default permissions. You do this with the following command:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

mysql –u root –p mysql
testbox# mysql -u root -p mysql
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5 to server version: 3.23.49

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

From here issue this query to see what access is set:

mysql> select user, host, password from user;
+------+-----------+------------------+
| user | host | password |
+------+-----------+------------------+
root	localhost	011bf66a2f709a2d
root	testbox	
	localhost	
	testbox	
+------+-----------+------------------+
4 rows in set (0.00 sec)

 Now we will begin restricting the administrative access to the localhost only,
this prevents personnel from gaining admin access to our server via the network:

mysql> delete from user where user = 'root' and password ='';
Query OK, 1 row affected (0.08 sec)

Now we have restricted access to the localhost for administrative functions.

Once again issue the query to verify that we have restricted administrative access to
localhost only.

mysql> select user, host, password from user;
+------+-----------+------------------+
| user | host | password |
+------+-----------+------------------+
root	localhost	011bf66a2f709a2d
	localhost	
	testbox	
+------+-----------+------------------+
3 rows in set (0.00 sec)

Now we will remove the blank accounts from the system. This will allow only

the administrative account on the localhost to have any access to the system.

mysql> delete from user where user = '';
Query OK, 2 rows affected (0.00 sec)

Once again issue the query to verify that only the administrative account has

access to our server.

mysql> select user, host, password from user;
+------+-----------+------------------+
| user | host | password |
+------+-----------+------------------+
| root | localhost | 011bf66a2f709a2d |

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

+------+-----------+------------------+
1 row in set (0.00 sec)

Once this is done it is time to create the SYSLOG database. The is

accomplished with the following command:

mysql> create database SYSLOG;
Query OK, 1 row affected (0.01 sec)

You will now grant privileges on the database and its tables. We will be

granting select and insert privileges on the SYSLOG database to the user syslog. For
this example we will be using the password ‘syslog’. This is ONLY an example and
not to be used in production.

mysql> grant select, insert on SYSLOG.* \
 -> to syslog identified by 'syslog';
Query OK, 0 rows affected (0.01 sec)

 The above grant statement says to “grant select, insert, update and delete
privileges on the SYSLOG database and all tables associated with it to the user
syslog with the password syslog”. After issuing the grant statements we should verify
the syslog user exists and there is an entry in the password field:

mysql> select user, host, password from user;
+--------+-----------+------------------+
| user | host | password |
+--------+-----------+------------------+
| root | localhost | 011bf66a2f709a2d |
| syslog | % | 77f2beb776ba725d |
+--------+-----------+------------------+
2 rows in set (0.01 sec)

Note the ‘%’ in the host column. We did not specify a host to connect from in

the grant statement. If no host is specified, the system assumes any host and will
allow syslog to connect from any machine on the network. For a more secure system
you should specify a host entry for each of the servers that will be sending data to the
database. This will further prevent a compromise of the central server by refusing
connections that maybe an attempt to overload the database engine. The schema for
our database is located here.

Apache & SSL
 Apache is included in the OpenBSD distribution and has SSL support
compiled in by default. You will need to create your digital certificate before you can
utilize the SSL encryption compiled into Apache. The man page for ssl(8) has the
procedure to use when creating the RSA digital certificate to activate the SSL module
in the Apache webserver.

To support https transactions in httpd you will need to generate an RSA
certificate. The following command says to “generate an rsa key
/etc/ssl/private/server.key and make it 1024bits long”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

openssl genrsa -out /etc/ssl/private/server.key 1024

Or, if you wish the key to be encrypted with a pass phrase that you will have to

type in when starting the server:

openssl genrsa -des3 -out /etc/ssl/private/server.key 1024

The next step is to generate a Certificate Signing Request, which is used

to get a Certifying Authority (CA) to sign your certificate. To do this
use the command:

openssl req -new -key /etc/ssl/private/server.key \
 -out /etc/ssl/private/server.csr

This server.csr file can then be given to a Certifying Authority, which will

sign the key. One such CA is Thawte Certification which you can reach at
http://www.thawte.com/. Thawte can currently sign RSA keys for you. A
procedure is being worked out to allow for DSA keys.

You can also sign the key yourself, using the following command:

openssl x509 -req -days 365 -in /etc/ssl/private/server.csr \

 -signkey /etc/ssl/private/server.key -out /etc/ssl/server.crt

With /etc/ssl/server.crt and /etc/ssl/private/server.key in place, you

should be able to start httpd(8) with the -DSSL flag, enabling https
transactions with your machine on port 443.

You will most likely want to generate a self-signed certificate in the
manner above along with your certificate signing request to test your
server's functionality even if you are going to have the certificate
signed by another Certifying Authority. Once your Certifying Authority
returns the signed certificate to you, you can switch to using the new
certificate by replacing the self-signed /etc/ssl/server.crt with the
certificate signed by your Certifying Authority, and then restarting
Apache with:

/usr/sbin/apachectl restart

Use the htpasswd utility that came with Apache to create a password file to
further protect the syslog data from un-authorized viewing. This will be located in the
bin directory of wherever you installed Apache. In our example the htpasswd utility is
located at /usr/bin/htpasswd. This is the default location on OpenBSD.
To create the password file, type:

htpasswd -c /etc/httpd.passwords pfontenot

htpasswd will ask you for the password, and then ask you to type it again for
confirmation:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

htpasswd -c /etc/httpd.passwords pfontenot
New password: mypassword
Re-type new password: mypassword
Adding password for user pfontenot

Note that in the example shown, a password file is being created containing a

user called pfontenot, and this password file is being placed in the location
/etc/httpd.passwords. We have chosen a location outside the webuser accessible
directory tree. This makes compromising the password list for Apache more difficult.

Once you have created the password file, you need to tell Apache about it,
and tell Apache to use this file in order to require user credentials for admission. This
configuration is done with the following directives:

AuthType Authentication type being used. In this
case, it will be set to Basic

AuthName The authentication realm or name

AuthUserFile The location of the password file

AuthGroupFile The location of the group file, if any

Require The requirement(s) which must be satisfied
in order to grant admission

These directives may be placed in an .htaccess file in the particular directory

being protected, or it may go in the main server configuration file, in a <Directory>
section, or other scope container. We are placing them in the .htaccess file in the
/var/www/htdocs directory. You will then need to make a change to the httpd.conf file
telling it to use the .htaccess file. Change the following line:

AllowOverride None

to

AllowOveride All

The example shown below defines an authentication realm called ``By

Invitation Only''. The password file located at /etc/httpd.passwords will be used to
verify the user's identity. Only users named pfontenot will be granted access, and
even then only if they provide a password that matches the password stored in the
password file.

AuthType Basic
AuthName "By Invitation Only"
AuthUserFile /etc/httpd.passwords
Require user pfontenot

The phrase ``By Invitation Only'' will be displayed in the password pop-up box,

where the user will have to type their credentials. You will need to restart your
Apache server in order for the new configuration to take effect, if these directives

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

were put in the main server configuration file. Directives placed in .htaccess files take
effect immediately, since .htaccess files are parsed each time files are served.

The next time that you load a file from that directory, you will see the familiar

username/password dialog box pop up, requiring that you type the username and
password before you are permitted to proceed.

Note that in addition to specifically listing the users to whom you want to grant

access, you can specify that any valid user should be let in. This is done with the
valid-user keyword:

Require valid-user

PHP & MySQL
 We are going to be using the ports collection for the installation of PHP with
support for the MySQL database engine. This is the fastest, easiest way to get PHP,
MySQL, and Apache working together. When choosing the ports collection, you have
the option of using arguments to the make commands that will tailor the software to
what you need. Looking in the Makefile for PHP4 you will notice the FLAVOR lines:

FLAVORS+= gdbm gettext imap ldap mhash mm recode snmp
FLAVORS+= gd no_x11 pdflib mcrypt curl
FLAVORS+= dbase filepro mysql mysql_bundled postgresql iodbc
FLAVORS+= freetds

We only need support for mysql, because when we built our server we chose

not to have X11. So we need to pass environment variables to make that tell it we
don’t have X, we want support for the gd library so that later on we might utilize the
“on the fly” image generation capabilities of PHP and we need MySQL support. Our
command would be:

 # env FLAVOR=”no_x11 gd mysql” make

When the make has completed we will install the software with a similar command:

 # env FLAVOR=”no_x11 gd mysql” make install

After we have PHP installed we have to tell the Apache server it is there and

what extensions require its use. Luckily for us, the PHP port comes with a script that
makes this easy. You activate the PHP4 module by using the command:

 # /usr/local/sbin/php4-enable

 After activation of the module, you still need to edit the /var/www/httpd.conf file
and tell apache how to use the .php extension and that index.php is a valid directory
index file like index.html. The lines that need to be added to the /var/www/httpd.conf
file are:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DirectoryIndex: The name of the file or files to use as a directory
index

 DirectoryIndex index.php index.html

AddType allows you to make certain files by certain types, and
determine what to do with them

 AddType application/x-httpd-php .php

Now for some fun. Create a php script with your favorite editor and place it in

the web tree to test for PHP capability. The default location for html documents on
OpenBSD is /var/www/htdocs. I have created a simple php script that can be found
here and placed it in the /var/www/htdocs directory as test.php. Verify the webserver
is running by using the ps command and piping the output to grep to search for httpd:

ps –ax | grep httpd
16305 ?? Is 0:00.02 /usr/sbin/httpd
12596 ?? I 0:00.01 /usr/sbin/httpd
20153 ?? I 0:00.02 /usr/sbin/httpd
 216 ?? I 0:00.01 /usr/sbin/httpd
31816 ?? I 0:00.01 /usr/sbin/httpd
16616 ?? I 0:00.01 /usr/sbin/httpd

If the output looks like that above, then apache is running. You should restart
apache using the /usr/sbin/apachectl restart command. It will tell you that apache has
restarted.

Now point a web browser at the server and verify that is has picked up the php

extension you told it about in the /var/www/conf/httpd.conf file. The php script used
for the test.php file will display many things about the way php was compiled and
where certain files are installed. Remove this file as soon as you have determined
that PHP is in fact being utilized by apache. An attacker could possible guess the
name of this file and use its contents against your site.

Perl with DBI and DBD
 The ports collection has the next two pieces of software that are required to
make this work. They are the Perl DBI and the DBD for MySQL. They use the same
make and make install commands as the rest of the ports collection and they are
found under the /usr/ports/databases directory. The Perl DBI is
/usr/ports/databases/p5-DBI and the Perl DBD is /usr/ports/databases/p5-DBD-Msql-
Mysql. Upon completion of compilation and installation we can begin writing the perl
script that does the work. Logger.pl is located here.

Making things happen
 At this point in time we have all the components installed and configured.
What now? This is the point where we start doing some configuration changes to
syslog. As I said earlier, syslog, on the central server, is NOT doing the logging for
the remote servers. Though some minor changes will need to be made to the
syslog.conf files on the remotes and the main server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The changes that are being made to syslog.conf are the same for all the
servers. We are basically deciding what to log and sending that to a file of our
choosing so that the perl script, logger.pl, can parse it and insert the data into the
MySQL server that is running the SYSLOG database. Essentially we are adding one
(1) line to the syslog.conf. I am going to copy this line:

*.notice;auth,authpriv,cron,ftp,kern,lpr,mail,user.none /var/log/messages

So that I get the same data that would be going into the messages file, going

into the SYSLOG database. I do this by copying the above line and pasting it back
into /etc/syslog.conf, but then I change the file to a different name. Now syslog.conf
looks like the following:

*.notice;auth,authpriv,cron,ftp,kern,lpr,mail,user.none /var/log/messages
*.notice;auth,authpriv,cron,ftp,kern,lpr,mail,user.none /var/log/mymessages

 I make those changes to all the servers that will be sending data to the
SYSLOG database.

 Now that syslog is writing duplicate data, what do I do with it? Remember the
logger.pl script? This script get placed in the /sbin directory, or any other directory
you chose on your system. This script gets run from cron every 60 seconds. It parses
through the /var/log/mymessages file and if this is the SYSLOG database server, it
then inserts the data into the SYSLOG database. If it is a remote server, then it sends
the data via the perl dbd for mysql to the mysql server that is running on port 3306 on
the SYSLOG database server. After logger.pl has parsed the data it clears the file
and writes a line into it so that syslog will continue writing to the file.

 Now we’re getting somewhere. We have data flowing into our database. Now
what? This is a very basic system that has many possibilities. We have the ability to
utilize the graphing capability of PHP to draw “on the fly” graphics to visually display
our data trends, notices, warnings, or any information that is held in our secured
remote location.

We will utilize PHP to access the database information and tell us what is
happening. We can graph failures of certain types, daemons, logins, etc… We can
even have PHP draw pictures, we had that support compiled in when we added the
gd tag to the make command. Or, as in this example we will be using PHP to display
the data in a syslog type format. So that it is displayed like this:

Jul 14 04:29:35 laptop /bsd: mainbus0 (root)

Except on a web page. Now this helps the administrator immensely, if we

suspect that our servers have been compromised then we can select everything on
any given date that is in the database.

You will need to code the PHP front end to the SYSLOG database. I have

included a simple example of what this code could look like. With relative easy you

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

should be able to take this example and expand it into a very nice web driven font
end to a syslog database. The database schema is going to look just like the layout
for the syslog logfile. You will be able to query SYSLOG for all events on any given
day in the database:

mysql> select * from SYSLOG where month =”July” and day = “15”;

Will return all events logged for all hosts on July 15, or you will be able to

query for specific events:

mysql> select * from SYSLOG where Host = “localhost” and Description
like “syslogd%”;

Will return all events logged for the localhost that deal with syslogd.

 By wrapping a web front end around our SYSLOG database using PHP we
have created a very effective monitoring station. By utilizing Perl and the DBI and
DBD we can set the syslog database to auto age data, or flush aged data to disk. We
could expand on this by using Perl and the DBI and DBD to query the database
every 60 seconds and if certain criteria are in the database, Perl can then email the
administrator to alert them of the condition that has been met. The possibilities are
endless once the data is in the database.

In Conclusion
 This system is a collection of database clients that are updating syslog
information stored in a MySQL database. This avoids the problems of traditional
sysloging, such as syslog bombing, to a central server by utilizing the security model
in MySQL to only allow certain hosts to connect, and the pf utility in OpenBSD to only
allow certain ports to be available for connection.

References:

Simon Garfinkel with Gene Spafford. Web Security and Commerce.
Cambridge: O’Reilly, June 1997. 293 – 309.

Tom Christiansen and Nathan Torkington. Perl Cookbook. Cambridge:
O’Reilly, August 1998.

AUTHOR. Programming the Perl DBI. CITY: O’Reilly, DATE

“OpenBSD frequently asked questions”
URL: http://www.openbsd.org/faq/index.html (17 June 2002)

“MySQL | Documentation”
URL: http://mysql.org/documentation/index.html (1995 - 2002)

“Apache HTTP Server Version 1.3 Documentation”
URL: http://httpd.apache.org/docs/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

“PHP:FAQ: Frequently Asked Questions”
URL: http://www.php.net/manual/en/faq.php (10 Jun 2002)

Dennis Jr, Israel and Eugene Otto. “The Soothingly Seamless Setup of
Apache, SSL, MySQL, and PHP”. 7 June 2002
URL:
http://zope1.devshed.com/zope.devshed.com/Server_Side/PHP/SoothinglySe
amless/page1.html

Code

PF.CONF
Define useful variables
ExtIF="xl0" # External Interface
NoRouteIPs="{127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12}"
Services="{ssh, https, mysql}"

Clean up fragmented and abnormal packets
scrub in all

Don’t allow anyone to spoof non-routable addresses
block in quick on $ExtIF from $NoRouteIPs to any
block out quick on $ExtIF from any to $NoRouteIPs

by default, block all incoming packets, except those explicitly
allowed by further rules
block in on $ExtIF all

allow others to use http and https
pass in on $ExtIF inet proto tcp from any to any port \

 $Services flags S/SA keep state

and let out-going traffic out and maintain state on established
connections pass out all protocols, including TCP, UDP, ICMP, and
create state, so that external DNS servers can reply to our own DNS
requests (UDP).
block out on $ExtIF all
pass out on $ExtIF inet proto tcp all flags S/SA keep state
pass out on $ExtIF inet proto udp all keep state
pass out on $ExtIF inet proto icmp all keep state

 MySQL Schema
 #
 # The following is the create table schema for our database

for simplicity to we will only show one host schema.

CREATE TABLE messages (
 Month char(5),
 Day char(2),

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Hms char(8),
 Host char(30),
 Description text

);

Perl scripts (logger.pl)
 #!/usr/bin/perl

use strict;
use DBI;

my
($database,$driver,$dsn,$user,$passwd,$log,$dbh,$sth,$ref,$month,$day
,$hms,$host,$system,$description);

$database = "SYSLOG";
$driver = "mysql";
$dsn = "DBI:$driver:$database;localhost;3306";
$user = "syslog";
$passwd = "CHANGE_THIS";
$log = "/var/log/mymessages";

$dbh = DBI->connect($dsn, $user, $passwd);

open(LOG, "< $log") || die "Can't open $log: $! \n";
while (<LOG>)
{
 next if /^#/;

 ($month, $day, $hms, $host, $description) = split(/\s+/, $_,
5);

 $description =~ s/'//gs;

 $dbh->do("INSERT INTO messages (month, day, hms, host,
description) VALUES ('$month', '$day', '$hms', '$host', '$description
'
)");
}
close(LOG) || die "Can't close $log: $! \n";

system("/bin/cat /dev/null > /var/log/mymessages");
system("echo \"### IGNORE THIS LINE ###\" > /var/log/mymessages");

$dbh->disconnect;

 Simple PHP script (test.php)
 // This is a simple script that we display all the configuration
 // variables and the default locations for files that were compiled
 // into PHP

<?php

 phpinfo();

 ?>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Example PHP front end for SYSLOG database
 Sample index.php script

 <?php

include ("html.inc.php");

$title = "SYSLOG database test server";
$header = "SYSLOG Data handled by MySQL";

html_begin($title,$header);

print ("<hr>\n");

db_connect()
 or exit();

$result = mysql_query ("SELECT COUNT(*) FROM messages")
 or exit();
if ($row = mysql_fetch_array ($result))
 echo "There are " . $row[0] . "
records in testboxs' message database
\n";
mysql_free_result ($result);

$result = mysql_query ("SELECT COUNT(*) FROM demarc")
 or exit();
if ($row = mysql_fetch_array ($result))
 echo "There are " . $row[0] . "
records in demarc's message database
\n";
mysql_free_result ($result);

$result = mysql_query ("SELECT COUNT(*) FROM scnmgmt")
 or exit();
if ($row = mysql_fetch_array ($result))
 echo "There are " . $row[0] . "
records in scnmgmt's message database
\n";
mysql_free_result ($result);

print ("<hr>\n");

index_end();

?>

Sample html.inc.php

 <?php

function html_begin($title,$header)
{
 print ("<HTML>\n");
 print ("<HEAD>\n");
 print ("<TITLE>$title</TITLE>\n");

 print ("<meta http-equiv=\"Content-Type\"
content=\"text/html; charset=iso-8859-1\">\n");
 print ("<link rel=\"stylesheet\" type=\"text/css\"
href=\"syslog.css\">\n");

 print ("</HEAD>\n");
 print ("<BODY>\n");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 print ("<DIV ALIGN=\"CENTER\">\n");
 print ("<TABLE WIDTH=800 BORDER=1>\n");
 print ("<TR>\n");
 print ("<TD>\n");

 print ("<H1>$header</H1>\n");
}

function index_end()
{
 $date = date("H:i:s");
 print ("<DIV ALIGN=\"CENTER\">");
 print ("Local time in my cube is: $date");
 print ("</DIV>\n");
 print ("</TD>\n");
 print ("</TR>\n");
 print ("</TABLE>\n");
 print ("</DIV>\n");
 print ("</BODY>\n");
 print ("</HTML>\n");
}

function html_end()
{
 $date = date("H:i:s");
 print ("<HR>\n");
 print ("<DIV ALIGN=\"CENTER\">");
 print ("Local time in my cube is: $date
");
 print ("Return\n");
 print ("</DIV>\n");
 print ("</TD>\n");
 print ("</TR>\n");
 print ("</TABLE>\n");
 print ("</DIV>\n");
 print ("</BODY>\n");
 print ("</HTML>\n");
}

function db_connect()
{
 $link = @mysql_pconnect ("localhost", "syslog", "syslog");
 if ($link && mysql_select_db ("SYSLOG"))
 return ($link);
 return (FALSE);
}

?>

Sample localhost.php script

<?php

include ("html.inc.php");

$title = "";
$header = "Testbox's Data";

html_begin($title,$header);

print ("<hr>\n");

db_connect()
 or exit();

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

$result = mysql_query ("SELECT * FROM messages");

if ($row = mysql_fetch_array($result)) {

 print ("<TABLE>\n");
 do
 {

 print ("<TR VALIGN=\"TOP\">\n");
 print ("<TD>\n");
 print $row["month"];
 print ("</TD>\n");
 print ("<TD>\n");
 print $row["day"];
 print ("</TD>\n");
 print ("<TD>\n");
 print $row["hms"];
 print ("</TD>\n");
 print ("<TD>\n");
 print $row["host"];
 print ("</TD>\n");
 print ("<TD>\n");
 print $row["description"];
 print ("</TD>\n");
 print ("</TR>\n");
 }

 while($row = mysql_fetch_array($result));
 print ("</TABLE>\n");
}
else
{
 print "Sorry, no records were found!";
}

html_end();

?>

